WorldWideScience

Sample records for solid delivery system

  1. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  2. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs

    Directory of Open Access Journals (Sweden)

    Jafar Ezzati Nazhad Dolatabadi

    2015-06-01

    Full Text Available In recent years, nanomaterials have been widely applied as advanced drug and gene delivery nanosystems. Among them, solid lipid nanoparticles (SLNs have attracted great attention as colloidal drug delivery systems for incorporating hydrophilic or lipophilic drugs and various macromolecules as well as proteins and nucleic acids. Therefore, SLNs offer great promise for controlled and site specific drug and gene delivery. This article includes general information about SLN structures and properties, production procedures, characterization. In addition, recent progress on development of drug and gene delivery systems using SLNs was reviewed.

  3. Optimized formulation of solid self-microemulsifying sirolimus delivery systems

    Directory of Open Access Journals (Sweden)

    Cho W

    2013-04-01

    Full Text Available Wonkyung Cho,1,2 Min-Soo Kim,3 Jeong-Soo Kim,2 Junsung Park,1,2 Hee Jun Park,1,2 Kwang-Ho Cha,1,2 Jeong-Sook Park,2 Sung-Joo Hwang1,4 1Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; 2College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea; 3Department of Pharmaceutical Engineering, Inje University, Gimhae, Republic of Korea; 4College of Pharmacy, Yonsei University, Incheon, Republic of Korea Background: The aim of this study was to develop an optimized solid self-microemulsifying drug delivery system (SMEDDS formulation for sirolimus to enhance its solubility, stability, and bioavailability. Methods: Excipients used for enhancing the solubility and stability of sirolimus were screened. A phase-separation test, visual observation for emulsifying efficiency, and droplet size analysis were performed. Ternary phase diagrams were constructed to optimize the liquid SMEDDS formulation. The selected liquid SMEDDS formulations were prepared into solid form. The dissolution profiles and pharmacokinetic profiles in rats were analyzed. Results: In the results of the oil and cosolvent screening studies, Capryol™ Propylene glycol monocaprylate (PGMC and glycofurol exhibited the highest solubility of all oils and cosolvents, respectively. In the surfactant screening test, D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS was determined to be the most effective stabilizer of sirolimus in pH 1.2 simulated gastric fluids. The optimal formulation determined by the construction of ternary phase diagrams was the T32 (Capryol™ PGMC:glycofurol:vitamin E TPGS = 30:30:40 weight ratio formulation with a mean droplet size of 108.2 ± 11.4 nm. The solid SMEDDS formulations were prepared with Sucroester 15 and mannitol. The droplet size of the reconstituted solid SMEDDS showed no significant difference compared with the liquid SMEDDS. In the dissolution study, the release amounts of

  4. Application of mixture experimental design in formulation and characterization of solid self-nanoemulsifying drug delivery systems containing carbamazepine

    OpenAIRE

    Krstić Marko Z.; Ibrić Svetlana R.

    2016-01-01

    One of the problems with orally used drugs is their poor solubility, which can be overcame by creating solid self-nanoemulsifying drug delivery systems (SNEDDS). Aim is choosing appropriate SNEDDS using mixture design and adsorption of SNEDDS on a solid carrier to improve the dissolution rate of carbamazepine. Self-emulsifying drug delivery systems (SEDDS) consisting of oil phase (caprilic-capric triglycerides), a surfactant (Polisorbat 80 and Labrasol® (1:...

  5. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    Science.gov (United States)

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  6. Voice-Controlled and Wireless Solid Set Canopy Delivery (VCW-SSCD System for Mist-Cooling

    Directory of Open Access Journals (Sweden)

    Yiannis Ampatzidis

    2018-02-01

    Full Text Available California growers in the San Joaquin Valley believe that climate change will affect the pistachio yield dramatically. As the central valley fog disappears, insufficient dormant chill accumulation results in poor flowering synchrony, flower quality, and fruit set in this dioecious species. We have developed a novel, user-friendly, and low-cost Voice-Controlled Wireless Solid Set Canopy Delivery (VCW-SSCD system to increase bud chill accumulation with evaporative cooling on sunny (winter days. This system includes: (i an automated solid-state canopy delivery (SSCD system; (ii a wireless weather-, crop-related data acquisition system; (iii a Voice-Controlled (VC system using Amazon Alexa; (iv a mobile application to visualize the collected data and wirelessly control the SSCD system; and (v a smart control system. The proposed system was deployed and evaluated in a commercial pistachio orchard in Bakersfield, CA. The system worked well with no reported errors. Results demonstrated the system’s ability to cool bud temperatures in a low relative humidity climate. At an ambient temperature of 10–20 °C, bud temperatures were lowered 5–10 °C.

  7. Preparation and in Vivo Evaluation of a Dutasteride-Loaded Solid-Supersaturatable Self-Microemulsifying Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Min-Soo Kim

    2015-05-01

    Full Text Available The purpose of this study was to prepare a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system (SMEDDS using hydrophilic additives with high oral bioavailability, and to determine if there was a correlation between the in vitro dissolution data and the in vivo pharmacokinetic parameters of this delivery system in rats. A dutasteride-loaded solid-supersaturatable SMEDDS was generated by adsorption of liquid SMEDDS onto Aerosil 200 colloidal silica using a spray drying process. The dissolution and oral absorption of dutasteride from solid SMEDDS significantly increased after the addition of hydroxypropylmethyl cellulose (HPMC or Soluplus. Solid SMEDDS/Aerosil 200/Soluplus microparticles had higher oral bioavailability with 6.8- and 5.0-fold higher peak plasma concentration (Cmax and area under the concentration-time curve (AUC values, respectively, than that of the equivalent physical mixture. A linear correlation between in vitro dissolution efficiency and in vivo pharmacokinetic parameters was demonstrated for both AUC and Cmax values. Therefore, the preparation of a solid-supersaturatable SMEDDS with HPMC or Soluplus could be a promising formulation strategy to develop novel solid dosage forms of dutasteride.

  8. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    Science.gov (United States)

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  9. Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia

    Science.gov (United States)

    Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J.; Tucci, Joseph

    2018-01-01

    The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases. PMID:29495355

  10. Development and Evaluation of Liquid and Solid Self-Emulsifying Drug Delivery Systems for Atorvastatin

    Directory of Open Access Journals (Sweden)

    Anna Czajkowska-Kośnik

    2015-11-01

    Full Text Available The objective of this work was to design and characterize liquid and solid self-emulsifying drug delivery systems (SEDDS for poorly soluble atorvastatin. To optimize the composition of liquid atorvastatin-SEDDS, solubility tests, pseudoternary phase diagrams, emulsification studies and other in vitro examinations (thermodynamic stability, droplet size and zeta potential analysis were performed. Due to the disadvantages of liquid SEDDS (few choices for dosage forms, low stability and portability during the manufacturing process, attempts were also made to obtain solid SEDDS. Solid SEDDS were successfully obtained using the spray drying technique from two optimized liquid formulations, CF3 and OF2. Despite liquid SEDDS formulation, CF3 was characterized by lower turbidity, higher percentage transmittance and better self-emulsifying properties, and based on the in vitro dissolution study it can be concluded that better solubilization properties were exhibited by solid formulation OF2. Overall, the studies demonstrated the possibility of formulating liquid and solid SEEDS as promising carriers of atorvastatin. SEDDS, with their unique solubilization properties, provide the opportunity to deliver lipophilic drugs to the gastrointestinal tract in a solubilized state, avoiding dissolution—a restricting factor in absorption rate of BCS Class 2 drugs, including atorvastatin.

  11. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen.

    Science.gov (United States)

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-01-01

    Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.

  12. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  13. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting.

    Science.gov (United States)

    Singh, Indu; Swami, Rajan; Pooja, Deep; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2016-01-01

    Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood-brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study. Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain. DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively. Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation. It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than

  14. Drug delivery properties of macroporous polystyrene solid foams.

    Science.gov (United States)

    Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José

    2012-01-01

    Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.

  15. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  16. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications.

    Science.gov (United States)

    Nunes, Sara; Madureira, Ana Raquel; Campos, Débora; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Manuela; Reis, Flávio

    2017-06-13

    Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

  17. Solid lipid nanoparticles for pulmonary delivery of insulin.

    Science.gov (United States)

    Liu, Jie; Gong, Tao; Fu, Hualin; Wang, Changguang; Wang, Xiuli; Chen, Qian; Zhang, Qin; He, Qin; Zhang, Zhirong

    2008-05-22

    Growing attention has been given to the potential of pulmonary route as an alternative for non-invasive systemic delivery of therapeutic agents. In this study, novel nebulizer-compatible solid lipid nanoparticles (SLNs) for pulmonary drug delivery of insulin were developed by reverse micelle-double emulsion method. The influences of the amount of sodium cholate (SC) and soybean phosphatidylcholine (SPC) on the deposition properties of the nanoparticles were investigated. Under optimal conditions, the entrapment delivery (ED), respirable fraction (RF) and nebulization efficiency (NE) of SLNs could reach 96.53, 82.11 and 63.28%, respectively, and Ins-SLNs remained stable during nebulization. Fasting plasma glucose level was reduced to 39.41% and insulin level was increased to approximately 170 microIU/ml 4h after pulmonary administration of 20 IU/kg Ins-SLNs. A pharmacological bioavailability of 24.33% and a relative bioavailability of 22.33% were obtained using subcutaneous injection as a reference. Incorporating fluorescent-labelled insulin into SLNs, we found that the SLNs were effectively and homogeneously distributed in the lung alveoli. These findings suggested that SLNs could be used as a potential carrier for pulmonary delivery of insulin by improving both in vitro and in vivo stability as well as prolonging hypoglycemic effect, which inevitably resulted in enhanced bioavailability.

  18. Effects of Spray-Drying and Choice of Solid Carriers on Concentrations of Labrasol® and Transcutol® in Solid Self-Microemulsifying Drug Delivery Systems (SMEDDS

    Directory of Open Access Journals (Sweden)

    Christopher Wai-Kei Lam

    2013-01-01

    Full Text Available Solid self-microemulsifying drug delivery systems (SMEDDS have been used increasingly for improving the bioavailability of hydrophobic drugs. Labrasol® and Transcutol® are used widely as surfactant and solubilizer in the formulation of solid SMEDDS. We investigated the effects of spray-drying and the use of different solid carriers on concentrations of Labrasol® and Transcutol® in solid SMEDDS with scutellarin as the formulated drug. Liquid and gas chromatography tandem mass spectrometry (LC-MS and GC-MS methods were developed for measuring low concentrations of Labrasol® and Transcutol®. In the preparation of solid SMEDDS, lactose, hydroxypropylmethyl cellulose (HPMC and microcrystalline cellulose (MCC were used as solid carriers. Judging from the retention ratios of Labrasol® and Transcutol®, the droplet size of solid SMEDDS increased after spray-drying of liquid SMEDDS, and concentrations of these excipients decreased after the solidifying procedure. In such reduction, Lactose and HPMC were found to preserve Labrasol® and Transcutol® better than MCC during spray-drying, and the resultant droplet sizes were smaller than that of MCC. Labrasol® and Transcutol® showed good thermal stability at 60 °C degree for 10 days. It can be concluded that spray-drying could increase the droplet size of solid SMEDDS and decreased the concentration of Labrasol® and Transcutol® therein, while water-soluble solid carriers could preserve Labrasol® and Transcutol® better than insoluble carriers in the solid SMEDDS.

  19. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery.

    Science.gov (United States)

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2009-02-01

    Growing attentions have been paid to the pulmonary route for systemic delivery of peptide and protein drugs, such as insulin. Advantages of this non-injective route include rapid drug deposition in the target organ, fewer systemic side effects and avoiding first pass metabolism. However, sustained release formulations for pulmonary delivery have not been fully exploited till now. In our study, a novel dry powder inhalation (DPI) system of insulin loaded solid lipid nanoparticles (Ins-SLNs) was investigated for prolonged drug release, improved stability and effective inhalation. Firstly, the drug was incorporated into the lipid carriers for a maximum entrapment efficiency as high as 69.47 +/- 3.27% (n = 3). Secondly, DPI formulation was prepared by spray freeze drying of Ins-SLNs suspension, with optimized lyoprotectant and technique parameters in this procedure. The properties of DPI particles were characterized for their pulmonary delivery potency. Thirdly, the in vivo study of intratracheal instillation of Ins-SLNs to diabetic rats showed prolonged hypoglycemic effect and a relative pharmacological bioavailability of 44.40% could be achieved in the group of 8 IU/kg dosage. These results indicated that SLNs have shown increasing potential as an efficient and non-toxic lipophilic colloidal drug carrier for enhanced pulmonary delivery of insulin.

  20. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation.

    Science.gov (United States)

    Garg, Varun; Kaur, Puneet; Singh, Sachin Kumar; Kumar, Bimlesh; Bawa, Palak; Gulati, Monica; Yadav, Ankit Kumar

    2017-11-15

    Development of self-nanoemulsifying drug delivery systems (SNEDDS) of polypeptide-k (PPK) is reported with the aim to achieve its oral delivery. Box-Behnken design (BBD) was adopted to develop and optimize the composition of SNEDDS. Oleoyl polyoxyl-6 glycerides (A), Tween 80 (B), and diethylene glycol monoethyl ether (C) were used as oil, surfactant and co-surfactant, respectively as independent variables. The effect of variation in their composition was observed on the mean droplet size (y1), polydispersity index (PDI) (y2), % drug loading (y3) and zeta potential (y4). As per the optimal design, seventeen SNEDDS prototypes were prepared. The optimized composition of SNEDDS formulation was 25% v/v Oleoyl polyoxyl-6 glycerides, 37% v/v Tween 80, 38% v/v diethylene glycol monoethyl ether, and 3% w/v PPK. The optimized formulation revealed values of y1, y2, y3, and y4 as 31.89nm, 0.16, 73.15%, and -15.65mV, respectively. Further the optimized liquid SNEDDS were solidified through spray drying using various hydrophilic and hydrophobic carriers. Among the various carriers, Aerosil 200 was found to provide desirable flow, compression, disintegration and dissolution properties. Both, liquid and solid-SNEDDS have shown release of >90% within 10min. The formulation was found stable with change in pH, dilution, temperature variation and freeze thaw cycles in terms of droplet size, zeta potential, drug precipitation and phase separation. Crystalline PPK was observed in amorphous state in solid SNEDDS when characterized through DSC and PXRD studies. The biochemical, hematological and histopathological results of streptozotocin induced diabetic rats shown promising antidiabetic potential of PPK loaded in SNEDDS at its both the doses (i.e. 400mg/kg and 800mg/kg) as compared to its naïve form at both the doses. The study revealed successful formulation of SNEDDS for oral delivery of PPK. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation and evaluation of valsartan by a novel semi-solid self-microemulsifying delivery system using Gelucire 44/14.

    Science.gov (United States)

    Zhao, Kun; Yuan, Yue; Wang, Hui; Li, Panpan; Bao, Zhihong; Li, Yue

    2016-10-01

    The aim of the present study was to develop a novel semi-solid self-microemulsifying drug delivery system (SMEDDS) using Gelucire(®) 44/14 as oil with strong solid character to improve the oral bioavailability of poorly soluble drug valsartan. The solubility of valsartan in various excipients was determined, the pseudo-ternary phase diagram was constructed in order to screen the optimal excipients, and DSC analysis was performed to evaluate the melting point of SMEDDS. The optimal drug-loaded SMEDDS formulation was consisted of 30% Gelucire(®) 44/14 (oil), 40% Solutol(®) HS 15 (surfactant), and 30% Transcutol(®) P (cosurfactant) (w/w) with 80 mg valsartan/g excipients. The average droplet sizes of the optimized blank and drug-loaded SMEDDS formulations were 26.20 ± 1.43 and 33.34 ± 2.15 nm, and the melting points of them were 35.6 and 36.8 °C, respectively. The in vitro dissolution rate of optimal semi-solid SMEDDS was increased compared with commercial capsules, resulting in the 2.72-fold and 2.97-fold enhancement of Cmax and AUC0-t after oral administration in rats, respectively. These results indicated that the novel semi-solid SMEDDS formulation could potentially improve the oral bioavailability of valsartan, and the semi-solid SMEDDS was a desirable system than the traditional liquid SMEDDS because it was convenient for preparation, storage and transportation due to semi-solid state at room temperature and melted state at body temperature.

  2. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Application of mixture experimental design in formulation and characterization of solid self-nanoemulsifying drug delivery systems containing carbamazepine

    Directory of Open Access Journals (Sweden)

    Krstić Marko Z.

    2016-01-01

    Full Text Available One of the problems with orally used drugs is their poor solubility, which can be overcame by creating solid self-nanoemulsifying drug delivery systems (SNEDDS. Aim is choosing appropriate SNEDDS using mixture design and adsorption of SNEDDS on a solid carrier to improve the dissolution rate of carbamazepine. Self-emulsifying drug delivery systems (SEDDS consisting of oil phase (caprilic-capric triglycerides, a surfactant (Polisorbat 80 and Labrasol® (1:1 and cosurfactant (Transcutol® HP are formed by applying mixture design. 16 formulations were formulated, where proportion of lipids, surfactant and cosurfactant were varied (input parameters in the following ranges: 10-30%, 40-60%, 30-50%, respectively. After dilution of SEDDS with water (90% water, the droplet size and polydispersity index (PdI of the obtained emulsions (output parameters were measured using photon correlation spectroscopy. After processing data, appropriate mathematical models that describe the dependence of input and output parameters were selected. The optimized SNEDDS was adsorbed on the carbamazepine and solid carrier physical mixture, containing 20% carbamazepine. Neusilin® UFl2, Neusilin® FL2, Sylysia® 320, diatomite were used as the carriers. The ratio of SNEDDS:carrier varied (1:1, 2:1. Dissolution testing was carried out in the rotation paddles apparatus. Caracterization of solid SNEDDS was performed using the hot stage microscopy (HSM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, infrared spectrophotometry with Fourier transformation (FT-IR, scanning electron microscopy (SEM and X-ray diffraction (PXRD. Selected SNEDDS consisting of lipids (21.12%, surfactant (42.24% and cosurfactant (36.64% had a droplet size 157.02±34.09 nm and PDI 0.184±0.021. Drug release profiles showed that in all formulations dissolution rate increased (the fastest drug release was observed in formulations with Sylysia® 320. It can be concluded that in all

  4. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  5. Bacteria-mediated in vivo delivery of quantum dots into solid tumor

    International Nuclear Information System (INIS)

    Liu, Ying; Zhou, Mei; Luo, Dan; Wang, Lijun; Hong, Yuankai; Yang, Yepeng; Sha, Yinlin

    2012-01-01

    Highlights: ► New approach using the probiotic Bifidobacterium bifidum as a vehicle to deliver QDs into the deep tissue of solid tumors in vivo was achieved. ► Bifidobacterium bifidum delivery system has intrinsic biocompatibility. ► The targeting efficacy was improved by folic acids. -- Abstract: Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.

  6. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chuan Junlan [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Li Yanzhen [Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics (China); Yang Likai; Sun Xun [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Zhang Qiang [Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences (China); Gong Tao, E-mail: gongtaoy@126.com; Zhang Zhirong, E-mail: zrzzl@vip.sina.com [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China)

    2013-05-15

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 {+-} 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  7. Bacteria-mediated in vivo delivery of quantum dots into solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Zhou, Mei [Dept. of Radiation Medicine, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Luo, Dan; Wang, Lijun; Hong, Yuankai [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Yang, Yepeng, E-mail: yangyepeng@bjmu.edu.cn [Dept. of Radiation Medicine, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Sha, Yinlin, E-mail: shyl@hsc.pku.edu.cn [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Biomed-X Center, Peking University, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer New approach using the probiotic Bifidobacterium bifidum as a vehicle to deliver QDs into the deep tissue of solid tumors in vivo was achieved. Black-Right-Pointing-Pointer Bifidobacterium bifidum delivery system has intrinsic biocompatibility. Black-Right-Pointing-Pointer The targeting efficacy was improved by folic acids. -- Abstract: Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.

  8. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  10. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  11. A novel osmotic pump-based controlled delivery system consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen: in vitro and in vivo evaluation.

    Science.gov (United States)

    Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan

    2015-01-01

    In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.

  12. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    Science.gov (United States)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  13. Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells

    Science.gov (United States)

    Penumarthi, Alekhya; Parashar, Deepti; Abraham, Amanda N.; Dekiwadia, Chaitali; Macreadie, Ian; Shukla, Ravi; Smooker, Peter M.

    2017-06-01

    There is an increasing demand for novel DNA vaccine delivery systems, mainly for the non-viral type as they are considered relatively safe. Therefore, solid lipid nanoparticles (SLNs) were investigated for their suitability as a non-viral DNA vaccine delivery system. SLNs were synthesised by a modified solvent-emulsification method in order to study their potential to conjugate with plasmid DNA and deliver them in vitro to dendritic cells using eGFP as the reporter plasmid. The DNA-SLN complexes were characterised by electron microscopy, gel retardation assays and dynamic light scattering. The cytotoxicity assay data supported their biocompatibility and was used to estimate safe threshold concentration resulting in high transfection rate. The transfection efficiency of these complexes in a dendritic cell line was shown to increase significantly compared to plasmid alone, and was comparable to that mediated by lipofectamine. Transmission electron microscopy studies delineated the pathway of cellular uptake. Endosomal escape was observed supporting the mechanism of transfection.

  14. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  15. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  16. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components.

    Science.gov (United States)

    McClements, David Julian; Li, Yan

    2010-09-15

    There is a need for edible delivery systems to encapsulate, protect and release bioactive and functional lipophilic constituents within the food and pharmaceutical industries. These delivery systems could be used for a number of purposes: controlling lipid bioavailability; targeting the delivery of bioactive components within the gastrointestinal tract; and designing food matrices that delay lipid digestion and induce satiety. Emulsion technology is particularly suited for the design and fabrication of delivery systems for lipids. In this article we provide an overview of a number of emulsion-based technologies that can be used as edible delivery systems by the food and other industries, including conventional emulsions, nanoemulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. Each of these delivery systems can be produced from food-grade (GRAS) ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals) using relatively simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, preparation, and utilization of each type of delivery system for controlling lipid digestion are discussed. This knowledge can be used to select the most appropriate emulsion-based delivery system for specific applications, such as encapsulation, controlled digestion, and targeted release. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  18. Zeolites: promising candidates for drug delivery systems (DDSs)

    OpenAIRE

    Vilaça, Natália; Amorim, Ricardo; Baltazar, Fátima; Fonseca, António Manuel; Neves, Isabel C.

    2012-01-01

    [Excerpt] The aim of controlled drug delivery systems (DDSs) is to administer the necessary amount of drug safely and effectively to specific sites in the human body and to regulate the temporal drug profile for maximum therapeutic benefits.[1] Zeolites are crystalline aluminosilicates solids with very regular microporous structures and they have been recently considered for medical use due to their biological properties and stability in biological environments.[1,2] The large variety in ...

  19. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying

    2017-05-08

    “On demand” implantable drug delivery systems can provide optimized treatments, due to their ability to provide targeted, flexible and precise dose release. However, two important issues that need to be carefully considered in a mature device include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration of a resonance-based wireless power transfer system, a constant voltage control circuit and an electrolytic pump. Upon the activation of the wireless power transfer system, the electrolytic actuator is remotely powered by a constant voltage regardless of movements of the device within an effective range of translation and rotation. This in turn contributes to a predictable dose release rate and greater flexibility in the positioning of external powering source. We have conducted proof-of-concept drug delivery studies using the liquid drug in reservoir approach and the solid drug in reservoir approach, respectively. Our experimental results demonstrate that the range of flow rate is mainly determined by the voltage controlled with a Zener diode and the resistance of the implantable device. The latter can be adjusted by connecting different resistors, providing control over the flow rate to meet different clinical needs. The flow rate can be maintained at a constant level within the effective movement range. When using a solid drug substitute with a low solubility, solvent blue 38, the dose release can be kept at 2.36μg/cycle within the effective movement range by using an input voltage of 10Vpp and a load of 1.5 kΩ, which indicates the feasibility and controllability of our system without any complicated closed-loop sensor.

  20. Colloidal formulations for probiotics delivery and Pickering systems

    DEFF Research Database (Denmark)

    Yücel Falco, Cigdem

    countries. One emerging functional food area is the efficient delivery of health-promoting probiotics. Although much progress has already been made in the development and understanding of novel microencapsulation systems, maintaining viability during gastric passage and being effective at the target site...... is still an issue for probiotics. On the other hand, one of the foremost challenges in the production of physically stable foods during the defined shelf life is the identification of new food-grade ingredients. In this context, the replacement of classical emulsifiers with solid particles is one...... of the advancing food research areas, though the number of food-grade solid particles investigated is still insufficient. Edible probiotic strains can potentially be valorised as particles similar to micron-sized fat particles in Pickering systems such as ice cream due to their low calories and their availability...

  1. Solid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability.

    Science.gov (United States)

    Yeom, Dong Woo; Chae, Bo Ram; Kim, Jin Han; Chae, Jun Soo; Shin, Dong Jun; Kim, Chang Hyun; Kim, Sung Rae; Choi, Ji Ho; Song, Seh Hyon; Oh, Dongho; Sohn, Se Il; Choi, Young Wook

    2017-11-07

    In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul ® MCM (13.2 mg), Tween ® 80 (59.2 mg), Transcutol ® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite ® PS-10 (119.1 mg) and Vivapur ® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan ® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility.

  2. Application of three-dimensional printing for colon targeted drug delivery systems.

    Science.gov (United States)

    Charbe, Nitin B; McCarron, Paul A; Lane, Majella E; Tambuwala, Murtaza M

    2017-01-01

    Orally administered solid dosage forms currently dominate over all other dosage forms and routes of administrations. However, human gastrointestinal tract (GIT) poses a number of obstacles to delivery of the drugs to the site of interest and absorption in the GIT. Pharmaceutical scientists worldwide have been interested in colon drug delivery for several decades, not only for the delivery of the drugs for the treatment of colonic diseases such as ulcerative colitis and colon cancer but also for delivery of therapeutic proteins and peptides for systemic absorption. Despite extensive research in the area of colon targeted drug delivery, we have not been able to come up with an effective way of delivering drugs to the colon. The current tablets designed for colon drug release depend on either pH-dependent or time-delayed release formulations. During ulcerative colitis the gastric transit time and colon pH-levels is constantly changing depending on whether the patient is having a relapse or under remission. Hence, the current drug delivery system to the colon is based on one-size-fits-all. Fails to effectively deliver the drugs locally to the colon for colonic diseases and delivery of therapeutic proteins and peptides for systemic absorption from the colon. Hence, to overcome the current issues associated with colon drug delivery, we need to provide the patients with personalized tablets which are specifically designed to match the individual's gastric transit time depending on the disease state. Three-dimensional (3D) printing (3DP) technology is getting cheaper by the day and bespoke manufacturing of 3D-printed tablets could provide the solutions in the form of personalized colon drug delivery system. This review provides a bird's eye view of applications and current advances in pharmaceutical 3DP with emphasis on the development of colon targeted drug delivery systems.

  3. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells.

    Science.gov (United States)

    Guri, Anilda; Gülseren, Ibrahim; Corredig, Milena

    2013-09-01

    Solid lipid nanoparticles (SLN) have shown potential for encapsulation, protection and delivery of lipophilic functional components. In this study, we have investigated the capabilities of SLN to deliver a hydrophobic polyphenol compound, curcumin, in a coculture system of absorptive Caco-2 and mucus secreting HT29-MTX cells. The cells were grown on transport filters to mimic the human intestinal epithelium. Because of the hydrophobic nature of curcumin, its delivery to the basolateral compartment is expected to take place via a paracellular route. The changes in curcumin concentration in various compartments (i.e., apical, basolateral, mucus, and cell lysates) were evaluated using fluorescence spectroscopy. Two SLN systems were prepared with different emulsifying agents. The encapsulation of curcumin in SLN caused enhanced delivery compared to unencapsulated curcumin. In addition, SLN showed enhanced delivery compared to emulsion droplets containing liquid soy oil. The SLN were retained on the apical mucosal layer to a greater extent than emulsion droplets. The presence of SLN did not affect the integrity of the cellular junctions, as indicated by the TEER values, and the route of transport of the solid particles was simple diffusion, with permeability rates of about 7 × 10(-6) cm s(-1). Approximately 1% of total curcumin was delivered to the basolateral compartment, suggesting that most of the curcumin was absorbed and metabolized by the cell.

  5. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    Science.gov (United States)

    Patel, Meghavi

    with a well-defined shell and the particle size was in agreement with the particle size analysis data obtained by DLS. DSC thermograms of the lyophilized SLNs indicate a reduction in the crystallinity order of GMS particles. The drug encapsulation efficiency was found to be approximately 30%. In vitro drug release studies from redispersed lyophilized SLNs showed that 17 % of the encapsulated drug was released within 2 h. The SLNs prepared in our lab demonstrated characteristics that can potentially be utilized in an anticancer drug delivery system. Future in vitro cell culture and in vivo animal model studies will delineate compatibility and utility of these formulations in biological systems.

  6. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  7. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  8. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    Science.gov (United States)

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  9. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Giovana Maria Fioramonti Calixto

    2016-03-01

    Full Text Available Photodynamic therapy (PDT is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs, solid lipid nanoparticles (SLNs, nanostructured lipid carriers (NLCs, gold nanoparticles (AuNPs, hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  10. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery.

    Science.gov (United States)

    Soliman, Kareem AbuBakr; Ibrahim, Howida Kamal; Ghorab, Mahmoud Mohammed

    2016-10-10

    Avanafil was incorporated into solid self-nanoemulsifying systems with the aim of improving its oral bioavailability. Labrafil, Labrafac, and Miglyol 812 N were investigated as oils, Tween 80 and Cremophor EL as surfactants, and Transcutol HP as a co-surfactant. Nine formulations produced clear solutions of 13.89-38.09nm globules after aqueous dilution. Adsorption of preconcentrate onto Aeroperl 300 Pharma at a 2:1 ratio had no effect on nanoemulsion particle size. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy indicated that avanafil was molecularly dispersed within the solid nanosystems. A formulation containing 10% Labrafil, 60% Tween 80, and 30% Transcutol HP had the highest drug loading (44.48mg/g) and an acceptable in vitro dissolution profile (96.42% within 30min). This formulation was chemically and physically stable for 6months under accelerated storage conditions and it produced a 3.2-fold increase in bioavailability in rabbits, as compared to conventional commercially available avanafil tablets (Spedra(®)). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Xiaolin Bi

    2016-04-01

    Full Text Available The active ingredients of salvia (dried root of Salvia miltiorrhiza include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I and hydrophilic (e.g., danshensu and salvianolic acid B constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%–80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.

  12. Characterization of Pb(Zr, Ti)O sub 3 thin films prepared by metal-organic chemical-vapor deposition using a solid delivery system

    CERN Document Server

    Shin, J C; Hwang, C S; Kim, H J; Lee, J M

    1999-01-01

    Pb(Zr, Ti)O sub 3 (PZT) thin films were deposited on Pt/SiO sub 2 /Si substrates by metal-organic chemical-vapor deposition technique using a solid delivery system to improve the reproducibility of the deposition. The self-regulation mechanism, controlling the Pb-content of the film, was observed to work above a substrate temperature of 620 .deg. C. Even with the self-regulation mechanism, PZT films having low leakage current were obtained only when the molar mixing ratio of the input precursors was 1

  13. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.; Buttner, Ulrich; Yi, Ying

    2016-01-01

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  14. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  15. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  16. Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS for Oral Delivery of Olmesartan Medoxomil: Design, Formulation, Pharmacokinetic and Bioavailability Evaluation

    Directory of Open Access Journals (Sweden)

    Ali Nasr

    2016-06-01

    Full Text Available The main purpose of this study was to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS of Olmesartan (OLM for enhancement of its solubility and dissolution rate. In this study, liquid SNEDDS containing Olmesartan was formulated and further developed into a solid form by the spray drying technique using Aerosil 200 as a solid carrier. Based on the preliminary screening of different unloaded SNEDDS formulae, eight formulae of OLM loaded SNEEDS were prepared using Capryol 90, Cremophor RH40 and Transcutol HP as oil, surfactant and cosurfactant, respectively. Results showed that the mean droplet size of all reconstituted SNEDDS was found to be in the nanometric range (14.91–22.97 nm with optimum PDI values (0.036–0.241. All formulae also showed rapid emulsification time (15.46 ± 1.34–24.17 ± 1.47 s, good optical clarity (98.33% ± 0.16%–99.87% ± 0.31% and high drug loading efficiency (96.41% ± 1.20%–99.65% ± 1.11%. TEM analysis revealed the formation of spherical and homogeneous droplets with a size smaller than 50 nm. In vitro release of OLM from SNEDDS formulae showed that more than 90% of OLM released in approximately 90 min. Optimized SNEDDS formulae were selected to be developed into S-SNEDDS using the spray drying technique. The prepared S-SNEDDS formulae were evaluated for flow properties, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, reconstitution properties, drug content and in vitro dissolution study. It was found that S-SNEDDS formulae showed good flow properties and high drug content. Reconstitution properties of S-SNEDDS showed spontaneous self-nanoemulsification and no sign of phase separation. DSC thermograms revealed that OLM was in solubilized form and FTIR supported these findings. SEM photographs showed smooth uniform surface of S-SNEDDS with less aggregation. Results of the in vitro drug release showed that there was great enhancement in the dissolution rate of OLM

  17. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  18. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  19. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    Science.gov (United States)

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  20. Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour

    International Nuclear Information System (INIS)

    Zhan, Wenbo; Xu, Xiao Yun; Gedroyc, Wladyslaw

    2014-01-01

    Most of the computational models of drug transport in vascular tumours assume a uniform distribution of blood vessels through which anti-cancer drugs are delivered. However, it is well known that solid tumours are characterized by dilated microvasculature with non-uniform diameters and irregular branching patterns. In this study, the effect of heterogeneous vasculature on drug transport and uptake is investigated by means of mathematical modelling of the key physical and biochemical processes in drug delivery. An anatomically realistic tumour model accounting for heterogeneous distribution of blood vessels is reconstructed based on magnetic resonance images of a liver tumour. Numerical simulations are performed for different drug delivery modes, including direct continuous infusion and thermosensitive liposome-mediated delivery, and the anti-cancer effectiveness is evaluated through changes in tumour cell density based on predicted intracellular concentrations. Comparisons are made between regions of different vascular density, and between the two drug delivery modes. Our numerical results show that both extra- and intra-cellular concentrations in the liver tumour are non-uniform owing to the heterogeneous distribution of tumour vasculature. Drugs accumulate faster in well-vascularized regions, where they are also cleared out more quickly, resulting in less effective tumour cell killing in these regions. Compared with direct continuous infusion, the influence of heterogeneous vasculature on anti-cancer effectiveness is more pronounced for thermosensitive liposome-mediated delivery. (paper)

  1. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  2. Nanoemulsifying drug delivery system to improve the bioavailability of piroxicam.

    Science.gov (United States)

    Motawea, Amira; Borg, Thanaa; Tarshoby, Manal; Abd El-Gawad, Abd El-Gawad H

    2017-05-01

    The aim of this study is to develop and characterize self-nanoemulsifying drug delivery system (SNEDDS) of piroxicam in liquid and solid forms to improve its dissolution, absorption and therapeutic efficacy. The generation of liquid SNEDDS (L-SNEDDS) was composed of soybean or coconut oil/Tween 80/Transcutol HP (12/80/8%w/w) and it was selected as the optimized formulation based on the solubility study and pseudo-ternary phase diagram. Optimized L-SNEDDS and liquid supersaturatable SNEDDS (L-sSNEDDS) preparations were then adsorbed onto adsorbents and formulated as directly compressed tablets. The improved drug dissolution rate in the solid supersaturatable preparation (S-sSNEDDS) may be due to the formation of a nanoemulsion and the presence of drug in an amorphous state with hydrogen bond interaction between the drug and SNEDDS components. In vivo pharmacokinetic studies on eight healthy human volunteers showed a significant improvement in the oral bioavailability of piroxicam from S-sSNEDDS (F12) compared with both the pure drug (PP) and its commercial product (Feldene ® ) (commercial dosage form (CD)). The relative bioavailability of S-sSNEDDS (F12) relative to PP or CD was about 151.01 and 98.96%, respectively. The obtained results ratify that S-sSNEDDS is a promising drug delivery system to enhance the oral bioavailability of piroxicam.

  3. Solid-in-oil nanodispersions for transdermal drug delivery systems.

    Science.gov (United States)

    Kitaoka, Momoko; Wakabayashi, Rie; Kamiya, Noriho; Goto, Masahiro

    2016-11-01

    Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long-lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid-in-oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user-friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    Directory of Open Access Journals (Sweden)

    Maheshkumar P Soni

    2014-01-01

    Full Text Available Background: Buparvaquone (BPQ, a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES organs. The present study investigates development of solid lipid nanoparticles (SLN of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C. Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC, powder X-ray diffraction (XRD and scanning electron microscope (SEM study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8% and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52% uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed

  5. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-12-01

    Full Text Available The solid dispersion method was originally used to improve the dissolution properties and the bioavailability of poorly water soluble drugs by dispersing them into water soluble carriers. In addition to the above, dissolution retardation through solid dispersion technique using water insoluble and water swellable polymer for the development of controlled release dosage forms has become a field of interest in recent years. Development of controlled release solid dispersion has a great advantage for bypassing the risk of a burst release of drug; since the structure of the solid dispersion is monolithic where drug molecules homogeneously disperse. Despite the remarkable potential and extensive research being conducted on controlled release solid dispersion system, commercialization and large scale production are limited. The author expects that recent technological advances may overcome the existing limitations and facilitate the commercial utilization of the techniques for manufacture of controlled release solid dispersions. This article begins with an overview of the different carriers being used for the preparation of controlled release solid dispersion and also different techniques being used for the purpose. Kinetics of drug release from these controlled release solid dispersions and the relevant mathematical modeling have also been reviewed in this manuscript.

  6. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

    Science.gov (United States)

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-08-01

    Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery.

    Science.gov (United States)

    Henshaw, Joshua W; Yuan, Fan

    2008-02-01

    Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.

  8. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  9. Brain delivery of camptothecin by means of solid lipid nanoparticles: Formulation design, in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Martins, S.; Tho, I.; Reimold, I.

    2012-01-01

    that fluorescently labelled SLN were detected in the brain after i.v. administration. This study indicates that the camptothecin-loaded SLN are a promising drug brain delivery system worth to explore further for brain tumour therapy. (C) 2012 Elsevier B. V. All rights reserved.......For the purpose of brain delivery upon intravenous injection, formulations of camptothecin-loaded solid lipid nanoparticles (SLN), prepared by hot high pressure homogenisation, were designed. Incorporation of camptothecin in the hydrophobic and acidic environment of SLN matrix was chosen...... to stabilise the lactone ring, which is essential for its antitumour activity, and for avoiding premature loss of drug on the way to target camptothecin to the brain. A multivariate approach was used to assess the influence of the qualitative and quantitative composition on the physicochemical properties...

  10. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-23

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  11. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-17

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  12. STRATEGIES AND PROSPECTS OF NASAL DRUG DELIVERY SYSTEMS

    OpenAIRE

    Gannu Praveen Kumar

    2012-01-01

    The recent advancement of nasal drug delivery systems has increased enormously and is gaining significant importance. Intranasal therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. The non-invasive delivery of nasal drug delivery systems made to exploit for the development of successful treatment. The advantages, disadvantages, mechanism of action and application of nasal drug delivery system in local delivery, systematic delivery, nasal vaccines and CNS...

  13. Submicron Emulsions and Their Applications in Oral Delivery.

    Science.gov (United States)

    Mundada, Veenu; Patel, Mitali; Sawant, Krutika

    2016-01-01

    A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.

  14. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    Science.gov (United States)

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer circulation and biodistrbution study confirmed high RES uptake (75%) in RES organs like liver lung spleen etc. Conclusion: The high RES uptake suggests BPQ SLN as a promising approach for targeted and improved delivery in theileriosis. PMID:24459400

  15. Solid lipid dispersions: potential delivery system for functional ingredients in foods.

    Science.gov (United States)

    Asumadu-Mensah, Aboagyewa; Smith, Kevin W; Ribeiro, Henelyta S

    2013-07-01

    Structured solid lipid (SL) systems have the advantages of long-term physical stability, low surfactant concentrations, and may exhibit controlled release of active ingredients. In this research work, the potential use of high-melting SLs for the production of the above structured SL carrier systems was investigated. Dispersions containing either SL or blend of solid lipid and oil (SL+O) were produced by a hot melt high-pressure homogenization method. Experiments involved the use of 3 different SLs for the disperse phase: stearic acid, candelilla wax and carnauba wax. Sunflower oil was incorporated in the disperse phase for the production of the dispersions containing lipid and oil. In order to evaluate the practical aspects of structured particles, analytical techniques were used including: static light scattering to measure particle sizes, transmission electron microscopy (TEM) for investigating particle morphology and differential scanning calorimetry (DSC) to investigate the crystallization behavior of lipids in bulk and in dispersions. Results showed different mean particle sizes depending on the type of lipid used in the disperse phase. Particle sizes for the 3 lipids were: stearic acid (SL: 195 ± 2.5 nm; SL+O: 138 ± 6.0 nm); candelilla wax (SL: 178 ± 1.7 nm; SL+O: 144 ± 0.6 nm); carnauba wax (SL: 303 ± 1.5 nm; SL+O: 295 ± 5.0 nm). TEM results gave an insight into the practical morphology, showing plate-like and needle-like structures. DSC investigations also revealed that SL dispersions melted and crystallized at lower temperatures than the bulk. This decrease can be explained by the small particle sizes of the dispersion, the high-specific surface area, and the presence of a surfactant. © 2013 Institute of Food Technologists®

  16. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution.

    Science.gov (United States)

    Dash, Rajendra Narayan; Mohammed, Habibuddin; Humaira, Touseef; Ramesh, Devi

    2015-10-01

    A solid self-nanoemulsifying drug-delivery system (solid SNEDDS) has been explored to improve the solubility and dissolution profile of glipizide. SNEDDS preconcentrate was systematically optimized using a circumscribed central composite design by varying Captex 355 (Oil), Solutol HS15 (Surfactant) and Imwitor 988 (Co-surfactant). The optimized SNEDDS preconcentrate consisted of Captex 355 (30% w/w), Solutol HS15 (45% w/w) and Imwitor 988 (25% w/w). The saturation solubility (SS) of glipizide in optimized SNEDDS preconcentrate was found to be 45.12 ± 1.36 mg/ml, indicating an improvement (1367 times) of glipizide solubility as compared to its aqueous solubility (0.033 ± 0.0021 mg/ml). At 90% SS, glipizide was loaded to the optimized SNEDDS. In-vitro dilution of liquid SNEDDS resulted in a nanoemulsion with a mean droplet size of 29.4 nm. TEM studies of diluted liquid SNEDDS confirmed the uniform shape and size of the globules. The liquid SNEDDS was adsorbed onto calcium carbonate and talc to form solid SNEDDS. PXRD, DSC, and SEM results indicated that, the presence of glipizide as an amorphous and as a molecular dispersion state within solid SNEDDS. Glipizide dissolution improved significantly (p < 0.001) from the solid SNEDDS (∼100% in 15 min) as compared to the pure drug (18.37%) and commercial product (65.82) respectively.

  17. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  18. Sterile Product Packaging and Delivery Systems.

    Science.gov (United States)

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  19. Reduction of treatment delivery variances with a computer-controlled treatment delivery system

    International Nuclear Information System (INIS)

    Fraass, B.A.; Lash, K.L.; Matrone, G.M.; Lichter, A.S.

    1997-01-01

    Purpose: To analyze treatment delivery variances for 3-D conformal therapy performed at various levels of treatment delivery automation, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system. Materials and Methods: All external beam treatments performed in our department during six months of 1996 were analyzed to study treatment delivery variances versus treatment complexity. Treatments for 505 patients (40,641 individual treatment ports) on four treatment machines were studied. All treatment variances noted by treatment therapists or quality assurance reviews (39 in all) were analyzed. Machines 'M1' (CLinac (6(100))) and 'M2' (CLinac 1800) were operated in a standard manual setup mode, with no record and verify system (R/V). Machines 'M3' (CLinac 2100CD/MLC) and ''M4'' (MM50 racetrack microtron system with MLC) treated patients under the control of a computer-controlled conformal radiotherapy system (CCRS) which 1) downloads the treatment delivery plan from the planning system, 2) performs some (or all) of the machine set-up and treatment delivery for each field, 3) monitors treatment delivery, 4) records all treatment parameters, and 5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3, so it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments (ports), non-axial and non-coplanar plans, multi-segment intensity modulation, and pseudo-isocentric treatments (and other plans with computer-controlled table motions). Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines, so this analysis

  20. MINI-SLAR delivery system

    International Nuclear Information System (INIS)

    Alstein, D.

    1996-01-01

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce 'A', Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level 'D' faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs

  1. MINI-SLAR delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Alstein, D [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A; Dalton, K [Spectrum Engineering, Peterborough, ON (Canada)

    1997-12-31

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce `A`, Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level `D` faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs.

  2. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  3. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  4. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  5. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases.

    Science.gov (United States)

    Monteiro, Lis Marie; Löbenberg, Raimar; Cotrim, Paulo Cesar; Barros de Araujo, Gabriel Lima; Bou-Chacra, Nádia

    2017-01-01

    Buparvaquone (BPQ), a veterinary drug, was formulated as nanostructured lipid carriers (NLC) for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM) was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1) and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w) aiming for z -average in the range of 100-300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z -averages (<350 nm), polydispersity (<0.3), and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z -average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology.

  6. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  7. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  8. Future of Automated Insulin Delivery Systems.

    Science.gov (United States)

    Castle, Jessica R; DeVries, J Hans; Kovatchev, Boris

    2017-06-01

    Advances in continuous glucose monitoring (CGM) have brought on a paradigm shift in the management of type 1 diabetes. These advances have enabled the automation of insulin delivery, where an algorithm determines the insulin delivery rate in response to the CGM values. There are multiple automated insulin delivery (AID) systems in development. A system that automates basal insulin delivery has already received Food and Drug Administration approval, and more systems are likely to follow. As the field of AID matures, future systems may incorporate additional hormones and/or multiple inputs, such as activity level. All AID systems are impacted by CGM accuracy and future CGM devices must be shown to be sufficiently accurate to be safely incorporated into AID. In this article, we summarize recent achievements in AID development, with a special emphasis on CGM sensor performance, and discuss the future of AID systems from the point of view of their input-output characteristics, form factor, and adaptability.

  9. Wet microcontact printing (µCP) for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Lee, Hong-Pyo; Ryu, WonHyoung

    2013-01-01

    When micro-reservoir-type drug delivery systems are fabricated, loading solid drugs in drug reservoirs at microscale is often a non-trivial task. This paper presents a simple and effective solution to load a small amount of drug solution at microscale using ‘wet’ microcontact printing (µCP). In this wet µCP, a liquid solution containing drug molecules (methylene blue and tetracycline HCl) dissolved in a carrier solvent was transferred to a target surface (drug reservoir) by contact printing process. In particular, we have investigated the dependence of the quantity and morphology of transferred drug molecules on the stamp size, concentration, printing times, solvent types and surfactant concentration. It was also found that the repetition of printing using a non-volatile solvent such as polyethylene glycol (PEG) as a drug carrier material actually increased the transferred amount of drug molecules in proportion to the printing times based on asymmetric liquid bridge formation. Utilizing this wet µCP, drug delivery devices containing different quantity of drugs in micro-reservoirs were fabricated and their performance as controlled drug delivery devices was demonstrated. (paper)

  10. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    Science.gov (United States)

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular si

  11. The Influence of Solid Microneedles on the Transdermal Delivery of Selected Antiepileptic Drugs

    Directory of Open Access Journals (Sweden)

    Julia Nguyen

    2016-11-01

    Full Text Available The aim of this project was to examine the effect of microneedle rollers on the percutaneous penetration of tiagabine hydrochloride and carbamazepine across porcine skin in vitro. Liquid chromatography-mass spectrometric analysis was carried out using an Agilent 1200 Series HPLC system coupled to an Agilent G1969A TOF-MS system. Transdermal flux values of the drugs were determined from the steady-state portion of the cumulative amount versus time curves. Following twelve hours of microneedle roller application, there was a 6.74-fold increase in the percutaneous penetration of tiagabine hydrochloride (86.42 ± 25.66 µg/cm2/h compared to passive delivery (12.83 ± 6.30 µg/cm2/h. For carbamazepine in 20% ethanol, passive transdermal flux of 7.85 ± 0.60 µg/cm2/h was observed compared to 10.85 ± 0.11 µg/cm2/h after microneedle treatment. Carbamazepine reconstituted in 30% ethanol resulted in only a 1.19-fold increase in drug permeation across porcine skin (36.73 ± 1.83 µg/cm2/h versus 30.74 ± 1.32 µg/cm2/h. Differences in flux values of untreated and microneedle-treated porcine skin using solid microneedles for the transdermal delivery of tiagabine were statistically significant. Although there were 1.38- and 1.19-fold increases in transdermal flux values of carbamazepine when applied as 20% and 30% ethanol solutions across microneedle-treated porcine skin, respectively, the increases were not statistically significant.

  12. Communications data delivery system analysis task 2 report : high-level options for secure communications data delivery systems.

    Science.gov (United States)

    2012-05-16

    This Communications Data Delivery System Analysis Task 2 report describes and analyzes options for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications data delivery systems using various communication media (Dedicated Short Ra...

  13. Levodopa delivery systems: advancements in delivery of the gold standard.

    Science.gov (United States)

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the

  14. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lin

    2017-04-01

    Full Text Available Chemical and enzymatic barriers in the gastrointestinal (GI tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.

  15. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers.

    Science.gov (United States)

    Lin, Chih-Hung; Chen, Chun-Han; Lin, Zih-Chan; Fang, Jia-You

    2017-04-01

    Chemical and enzymatic barriers in the gastrointestinal (GI) tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs) are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs. Copyright © 2017. Published by Elsevier B.V.

  16. How can lipid nanocarriers improve transdermal delivery of olanzapine?

    Science.gov (United States)

    Iqbal, Nimra; Vitorino, Carla; Taylor, Kevin M G

    2017-06-01

    The development of a transdermal nanocarrier drug delivery system with potential for the treatment of psychiatric disorders, such as schizophrenia and bipolar disorder, is described. Lipid nanocarriers (LN), encompassing various solid:liquid lipid compositions were formulated and assessed as potential nanosystems for transdermal delivery of olanzapine. A previously optimized method of hot high pressure homogenization (HPH) was adopted for the production of the LN, which comprised solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions (NE). Precirol  ® was selected as the solid lipid for progression of studies. SLN exhibited the best performance for transdermal delivery of olanzapine, based on in vitro release and permeation studies, coupled with results from physicochemical characterization of several solid:liquid lipid formulations. Stability tests, performed to give an indication of long-term storage behavior of the formulations, were in good agreement with previous studies for the best choice of solid:liquid lipid ratio. Overall, these findings highlight the SLN-based formulation as promising for the further inclusion in and production of transdermal patches, representing an innovative therapeutic approach.

  17. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases

    Directory of Open Access Journals (Sweden)

    Lis Marie Monteiro

    2017-01-01

    Full Text Available Buparvaquone (BPQ, a veterinary drug, was formulated as nanostructured lipid carriers (NLC for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1 and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w aiming for z-average in the range of 100–300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z-averages (<350 nm, polydispersity (<0.3, and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z-average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology.

  19. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  20. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  1. Recent developments in retinal lasers and delivery systems

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Yadav

    2014-01-01

    Full Text Available Photocoagulation is the standard of care for several ocular disorders and in particular retinal conditions. Technology has offered us newer lasing mediums, wavelengths and delivery systems. Pattern scan laser in proliferative diabetic retinopathy and diabetic macular edema allows laser treatment that is less time consuming and less painful. Now, it is possible to deliver a subthreshold micropulse laser that is above the threshold of biochemical effect but below the threshold of a visible, destructive lesion thereby preventing collateral damage. The advent of solid-state diode yellow laser allows us to treat closer to the fovea, is more effective for vascular structures and offers a more uniform effect in patients with light or irregular fundus pigmentation. Newer retinal photocoagulation options along with their advantages is discussed in this review.

  2. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    Science.gov (United States)

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  3. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  4. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Urban governance and spatial inequality in service delivery: a case study of solid waste management in Abuja, Nigeria.

    Science.gov (United States)

    Adama, Onyanta

    2012-09-01

    Spatial inequality in service delivery is a common feature in African cities. Several factors account for the phenomenon but there is growing attention towards urban governance and the role of the state. Urban governance policies such as privatization serve as key strategies through which the state regulates and (re)produces spatial inequality in service delivery. This study examined how governance practices related to privatization and the regulatory role of the state reinforce spatial inequalities in the delivery of solid waste services in Abuja, Nigeria. It focused primarily on the issue of cost recovery. Privatization became a major focus in Abuja in 2003 when the government launched a pilot scheme. Although it has brought improvements in service delivery, privatization has also increased the gap in the quality of services delivered in different parts of the city. Drawing on empirical data, the study revealed that little sensitivity to income and affordability, and to income differentials between neighbourhoods in the fixing of user charges and in the choice of the billing method is contributing to spatial inequalities in service delivery. Furthermore, the study suggests that these practices are linked to a broader issue, a failure of the government to see the people as partners. It therefore calls for more inclusive governance especially in decision-making processes. The study also emphasizes the need for a policy document on solid waste management, as this would encourage a critical assessment of vital issues including how privatization is to be funded, especially in low-income areas.

  6. Metal organic frameworks as a drug delivery system for flurbiprofen.

    Science.gov (United States)

    Al Haydar, Muder; Abid, Hussein Rasool; Sunderland, Bruce; Wang, Shaobin

    2017-01-01

    Metal organic frameworks (MOFs) have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Flurbiprofen (FBP), a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101) were synthesized and employed for FBP delivery. A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40%) in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release profiles were investigated in a phosphate buffer solution at pH 7.4. The total release of the FBP after 2 days was obtained at 72.9, 75.2, 78.3, and 90.3% for Ca-MOF, Fe-MIL-100, Fe-MIL-53, and Fe-MIL-101, respectively. The MOFs are shown to be a promising drug delivery option for FBP with a significant loading percent and relatively prolonged drug release.

  7. Methods and metrics challenges of delivery-system research

    Directory of Open Access Journals (Sweden)

    Alexander Jeffrey A

    2012-03-01

    Full Text Available Abstract Background Many delivery-system interventions are fundamentally about change in social systems (both planned and unplanned. This systems perspective raises a number of methodological challenges for studying the effects of delivery-system change--particularly for answering questions related to whether the change will work under different conditions and how the change is integrated (or not into the operating context of the delivery system. Methods The purpose of this paper is to describe the methodological and measurement challenges posed by five key issues in delivery-system research: (1 modeling intervention context; (2 measuring readiness for change; (3 assessing intervention fidelity and sustainability; (4 assessing complex, multicomponent interventions; and (5 incorporating time in delivery-system models to discuss recommendations for addressing these issues. For each issue, we provide recommendations for how research may be designed and implemented to overcome these challenges. Results and conclusions We suggest that a more refined understanding of the mechanisms underlying delivery-system interventions (treatment theory and the ways in which outcomes for different classes of individuals change over time are fundamental starting points for capturing the heterogeneity in samples of individuals exposed to delivery-system interventions. To support the research recommendations outlined in this paper and to advance understanding of the "why" and "how" questions of delivery-system change and their effects, funding agencies should consider supporting studies with larger organizational sample sizes; longer duration; and nontraditional, mixed-methods designs. A version of this paper was prepared under contract with the Agency for Healthcare Research and Quality (AHRQ, US Department of Health and Human Services for presentation and discussion at a meeting on "The Challenge and Promise of Delivery System Research," held in Sterling, VA, on

  8. An introduction to fast dissolving oral thin film drug delivery systems: a review.

    Science.gov (United States)

    Kathpalia, Harsha; Gupte, Aasavari

    2013-12-01

    Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.

  9. Emulsion design for the delivery of β-carotene in complex food systems.

    Science.gov (United States)

    Mao, Like; Wang, Di; Liu, Fuguo; Gao, Yanxiang

    2018-03-24

    β-Carotene has been widely investigated both in the industry and academia, due to its unique bioactive attributes as an antioxidant and pro-vitamin A. Many attempts were made to design delivery systems for β-carotene to improve its dispersant state and chemical stability, and finally to enhance the functionality. Different types of oil-in-water emulsions were proved to be effective delivery systems for lipophilic bioactive ingredients, and intensive studies were performed on β-carotene emulsions in the last decade. Emulsions are thermodynamically unstable, and emulsions with intact structures are preferable in delivering β-carotene during processing and storage. β-Carotene in emulsions with smaller particle size has poor stability, and protein-type emulsifiers and additional antioxidants are effective in protecting β-carotene from degradation. Recent development in the design of protein-polyphenol conjugates has provided a novel approach to improve the stability of β-carotene emulsions. When β-carotene is consumed, its bioaccessibility is highly influenced by the digestion of lipids, and β-carotene in smaller oil droplets containing long-chain fatty acids has a higher bioaccessibility. In order to better deliver β-carotene in complex food products, some novel emulsions with tailor-made structures have been developed, e.g., multilayer emulsions, solid lipid particles, Pickering emulsions. This review summarizes the updated understanding of emulsion-based delivery systems for β-carotene, and how emulsions can be better designed to fulfill the benefits of β-carotene in functional foods.

  10. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  11. Self nano-emulsifying drug delivery system for Embelin: Design, characterization and in-vitro studies

    Directory of Open Access Journals (Sweden)

    Komal Parmar

    2015-10-01

    Full Text Available CThe objective of the present study was to prepare solid self-nanoemulsifying drug delivery system (S-SNEDDS containing Capryol-90 as oil phase for the delivery of Embelin, a poorly water soluble herbal active ingredient. Box-Behnken experimental design was employed to optimise the formulation variables, X1 (amount of oil; Capryol 90, X2 (amount of surfactant; Acrysol EL 135 and X3 (amount of co-surfactant; PEG 400. Systems were appraised for visual characteristics for self emulsifying time, globule size and drug release. Optimised liquid formulations were formulated into free flowing granules (S-SNEDDS by adsorption on the porous materials like Aerosil 200 and Neusilin and thereby compressed into tablet. In vitro dissolution studies of SNEDDS revealed increased in the dissolution rate of the drug. FT-IR data revealed no physicochemical interaction between drug and excipients. Solid state characterization of S-SNEDDS by DSC and Powder XRD confirmed reduction in drug crystallinity which further supports the results of dissolution studies. TEM analysis exhibited spherical globules. Further, the accelerated stability studies for 6 months revealed that S-SNEDDS of Embelin are found to be stable without any significant change in physicochemical properties. Thus, the present studies demonstrated dissolution enhancement potential of porous carrier based S-SNEDDS for poorly water soluble herbal active ingredient, Embelin.

  12. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  13. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  14. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems

    DEFF Research Database (Denmark)

    Svagan, Anna J; Benjamins, Jan-Willem; Al-Ansari, Zeinab

    2016-01-01

    acceptable surfactant (lauric acid sodium salt). The drug was suspended in the wet-stable foams followed by a drying step to obtain dry foams. Flexible cellular solid materials of different thicknesses, shapes and drug loadings (up to 50wt%) could successfully be prepared. The drug was released from...... the solid foams in a diffusion-controlled, sustained manner due to the presence of intact air bubbles which imparted a tortuous diffusion path. The diffusion coefficient was assessed using Franz cells and shown to be more than one order of magnitude lower for the cellular solids compared to the bubble...

  15. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  16. A study on nanodiamond-based drug delivery system

    International Nuclear Information System (INIS)

    Li Jing; Zhang Xiaoyong; Zhu Ying; Li Wenxin; Huang Qing

    2010-01-01

    A multifunctional drug delivery system based on nanodiamonds (NDs) has been developed. FITC, HCPT and TF were absorbed on NDs successively to form the multifunctional complex. The NDs and ND complex samples were characterized by TEM, FR-IR and UV-V. The results indicated that this drug delivery system is a high loading system. Efficacy of the drug delivery system on Hela cell was evaluated with MTT assays and fluorescence microscopy. The results show that multifunction of the NDs complex include fluorescence, targeting and high efficacy. (authors)

  17. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Development of terbinafine solid lipid nanoparticles as a topical delivery system

    Science.gov (United States)

    Chen, Ying-Chen; Liu, Der-Zen; Liu, Jun-Jen; Chang, Tsung-Wei; Ho, Hsiu-O; Sheu, Ming-Thau

    2012-01-01

    To resolve problems of long treatment durations and frequent administration of the antifungal agent terbinafine (TB), solid lipid nanoparticles (SLNs) with the ability to load lipophilic drugs and nanosize were developed. The SLNs were manufactured by a microemulsion technique in which glyceryl monostearate (GMS), glyceryl behenate (Compritol® 888; Gattefossé), and glyceryl palmitostearate (Precirol® ATO 5; Gattefossé) were used as the solid lipid phases, Tween® and Cremophor® series as the surfactants, and propylene glycol as the cosurfactant to construct ternary phase diagrams. The skin of nude mice was used as a barrier membrane, and penetration levels of TB of the designed formulations and a commercial product, Lamisil® Once™ (Novartis Pharmaceuticals), in the stratum corneum (SC), viable epidermis, and dermis were measured; particle sizes were determined as an indicator of stability. The optimal SLN system contained a 50% water phase. The addition of ethanol or etchants had no significant effect on enhancing the amount of TB that penetrated the skin layers, but it was enhanced by increasing the percentage of the lipid phase. Furthermore, the combination of GMS and Compritol® 888 was able to increase the stable amount of TB that penetrated all skin layers. For the ACP1-GM1 (4% lipid phase; Compritol® 888: GMS of 1:1) formulation, the amount of TB that penetrated the SC was similar to that of Lamisil® Once™, whereas the amount of TB of the dermis was higher than that of Lamisil® Once™ at 12 hours, and it was almost the same as that of Lamisil® Once™ at 24 hours. It was concluded that the application of ACP1-GM1 for 12 hours might have an efficacy comparable to that of Lamisil® Once™ for 24 hours, which would resolve the practical problem of the longer administration period that is necessary for Lamisil® Once™. PMID:22923986

  19. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  20. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata.

    Science.gov (United States)

    Sermkaew, Namfa; Ketjinda, Wichan; Boonme, Prapaporn; Phadoongsombut, Narubodee; Wiwattanapatapee, Ruedeekorn

    2013-11-20

    The purpose of this study was to develop self-microemulsifying formulations of an Andrographis paniculata extract in liquid and pellet forms for an improved oral delivery of andrographolide. The optimized liquid self-microemulsifying drug delivery system (SMEDDS) was composed of A. paniculata extract (11.1%), Capryol 90 (40%), Cremophor RH 40 (40%) and Labrasol (8.9%). This liquid SMEDDS was further adsorbed onto colloidal silicon dioxide and microcrystalline cellulose, and converted to SMEDDS pellets by the extrusion/spheronization technique. The microemulsion droplet sizes of the liquid and pellet formulations after dilution with water were in the range of 23.4 and 30.3 nm. The in vitro release of andrographolide from the liquid SMEDDS and SMEDDS pellets was 97.64% (SD 1.97%) and 97.74% (SD 3.36%) within 15 min, respectively while the release from the initial extract was only 10%. The oral absorption of andrographolide was determined in rabbits. The C(max) value of andrographolide from the A. paniculata extract liquid SMEDDS and SMEDDS pellet formulations (equivalent to 17.5mg/kg of andrographolide) was 6-fold and 5-fold greater than the value from the initial extract in aqueous suspension (equivalent to 35 mg/kg of andrographolide), respectively. In addition, the AUC(0-12h) was increased 15-fold by the liquid SMEDDS and 13-fold by the SMEDDS pellets compared to the extract in aqueous suspension, respectively. The results clearly indicated that the liquid and solid SMEDDS could be effectively used to improve the dissolution and oral bioavailability that would also enable a reduction in the dose of the poorly water soluble A. paniculata extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  2. Novel solid self-emulsifying drug delivery system of coenzyme Q₁₀ with improved photochemical and pharmacokinetic behaviors.

    Science.gov (United States)

    Onoue, Satomi; Uchida, Atushi; Kuriyama, Kazuki; Nakamura, Tatsuya; Seto, Yoshiki; Kato, Masashi; Hatanaka, Junya; Tanaka, Toshiyuki; Miyoshi, Hiroyuki; Yamada, Shizuo

    2012-08-15

    The present study was undertaken to develop a solid self-emulsifying drug delivery system of coenzyme Q(10) (CoQ(10)/s-SEDDS) with high photostability and oral bioavailability. The CoQ(10)/s-SEDDS was prepared by spray-drying an emulsion preconcentrate containing CoQ(10), medium-chain triglyceride, sucrose ester of fatty acid, and hydroxypropyl cellulose, and its physicochemical, photochemical, and pharmacokinetic properties were evaluated. The CoQ(10)/s-SEDDS powder with a diameter of ca. 15 μm was obtained by spray-drying, in which the CoQ(10) was mostly amorphized. The CoQ(10)/s-SEDDS exhibited immediate self-emulsification when introduced to aqueous media under gentle agitation, forming uniform fine droplets with a mean diameter of ca. 280 nm. There was marked generation of reactive oxygen species, in particular superoxide, from CoQ(10) exposed to simulated sunlight (250W/m(2)), suggesting potent photoreactivity. Nano-emulsified solution of CoQ(10) under light exposure underwent photodegradation with 22-fold higher degradation kinetics than crystalline CoQ(10), although the CoQ(10)/s-SEDDS was less photoreactive. After the oral administration of CoQ(10)/s-SEDDS (100 mg-CoQ(10)/kg) in rats, enhanced exposure of CoQ(10) was observed with increases in both C(max) and AUC of ca. 5-fold in comparison with those of orally administered crystalline CoQ(10). From the improved physicochemical and pharmacokinetic data, the s-SEDDS approach upon spray-drying might be a suitable dosage option for enhancing nutraceutical and pharmaceutical values of CoQ(10). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Auditing Information System : Delivery Product Service

    Directory of Open Access Journals (Sweden)

    Purwoko Purwoko

    2011-05-01

    Full Text Available Purpose of the research is to ensure the securities of information system asset and to ensure if informa-tion system support the operational and data collected was valid. Research method that used in this research were library studies and field studies. Field studies such an observation, questioner, and inter-view. the expected result are founding the weakness of security management control, operational man-agement control, input control, and output control of risk happened in the company. Conclusion of this research are the system on the company work good and there’s no potential risk happened and make an impact to the delivery process of information system.Index Terms - Auditing Information system, Delivery product process.

  4. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    Science.gov (United States)

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  6. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery

  7. Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model.

    Science.gov (United States)

    Serpe, Loredana; Canaparo, Roberto; Daperno, Marco; Sostegni, Raffaello; Martinasso, Germana; Muntoni, Elisabetta; Ippolito, Laura; Vivenza, Nicoletta; Pera, Angelo; Eandi, Mario; Gasco, Maria Rosa; Zara, Gian Paolo

    2010-03-18

    Standard treatment for inflammatory bowel diseases (IBD) necessitates frequent intake of anti-inflammatory and/or immunosuppressive drugs, leading to significant adverse events. To evaluate the role solid lipid nanoparticles (SLN) play as drug delivery system in enhancing anti-inflammatory activity for drugs such as dexamethasone and butyrate in a human inflammatory bowel diseases whole-blood model. ELISA assay and the peripheral blood mononuclear cell (PBMC) cytokine mRNA expression levels were evaluated by quantitative SYBR Green real-time RT-PCR to determine the IL-1beta, TNF-alpha, IFN-gamma and IL-10 secretion in inflammatory bowel diseases patients' PBMC culture supernatants. There was a significant decrease in IL-1beta (p<0.01) and TNF-alpha (p<0.001) secretion, whilst IL-10 (p<0.05) secretion significantly increased after cholesteryl butyrate administration, compared to that of butyrate alone at the highest concentration tested (100 microM), at 24h exposure. There was a significant decrease in IL-1beta (p<0.01), TNF-alpha (p<0.001) and IL-10 (p<0.001) secretion after dexamethasone loaded SLN administration, compared to dexamethasone alone at the highest concentration tested (250 nM) at 24h exposure. No IFN-gamma was detected under any conditions and no cytotoxic effects observed even at the highest concentration tested. The incorporation of butyrate and dexamethasone into SLN has a significant positive anti-inflammatory effect in the human inflammatory bowel disease whole-blood model. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Distance Synchronous Information Systems Course Delivery

    Science.gov (United States)

    Peslak, Alan R.; Lewis, Griffith R.; Aebli, Fred

    2014-01-01

    Teaching computer information systems via distance education is a challenge for both student and faculty. Much research work has been performed on methods of teaching via distance education. Today we are faced with a variety of options for course delivery. Asynchronous delivery via online or lesson instruction still remains most common. But…

  9. Solid lipid nanoparticles for parenteral drug delivery

    NARCIS (Netherlands)

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)

  10. Microemulsion Drug Delivery Systems for Radiopharmacy Studies

    Directory of Open Access Journals (Sweden)

    Emre Ozgenc

    2016-11-01

    Full Text Available Microemulsions have been used increasingly for last year’s because of ideal properties like favorable drug delivery, ease of preparation and physical stability. They have been improved the solubility and efficacy of the drug and reduce the side effects. Use of radiolabeled microemulsions plays an alternative role in drug delivery systems by investigating the formation, stability and application of microemulsions in radiopharmacy. Gama scintigraphic method is well recognized for developing and detecting the biodistribution of newly developed drugs or formulation. This review will focus on how radionuclides are able to play role with characterization studies of microemulsion drug delivery systems.

  11. Solid-in-Oil-in-Water Emulsions for Delivery of Lactase To Control in Vitro Hydrolysis of Lactose in Milk.

    Science.gov (United States)

    Zhang, Yun; Zhong, Qixin

    2017-11-01

    There is an established need to deliver lactase in milk to retain activity during storage and hydrolyze lactose after ingestion. In this work, spray-dried lactase powder was encapsulated in solid-in-oil-in-water (S/O/W) emulsions to fabricate delivery systems. The adoption of Span 80 in milk fat and lecithin in protein solution enabled the encapsulation of ∼76% lactase and lactose hydrolysis during a 14 day refrigeration (from ∼70 to lactose during the simulated gastric and intestinal digestions, and resulted in the hydrolysis of most lactose during the simulated digestions. Therefore, the studied S/O/W emulsions have the potential to deliver lactase in milk for lactose-intolerant consumers.

  12. Regional Delivery of Chimeric Antigen Receptor (CAR) T-Cells for Cancer Therapy.

    Science.gov (United States)

    Sridhar, Praveen; Petrocca, Fabio

    2017-07-18

    Chimeric Antigen Receptor (CAR) T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  13. Regional Delivery of Chimeric Antigen Receptor (CAR T-Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Praveen Sridhar

    2017-07-01

    Full Text Available Chimeric Antigen Receptor (CAR T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  14. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  15. A portable pulmonary delivery system for nano engineered DNA vaccines driven by surface acoustic wave devices

    International Nuclear Information System (INIS)

    Rajapaksa, A.E.; Qi, Aisha; Yeo, L.; Friend, J.

    2010-01-01

    Full text: The increase in the need for effective delivery of potelll vaccines against infectious diseases, require robust yet straightforward pro duction of encapsulated DNA-laden aerosols. Aerosol delivery of drugs represents the next generation of vaccine delivery where the drug is deposited into the lung, which provides an ideal, non-invasive route. Moreover, several features of D A vaccines make them more attractive than conventional vaccines; thus, DNA vaccines have gained global interest for a variety of applications. However, several limitations such as ineffective cellular uptake and intracellular delivery, and degradation of DNA need to be overcome before clin ical applications. In this study, a novel and scalable engineered technique has been developed to create a biodegradable polymer system, which enables controlled delivery of a well designed DNA vaccine for immuno-therapeutics. Surface Acoustic Wave (SAW) atomisation has been found as useful mechanism for atomising fluid samples for medical and industrial devices. It is a straightforward method for synthesising un-agglomerated biodegradable nanoparti cles (<250 nm) in the absence of organic solvents which would represent a major breakthrough for biopharmaceutical encapsulation and delivery. Nano-scale polymer particles for DNA vaccines deliv ery were obtained through an evaporative process of the initial aerosol created by surface acoustic waves at 8-150 MHz, the final size of which could be controlled by modifying the initial polymer concen tration and solid contents. Thus, SAW atomiser represents a promising alternative for the development of a low power device for producing nano-engineered vaccines with a controlled and narrow size distribution as delivery system for genetic immuno-therapeutics.

  16. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design.

    Science.gov (United States)

    Emami, J; Mohiti, H; Hamishehkar, H; Varshosaz, J

    2015-01-01

    Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7(®) software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the

  17. Solid Microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride

    Directory of Open Access Journals (Sweden)

    Mylien T. Hoang

    2015-09-01

    Full Text Available The aim of this project was to study the influence of microneedles on transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride across porcine ear skin in vitro. Microchannel visualization studies were carried out and characterization of the microchannel depth was performed using confocal laser scanning microscopy (CLSM to demonstrate microchannel formation following microneedle roller application. We also report, for the first time, the use of TA.XT Plus Texture Analyzer to characterize burst force in pig skin for transdermal drug delivery experiments. This is the force required to rupture pig skin. The mean passive flux of amantadine hydrochloride, determined using a developed LC–MS/MS technique, was 22.38 ± 4.73 µg/cm2/h, while the mean flux following the use of a stainless steel microneedle roller was 49.04 ± 19.77 µg/cm2/h. The mean passive flux of pramipexole dihydrochloride was 134.83 ± 13.66 µg/cm2/h, while the flux following the use of a stainless steel microneedle roller was 134.04 ± 0.98 µg/cm2/h. For both drugs, the difference in flux values following the use of solid stainless steel microneedle roller was not statistically significantly (p > 0.05. Statistical analysis was carried out using the Mann–Whitney Rank sum test.

  18. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  19. Solid nano-in-nanoparticles for potential delivery of siRNA.

    Science.gov (United States)

    Amsalem, Orit; Nassar, Taher; Benhamron, Sandrine; Lazarovici, Philip; Benita, Simon; Yavin, Eylon

    2017-07-10

    siRNA-based therapeutics possess great potential to treat a wide variety of genetic disorders. However, they suffer from low cellular uptake and short half-lives in blood circulation; issues that remain to be addressed. This work is, to the best of our knowledge, the first to report the production of solid nano-in-nanoparticles, termed double nano carriers (DNCs) by means of the innovative technology of nano spray drying. DNCs (with a median size of 580-770nm) were produced by spraying at low temperatures (50°C) to prevent damage to heat-sensitive biomacromolecules like siRNA. DNCs consisting of Poly (d,l-lactide-co-glycolide) used as a wall material, encapsulating 20% human serum albumin primary nanoparticles (PNPs) loaded with siRNA, were obtained as a dry nanoparticulate powder with smooth spherical surfaces and a unique inner morphology. Incubation of pegylated or non-pegylated DNCs under sink conditions at 37°C, elicited a controlled release profile of the siRNA for up to 12 or 24h, respectively, with a minimal burst effect. Prolonged incubation of pegylated DNCs loaded with active siRNA (anti EGFR) in an A549 epithelial cell culture monolayer did not induce any apparent cytotoxicity. A slow degradation of the internalized DNCs by the cells was also observed resulting in the progressive release of the siRNA for up to 6days, as corroborated by laser confocal microscopy. The structural integrity and silencing activity of the double encapsulated siRNA were fully preserved, as demonstrated by HPLC, gel electrophoresis, and potent RNAi activity of siRNA extracted from DNCs. These results demonstrate the potential use of DNCs as a nano drug delivery system for systemic administration and controlled release of siRNA and potentially other sensitive bioactive macromolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Purpose: To prepare and characterize buccal transmucosal delivery system of enalapril maleate for overcoming its low bioavailability, and hence provide improved therapeutic efficacy and patient compliance. Methods: Transmucosal drug delivery systems of enalapril maleate were formulated as buccal films by solvent ...

  1. Microneedle and mucosal delivery of influenza vaccines

    Science.gov (United States)

    Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun

    2017-01-01

    In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052

  2. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    Science.gov (United States)

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  3. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  4. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  5. Dynamics of different-sized solid-state nanocrystals as tracers for a drug-delivery system in the interstitium of a human tumor xenograft

    Science.gov (United States)

    Kawai, Masaaki; Higuchi, Hideo; Takeda, Motohiro; Kobayashi, Yoshio; Ohuchi, Noriaki

    2009-01-01

    Introduction Recent anticancer drugs have been made larger to pass selectively through tumor vessels and stay in the interstitium. Understanding drug movement in association with its size at the single-molecule level and estimating the time needed to reach the targeted organ is indispensable for optimizing drug delivery because single cell-targeted therapy is the ongoing paradigm. This report describes the tracking of single solid nanoparticles in tumor xenografts and the estimation of arrival time. Methods Different-sized nanoparticles measuring 20, 40, and 100 nm were injected into the tail vein of the female Balb/c nu/nu mice bearing human breast cancer on their backs. The movements of the nanoparticles were visualized through the dorsal skin-fold chamber with the high-speed confocal microscopy that we manufactured. Results An analysis of the particle trajectories revealed diffusion to be inversely related to the particle size and position in the tumor, whereas the velocity of the directed movement was related to the position. The difference in the velocity was the greatest for 40-nm particles in the perivascular to the intercellular region: difference = 5.8 nm/s. The arrival time of individual nanoparticles at tumor cells was simulated. The estimated times for the 20-, 40-, and 100-nm particles to reach the tumor cells were 158.0, 218.5, and 389.4 minutes, respectively, after extravasation. Conclusions This result suggests that the particle size can be individually designed for each goal. These data and methods are also important for understanding drug pharmacokinetics. Although this method may be subject to interference by surface molecules attached on the particles, it has the potential to elucidate the pharmacokinetics involved in constructing novel drug-delivery systems involving cell-targeted therapy. PMID:19575785

  6. Silk constructs for delivery of muskuloskeletal therapeutics

    Science.gov (United States)

    Meinel, Lorenz; Kaplan, David L.

    2012-01-01

    Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which render SF so exciting for biomedical applications. his pattern along with the versatility of this biopolymer have been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139

  7. Efficiency performance of China's health care delivery system.

    Science.gov (United States)

    Zhang, Luyu; Cheng, Gang; Song, Suhang; Yuan, Beibei; Zhu, Weiming; He, Li; Ma, Xiaochen; Meng, Qingyue

    2017-07-01

    Improving efficiency performance of the health care delivery system has been on the agenda for the health system reform that China initiated in 2009. This study examines the changes in efficiency performance and determinants of efficiency after the reform to provide evidence to assess the progress of the reform from the perspective of efficiency. Descriptive analysis, Data Envelopment Analysis, the Malmquist Index, and multilevel regressions are used with data from multiple sources, including the World Bank, the China Health Statistical Yearbook, and routine reports. The results indicate that over the last decade, health outcomes compared with health investment were relatively higher in China than in most other countries worldwide, and the trend was stable. The overall efficiency and total factor productivity increased after the reform, indicating that the reform was likely to have had a positive impact on the efficiency performance of the health care delivery system. However, the health care delivery structure showed low system efficiency, mainly attributed to the weakened primary health care system. Strengthening the primary health care system is central to enhancing the future performance of China's health care delivery system. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  9. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  10. Drug delivery with topically applied nanoparticles: science fiction or reality.

    Science.gov (United States)

    Lademann, J; Richter, H; Meinke, M C; Lange-Asschenfeldt, B; Antoniou, C; Mak, W C; Renneberg, R; Sterry, W; Patzelt, A

    2013-01-01

    The efficacy of topically applied drugs is determined by their action mechanism and their potential capacity of passing the skin barrier. Nanoparticles are assumed to be efficient carrier systems for drug delivery through the skin barrier. For flexible nanoparticles like liposomes, this effect has been well demonstrated. The penetration properties of solid nanoparticles are currently under intensive investigation. The crucial advantage of nanoparticles over non-particulate substances is their capability to penetrate deeply into the hair follicles where they can be stored for several days. There is no evidence, yet, that solid particles ≥40 nm are capable of passing through the healthy skin barrier. Therefore and in spite of the long-standing research efforts in this field, commercially available solid nanoparticle-based products for drug delivery through the healthy skin are still missing. Nevertheless, the prospects for the clinical use of nanoparticles in drug delivery are tremendous. They can be designed as transport systems delivering drugs efficiently into the hair follicles in the vicinity of specific target structures. Once deposited at these structures, specific signals might trigger the release of the drugs and exert their effects on the target cells. In this article, examples of such triggered drug release are presented. © 2013 S. Karger AG, Basel.

  11. Engineering the system of healthcare delivery

    National Research Council Canada - National Science Library

    Rouse, William B; Cortese, Denis A

    2010-01-01

    "As the United States continues to debate reform of its healthcare system, this book argues that providing health insurance for all without improving the delivery system will not improve the current...

  12. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  13. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Science.gov (United States)

    Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  14. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyan, P.N. E-mail: pramila-kotiyan@uiowa.edu; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  15. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    International Nuclear Information System (INIS)

    Kotiyan, P.N.; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B.

    2002-01-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed

  16. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  17. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  18. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    Directory of Open Access Journals (Sweden)

    Rajabalaya R

    2017-02-01

    Full Text Available Rajan Rajabalaya, Muhammad Nuh Musa, Nurolaini Kifli, Sheba R David PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam Abstract: Liquid crystal (LC dosage forms, particularly those using lipid-based lyotropic LCs (LLCs, have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. Keywords: liquid crystal, drug delivery, controlled release, lyotropic, surfactants, drug localization

  19. Resistive-wall Wake Effect in the Beam Delivery System

    International Nuclear Information System (INIS)

    Delayen, J.R.; Jefferson Lab; Wu, Juhao; Raubenheimer, T.O.; SLAC; Wang, Jiunn-Ming; BNL, NSLS

    2005-01-01

    General formulae for resistive-wall induced beam dilution are presented and then applied to the final beam delivery system of linear colliders. Criteria for the design of final beam delivery systems are discussed

  20. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy?

    Directory of Open Access Journals (Sweden)

    Voltan AR

    2016-08-01

    Full Text Available Aline Raquel Voltan,1 Guillermo Quindós,2 Kaila P Medina Alarcón,3 Ana Marisa Fusco-Almeida,3 Maria José Soares Mendes-Giannini,3 Marlus Chorilli1 1Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil; 2Immunology, Microbiology, and Parasitology Department, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Spain; 3Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista, Araraquara, Sao Paulo, Brazil Abstract: Invasive mycoses are a major problem for immunocompromised individuals and patients in intensive care units. Morbidity and mortality rates of these infections are high because of late diagnosis and delayed treatment. Moreover, the number of available antifungal agents is low, and there are problems with toxicity and resistance. Alternatives for treating invasive fungal infections are necessary. Nanostructured systems could be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations of amphotericin B. This review encompasses different antifungal drug delivery systems, such as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, dendrimers, and others. All these delivery systems have advantages and disadvantages. Main advantages are the improvement in the antifungal properties, such as bioavailability, reduction in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a major disadvantage is the high cost of production. In the near future, the use of nanosystems for drug delivery strategies can be used for delivering peptides, including mucoadhesive systems for the treatment of oral and vaginal candidiasis. Keywords: fungal diseases, antifungal agents, amphotericin B, azoles

  1. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solid emulsion gel as a vehicle for delivery of polyunsaturated fatty acids: implications for tissue repair, dermal angiogenesis and wound healing.

    Science.gov (United States)

    Shingel, Kirill I; Faure, Marie-Pierre; Azoulay, Laurent; Roberge, Christophe; Deckelbaum, Richard J

    2008-10-01

    The paper describes preparation and biological characterization of the solid hybrid biomaterial that was designed for cell-targeted lipid delivery in healing tissues. The material referred to as 'solid emulsion gel' combines a protein-stabilized lipid emulsion and a hydrogel structure in a single compartment. The potential of the omega-3 (n-3)-fatty acids rich solid emulsion gel for tissue repair applications was investigated at the macro-, micro-, molecular and gene expression levels, using human fibroblasts and endothelial cells and a porcine model of full-thickness wounds. Being non-cytotoxic in vitro and in vivo, the biomaterial was found to affect cell metabolism, modulate expression of certain genes, stimulate early angiogenesis and promote wound repair in vivo. The neovascular response in vivo was correlated with upregulated expression of the genes involved in lipid transport (e.g. adipophilin), anti-apoptosis (e.g. heat shock proteins, haem oxygenase 1) and angiogenesis (vascular endothelial growth factor, placental growth factor). Collectively, the results of this study provide first evidence that the angiogenic response provided by solid emulsion gel-mediated delivery of n-3 fatty acids is an alternative to the topical administration of exogenous growth factors or gene therapy, and can be advantageously used for the stimulation of tissue repair in complex wounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  3. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  4. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  5. [Formulation aspects and ex-vivo examination of buccal drug delivery systems].

    Science.gov (United States)

    Szabó, Barnabás; Hetényi, Gergely; Majoros, Klaudia; Miszori, Veronika; Kállai, Nikolett; Zelkó, Romána

    2011-01-01

    Application of buccal dosage forms has several advantages. Buccal route can be used for systemic delivery because the mucosa has a rich blood supply and it is relatively permeable. This route of drug delivery is of special advantages, including the bypass of first pass effect and the avoidance of presystemic elimination within the GIT. Buccal delivery systems enable the systemic delivery of peptides and proteins. In our previous study the physiological background of this application and the excipients of the possible formulations were reviewed. In the present work the formulation and ex vivo examination aspects of buccal drug delivery systems are summarized.

  6. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design

    Science.gov (United States)

    Hao, Jifu; Fang, Xinsheng; Zhou, Yanfang; Wang, Jianzhu; Guo, Fengguang; Li, Fei; Peng, Xinsheng

    2011-01-01

    The purpose of the present study was to optimize a solid lipid nanoparticle (SLN) of chloramphenicol by investigating the relationship between design factors and experimental data using response surface methodology. A Box-Behnken design was constructed using solid lipid (X1), surfactant (X2), and drug/lipid ratio (X3) level as independent factors. SLN was successfully prepared by a modified method of melt-emulsion ultrasonication and low temperature-solidification technique using glyceryl monostearate as the solid lipid, and poloxamer 188 as the surfactant. The dependent variables were entrapment efficiency (EE), drug loading (DL), and turbidity. Properties of SLN such as the morphology, particle size, zeta potential, EE, DL, and drug release behavior were investigated, respectively. As a result, the nanoparticle designed showed nearly spherical particles with a mean particle size of 248 nm. The polydispersity index of particle size was 0.277 ± 0.058 and zeta potential was −8.74 mV. The EE (%) and DL (%) could reach up to 83.29% ± 1.23% and 10.11% ± 2.02%, respectively. In vitro release studies showed a burst release at the initial stage followed by a prolonged release of chloramphenicol from SLN up to 48 hours. The release kinetics of the optimized formulation best fitted the Peppas–Korsmeyer model. These results indicated that the chloramphenicol-loaded SLN could potentially be exploited as a delivery system with improved drug entrapment efficiency and controlled drug release. PMID:21556343

  7. Thermosensitive liposomal drug delivery systems: state of the art review

    Directory of Open Access Journals (Sweden)

    Kneidl B

    2014-09-01

    Full Text Available Barbara Kneidl,1,2 Michael Peller,3 Gerhard Winter,2 Lars H Lindner,1 Martin Hossann11Department of Internal Medicine III, University Hospital Munich, 2Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 3Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, GermanyAbstract: Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.Keywords: thermosensitive liposomes, phosphatidyloligoglycerol, hyperthermia, high intensity focused ultrasound, drug delivery, drug targeting

  8. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  9. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  10. Drug delivery systems and materials for wound healing applications.

    Science.gov (United States)

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  12. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    Science.gov (United States)

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  13. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  14. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    Science.gov (United States)

    2015-09-01

    Systems in Systemic , Dermal, Transdermal , and Ocular Drug Delivery . Crit. Rev. Ther. Drug 2008, 25, 545–584. 14. Choy, Y. B.; Park, J.-H.; McCarey, B...AWARD NUMBER: W81XWH-13-1-0146 TITLE: Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries PRINCIPAL INVESTIGATOR: Dr...Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries” 5b. GRANT NUMBER W81XWH-13-1-0146 5c. PROGRAM ELEMENT NUMBER 6

  15. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  16. Renewable energy delivery systems and methods

    Science.gov (United States)

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  17. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  18. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  19. Insulin delivery systems combined with microneedle technology.

    Science.gov (United States)

    Jin, Xuan; Zhu, Dan Dan; Chen, Bo Zhi; Ashfaq, Mohammad; Guo, Xin Dong

    2018-03-29

    Diabetes, a metabolic disorder of glucose, is a serious chronic disease and an important public health problem. Insulin is one of the hormones for modulating blood glucose level and the products of which is indispensable for most diabetes patients. Introducing microneedles (MNs) to insulin delivery is promising to pave the way for modulating glucose level noninvasively of diabetes patients, as which born to be painless, easy to handle and no need of any power supply. In this work, we review the process of insulin delivery systems (IDSs) based on MN technology in terms of two categories: drug free MNs and drug loaded MNs. Drug free MNs include solid MNs ("poke and patch"), hollow MNs ("poke and flow") and reservoir-based swelling MNs ("poke and swell R-type"), and drug loaded MNs include coated MNs ("coat and poke"), dissolving MNs ("poke and release") and insulin incorporated swelling MNs ("poke and swell I-type"). Majority researches of MN-based IDSs have been conducted by using hollow MNs or dissolving MNs, and almost all clinical trials for MN-based IDSs have employed hollow MNs. "Poke and patch" approach dramatically increase skin permeability compared to traditional transdermal patch, but MNs fabricated from silicon or metal may leave sharp waste in the skin and cause a safety issue. "Poke and flow" approach, similar to transitional subcutaneous (SC) injection, is capable of producing faster insulin absorption and action than SC injection but may associate with blockage, leakage and low flow rate. Coated MNs are able of retaining the activity of drug, which loaded in a solid phase, for a long time, however have been relatively less studied for insulin application as the low drug dosing. "Poke and release" approach leaves no biohazardous sharp medical waste and is capable of rapid drug release. "Poke and swell R-type" can be seen as a combination of "poke and flow" and "poke and patch" approach, while "poke and swell I-type" is an approach between "coat and

  20. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines.

    Science.gov (United States)

    Foglietta, Federica; Serpe, Loredana; Canaparo, Roberto; Vivenza, Nicoletta; Riccio, Giovanna; Imbalzano, Erica; Gasco, Paolo; Zara, Gian Paolo

    2014-01-01

    Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate's clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8.

  1. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  2. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  3. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  4. Grooves to tubes: evolution of the venom delivery system in a Late Triassic "reptile"

    Science.gov (United States)

    Mitchell, Jonathan S.; Heckert, Andrew B.; Sues, Hans-Dieter

    2010-12-01

    Venom delivery systems occur in a wide range of extant and fossil vertebrates and are primarily based on oral adaptations. Teeth range from unmodified (Komodo dragons) to highly specialized fangs similar to hypodermic needles (protero- and solenoglyphous snakes). Developmental biologists have documented evidence for an infolding pathway of fang evolution, where the groove folds over to create the more derived condition. However, the oldest known members of venomous clades retain the same condition as their extant relatives, resulting in no fossil evidence for the transition. Based on a comparison of previously known specimens with newly discovered teeth from North Carolina, we describe a new species of the Late Triassic archosauriform Uatchitodon and provide detailed analyses that provide evidence for both venom conduction and document a complete structural series from shallow grooves to fully enclosed tubular canals. While known only from teeth, Uatchitodon is highly diagnostic in possessing compound serrations and for having two venom canals on each tooth in the dentition. Further, although not a snake, Uatchitodon sheds light on the evolutionary trajectory of venom delivery systems in amniotes and provide solid evidence for venom conduction in archosaur-line diapsids.

  5. Model for determining and optimizing delivery performance in industrial systems

    Directory of Open Access Journals (Sweden)

    Fechete Flavia

    2017-01-01

    Full Text Available Performance means achieving organizational objectives regardless of their nature and variety, and even overcoming them. Improving performance is one of the major goals of any company. Achieving the global performance means not only obtaining the economic performance, it is a must to take into account other functions like: function of quality, delivery, costs and even the employees satisfaction. This paper aims to improve the delivery performance of an industrial system due to their very low results. The delivery performance took into account all categories of performance indicators, such as on time delivery, backlog efficiency or transport efficiency. The research was focused on optimizing the delivery performance of the industrial system, using linear programming. Modeling the delivery function using linear programming led to obtaining precise quantities to be produced and delivered each month by the industrial system in order to minimize their transport cost, satisfying their customers orders and to control their stock. The optimization led to a substantial improvement in all four performance indicators that concern deliveries.

  6. Servir: an automated document delivery system

    International Nuclear Information System (INIS)

    Lima, E.C.; Azevedo Coutinho, O.C. de

    1986-01-01

    SERVIR, an automated document delivery system developed by CIN/CNEN, is described. Parametric procedures for reading bibliographic data bases and requesting documents from libraries through computer are specified. Statistical procedures, accounting system and the on-line fulfillment of requests are presented. (Author) [pt

  7. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  8. Grizzli mobile systems and LPG delivery management; Grizzli mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-07-01

    Complete text of publication follows: Grizzli Mobile Systems (and its sister companies) specialists in data communications and system solutions, offer their complete management solution for LPG deliveries, right through from remote reading of the gas level in the tank, through route management, management of the delivery itself and finally on-site invoicing and payment. The system permits a supplier to really differentiate itself from its competitors in terms of customer service and control of its operations. Domestic gas tanks are often difficult to access; visual reading of the gauge is not always easy and often leads to the customer re-ordering in panic mode. The supplier has also to react in panic mode to the customer. Grizzli Mobile Systems has developed a radio module that is fitted to the gas tank that calls, at regular set intervals with the tank level to a Call Rider gateway plug. The Call Rider is a small box plugged into the regular telephone socket (also supplying multiple operator telephony and other home automation services). As soon as the gas level reaches a predetermined minimum level, this radio information is relayed via the Internet to the LPG supplier. The supplier can then arrange (in non-panic mode) to deliver gas to the customer, via conventional means or by use of an interactive radio display (attached to a refrigerator or similar by magnets) that communicates with the Call Rider by radio. Once a delivery date has been set, a Grizzli Mobile Systems' dispatch system, installed at the supplier's headquarters creates and transfers routes via GSM communications to its fleet of delivery vehicles. A main-frame mapping software provides real-time follow-up and status checks of the vehicles using the GPS functionality and imports data back from the vehicles and updates databases. The driver is also assisted in localizing delivery sites. Inside the cabin of the vehicle the driver has available a Fujitsu PenCentra pen computer, a Microsoft

  9. A Novel Nonviral Gene Delivery System: Multifunctional Envelope-Type Nano Device

    Science.gov (United States)

    Hatakeyama, Hiroto; Akita, Hidetaka; Kogure, Kentaro; Harashima, Hideyoshi

    In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.

  10. Guidelines for Psychological Practice in Health Care Delivery Systems

    Science.gov (United States)

    American Psychologist, 2013

    2013-01-01

    Psychologists practice in an increasingly diverse range of health care delivery systems. The following guidelines are intended to assist psychologists, other health care providers, administrators in health care delivery systems, and the public to conceptualize the roles and responsibilities of psychologists in these diverse contexts. These…

  11. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  12. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  13. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  14. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Traore, Mahama A.; Behkam, Bahareh, E-mail: behkam@vt.edu [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States); School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061 (United States); Damico, Carmen M. [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-10-27

    Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration is strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.

  15. A multi-echelon supply chain model for municipal solid waste management system

    International Nuclear Information System (INIS)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-01-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well

  16. A multi-echelon supply chain model for municipal solid waste management system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guo He [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); He, Li [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  17. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  18. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  19. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  20. A study on the gas-solid particle flows in a needle-free drug delivery device

    Science.gov (United States)

    Rasel, Md. Alim Iftekhar; Taher, Md. Abu; Kim, H. D.

    2013-08-01

    Different systems have been used over the years to deliver drug particles to the human skin for pharmaceutical effect. Research has been done to improve the performance and flexibility of these systems. In recent years a unique system called the transdermal drug delivery has been developed. Transdermal drug delivery opened a new door in the field of drug delivery as it is more flexible and offers better performance than the conventional systems. The principle of this system is to accelerate drug particles with a high speed gas flow. Among different transdermal drug delivery systems we will concentrate on the contour shock tube system in this paper. A contoured shock tube is consists of a rupture chamber, a shock tube and a supersonic nozzle section. The drug particles are retained between a set of bursting diaphragm. When the diaphragm is ruptured at a certain pressure, a high speed unsteady flow is initiated through the shock tube which accelerates the particles. Computational fluid dynamics is used to simulate and analyze the flow field. The DPM (discrete phase method) is used to model the particle flow. As an unsteady flow is initiated though the shock tube the drag correlation proposed by Igra et al is used other than the standard drag correlation. The particle velocities at different sections including the nozzle exit are investigated under different operating conditions. Static pressure histories in different sections in the shock tube are investigated to analyze the flow field. The important aspects of the gas and particle dynamics in the shock tube are discussed and analyzed in details.

  1. The origins and evolution of "controlled" drug delivery systems.

    Science.gov (United States)

    Hoffman, Allan S

    2008-12-18

    This paper describes the earliest days when the "controlled drug delivery" (CDD) field began, the pioneers who launched this exciting and important field, and the key people who came after them. It traces the evolution of the field from its origins in the 1960s to (a) the 1970s and 1980s, when numerous macroscopic "controlled" drug delivery (DD) devices and implants were designed for delivery as mucosal inserts (e.g., in the eye or vagina), as implants (e.g., sub-cutaneous or intra-muscular), as ingestible capsules (e.g., in the G-I tract), as topical patches (e.g., on the skin), and were approved for clinical use, to (b) the 1980s and 1990s when microscopic degradable polymer depot DD systems (DDS) were commercialized, and to (c) the currently very active and exciting nanoscopic era of targeted nano-carriers, in a sense bringing to life Ehrlich's imagined concept of the "Magic Bullet". The nanoscopic era began with systems proposed in the 1970s, that were first used in the clinic in the 1980s, and which came of age in the 1990s, and which are presently evolving into many exciting and clinically successful products in the 2000s. Most of these have succeeded because of the emergence of three key technologies: (1) PEGylation, (2) active targeting to specific cells by ligands conjugated to the DDS, or passive targeting to solid tumors via the EPR effect. The author has been personally involved in the origins and evolution of this field for the past 38 years (see below), and this review includes information that was provided to him by many researchers in this field about the history of various developments. Thus, this paper is based on his own personal involvements in the CDD field, along with many historical anecdotes provided by the key pioneers and researchers in the field. Because of the huge literature of scientific papers on CDD systems, this article attempts to limit examples to those that have been approved for clinical use, or are currently in clinical trials

  2. System and process for dissolution of solids

    Science.gov (United States)

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  3. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  4. Hydrolytically degradable polymer micelles for anticancer drug delivery to solid tumors

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Etrych, Tomáš; Kostka, Libor; Ulbrich, Karel

    2012-01-01

    Roč. 213, č. 8 (2012), s. 858-867 ISSN 1022-1352 R&D Projects: GA AV ČR IAAX00500803; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505 Keywords : HPMA copolymers * drug delivery systems * doxorubicin Subject RIV: EC - Immunology Impact factor: 2.386, year: 2012

  5. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative

  6. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  7. Effect of formulation variables on insulin localisation within solid lipid nanoparticles

    OpenAIRE

    Thong, Li Ming

    2016-01-01

    There has been a lot of interest on solid lipid nanoparticles (SLNs) as these colloidal submicron drug dosage forms present a promising frontier in drug delivery. It is possible to incorporate susceptible drugs such as protein intended for oral delivery. Here, we aim to develop an oral delivery system based on SLNs to deliver the peptide hormone, insulin using the double emulsion (W/O/W) solvent evaporation technique for formulating the SLNs. The choice of lipids was carefully selected to inc...

  8. Nebuliser systems for drug delivery in cystic fibrosis.

    Science.gov (United States)

    Daniels, Tracey; Mills, Nicola; Whitaker, Paul

    2013-04-30

    Nebuliser systems are used to deliver medications to control the symptoms and the progression of lung disease in people with cystic fibrosis. Many types of nebuliser systems are available for use with various medications; however, there has been no previous systematic review which has evaluated these systems. To evaluate effectiveness, safety, burden of treatment and adherence to nebulised therapy using different nebuliser systems for people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching of relevant journals and abstract books of conference proceedings. We searched the reference lists of each study for additional publications and approached the manufacturers of both nebuliser systems and nebulised medications for published and unpublished data. Date of the most recent search: 15 Oct 2012. Randomised controlled trials or quasi-randomised controlled trials comparing nebuliser systems including conventional nebulisers, vibrating mesh technology systems, adaptive aerosol delivery systems and ultrasonic nebuliser systems. Two authors independently assessed studies for inclusion. They also independently extracted data and assessed the risk of bias. A third author assessed studies where agreement could not be reached. The search identified 40 studies with 20 of these (1936 participants) included in the review. These studies compared the delivery of tobramycin, colistin, dornase alfa, hypertonic sodium chloride and other solutions through the different nebuliser systems. This review demonstrates variability in the delivery of medication depending on the nebuliser system used. Conventional nebuliser systems providing higher flows, higher respirable fractions and smaller particles decrease treatment time, increase deposition and may be preferred by people with CF, as compared to conventional nebuliser systems providing

  9. Delivery systems and local administration routes for therapeutic siRNA.

    Science.gov (United States)

    Vicentini, Fabiana Testa Moura de Carvalho; Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; de Macedo Mano, Danielle; Abelha, Thais Fedatto; Petrilli, Raquel; Bentley, Maria Vitória Lopes Badra

    2013-04-01

    With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.

  10. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  11. Targeted drug delivery and penetration into solid tumors.

    Science.gov (United States)

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  12. Otic drug delivery systems: formulation principles and recent developments.

    Science.gov (United States)

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  13. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  14. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    Science.gov (United States)

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time intervals from 0.5 to 96 hours in cornea, sclera, and conjunctiva and at six time intervals from 0.5 to 12 hours in aqueous. Two peak concentrations were noted at approximately one and eight hours, with measurable levels present at 96 hours. This study demonstrates the ability of this liposomal delivery system to prolong levels of 5-fluorouracial in normal pigmented rabbits. PMID:3179257

  15. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  16. An Overview of Clinical and Commercial Impact of Drug Delivery Systems

    Science.gov (United States)

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. PMID:24747160

  17. Understanding the organization of public health delivery systems: an empirical typology.

    Science.gov (United States)

    Mays, Glen P; Scutchfield, F Douglas; Bhandari, Michelyn W; Smith, Sharla A

    2010-03-01

    Policy discussions about improving the U.S. health care system increasingly recognize the need to strengthen its capacities for delivering public health services. A better understanding of how public health delivery systems are organized across the United States is critical to improvement. To facilitate the development of such evidence, this article presents an empirical method of classifying and comparing public health delivery systems based on key elements of their organizational structure. This analysis uses data collected through a national longitudinal survey of local public health agencies serving communities with at least 100,000 residents. The survey measured the availability of twenty core public health activities in local communities and the types of organizations contributing to each activity. Cluster analysis differentiated local delivery systems based on the scope of activities delivered, the range of organizations contributing, and the distribution of effort within the system. Public health delivery systems varied widely in organizational structure, but the observed patterns of variation suggested that systems adhere to one of seven distinct configurations. Systems frequently migrated from one configuration to another over time, with an overall trend toward offering a broader scope of services and engaging a wider range of organizations. Public health delivery systems exhibit important structural differences that may influence their operations and outcomes. The typology developed through this analysis can facilitate comparative studies to identify which delivery system configurations perform best in which contexts.

  18. Buccoadhesive drug delivery systems--extensive review on recent patents.

    Science.gov (United States)

    Pathan, Shadab A; Iqbal, Zeenat; Sahani, Jasjeet K; Talegaonkar, Sushma; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    Peroral administration of drugs, although most preferred by both clinicians and patients has several disadvantages such as hepatic first pass metabolism and enzymatic degradation within the GI tract, that prohibit oral administration of certain classes of drugs especially peptides and proteins. Consequently, other absorptive mucosae are considered as potential sites for administration of these drugs. Among the various transmucosal routes studied the buccal mucosa offers several advantages for controlled drug delivery for extended period of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract is avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form, design and formulation, the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation. Buccal drug delivery is thus a promising area for continued research with the aim of systemic and local delivery of orally inefficient drugs as well as feasible and attractive alternative for non-invasive delivery of potent protein and peptide drug molecules. Extensive review pertaining specifically to the patents relating to buccal drug delivery is currently available. However, many patents e.g. US patents 6, 585,997; US20030059376A1 etc. have been mentioned in few articles. It is the objective of this article to extensively review buccal drug delivery by discussing the recent patents available. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems.

  19. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  20. Metal organic frameworks as a drug delivery system for flurbiprofen

    Directory of Open Access Journals (Sweden)

    AL Haydar M

    2017-09-01

    Full Text Available Muder AL Haydar,1,2 Hussein Rasool Abid,3,4 Bruce Sunderland,2 Shaobin Wang5,6 1Pharmaceutics Department, College of the Pharmacy, University of Kerbala, Kerbala, Iraq; 2Pharmaceutics Department, School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 3Department of Chemical Engineering, Curtin University, Perth, WA, Australia; 4College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq; 5School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 6Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia Background: Metal organic frameworks (MOFs have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Purpose: Flurbiprofen (FBP, a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101 were synthesized and employed for FBP delivery. Patients and methods: A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40% in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. Results: The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release

  1. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  2. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    Science.gov (United States)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  3. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  4. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  5. Description and Documentation of the Dental School Dental Delivery System.

    Science.gov (United States)

    Chase, Rosen and Wallace, Inc., Alexandria, VA.

    A study was undertaken to describe and document the dental school dental delivery system using an integrated systems approach. In late 1976 and early 1977, a team of systems analysts and dental consultants visited three dental schools to observe the delivery of dental services and patient flow and to interview administrative staff and faculty.…

  6. A multi-echelon supply chain model for municipal solid waste management system.

    Science.gov (United States)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... and proteins. EXPERT OPINION: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve...

  8. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  9. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    OpenAIRE

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time interva...

  10. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  11. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  12. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  13. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application.

    Science.gov (United States)

    Aditya, N P; Espinosa, Yadira Gonzalez; Norton, Ian T

    2017-07-01

    Increased health risk associated with the sedentary life style is forcing the food manufacturers to look for food products with specific or general health benefits e.g. beverages enriched with nutraceuticals like catechin, curcumin rutin. Compounds like polyphenols, flavonoids, vitamins are the good choice of bioactive compounds that can be used to fortify the food products to enhance their functionality. However due to low stability and bioavailability of these bioactives (both hydrophobic and hydrophilic) within the heterogeneous food microstructure and in the Gastro Intestinal Tract (GIT), it becomes extremely difficult to pass on the real health benefits to the consumers. Recent developments in the application of nano-delivery systems for food product development is proving to be a game changer which has raised the expectations of the researchers, food manufacturers and consumers regarding possibility of enhancing the functionality of bioactives within the fortified food products. In this direction, nano/micro delivery systems using lipids, surfactants and other materials (carbohydrates, polymers, complexes, protein) have been fabricated to stabilize and enhance the biological activity of the bioactive compounds. In the present review, current status of the various delivery systems that are used for the delivery of hydrophilic bioactives and future prospects for using other delivery systems that have been not completely explored for the delivery of hydrophilic bioactives e.g. niosomes; bilosomes, cubosomes are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nanocapsules: The Weapons for Novel Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Radhika Parasuramrajam

    2012-04-01

    Full Text Available Introduction: Nanocapsules, existing in miniscule size, range from 10 nm to 1000 nm. They consist of a liquid/solid core in which the drug is placed into a cavity, which is surrounded by a distinctive polymer membrane made up of natural or synthetic polymers. They have attracted great interest, because of the protective coating, which are usually pyrophoric and easily oxidized and delay the release of active ingredients. Methods: Various technical approaches are utilized for obtaining the nanocapsules; however, the methods of interfacial polymerization for monomer and the nano-deposition for preformed polymer are chiefly preferred. Most important characteristics in their preparation is particle size and size distribution which can be evaluated by using various techniques like X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, superconducting quantum interference device, multi angle laser light scattering and other spectroscopic techniques. Results: Nanocapsules possessing extremely high reproducibility have a broad range of life science applications. They may be applied in agrochemicals, genetic engineering, cosmetics, cleansing products, wastewater treatments, adhesive component applications, strategic delivery of the drug in tumors, nanocapsule bandages to fight infection, in radiotherapy and as liposomal nanocapsules in food science and agriculture. In addition, they can act as self-healing materials. Conclusion: The enhanced delivery of bioactive molecules through the targeted delivery by means of a nanocapsule opens numerous challenges and opportunities for the research and future development of novel improved therapies.

  15. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    NARCIS (Netherlands)

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that

  16. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  17. Excimer laser beam delivery systems for medical applications

    Science.gov (United States)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  18. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has been tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.

  19. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  20. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  1. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  2. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    Science.gov (United States)

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  4. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  5. A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol.

    Science.gov (United States)

    Kim, Kyeong Soo; Yang, Eun Su; Kim, Dong Shik; Kim, Dong Wuk; Yoo, Hye Hyun; Yong, Chul Soon; Youn, Yu Seok; Oh, Kyung Taek; Jee, Jun-Pil; Kim, Jong Oh; Jin, Sung Giu; Choi, Han Gon

    2017-11-01

    To develop a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for a water-insoluble oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) with improved stability and oral bioavailability, numerous S-SNEDDS were prepared with surfactant, hydrophilic polymer, antioxidant, and calcium silicate (porous carrier) using the spray-drying method. Their physicochemical properties were evaluated using emulsion droplet size analysis, SEM and PXRD. Moreover, the solubility, dissolution, stability, and pharmacokinetics of the selected S-SNEDDS were assessed compared with the drug and a commercial soft capsule. Sodium lauryl sulfate (SLS) and hydroxypropyl methylcellulose (HPMC) with the highest drug solubility were selected as surfactant and hydrophilic polymer, respectively. Among the antioxidants tested, only butylated hydroxyanisole (BHA) could completely protect the drug from oxidative degradation. The S-SNEDDS composed of PLAG/SLS/HPMC/BHA/calcium silicate at a weight ratio of 1: 0.25: 0.1: 0.0002: 0.5 provided an emulsion droplet size of less than 300 nm. In this S-SNEDDS, the drug and other ingredients might exist in the pores of carrier and attach onto its surface. It considerably improved the drug stability (about 100 vs. 70%, 60 °C for 5 d) and dissolution (about 80 vs. 20% in 60 min) compared to the commercial soft capsule. Moreover, the S-SNEDDS gave higher AUC, C max , and T max values than the commercial soft capsule; in particular, the former improved the oral bioavailability of PLAG by about 3-fold. Our results suggested that this S-SNEDDS provided excellent stability and oral bioavailability of PLAG. Thus, this S-SNEDDS would be recommended as a powerful oral drug delivery system for an oily drug, PLAG.

  6. Nanoparticulate systems for nucleic acid delivery

    NARCIS (Netherlands)

    Varkouhi, A.K.

    2011-01-01

    Development of carrier systems with controllable physicochemical and delivery properties has opened up the possibility of nanomedicines containing nucleic acids. In the last decades, much effort has been dedicated to two exciting approaches in biomedicine, namely gene and RNA interference

  7. Adamantane in Drug Delivery Systems and Surface Recognition.

    Science.gov (United States)

    Štimac, Adela; Šekutor, Marina; Mlinarić-Majerski, Kata; Frkanec, Leo; Frkanec, Ruža

    2017-02-16

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  8. Adamantane in Drug Delivery Systems and Surface Recognition

    Directory of Open Access Journals (Sweden)

    Adela Štimac

    2017-02-01

    Full Text Available The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  9. Liposome as nanocarrier: Site targeted delivery in lung cancer

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2017-08-01

    Full Text Available Lung cancer is fatal and spreading rapidly worldwide. Different clinical strategies are applied to stop this cancer. As the lung is a delicate organ, special clinical applications must be used and nanodrugs delivery systems are the most important applications of all. This review discusses the lung problems such as lung cancer, lung inflammation and bronchi constrictions followed by repetitive intake of some drugs. The objective of this review is to study how nanodrug delivery systems were synthesized and used in lung disorder treatment especially in lung cancer. The authors studied some articles from 1989 to 2015. Liposome encapsulation was done in various ways for the delivery of different drugs such as metaproterenol into liposomes caused bronchodilation, immunoliposomes bearing antibodies for doxorubicin reduced 50% inhibitory effects, radioliposomes with high penetrating ability to peripheral airways, aerosol delivery systems with deep pulmonary deposition, polymeric drug delivery having potential to improve beneficial index of drug, solid lipid liposomes, liposomal gentamicin with altered different clinical susceptibilities of resistance, transferrin conjugated liposomes to deliver cytostatic drugs to site of lungs, anti-inflammatory drugs with mannosylated liposomes, liposomal suspensions with single stranded RNAs and peptide encapsulation of liposomes. This review indicates that many animals perished with intravenous administration of drugs but survived in liposomal targeting groups.

  10. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution.

    Science.gov (United States)

    Bondì, Maria Luisa; Craparo, Emanuela Fabiola; Giammona, Gaetano; Drago, Filippo

    2010-01-01

    Developments within nanomedicine have revealed a great potential for drug delivery to the brain. In this study nanoparticulate systems as drug carriers for riluzole, with sufficiently high loading capacity and small particle size, were prepared to a reach therapeutic drug level in the brain. Solid lipid nanoparticles containing riluzole have great potential as drug-delivery systems for amyotrophic lateral sclerosis and were produced by using the warm oil-in-water microemulsion technique. The resulting systems obtained were approximately 88 nm in size and negatively charged. Drug-release profiles demonstrated that a drug release was dependent on medium pH. Biodistribution of riluzole blended into solid lipid nanoparticles was carried out after administration to rats and the results were compared with those obtained by riluzole aqueous dispersion administration. Rats were sacrificed at time intervals of 8, 16 and 30 h, and the riluzole concentration in the blood and organs such as the brain, liver, spleen, heart and kidney was determined. It was demonstrated that these solid lipid nanoparticles were able to successfully carry riluzole into the CNS. Moreover, a low drug biodistribution in organs such as the liver, spleen, heart, kidneys and lung was found when riluzole was administered as drug-loaded solid lipid nanoparticles. Riluzole-loaded solid lipid nanoparticles showed colloidal size and high drug loading, a greater efficacy than free riluzole in rats, a higher capability to carry the drug into the brain and a lower indiscriminate biodistribution.

  11. LOGISTIC SYSTEM OF LOAD DELIVERY AND QUALITY OF ITS OPERATION

    Directory of Open Access Journals (Sweden)

    O. G. Drozdovskaya

    2006-01-01

    Full Text Available The paper considers an opportunity for obtaining a competitive advantage by a transport and dispatch service company in the market of transport services while establishing a logistic system of load delivery. A model of delivery system, an universal scheme of system designing for every specific case are presented and also indices for evaluation of its operational quality are proposed in the paper.

  12. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  13. A basic insight into the stability and manufacturing aspects of solid dispersions

    Directory of Open Access Journals (Sweden)

    Jishnu Vijay

    2012-01-01

    Full Text Available The development of a bioavailable dosage form is the most challenging task for the researchers. In the arena of advanced drug delivery systems, the solid dispersion techniques seem to be a promising system for the development of an optimized, bioavailable formulation of Class 2 drugs. The methods of formulation of solid dispersion have been summarized. This article is an effort to define a solid dispersion and its classification. The prospective of the stability of solid dispersion has also been discussed. Moreover, the major techniques that have been used so far such as the fusion/melting method, solvent evaporation method, hot melt extrusion method, supercritical fluid methods, have also been detailed.

  14. Lipid nanoparticles for the delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Bunjes, Heike

    2010-11-01

    This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  15. Distance Learning Delivery Systems: Instructional Options.

    Science.gov (United States)

    Steele, Ray L.

    1993-01-01

    Discusses the availability of satellite and cable programing to provide distance education opportunities in school districts. Various delivery systems are described, including telephones with speakers, personal computers, and satellite dishes; and a sidebar provides a directory of distance learning opportunities, including telecommunications…

  16. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  17. Non-viral Nucleic Acid Delivery Strategies to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    James-Kevin Tan

    2016-11-01

    Full Text Available With an increased prevalence and understanding of central nervous system injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the central nervous system and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection, and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the central nervous system are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for central nervous system applications and will ultimately bring non-viral vectors closer to clinical application.

  18. 1993 baseline solid waste management system description

    International Nuclear Information System (INIS)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford's solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents

  19. Software Build and Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  20. Research on the comparison of the demethylvancomycin's diffusion-deposition characteristics in the ocular solid tissues of sustained subtenon drug delivery with subconjunctival injection.

    Science.gov (United States)

    Duan, Yi-Qin; Yang, Ye-Zhen; Huang, Xue-Tao; Lin, Ding

    2017-11-01

    To compare the demethylvancomycin's diffusion-deposition characteristics in the ocular solid tissues of sustained subtenon drug delivery with subconjunctival injection. Sixty adult white rabbits were randomly assigned to the subtenon drug delivery group and the subconjunctival injection group. The subtenon drug delivery group was continuously infused demethylvancomycin to the subtenon of rabbits. The subconjunctival injection group was injected demethylvancomycin to the subconjunctival of rabbits. Cornea, iris and sclera were collected for high-performance liquid chromatography analyses to determine drug concentrations at one hour, three hours, six hours, 12 h and 24 h of drug administration. WinNonlin 6.3 was used to calculate the parameters of cumulative area under the curve (AUC cum ) of demethylvancomycin. The peak levels of demethylvancomycin concentration of the subtenon drug delivery group and the subconjunctival injection group were 92.406 ± 21.555 and 51.778 ± 14.001 μg/g in cornea, 28.451 ± 10.229 μg/g and 42.271 ± 27.291 μg/g in iris, 153.166 ± 51.738 μg/g and 57.423 ± 18.480 μg/g in sclera. The differences of concentrations between the two groups in cornea and sclera were statistically significant (F = 487.775, p drug delivery group and the subconjunctival injection group was 1808.23 h * μg/g and 273.73 h * μg/g in cornea, 489.12 h * μg/g and 216.16 h * μg/g in iris and 2166.34 h * μg/g and 392.57 h * μg/g in sclera at 24 h of drug administration. The sustained subtenon drug delivery had a better drug permeability and accumulation in the intraocular solid tissue compared to subconjunctival injection, which demonstrated it was probably a promising and effective approach for treating posterior segment diseases and endophthalmitis.

  1. Efficient systemic DNA delivery to the tumor by self-assembled nanoparticle

    Science.gov (United States)

    Tang, Hailin; Xie, Xinhua; Guo, Jiaoli; Wei, Weidong; Wu, Minqing; Liu, Peng; Kong, Yanan; Yang, Lu; Hung, Mien-Chie; Xie, Xiaoming

    2014-01-01

    There are few delivery agents that could deliver gene with high efficiency and low toxicity, especially for animal experiments. Therefore, creating vectors with good delivery efficiency and safety profile is a meaningful work. We have developed a self-assembled gene delivery system (XM001), which can more efficiently deliver DNA to multiple cell lines and breast tumor, as compared to commercial delivery agents. In addition, systemically administrated XM001-BikDD (BikDD is a mutant form of proapoptotic gene Bik) significantly inhibited the growth of human breast cancer cells and prolonged the life span in implanted nude mice. This study demonstrates that XM001 is an efficient and widespread transfection agent, which could be a promising tumor delivery vector for cancer targeted therapy.

  2. Exploring information systems outsourcing in U.S. hospital-based health care delivery systems.

    Science.gov (United States)

    Diana, Mark L

    2009-12-01

    The purpose of this study is to explore the factors associated with outsourcing of information systems (IS) in hospital-based health care delivery systems, and to determine if there is a difference in IS outsourcing activity based on the strategic value of the outsourced functions. IS sourcing behavior is conceptualized as a case of vertical integration. A synthesis of strategic management theory (SMT) and transaction cost economics (TCE) serves as the theoretical framework. The sample consists of 1,365 hospital-based health care delivery systems that own 3,452 hospitals operating in 2004. The findings indicate that neither TCE nor SMT predicted outsourcing better than the other did. The findings also suggest that health care delivery system managers may not be considering significant factors when making sourcing decisions, including the relative strategic value of the functions they are outsourcing. It is consistent with previous literature to suggest that the high cost of IS may be the main factor driving the outsourcing decision.

  3. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  4. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Science.gov (United States)

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  5. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  6. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  7. Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability.

    Science.gov (United States)

    McClements, David Julian

    2015-07-01

    There has been a surge of interest in the development of nanoscale systems for the encapsulation, protection, and delivery of lipophilic nutrients, vitamins, and nutraceuticals. This review article highlights the challenges associated with incorporating these lipophilic bioactive components into foods, and then discusses potential nanoscale delivery systems that can be used to overcome these challenges. In particular, the desirable characteristics required for any nanoscale delivery system are presented, as well as methods of fabricating them and of characterizing them. An overview of different delivery systems is given, such as microemulsions, nanoemulsions, emulsions, microgels, and biopolymer nanoparticles, and their potential applications are discussed. Nanoscale delivery systems have considerable potential within the food industry, but they must be carefully formulated to ensure that they are safe, economically viable, and effective. Nanoscale delivery systems have numerous potential applications in the food industry for encapsulating, protecting, and releasing bioactive agents, such as nutraceuticals and vitamins. This review article highlights methods for designing, fabricating, characterizing, and utilizing edible nanoparticles from a variety of different food-grade ingredients. © 2015 Institute of Food Technologists®

  8. Buccal mucosa as a route for systemic drug delivery: a review.

    Science.gov (United States)

    Shojaei, A H

    1998-01-01

    Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. The mucosa has a rich blood supply and it is relatively permeable. It is the objective of this article to review buccal drug delivery by discussing the structure and environment of the oral mucosa and the experimental methods used in assessing buccal drug permeation/absorption. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems

  9. A Sample Delivery System for Planetary Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will develop, test and characterize the performance of a prototype /sample delivery system (SDS) implemented as an end effector on a robotic arm capable...

  10. Exploration of solids based on representation systems

    Directory of Open Access Journals (Sweden)

    Publio Suárez Sotomonte

    2011-01-01

    Full Text Available This article refers to some of the findings of a research project implemented as a teaching strategy to generate environments for the learning of platonic and archimedean solids, with a group of eighth grade students. This strategy was based on the meaningful learning approach and on the use of representation systems using the ontosemiotic approach in mathematical education, as a framework for the construction of mathematical concepts. This geometry teaching strategy adopts the stages of exploration, representation-modeling, formal construction and study of applications. It uses concrete, physical and tangible materials for origami, die making, and structures for the construction of threedimensional solids considered external tangible solid representation systems, as well as computer based educational tools to design dynamic geometry environments as intangible external representation systems.These strategies support both the imagination and internal systems of representation, fundamental to the comprehension of geometry concepts.

  11. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  12. Nursing Services Delivery Theory: an open system approach

    Science.gov (United States)

    Meyer, Raquel M; O’Brien-Pallas, Linda L

    2010-01-01

    meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573

  13. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  14. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  15. From the Cover: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies

    Science.gov (United States)

    McAllister, Devin V.; Wang, Ping M.; Davis, Shawn P.; Park, Jung-Hwan; Canatella, Paul J.; Allen, Mark G.; Prausnitz, Mark R.

    2003-11-01

    Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm. When solid microneedles were used, skin permeability was increased in vitro by orders of magnitude for macromolecules and particles up to 50 nm in radius. Intracellular delivery of molecules into viable cells was also achieved with high efficiency. Hollow microneedles permitted flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats. transdermal drug delivery | skin | microelectromechanical systems | solid microneedle | hollow needle injection

  16. Nature engineered diatom biosilica as drug delivery systems.

    Science.gov (United States)

    Uthappa, U T; Brahmkhatri, Varsha; Sriram, G; Jung, Ho-Young; Yu, Jingxian; Kurkuri, Nikita; Aminabhavi, Tejraj M; Altalhi, Tariq; Neelgund, Gururaj M; Kurkuri, Mahaveer D

    2018-05-14

    Diatoms, unicellular photosynthetic algae covered with siliceous cell wall, are also called frustule. These are the most potential naturally available materials for the development of cost-effective drug delivery systems because of their excellent biocompatibility, high surface area, low cost and ease of surface modification. Mesoporous silica materials such as MCM-41 and SBA-15 have been extensively used in drug delivery area. Their synthesis is challenging, time consuming, requires toxic chemicals and are energy intensive, making the entire process expensive and non-viable. Therefore, it is necessary to explore alternative materials. Surprisingly, nature has provided some exciting materials called diatoms; biosilica is one such a material that can be potentially used as a drug delivery vehicle. The present review focuses on different types of diatom species used in drug delivery with respect to their structural properties, morphology, purification process and surface functionalization. In this review, recent advances along with their limitations as well as the future scope to develop them as potential drug delivery vehicles are discussed. Copyright © 2018. Published by Elsevier B.V.

  17. Analysis and Design Information System Logistics Delivery Service in Pt Repex Wahana

    Directory of Open Access Journals (Sweden)

    Stephanie Surja

    2015-12-01

    Full Text Available Analysis and Design of Logistic Delivery System in PT Repex Wahana aims to analyze company’s need in existing business process of logistic delivery service. This will then be used in the development of an integrated system that can address the problems in the running process of sending and tracking the whereaboutsor status of the delivered goods which are the core business processes in the enterprise. The result then will be used as basis in the development of integrated information system in pursuit of corporate solution for process business automation, delivery process, inventory, and logistic delivery tracking, which is the core of the company business process, and it will be documented using Unified Modeling Language. The information system is meant to simplify the delivery and tracking process in the company, besides will minimize lost and error of data which is often happened because of the manual and unorganized transaction data processing.

  18. Approaches and Challenges of Engineering Implantable Microelectromechanical Systems (MEMS Drug Delivery Systems for in Vitro and in Vivo Applications

    Directory of Open Access Journals (Sweden)

    Ken-Tye Yong

    2012-11-01

    Full Text Available Despite the advancements made in drug delivery systems over the years, many challenges remain in drug delivery systems for treating chronic diseases at the personalized medicine level. The current urgent need is to develop novel strategies for targeted therapy of chronic diseases. Due to their unique properties, microelectromechanical systems (MEMS technology has been recently engineered as implantable drug delivery systems for disease therapy. This review examines the challenges faced in implementing implantable MEMS drug delivery systems in vivo and the solutions available to overcome these challenges.

  19. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.

    Science.gov (United States)

    Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas

    2005-05-01

    Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc

  20. Colon-targeted oral drug delivery systems: design trends and approaches.

    Science.gov (United States)

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  1. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  2. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    Science.gov (United States)

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  3. Leadership Perspectives on Operationalizing the Learning Health Care System in an Integrated Delivery System.

    Science.gov (United States)

    Psek, Wayne; Davis, F Daniel; Gerrity, Gloria; Stametz, Rebecca; Bailey-Davis, Lisa; Henninger, Debra; Sellers, Dorothy; Darer, Jonathan

    2016-01-01

    Healthcare leaders need operational strategies that support organizational learning for continued improvement and value generation. The learning health system (LHS) model may provide leaders with such strategies; however, little is known about leaders' perspectives on the value and application of system-wide operationalization of the LHS model. The objective of this project was to solicit and analyze senior health system leaders' perspectives on the LHS and learning activities in an integrated delivery system. A series of interviews were conducted with 41 system leaders from a broad range of clinical and administrative areas across an integrated delivery system. Leaders' responses were categorized into themes. Ten major themes emerged from our conversations with leaders. While leaders generally expressed support for the concept of the LHS and enhanced system-wide learning, their concerns and suggestions for operationalization where strongly aligned with their functional area and strategic goals. Our findings suggests that leaders tend to adopt a very pragmatic approach to learning. Leaders expressed a dichotomy between the operational imperative to execute operational objectives efficiently and the need for rigorous evaluation. Alignment of learning activities with system-wide strategic and operational priorities is important to gain leadership support and resources. Practical approaches to addressing opportunities and challenges identified in the themes are discussed. Continuous learning is an ongoing, multi-disciplinary function of a health care delivery system. Findings from this and other research may be used to inform and prioritize system-wide learning objectives and strategies which support reliable, high value care delivery.

  4. Novel delivery systems with nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Cvijić Sandra

    2016-01-01

    Full Text Available Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs is associated with increased risk of serious gastrointestinal side effects. Therefore, recent trends in the development of NSAIDs aim to reduce the incidence of side effects, and improve patient compliance. One of the strategies to improve efficacy and safety of oral NSAIDs is the development of combination products that contain gastroprotective agents. Several products containing NSAID in combination with proton pump inhibitors (ketoprofen/omeprazole, naproxen/esomeprazole, H2-receptor antagonists (ibuprofen/famotidine, and prostaglandin analogues (diclofenac/misoprostol are currently available on the market. Another approach refer to the special formulation design to allow dose reduction while preserving drug therapeutic efficacy. An example is SoluMatrix® technology, a manufacturing process that produce submicron-sized drug particles with enhanced dissolution and absorption properties. Patented SoluMatrix® technology has been successfully employed to develop low-dose diclofenac, meloxicam, indomethacin and naproxen products. Topical NSAID formulations enable drug delivery to target tissues, while reducing systemic exposure and concomitant side effects associated with oral NSAIDs. Dermal/transdermal NSAID delivery systems are subject of intensive investigation. So far, several 'advanced' drug delivery systems with diclofenac, ibuprofen and ketoprofen have been designed.

  5. A clinical perspective on mucoadhesive buccal drug delivery systems

    Science.gov (United States)

    Gilhotra, Ritu M; Ikram, Mohd; Srivastava, Sunny; Gilhotra, Neeraj

    2014-01-01

    Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems. PMID:24683406

  6. Secondary fuel delivery system

    Science.gov (United States)

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  7. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Science.gov (United States)

    Dubald, Marion; Bourgeois, Sandrine; Andrieu, Véronique; Fessi, Hatem

    2018-01-01

    The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites. PMID:29342879

  8. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Directory of Open Access Journals (Sweden)

    Marion Dubald

    2018-01-01

    Full Text Available The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

  9. Adamantane in Drug Delivery Systems and Surface Recognition

    OpenAIRE

    Adela Štimac; Marina Šekutor; Kata Mlinarić-Majerski; Leo Frkanec; Ruža Frkanec

    2017-01-01

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based struc...

  10. Solid effervescent formulations as new approach for topical minoxidil delivery.

    Science.gov (United States)

    Pereira, Maíra N; Schulte, Heidi L; Duarte, Natane; Lima, Eliana M; Sá-Barreto, Livia L; Gratieri, Tais; Gelfuso, Guilherme M; Cunha-Filho, Marcilio S S

    2017-01-01

    Currently marketed minoxidil formulations present inconveniences that range from a grease hard aspect they leave on the hair to more serious adverse reactions as scalp dryness and irritation. In this paper we propose a novel approach for minoxidil sulphate (MXS) delivery based on a solid effervescent formulation. The aim was to investigate whether the particle mechanical movement triggered by effervescence would lead to higher follicle accumulation. Preformulation studies using thermal, spectroscopic and morphological analysis demonstrated the compatibility between effervescent salts and the drug. The effervescent formulation demonstrated a 2.7-fold increase on MXS accumulation into hair follicles casts compared to the MXS solution (22.0±9.7μg/cm 2 versus 8.3±4.0μg/cm 2 ) and a significant drug increase (around 4-fold) in remaining skin (97.1±29.2μg/cm 2 ) compared to the drug solution (23.5±6.1μg/cm 2 ). The effervescent formulations demonstrated a prominent increase of drug permeation highly dependent on the effervescent mixture concentration in the formulation, confirming the hypothesis of effervescent reaction favoring drug penetration. Clinically, therapy effectiveness could be improved, increasing the administration interval, hence, patient compliance. More studies to investigate the follicular targeting potential and safety of new formulations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Systems and methods for monitoring a solid-liquid interface

    Science.gov (United States)

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  12. Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2013-01-01

    Full Text Available Ultrasound is an emerging modality for drug delivery in chemotherapy. This paper reviews this novel technology by first introducing the designs and characteristics of three classes of drug/gene vehicles, microbubble (including nanoemulsion, liposomes, and micelles. In comparison to conventional free drug, the targeted drug-release and delivery through vessel wall and interstitial space to cancerous cells can be activated and enhanced under certain sonication conditions. In the acoustic field, there are several reactions of these drug vehicles, including hyperthermia, bubble cavitation, sonoporation, and sonodynamics, whose physical properties are illustrated for better understanding of this approach. In vitro and in vivo results are summarized, and future directions are discussed. Altogether, ultrasound-mediated drug/gene delivery under imaging guidance provides a promising option in cancer treatment with enhanced agent release and site specificity and reduced toxicity.

  13. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin

    Science.gov (United States)

    2013-01-01

    Background Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes. Results CurcuEmulsomes are spherical solid nanoparticles with an average size of 286 nm and a zeta potential of 37 mV. Encapsulation increases the bioavailability of curcumin by up to 10,000 fold corresponding to a concentration of 0.11 mg/mL. Uptaken by HepG2 human liver carcinoma cell line, CurcuEmulsomes show a significantly prolonged biological activity and demonstrated therapeutic efficacy comparable to free curcumin against HepG2 in vitro - with a delay in response, as assessed by cell viability, apoptosis and cell cycle studies. The delay is attributed to the solid character of the nanocarrier prolonging the release of curcumin inside the HepG2 cells. Conclusions Incorporation of curcumin into emulsomes results in water-soluble and stable CurcuEmulsome nanoformulations. CurcuEmulsomes do not only successfully facilitate the delivery of curcumin into the cell in vitro, but also enable curcumin to reach its effective concentrations inside the cell. The enhanced solubility of curcumin and the promising in vitro efficacy of CurcuEmulsomes highlight the potential of the system for the delivery of lipophilic drugs. Moreover, high degree of compatibility, prolonged release profile and tailoring properties feature CurcuEmulsomes for further therapeutic applications in vivo. PMID:24314310

  14. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin.

    Science.gov (United States)

    Ucisik, Mehmet H; Küpcü, Seta; Schuster, Bernhard; Sleytr, Uwe B

    2013-12-06

    Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes. CurcuEmulsomes are spherical solid nanoparticles with an average size of 286 nm and a zeta potential of 37 mV. Encapsulation increases the bioavailability of curcumin by up to 10,000 fold corresponding to a concentration of 0.11 mg/mL. Uptaken by HepG2 human liver carcinoma cell line, CurcuEmulsomes show a significantly prolonged biological activity and demonstrated therapeutic efficacy comparable to free curcumin against HepG2 in vitro - with a delay in response, as assessed by cell viability, apoptosis and cell cycle studies. The delay is attributed to the solid character of the nanocarrier prolonging the release of curcumin inside the HepG2 cells. Incorporation of curcumin into emulsomes results in water-soluble and stable CurcuEmulsome nanoformulations. CurcuEmulsomes do not only successfully facilitate the delivery of curcumin into the cell in vitro, but also enable curcumin to reach its effective concentrations inside the cell. The enhanced solubility of curcumin and the promising in vitro efficacy of CurcuEmulsomes highlight the potential of the system for the delivery of lipophilic drugs. Moreover, high degree of compatibility, prolonged release profile and tailoring properties feature CurcuEmulsomes for further therapeutic applications in vivo.

  15. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  16. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  17. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system

    Directory of Open Access Journals (Sweden)

    Gomes MJ

    2014-04-01

    Full Text Available Maria João Gomes,1 José das Neves,1,2 Bruno Sarmento1,2 1Instituto de Engenharia Biomédica (INEB, Porto, Portugal; 2Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS, Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal Abstract: Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood–brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood–brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS. Keywords: HIV/AIDS, blood–brain barrier, protease inhibitors, efflux transporters, drug targeting

  18. Svelte Integrated Delivery System Performance Examined Through Diagnostic Catheter Delivery : The SPEED Registry

    NARCIS (Netherlands)

    Khattab, Ahmed A.; Nijhoff, Freek; Schofer, Joachim; Berland, Jacques; Meier, Bernhard; Nietlispach, Fabian; Agostoni, Pierfrancesco; Brucks, Steffen; Stella, Pieter

    2015-01-01

    Aims: The multi-center SPEED registry evaluated the procedural success and in-hospital clinical outcomes of direct stenting with the Svelte 'all-in-one' coronary stent Integrated Delivery System (IDS) through diagnostic catheters to identify the clinical indications for which this approach is

  19. Regional Multiteam Systems in Cancer Care Delivery

    Science.gov (United States)

    Monson, John R.T.; Rizvi, Irfan; Savastano, Ann; Green, James S.A.; Sevdalis, Nick

    2016-01-01

    Teamwork is essential for addressing many of the challenges that arise in the coordination and delivery of cancer care, especially for the problems that are presented by patients who cross geographic boundaries and enter and exit multiple health care systems at various times during their cancer care journeys. The problem of coordinating the care of patients with cancer is further complicated by the growing number of treatment options and modalities, incompatibilities among the vast variety of technology platforms that have recently been adopted by the health care industry, and competing and misaligned incentives for providers and systems. Here we examine the issue of regional care coordination in cancer through the prism of a real patient journey. This article will synthesize and elaborate on existing knowledge about coordination approaches for complex systems, in particular, in general and cancer care multidisciplinary teams; define elements of coordination derived from organizational psychology and human factors research that are applicable to team-based cancer care delivery; and suggest approaches for improving multidisciplinary team coordination in regional cancer care delivery and avenues for future research. The phenomenon of the mobile, multisystem patient represents a growing challenge in cancer care. Paradoxically, development of high-quality, high-volume centers of excellence and the ease of virtual communication and data sharing by using electronic medical records have introduced significant barriers to effective team-based cancer care. These challenges urgently require solutions. PMID:27650833

  20. Nanoparticle-Mediated Pulmonary Drug Delivery: A Review

    Directory of Open Access Journals (Sweden)

    Mukta Paranjpe

    2014-04-01

    Full Text Available Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed.

  1. Using grey literature to prepare pharmacy students for an evolving healthcare delivery system.

    Science.gov (United States)

    Happe, Laura E; Walker, Desiree'

    2013-05-13

    To assess the impact of using "grey literature" (information internally produced in print or electronic format by agencies such as hospitals, government, businesses, etc) rather than a textbook in a course on healthcare delivery systems on students' perception of the relevance of healthcare delivery system topics and their ability to identify credible sources of this information. A reading from the grey literature was identified and assigned to the students for each topic in the course. Pre- and post-course survey instruments were used for the assessment. Students reported healthcare delivery systems topics to be moderately relevant to the profession of pharmacy on both the pre- and post-course survey instruments. Students' knowledge of current and credible sources of information on healthcare delivery system topics significantly improved based on self-reports and scores on objective assessments (pgrey literature in a course on healthcare delivery systems can be used to ensure that information in the pharmacy school curriculum is the most current and credible information available.

  2. Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C. J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

  3. Application of mathematical modeling in sustained release delivery systems.

    Science.gov (United States)

    Grassi, Mario; Grassi, Gabriele

    2014-08-01

    This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.

  4. Multi-Course Comparison of Traditional versus Web-based Course Delivery Systems

    Directory of Open Access Journals (Sweden)

    J. Michael Weber, PhD.,

    2007-07-01

    Full Text Available The purpose of this paper is to measure and compare the effectiveness of a Web-based course delivery system to a traditional course delivery system. The results indicate that a web-based course is effective and equivalent to a traditional classroom environment. As with the implementation of all new technologies, there are some pros and cons that should be considered. The significant pro is the element of convenience which eliminates the constrictive boundaries of space and time. The most notable con involves the impersonal nature of the online environment. Overall, we found the web-based course delivery system to be very successful in terms of learning outcomes and student satisfaction.

  5. A new transfer system for solid targets

    Science.gov (United States)

    Klug, J.; Buckley, K. R.; Zeisler, S. K.; Dodd, M.; Tsao, P.; Hoehr, C.; Economou, C.; Corsaut, J.; Appiah, J. P.; Kovacs, M. S.; Valliant, J. F.; Benard, F.; Ruth, T. J.; Schaffer, P.

    2012-12-01

    As part of a collaborative research project funded by Natural Resources Canada, TRIUMF has designed and manufactured solid target and solid target processing systems for the production of technetium-99m using small medical cyclotrons. The system described herein is capable of transporting the target from a hotcell, where the target is loaded and processed, to the cyclotron and back again. The versatility of the transfer system was demonstrated through the successful installation and operation on the ACSI TR 19 at the BC Cancer Agency, the GE PETtrace cyclotrons at Lawson Health Research (LHRI) and the Centre for Probe Development and Commercialization (CDPC).

  6. Making the Invisible Visible: A Model for Delivery Systems in Adult Education

    Science.gov (United States)

    Alex, Jennifer L.; Miller, Elizabeth A.; Platt, R. Eric; Rachal, John R.; Gammill, Deidra M.

    2007-01-01

    Delivery systems are not well defined in adult education. Therefore, this article reviews the multiple components that overlap to affect the adult learner and uses them to create a model for a comprehensive delivery system in adult education with these individual components as sub-systems that are interrelated and inter-locked. These components…

  7. A Prototype Educational Delivery System Using Water Quality Monitoring as a Model.

    Science.gov (United States)

    Glazer, Richard B.

    This report describes the model educational delivery system used by Ulster County Community College in its water quality monitoring program. The educational delivery system described in the report encompasses the use of behavioral objectives as its foundation and builds upon this foundation to form a complete system whose outcomes can be measured,…

  8. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multi-Course Comparison of Traditional versus Web-Based Course Delivery Systems

    Science.gov (United States)

    Weber, J. Michael; Lennon, Ron

    2007-01-01

    The purpose of this paper is to measure and compare the effectiveness of a Web-based course delivery system to a traditional course delivery system. The results indicate that a web-based course is effective and equivalent to a traditional classroom environment. As with the implementation of all new technologies, there are some pros and cons that…

  10. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  11. Using DNA nanotechnology to produce a drug delivery system

    International Nuclear Information System (INIS)

    La, Thi Huyen; Nguyen, Thi Thu Thuy; Pham, Van Phuc; Nguyen, Thi Minh Huyen; Le, Quang Huan

    2013-01-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. (paper)

  12. Film forming systems for topical and transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Kashmira Kathe

    2017-11-01

    Full Text Available Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system's ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier. Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance. For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance. In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions along with their evaluation parameters have also been reviewed.

  13. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review.

    Science.gov (United States)

    Hani, Umme; Shivakumar, H G

    2014-01-01

    Curcumin diferuloylmethane is a main yellow bioactive component of turmeric, possess wide spectrum of biological actions. It was found to have anti-inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. However, the benefits are curtailed by its extremely poor aqueous solubility, which subsequently limits the bioavailability and therapeutic effects of curcumin. Nanotechnology is the available approach in solving these issues. Therapeutic efficacy of curcumin can be utilized effectively by doing improvement in formulation properties or delivery systems. Numerous attempts have been made to design a delivery system of curcumin. Currently, nanosuspensions, micelles, nanoparticles, nano-emulsions, etc. are used to improve the in vitro dissolution velocity and in vivo efficiency of curcumin. This review focuses on the methods to increase solubility of curcumin and various nanotechnologies based delivery systems and other delivery systems of curcumin.

  14. Engaging Faculty in Telecommunications-Based Instructional Delivery Systems.

    Science.gov (United States)

    Swalec, John J.

    In the design and development of telecommunications-based instructional delivery systems, attention to faculty involvement and training is often overlooked until the system is operational. The Waubonsee Telecommunications Instructional Consortium (TIC), in Illinois, is one network that benefited from early faculty input. Even before the first…

  15. Hanford solid waste management system simulation

    International Nuclear Information System (INIS)

    Shaver, S.R.; Armacost, L.L.; Konynenbelt, H.S.; Wehrman, R.R.

    1994-12-01

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  16. Immunological Risk of Injectable Drug Delivery Systems

    NARCIS (Netherlands)

    Jiskoot, W.; van Schie, R.M.F.; Carstens, M.G.; Schellekens, H.

    2009-01-01

    Injectable drug delivery systems (DDS) such as particulate carriers and water-soluble polymers are being used and developed for a wide variety of therapeutic applications. However, a number of immunological risks with serious clinical implications are associated with administration of DDS. These

  17. Recent Advances in Ocular Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Shinobu Fujii

    2011-01-01

    Full Text Available Transport of drugs applied by traditional dosage forms is restricted to the eye, and therapeutic drug concentrations in the target tissues are not maintained for a long duration since the eyes are protected by a unique anatomy and physiology. For the treatment of the anterior segment of the eye, various droppable products to prolong the retention time on the ocular surface have been introduced in the market. On the other hand, direct intravitreal implants, using biodegradable or non-biodegradable polymer technology, have been widely investigated for the treatment of chronic vitreoretinal diseases. There is urgent need to develop ocular drug delivery systems which provide controlled release for the treatment of chronic diseases, and increase patient’s and doctor’s convenience to reduce the dosing frequency and invasive treatment. In this article, progress of ocular drug delivery systems under clinical trials and in late experimental stage is reviewed.

  18. [Advances of tumor targeting peptides drug delivery system with pH-sensitive activities].

    Science.gov (United States)

    Ma, Yin-yun; Li, Li; Huang, Hai-feng; Gou, San-hu; Ni, Jing-man

    2016-05-01

    The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism,type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.

  19. Process development work plan for waste feed delivery system

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This work plan defines the process used to develop project definition for Waste Feed Delivery (WFD). Project definition provides the direction for development of definitive design media required for the ultimate implementation of operational processing hardware and software. Outlines for the major deliverables are attached as appendices. The implementation of hardware and software will accommodate requirements for safe retrieval and delivery of waste currently stored in Hanford's underground storage tanks. Operations and maintenance ensure the availability of systems, structures, and components for current and future planned operations within the boundary of the Tank Waste Remediation System (TWRS) authorization basis

  20. Integrated delivery systems: the cure for fragmentation.

    Science.gov (United States)

    Enthoven, Alain C

    2009-12-01

    Our healthcare system is fragmented, with a misalignment of incentives, or lack of coordination, that spawns inefficient allocation of resources. Fragmentation adversely impacts quality, cost, and outcomes. Eliminating waste from unnecessary, unsafe care is crucial for improving quality and reducing costs--and making the system financially sustainable. Many believe this can be achieved through greater integration of healthcare delivery, more specifically via integrated delivery systems (IDSs). An IDS is an organized, coordinated, and collaborative network that links various healthcare providers to provide a coordinated, vertical continuum of services to a particular patient population or community. It is also accountable, both clinically and fiscally, for the clinical outcomes and health status of the population or community served, and has systems in place to manage and improve them. The marketplace already contains numerous styles and degrees of integration, ranging from Kaiser Permanente-style full integration, to more loosely organized individual practice associations, to public-private partnerships. Evidence suggests that IDSs can improve healthcare quality, improve outcomes, and reduce costs--especially for patients with complex needs--if properly implemented and coordinated. No single approach or public policy will fix the fragmented healthcare system, but IDSs represent an important step in the right direction.

  1. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Methods: Transmucosal drug delivery systems of enalapril maleate were ... Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals. (DOAJ) ... investigated for various drugs including protein.

  2. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  3. Nano-microdelivery systems for oral delivery of an active ingredient

    DEFF Research Database (Denmark)

    2014-01-01

    A composition for oral delivery of one or more active ingredients in the form of a lipid nano-micro-delivery system comprising a lipid nano-micro-structure comprising at least one lipid and at least one active ingredient, said at least one active ingredient being immobilized in said lipid nano...

  4. Community feedback on the JustMilk Nipple Shield Delivery System ...

    African Journals Online (AJOL)

    Background. Infant medication administration is a major public-health challenge, especially in rural or low-resource areas. The JustMilk Nipple Shield Delivery System (NSDS) is a novel method of infant medication delivery designed to address some of these challenges. Objective. To explore the acceptability of the JustMilk ...

  5. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Directory of Open Access Journals (Sweden)

    Hetal Thakkar

    2011-01-01

    Full Text Available Background : Raloxifene, a second-generation selective estrogen receptor modulator (SERM used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods : In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM and in vitro intestinal permeability. Results : The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion : Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation.

  6. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system

    Science.gov (United States)

    Thakkar, Hetal; Nangesh, Jitesh; Parmar, Mayur; Patel, Divyakant

    2011-01-01

    Background: Raloxifene, a second-generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women is administered orally in the form of a tablet. The absolute bioavailability of the drug is only 2% because of extensive hepatic first-pass metabolism. Lipid-based formulations are reported to reduce the first-pass metabolism by promoting its lymphatic uptake. Materials and Methods: In the present investigation, microemulsion and Self-Microemulsifying Drug Delivery System (SMEDDS) formulations of Raloxifene were prepared. The prepared formulations were characterized for drug loading, size, transparency, zeta potential, Transmission Electron Microscopy (TEM) and in vitro intestinal permeability. Results: The results indicated that high drug loading, optimum size and desired zeta potential and transparency could be achieved with both SMEDDS and microemulsion. The TEM studies indicated the absence of aggregation with both the systems. The in vitro intestinal permeability results showed that the permeation of the drug from the microemulsion and SMEDDs was significantly higher than that obtained from the drug dispersion and marketed formulation. Conclusion: Lipid based formulations such as microemulsion and Self Microemulsifying drug delivery systems are expected to increase the oral bioavailability as evidenced by the increased intestinal permeation. PMID:21966167

  7. An Overview On Various Approaches And Recent Patents On Gastroretentive Drug Delivery Systems.

    Science.gov (United States)

    Kumar, Manoj; Kaushik, Deepak

    2018-03-08

    Drugs having absorption window in the stomach or upper small intestine has restricted bioavailability with conventional dosage forms. The gastric residence time of these dosage forms is usually short and they do not show drug release for prolonged period of time. To avoid these problems and to enhance the bioavailability and gastric retention time of these drugs, controlled drug delivery systems with prolonged gastric retention time are currently being developed. This review highlights the various pharmaceutical approaches for gastroretention such as floating drug delivery systems, mucoadhesive systems, high density systems, expandable and swelling systems, superporous hydrogels systems, magnetic systems, ion exchange resin system and recent patents filed or granted for these approaches. Recently some patents are also reported where a combination of various approaches are being employed to achieve very effective gastroretention. The various patent search sites were used to collect and analyze the information on gastroretentive drug delivery systems. The present study provides valuable information, advantages, limitations and future outlook of various gastroretentive drug delivery systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  9. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies.

    Science.gov (United States)

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-11-01

    This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits.

    Science.gov (United States)

    Chetoni, Patrizia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Tullio, Vivian; Cuffini, Anna Maria; Muntoni, Elisabetta; Spagnolo, Rita; Zara, Gian Paolo; Cavalli, Roberta

    2016-12-01

    Eye drops are widely accepted as formulations for targeting the anterior segment notwithstanding their limitations in terms of bioavailability. The unique structure of the eye requires specially-designed formulations able to favor the pharmacokinetic profile of administered drugs, mainly minimizing the influence of ocular barriers. Nanotechnology-based delivery systems lead to significant technological and therapeutical advantages in ophthalmic therapy. The aim of the present study was to determine whether tobramycin as ion-pair incorporated in mucoadhesive Solid Lipid Nanoparticles (SLN) reaches the inner parts of the eye favoring drug activity. After technological characterization of the tobramycin entrapped SLN formulation (Tobra-SLN), a pharmacokinetic study in rabbits after topical instillation and intravenous administration of the formulation has been carried out. In addition, the intracellular activity of Tobra-SLN formulation against phagocytosed Pseudomonas aeruginosa was investigated. The SLN were spherical in shape, and showed a hydrodynamic diameter of about 80nm, a negative zeta potential (-25.7mV) with a polydispersity index of 0.15, representative of a colloidal dispersion with high quality, characterized by an unimodal relatively narrow size distribution. As demonstrated by FTIR and DSC, tobramycin ion-pair could be concentrated into lipid inner core of SLN, without interaction with the stearic acid, thus promoting a slow and constant drug release profile in the dissolution medium. Surprisingly, the drug concentration was significantly higher in all ocular tissues after ocular and intravenous administration of Tobra-SLN formulation with respect to reference formulations and only Tobra-SLN allowed the penetration of drug into retina. Furthermore, the use of Tobra-SLN resulted in both higher intraphagocytic antibiotic concentrations in polymorphonuclear granulocytes and greater bactericidal activity against intracellular Pseudomonas aeruginosa

  11. Formulation and Evaluation of Two-Pulse Drug Delivery System of ...

    African Journals Online (AJOL)

    Purpose: To develop a pH-controlled two-pulse drug delivery system of amoxicillin in order to overcome ... delivery have lately been applied in developing a .... Note: Each tablet contained 2 mg each of magnesium stearate and colloidal silicon dioxide; total weight of each ..... and Manufacture of Medicines, 3rd edn, Elsevier,.

  12. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q; Read, P [University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  13. SU-D-201-03: During-Treatment Delivery Monitoring System for TomoTherapy

    International Nuclear Information System (INIS)

    Chen, Q; Read, P

    2016-01-01

    Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector data is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.

  14. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  15. Police and Community-partnered Delivery System to Address ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Delivery System to Address Violence Against Women in the Punjab (India) ... Education, Scheduled Castes and Other Back Classes, and Land Rural Development. ... IWRA/IDRC webinar on climate change and adaptive water management.

  16. Components of Maternal Healthcare Delivery System Contributing to ...

    African Journals Online (AJOL)

    Components of Maternal Healthcare Delivery System Contributing to Maternal Deaths ... transcripts were analyzed using a directed approach to content analysis. Excerpts were categorized according to three main components of the maternal ...

  17. Flow regimes in vertical gas-solid contact systems

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Cankurt, N. T.; Geldart, D.; Liss, B.

    1976-01-01

    The flow characteristics in fluidized beds, i.e., gas-solid systems, was studied to determine the flow regimes, the interaction of gas and solid in the various flow regimes and the dependence of this interaction and of transition between flow regimes on the properties of the gas and solid, on the gas and solid flow rates, and on the containing vessel. Fluidized beds with both coarse and fine particles are considered. Test results using high speed photography to view the operation of a 2-dimensional bed are discussed. (LCL)

  18. Texosome-based drug delivery system for cancer therapy: from past to present

    International Nuclear Information System (INIS)

    Mahmoodzadeh Hosseini, Hamideh; Halabian, Raheleh; Amin, Mohsen; Imani Fooladi, Abbas Ali

    2015-01-01

    Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor microenvironment, causes tumor growth and enhances tumor progression. Thus, cancer immunotherapy can be an appropriate approach to provoke the systemic immune system to combat tumor expansion. Texosomes, which are endogenous nanovesicles released by all tumor cells, contribute to cell-cell communication and modify the phenotypic features of recipient cells due to the texosomes’ ability to transport biological components. For this reason, texosome-based delivery system can be a valuable strategy for therapeutic purposes. To improve the pharmaceutical behavior of this system and to facilitate its use in medical applications, biotechnology approaches and mimetic techniques have been utilized. In this review, we present the development history of texosome-based delivery systems and discuss the advantages and disadvantages of each system

  19. In vitro characterization of microcontainers as an oral drug delivery system

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Jacobsen, J.

    We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide.......We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide....

  20. Towards an Innovative Web-Based Lab Delivery System for a Management Information Systems Course

    Science.gov (United States)

    Breimer, Eric; Cotler, Jami; Yoder, Robert

    2011-01-01

    While online systems are an essential component of distance learning, they can also play a critical role in improving the delivery of activities in a traditional laboratory setting. The quality and effectiveness of online course delivery is often compared to equivalent face-to-face alternatives. In our approach, we have harnessed what we feel to…

  1. Chitosan magnetic nanoparticles for drug delivery systems.

    Science.gov (United States)

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  2. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment.

    Science.gov (United States)

    Kerdsakundee, Nattha; Mahattanadul, Sirima; Wiwattanapatapee, Ruedeekorn

    2015-08-01

    Novel raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions were developed to prolong the gastric residence time and provide for a controlled release therapy of curcumin to treat gastric ulcers. The solid dispersions of curcumin with Eudragit® EPO were prepared by the solvent evaporation method at various ratios to improve the solubility and the dissolution of curcumin. The optimum weight ratio of 1:5 for curcumin to Eudragit® EPO was used to incorporate into the raft forming systems. The raft forming formulations were composed of curcumin-Eudragit® EPO solid dispersions, sodium alginate as a gelling polymer and calcium carbonate for generating divalent Ca(2+) ions and carbon dioxide to form a floating raft. All formulations formed a gelled raft in 1min and sustained buoyancy on the 0.1N hydrochloric acid (pH 1.2) surface with a 60-85% release of curcumin within 8h. The curative effect on the acetic acid-induced chronic gastric ulcer in rats was determined. The curcumin raft forming formulations at 40mg/kg once daily showed a superior curative effect on the gastric ulcer in terms of the ulcer index and healing index than the standard antisecretory agent: lansoprazole (1mg/kg, twice daily) and a curcumin suspension (40mg/kg, twice daily). These studies demonstrated that the new raft forming systems containing curcumin solid dispersions are promising carriers for a stomach-specific delivery of poorly soluble lipophilic compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.

  4. Role of pressure-sensitive adhesives in transdermal drug delivery systems.

    Science.gov (United States)

    Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun

    2016-01-01

    Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.

  5. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  6. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  7. Using DNA nanotechnology to produce a drug delivery system

    Science.gov (United States)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  8. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Christelle, E-mail: christelle.herman@ulb.ac.b [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium); Leyssens, Tom [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, 1 Place Louis Pasteur, 1348 Louvain-La-Neuve (Belgium); Vermylen, Valerie [UCB Pharma, 60 Allee de la Recherche, 1070 Braine l' Alleud (Belgium); Halloin, Veronique; Haut, Benoit [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium)

    2011-05-15

    Research highlights: We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. The second method is an experimental study of the stability thermal range of each morph. We identify the nature of crystals in suspension at equilibrium through Raman analysis. The solid-solid transition temperature is found equal to 303.65 K {+-} 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T{sub tr}) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T{sub tr} as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T{sub tr} is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC while

  10. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    International Nuclear Information System (INIS)

    Herman, Christelle; Leyssens, Tom; Vermylen, Valerie; Halloin, Veronique; Haut, Benoit

    2011-01-01

    Research highlights: → We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. → The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. → The second method is an experimental study of the stability thermal range of each morph. → We identify the nature of crystals in suspension at equilibrium through Raman analysis. → The solid-solid transition temperature is found equal to 303.65 K ± 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T tr ) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T tr as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T tr is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC

  11. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    Science.gov (United States)

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  12. Solid expandable systems put deepwater targets within reach

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Roca, Eduardo [Enventure Global Technology L.L.C., Houston, TX (United States). Latin America; Fristch, Jerry [Enventure Global Technology L.L.C., Houston, TX (United States)

    2008-07-01

    Enabling technologies that take drilling operations to deeper objectives have made a significant impact on the practicality of many projects, especially deep water offshore targets. Increasing vertical depth and lateral reach requires adequate hole size to attain the desired objectives of the well bore. Solid expandable technology can maintain and retain hole size to address both the physical limitations and the economic feasibility of deep water operations. With each and every casing point, the potential for adequate hole size at total depth (TD) decreases. Solid expandable open hole liners and single-diameter systems reduce and eliminate, respectively, the well bore tapering that dictates hole size at TD and subsequent completion size. Successful mitigation of this tapering, whether through the entire well bore or through select zones, enables operators to gain access to previously unreachable reserves. Solid expandable systems have proven to be reliable and effective with over 1,000 installations in a myriad of conditions and environments worldwide. To date, over 115 of those applications have been in deep water environments. The current operating envelope for solid expandable systems include the deepest installation at {approx}28,750 ft (8,763 m) and the longest at 6,867 ft (2,083 m) in water depth over 3,150 ft (960 m). This record-length application consisted of an open hole liner installed and expanded in a single run. This paper will discuss the effectiveness of solid expandable systems in deep water operations and how the technology brings value to offshore projects especially when planned into the initial design. Case histories will be used to further illustrate the features, advantages, and benefits of expandable technology. In addition, this paper will examine the state of the solid expandable technology and its continuing evolution to provide even more drilling solutions. (author)

  13. Properties and potential application of modern adsorbents in formulation of solid drug delivery systems

    OpenAIRE

    Krstić, Marko; Milović, Mladen; Ibrić, Svetlana

    2016-01-01

    In latest years, many natural and synthetic solid carriers attract increasing attention, due to theirs biocompatibility, acceptable ecological and toxicological properties, possible modification of physico-chemical properties, simple production, high stability and relatively low price. These carriers have similar chemical structure, mostly based on silicon-dioxide, magnesium aluminometasilicate and calcium phosphate, and differ from each other in structure porosity, specific surface area, siz...

  14. Flexible power delivery system and its intelligent functions

    International Nuclear Information System (INIS)

    Glamochanin, Vlastimir; Andonov, Dragan

    1996-01-01

    This paper presents some of the features and capabilities of the novel energy distribution system called FRIENDS. The main FRIENDS objective is distribution system reliability, with flexible system structure reconfiguration, inclusion of dispersed energy generation systems. Altogether, it represents a new concept of reliable and economic electric power delivery to end users. The FRIENDS project is a challenge for future research and development, including new technology and devices for the implementation of such an integrated system. (author)

  15. [Recent technical advances in portable oxygen delivery systems].

    Science.gov (United States)

    Machida, K; Kawabe, Y; Mori, M; Haga, T

    1992-08-01

    According to a Japanese national survey (June 30, 1990), the number of patients receiving home oxygen therapy (HOT) has been greater than 18,000 since March 1985, when HOT was first covered by health insurance. The oxygen concentrator, especially the molecular sieve type, is the most common method of delivery (more than 90%). In April 1988, the portable oxygen cylinder was acknowledged by health insurance, and the liquid oxygen supply system in April 1990. Three types of portable oxygen delivery systems are available; oxygen cyclinder, liquid oxygen system, and oxygen concentrator (membrane type), of which the oxygen cylinder is most commonly used. In our hospital, portable oxygen supply systems were used in 80% of 168 HOT cases in 1990, and the use of 400 L aluminum oxygen cylinders at a flow rate of 1-2 L/min has been most popular. There is an strong desire from patients for lighter portable oxygen supply system of longer duration. In 19 patients with chronic respiratory failure, we evaluated a newly designed demand oxygen delivery system (DODS), which weighs 2.4 kg including the DOD device (TER-20 Teijin), 1.1 L oxygen cylinder made of ultressor, nasal cannula, and carrier. Arterial blood gases at rest (room air) were PaO2 61.9 +/- 6.3 torr, PaCO2 63.8 +/- 9.4 torr and pH 7.40 +/- 0.04. A crossover trial was performed under three conditions; breathing room air with no weight, and pulse oxygen flow and continuous oxygen flow each carrying 2.4 kg of weight. Both 6 minute walking (E1) and walking on a slow speed treadmill (E2) were studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art.

    Science.gov (United States)

    Weber, S; Zimmer, A; Pardeike, J

    2014-01-01

    Drug delivery by inhalation is a noninvasive means of administration that has following advantages for local treatment for airway diseases: reaching the epithelium directly, circumventing first pass metabolism and avoiding systemic toxicity. Moreover, from the physiological point of view, the lung provides advantages for systemic delivery of drugs including its large surface area, a thin alveolar epithelium and extensive vasculature which allow rapid and effective drug absorption. Therefore, pulmonary application is considered frequently for both, the local and the systemic delivery of drugs. Lipid nanoparticles - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers - are nanosized carrier systems in which solid particles consisting of a lipid matrix are stabilized by surfactants in an aqueous phase. Advantages of lipid nanoparticles for the pulmonary application are the possibility of a deep lung deposition as they can be incorporated into respirables carriers due to their small size, prolonged release and low toxicity. This paper will give an overview of the existing literature about lipid nanoparticles for pulmonary application. Moreover, it will provide the reader with some background information for pulmonary drug delivery, i.e., anatomy and physiology of the respiratory system, formulation requirements, application forms, clearance from the lung, pharmacological benefits and nanotoxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Quantum technologies for solid state physics using cold trapped ions

    International Nuclear Information System (INIS)

    Ferdinand Schmidt-Kaler

    2014-01-01

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  18. Inulin based glutathione-responsive delivery system for colon cancer treatment.

    Science.gov (United States)

    Wang, Dongdong; Sun, Feifei; Lu, Chunbo; Chen, Peng; Wang, Zhaojie; Qiu, Yuanhao; Mu, Haibo; Miao, Zehong; Duan, Jinyou

    2018-05-01

    Colorectal cancer is one of the most common types of tumor in the world. Here we developed a lipoic acid esterified polysaccharide (inulin) delivery system for tanshinone IIA to treat colorectal cancer in vitro. The release of tanshinone IIA in the system was highly responsive to glutathione, which is commonly abundant in cancer cells. In addition, this drug delivery system was proliferative to Bifidobacterium longum, the common inhabitant of human intestine. Thus, this strategy might be useful to improve colon cancer therapy efficacy of anticancer drugs and meanwhile promote the growth of beneficial commensal flora in the gut. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Ionic liquids in drug delivery.

    Science.gov (United States)

    Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D

    2013-10-01

    To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.

  20. Nursing Services Delivery Theory: an open system approach.

    Science.gov (United States)

    Meyer, Raquel M; O'Brien-Pallas, Linda L

    2010-12-01

    This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a 'black box' that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. A search of CINAHL and Business Source Premier for the years 1980-2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. THE Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. © 2010 Blackwell Publishing Ltd.

  1. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A clinician-driven home care delivery system.

    Science.gov (United States)

    August, D A; Faubion, W C; Ryan, M L; Haggerty, R H; Wesley, J R

    1993-12-01

    The financial, entrepreneurial, administrative, and legal forces acting within the home care arena make it difficult for clinicians to develop and operate home care initiatives within an academic setting. HomeMed is a clinician-initiated and -directed home care delivery system wholly owned by the University of Michigan. The advantages of a clinician-directed system include: Assurance that clinical and patient-based factors are the primary determinants of strategic and procedural decisions; Responsiveness of the system to clinician needs; Maintenance of an important role for the referring physician in home care; Economical clinical research by facilitation of protocol therapy in ambulatory and home settings; Reduction of lengths of hospital stays through clinician initiatives; Incorporation of outcome analysis and other research programs into the mission of the system; Clinician commitment to success of the system; and Clinician input on revenue use. Potential disadvantages of a clinician-based system include: Entrepreneurial, financial, and legal naivete; Disconnection from institutional administrative and data management resources; and Inadequate clinician interest and commitment. The University of Michigan HomeMed experience demonstrates a model of clinician-initiated and -directed home care delivery that has been innovative, profitable, and clinically excellent, has engendered broad physician, nurse, pharmacist, and social worker enthusiasm, and has supported individual investigator clinical protocols as well as broad outcomes research initiatives. It is concluded that a clinician-initiated and -directed home care program is feasible and effective, and in some settings may be optimal.

  3. Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats.

    Science.gov (United States)

    Yokoo, T; Kamimura, K; Suda, T; Kanefuji, T; Oda, M; Zhang, G; Liu, D; Aoyagi, Y

    2013-08-01

    The development of a safe and reproducible gene delivery system is an essential step toward the clinical application of the hydrodynamic gene delivery (HGD) method. For this purpose, we have developed a novel electric power-driven injection system called the HydroJector-EM, which can replicate various time-pressure curves preloaded into the computer program before injection. The assessment of the reproducibility and safety of gene delivery system in vitro and in vivo demonstrated the precise replication of intravascular time-pressure curves and the reproducibility of gene delivery efficiency. The highest level of luciferase expression (272 pg luciferase per mg of proteins) was achieved safely using the time-pressure curve, which reaches 30 mm Hg in 10 s among various curves tested. Using this curve, the sustained expression of a therapeutic level of human factor IX protein (>500 ng ml(-1)) was maintained for 2 months after the HGD of the pBS-HCRHP-FIXIA plasmid. Other than a transient increase in liver enzymes that recovered in a few days, no adverse events were seen in rats. These results confirm the effectiveness of the HydroJector-EM for reproducible gene delivery and demonstrate that long-term therapeutic gene expression can be achieved by automatic computer-controlled hydrodynamic injection that can be performed by anyone.

  4. Gamma- scintigraphy in the evaluation of drug delivery systems

    International Nuclear Information System (INIS)

    Shahhosseini, S.; Beiki, D.; Eftekhari, M.

    2003-01-01

    Gamma-scintigraphy is applied extensively in the development and evaluation of pharmaceutical delivery systems, particularly for monitoring formulations in the gastrointestinal and respiratory tracts. The radiolabelling is generally achieved by the incorporation of an appropriate radionuclide such as technetium-99m or indium-111 into the formulation or by addition of a non- radioactive isotope such as samarium-152 followed by neutron activation of the final product. Drug delivery systems can be tested in vitro using various techniques like dissolution rate. Since in vitro testing methods are not predictive of in vivo results, such systems should be evaluated in vivo using animal models, especially oral dosage forms. Altered gastrointestinal transit due to individual variation, physiologic factors, or the presence of food may influence bioavailability. Distribution or drug release may be premature or delayed in vivo. Similarly, altered deposition or clearance from other routes of administration such as nasal, ocular, or inhalation may explain drug absorption anomalies. Therefore, there is a growing tendency for new drug delivery systems to be tested, whenever possible, in human subjects in a so called phase 1 clinical evaluation. Gamma- scintigraphy combined with knowledge of physiological and dosage from design can help to identify some of these variables. the resulting insight can be used to accelerate the formulation development process and to ensure success in early clinical trials

  5. Integrated technologies for solid waste bin monitoring system.

    Science.gov (United States)

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  6. A computer-controlled conformal radiotherapy system. III: graphical simulation and monitoring of treatment delivery

    International Nuclear Information System (INIS)

    Kessler, Marc L.; McShan, Daniel L.; Fraass, Benedick A.

    1995-01-01

    Purpose: Safe and efficient delivery of radiotherapy using computer-controlled machines requires new procedures to design and verify the actual delivery of these treatments. Graphical simulation and monitoring techniques for treatment delivery have been developed for this purpose. Methods and Materials: A graphics-based simulator of the treatment machine and a set of procedures for creating and manipulating treatment delivery scripts are used to simulate machine motions, detect collisions, and monitor machine positions during treatment. The treatment delivery simulator is composed of four components: a three-dimensional dynamic model of the treatment machine; a motion simulation and collision detection algorithm, user-interface widgets that mimic the treatment machine's control and readout devices; and an icon-based interface for creating and manipulating treatment delivery scripts. These components are used in a stand-alone fashion for interactive treatment delivery planning and integrated with a machine control system for treatment implementation and monitoring. Results: A graphics-based treatment delivery simulator and a set of procedures for planning and monitoring computer-controlled treatment delivery have been developed and implemented as part of a comprehensive computer-controlled conformal radiotherapy system. To date, these techniques have been used to design and help monitor computer-controlled treatments on a radiotherapy machine for more than 200 patients. Examples using these techniques for treatment delivery planning and on-line monitoring of machine motions during therapy are described. Conclusion: A system that provides interactive graphics-based tools for defining the sequence of machine motions, simulating treatment delivery including collision detection, and presenting the therapists with continual visual feedback from the treatment machine has been successfully implemented for routine clinical use as part of an overall system for computer

  7. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  8. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    International Nuclear Information System (INIS)

    Fuangrod, Todsaporn; Woodruff, Henry C.; O’Connor, Daryl J.; Uytven, Eric van; McCurdy, Boyd M. C.; Kuncic, Zdenka; Greer, Peter B.

    2013-01-01

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy

  9. [Cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy].

    Science.gov (United States)

    Tan, Jiao; Wang, Ya-Ping; Wang, Hui-Xin; Liang, Jian-Ming; Zhang, Meng; Sun, Xun; Huang, Yong-Zhuo

    2014-12-01

    To develop a cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy, we prepared the AVPI-LMWP/pTRAIL self-assembled complexes containing a therapeutic combination of peptide drug AVPI and DNA drug TRAIL. The chimeric apoptotic peptide AVPI-LMWP was synthesized using the standard solid-phase synthesis. The cationic AVPI-LMWP could condense pTRAIL by electrostatic interaction. The physical-chemical properties of the AVPI-LMWP/pTRAIL complexes were characterized. The cellular uptake efficiency and the inhibitory activity of the AVPI-LMWP/pTRAIL complexes on tumor cell were also performed. The results showed that the AVPI-LMWP/pTRAIL complexes were successfully prepared by co-incubation. With the increase of mass ratio (AVPI-LMWP/DNA), the particle size was decreased and the zeta potential had few change. Agarose gel electrophoresis showed that AVPI-LMWP could fully bind and condense pTRAIL at a mass ratio above 15:1. Cellular uptake efficiency was improved along with the increased ratio of W(AVPI-LMWP)/WpTRAIL. The in vitro cytotoxicity experiments demonstrated that the AVPI-LMWP/pTRAIL (W:W = 20:1) complexes was significantly more effective than the pTRAIL, AVPI-LMWP alone or LMWP/pTRAIL complexes on inhibition of HeLa cell growth. Our studies indicated that the AVPI-LMWP/pTRAIL co-delivery system could deliver plasmid into HeLa cell and induce tumor cell apoptosis efficiently, which showed its potential in cancer therapy using combination of apoptoic peptide and gene drugs.

  10. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  11. New solids control system reduced oil on cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, T.P. [Oiltools Europe Ltd., Aberdeen (United Kingdom)

    1996-04-08

    A new solids control system, consisting of four new shakers and a dryer in parallel all discharging into another dryer, significantly reduced the oil on the cuttings in a nine-well offshore drilling program. Cleaned, slurrified cuttings were then discharged overboard. In November 1994, Oiltools (Europe) Ltd. received contracts to upgrade the solids control systems on Sedco Forex`s Sedco 711 and Sovereign Explorer semisubmersible drilling vessels. Sedco Forex required systems that would meet the reduced oil-on-cuttings (OOC) disposal limit of less than 80 g/kg set by the operator, while staying efficient and economical to operate and maintain. In addition, all solids were required to be slurrified for pumping overboard to ensure dispersal away from the subsea center. This article highlights the equipment used and the savings realized on the Sovereign Explorer after the first three wells of a nine-well program.

  12. NOVEL APROACHES ON BUCCAL MUCOADHESIVE DRUG DELIVERY SYSTEM

    OpenAIRE

    Dibyalochan Mohanty* , C. Gurulatha, Dr.Vasudha Bakshi, B. Mavya

    2018-01-01

    Among novel drug delivery system ,Buccal mucoadhesive systems have attracted great attention in recent years due to their ability to adhere and remain on the oral mucosa and to release their drug content gradually ,bioadhesion refers to any bond formed between two biological surface or a bond between a biological and a systemic surface. Buccal mucosa is preferred for both systemic and local drug action. The mucosa has a rich blood supply and it relatively permeable. Buccal mucoadhesive films ...

  13. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  14. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  15. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    International Nuclear Information System (INIS)

    Ying, Bo; Campbell, Robert B.

    2014-01-01

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  16. American Heart Association's Call to Action for Payment and Delivery System Reform.

    Science.gov (United States)

    Bufalino, Vincent J; Berkowitz, Scott A; Gardner, Timothy J; Piña, Ileana L; Konig, Madeleine

    2017-08-15

    The healthcare system is undergoing a transition from paying for volume to paying for value. Clinicians, as well as public and private payers, are beginning to implement alternative delivery and payment models, such as the patient-centered medical home, accountable care organizations, and bundled payment arrangements. Implementation of these new models will necessitate delivery system transformation and will actively involve all fields of medical care, in particular medicine and surgery. This call to action, on behalf of the American Heart Association's Expert Panel on Payment and Delivery System Reform, serves to offer support and direction for further involvement by the American Heart Association. In doing so, it (1) provides baseline review and definition of the present models and some of the early results of these delivery models, including outcomes; (2) initiates a conversation within the American Heart Association on the impact of payment and delivery system reform, as well as how the American Heart Association should engage in the interest of patients; (3) issues a call to action to our organization and to cardiovascular and stroke health professionals across the country to become educated about these models so to as to understand their impact on patient care; and (4) asks the government and other funding agencies, including the American Heart Association, to begin supporting and prioritizing meaningful research endeavors to further evaluate these models. © 2017 American Heart Association, Inc.

  17. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: development, characterization and DNA binding efficiency of TCERG1 expression plasmid.

    Science.gov (United States)

    Fàbregas, Anna; Sánchez-Hernández, Noemí; Ticó, Josep Ramon; García-Montoya, Encarna; Pérez-Lozano, Pilar; Suñé-Negre, Josep M; Hernández-Munain, Cristina; Suñé, Carlos; Miñarro, Montserrat

    2014-10-01

    Solid lipid nanoparticles (SLNs) are being considered as a new approach for therapeutics for many known diseases. In addition to drug delivery, their use as non-viral vectors for gene delivery can be achieved by the inclusion of cationic lipids, which provide a positive surface potential that favours binding to the DNA backbone. This work is based on the idea that the optimization of the components is required as the first step in simplifying the qualitative and quantitative composition of SLNs as much as possible without affecting the essential properties that define SLNs as optimal non-viral vectors for gene delivery. We selected the best lipids and surfactants in terms of particle size and zeta potential and characterized the properties of the resulting nanoparticles using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The SLNs had a particle size of approximately 120 nm and a positive surface charge of 42 mV. In addition, we analysed the main physicochemical characteristics of the bulk components of the nanoparticles using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and mass spectrometry (MS). The suitability of the optimized SLNs for DNA binding was evaluated after the lyophilisation process using a carboxyl-terminal region of the TCERG1 gene, a human factor that has been implicated in several diseases. We show that the SLNs presented high efficiency in the binding of DNA, and importantly, they presented no toxicity when assayed in an in vivo system. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.

    Science.gov (United States)

    Kanamala, Manju; Wilson, William R; Yang, Mimi; Palmer, Brian D; Wu, Zimei

    2016-04-01

    As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.

    Science.gov (United States)

    Li, Ling; Hu, Shuo; Chen, Xiaoyuan

    2018-07-01

    In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed. Published by Elsevier Ltd.

  20. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  1. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein

    Science.gov (United States)

    Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.

    1996-01-01

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064

  2. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    size of 98 nm, a polydispersity index of 0.258, a zeta potential of -31.4 mV, a total drug content of 9.76 mg, an EE of 79.11%, and a cumulative drug release of 80% in 48 hours with a sustained profile. In addition, 5% mannitol (w/v was screened as a cryoprotectant. Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies confirmed that the drug was encapsulated into SLNs in an amorphous form. The lyophilized powder was stable at both refrigeration (4°C and ambient temperature (25°C for 3 months, and the MTT assay demonstrated that the SLNs were nontoxic. The cellular uptake of fluorescein isothiocyanate-labeled SLNs in A549 cells was highly time dependent over a period of 3 hours, while the pharmacokinetic study in Sprague Dawley rats showed that the relative bioavailability of NRG-SLNs was 2.53-fold greater than that of NRG suspension after pulmonary administration. This study shows that SLNs offer a promising pulmonary delivery system to increase the bioavailability of the poorly water-soluble drug NRG.Keywords: naringenin, solid lipid nanoparticles, group contribution method, sustained profile, instillation technology, MTT, cellular uptake, pulmonary pharmacokinetics

  3. How can innovative project delivery systems improve the overall efficiency of GDOT in transportation project delivery?

    Science.gov (United States)

    2013-04-01

    The USDOT and Federal Highway Administration (FHWA) recommend the smart use of innovative project : delivery systems, such as design-build, to improve efficiency and effectiveness of developing transportation : projects. Although design-build provide...

  4. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems.

    Science.gov (United States)

    Popilski, Hen; Stepensky, David

    2015-05-01

    Solid tumors are characterized by complex morphology. Numerous factors relating to the composition of the cells and tumor stroma, vascularization and drainage of fluids affect the local microenvironment within a specific location inside the tumor. As a result, the intratumoral drug/drug delivery system (DDS) disposition following systemic or local administration is non-homogeneous and its complexity reflects the differences in the local microenvironment. Mathematical models can be used to analyze the intratumoral drug/DDS disposition and pharmacological effects and to assist in choice of optimal anticancer treatment strategies. The mathematical models that have been applied by different research groups to describe the intratumoral disposition of anticancer drugs/DDSs are summarized in this article. The properties of these models and of their suitability for prediction of the drug/DDS intratumoral disposition and pharmacological effects are reviewed. Currently available mathematical models appear to neglect some of the major factors that govern the drug/DDS intratumoral disposition, and apparently possess limited prediction capabilities. More sophisticated and detailed mathematical models and their extensive validation are needed for reliable prediction of different treatment scenarios and for optimization of drug treatment in the individual cancer patients.

  5. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  6. Conceptualizing the use of system products and system deliveries in the building industry

    DEFF Research Database (Denmark)

    Hvam, Lars; Mortensen, Niels Henrik; Thuesen, Christian

    2013-01-01

    on the product architecture and partly of the setup of the business processes by using e.g. Configure to Order processes and Engineer to Order processes. Furthermore the potential impacts from using system products and system deliveries are discussed based on the examples included....

  7. New Delivery Systems for Local Anaesthetics—Part 2

    Directory of Open Access Journals (Sweden)

    Edward A. Shipton

    2012-01-01

    Full Text Available Part 2 of this paper deals with the techniques for drug delivery of topical and injectable local anaesthetics. The various routes of local anaesthetic delivery (epidural, peripheral, wound catheters, intra-nasal, intra-vesical, intra-articular, intra-osseous are explored. To enhance transdermal local anaesthetic permeation, additional methods to the use of an eutectic mixture of local anaesthetics and the use of controlled heat can be used. These methods include iontophoresis, electroporation, sonophoresis, and magnetophoresis. The potential clinical uses of topical local anaesthetics are elucidated. Iontophoresis, the active transportation of a drug into the skin using a constant low-voltage direct current is discussed. It is desirable to prolong local anaesthetic blockade by extending its sensory component only. The optimal release and safety of the encapsulated local anaesthetic agents still need to be determined. The use of different delivery systems should provide the clinician with both an extended range and choice in the degree of prolongation of action of each agent.

  8. A high-density lipoprotein-mediated drug delivery system.

    Science.gov (United States)

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Conceptual design report for the University of Rochester cryogenic target delivery system

    International Nuclear Information System (INIS)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D 2 or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility

  10. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  11. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. [General Atomics, San Diego, CA (United States); Bittner, D.N.; Hendricks, C.D. [W.J. Schafer Associates, Livermore, CA (US)

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  12. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  13. Solid Waste Information Management System (SWIMS) data summary, fiscal year 1982

    International Nuclear Information System (INIS)

    Watanabe, T.

    1983-06-01

    The Solid Waste Information Management System (SWIMS) is a Department of Energy (DOE) information system for radioactive solid waste. This document is a summary of the FY 1982 data and the forecast data for FY 1983 reported by DOE sites. Detailed data are included in the appendices. The SWIMS data base contains data on the solid transuranic and solid low-level waste generated, buried, or stored at DOE sites. The burial and storage data include the period from site initiation through FY 1982

  14. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.

    Science.gov (United States)

    Chen, Yang; Wang, Manli; Fang, Liang

    2013-01-01

    The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.

  15. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  16. Potential applications for halloysite nanotubes based drug delivery systems

    Science.gov (United States)

    Sun, Lin

    Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery. In this study, a drug delivery system was built based on halloysite via three different fabrication methods: physical adsorption, vacuum loading and layer-by-layer coating. Methotrexate was used as the model drug. Factors that may affect performance in both drug loading and release were tested. Results showed that methotrexate could be incorporated within the HNTs system and released in a sustained manner. Layer-by-layer coating showed a better potential than the other two methods in both MTX loading and release. Besides, lower pH could greatly improve MTX loading and release while the increased number of polyelectrolytes bilayers had a limited impact. Osteosarcoma is the most common primary bone malignancy in children and adolescents. Postoperative recurrence and metastasis has become one of the leading causes for patient death after surgical remove of the tumor mass. A strategy could be a sustained release of chemotherapeutics directly at the primary tumor sites where recurrence would mostly occur. Then, this HNTs based system was tested with osteosarcoma cells in vitro to show the potential of delivering chemotherapeutics in the treatment of osteosarcoma. Methotrexate was incorporated within HNTs with a layer-bylayer coating technique, and drug coated HNTs were filled into nylon-6 which is a common material for surgical sutures in industry. Results showed that (1) methotrexate

  17. Ultrasonic sensor system to detect solids in a milk pasteurization process

    Science.gov (United States)

    Barroeta Z., Carlos; Sanchez M., Fernando L.; Fernando R., G. Moreno; Montes P., Laura

    2002-11-01

    In the food industry, many products require a specific process. In the milk industry, the raw milk passes through several process stages before reaching the end user in a very qualitative and healthy way. One of the problems of the milk is that it can contain solids in suspension, result of contamination of the milk, or inherent to the pasteurization process itself. In order to control these solids, a solid detection system is being developed, which will detect the solids by the reflection and refraction of ultrasonic waves. The sensor must be set in the upper part of the milk containers, and with a grid array to allow the control system to prevent these solids from entering into the pipes of the processing plant. The sensing system may activate an acoustic alarm to indicate that a solid has been detected, and a visual one to indicate the affected part of the process. (To be presented in Spanish.)

  18. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  19. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery.

    Science.gov (United States)

    Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo

    2016-01-01

    The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (Psystem also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.

  20. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.

    Science.gov (United States)

    Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru

    2012-08-01

    Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.

  1. Controlled release of simvastatin from biomimetic β-TCP drug delivery system.

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    Full Text Available Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin.

  2. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  3. Post delivery test report for light duty utility arm optical alignment system (OAS)

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1996-01-01

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank

  4. Post delivery test report for light duty utility arm optical alignment system (OAS)

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, A.F.

    1996-04-18

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank.

  5. Non-utility generation and demand management reliability of customer delivery systems

    International Nuclear Information System (INIS)

    Hamoud, G.A.; Wang, L.

    1995-01-01

    A probabilistic methodology for evaluating the impact of non-utility generation (NUG) and demand management programs (DMP) on supply reliability of customer delivery systems was presented. The proposed method was based on the criteria that the supply reliability to the customers on the delivery system should not be affected by the integration of either NUG or DMPs. The method considered station load profile, load forecast, and uncertainty in size and availability of the nuio. Impacts on system reliability were expressed in terms of possible delays of the in-service date for new facilities or in terms of an increase in the system load carrying capability. Examples to illustrate the proposed methodology were provided. 10 refs., 8 tabs., 2 figs

  6. Development of solid dispersion systems of dapivirine to enhance its solubility.

    Science.gov (United States)

    Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay

    2013-06-01

    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.

  7. Technology and human purpose: the problem of solids transport on the Earth's surface

    Science.gov (United States)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  8. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    Science.gov (United States)

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  9. A mucoadhesive in situ gel delivery system for paclitaxel.

    Science.gov (United States)

    Jauhari, Saurabh; Dash, Alekha K

    2006-06-02

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell.

  10. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  11. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    Science.gov (United States)

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-11-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  12. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system

    Science.gov (United States)

    Chen, Huabing; Xiao, Ling; Du, Danrong; Mou, Dongsheng; Xu, Huibi; Yang, Xiangliang

    2010-01-01

    We report a novel facile method for preparing stable nanoparticles with inner spherical solid spheres and an outer hydrogel matrix using a hot O/W hydrogel-thickened microemulsion with spontaneous stability. The nanoparticles with average diameters of about 30.0 nm and 100.0 nm were constructed by cooling the hot hydrogel-thickened microemulsion at different temperatures, respectively. We explained the application of these nanoparticles by actualizing the cutaneous delivery of drug-loaded nanoparticles. The in vitro skin permeation studies showed that the nanoparticles could significantly reduce the penetration of model drugs through skin and resulted in their dermal uptakes in skin. The sol-gel process of TEOS was furthermore used in the template of HTM to regulate the particle size of nanoparticles. The coating of silica on the surface of nanoparticles could regulate the penetration of drug into skin from dermal delivery to transdermal delivery. This strategy provides a facile method to produce nanoparticles with long-term stability and ease of manufacture, which might have a promising application in drug delivery.

  13. Applications of Polymers as Pharmaceutical Excipients in Solid Oral Dosage Forms.

    Science.gov (United States)

    Debotton, Nir; Dahan, Arik

    2017-01-01

    Over the last few decades, polymers have been extensively used as pharmaceutical excipients in drug delivery systems. Pharmaceutical polymers evolved from being simply used as gelatin shells comprising capsule to offering great formulation advantages including enabling controlled/slow release and specific targeting of drugs to the site(s) of action (the "magic bullets" concept), hence hold a significant clinical promise. Oral administration of solid dosage forms (e.g., tablets and capsules) is the most common and convenient route of drug administration. When formulating challenging molecules into solid oral dosage forms, polymeric pharmaceutical excipients permit masking undesired physicochemical properties of drugs and consequently, altering their pharmacokinetic profiles to improve the therapeutic effect. As a result, the number of synthetic and natural polymers available commercially as pharmaceutical excipients has increased dramatically, offering potential solutions to various difficulties. For instance, the different polymers may allow increased solubility, swellability, viscosity, biodegradability, advanced coatings, pH dependency, mucodhesion, and inhibition of crystallization. The aim of this article is to provide a wide angle prospect of the different uses of pharmaceutical polymers in solid oral dosage forms. The various types of polymeric excipients are presented, and their distinctive role in oral drug delivery is emphasized. The comprehensive know-how provided in this article may allow scientists to use these polymeric excipients rationally, to fully exploit their different features and potential influence on drug delivery, with the overall aim of making better drug products. © 2016 Wiley Periodicals, Inc.

  14. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening

    Directory of Open Access Journals (Sweden)

    Millard M

    2017-10-01

    Full Text Available Marie Millard,1,2 Ilya Yakavets,1–3 Vladimir Zorin,3,4 Aigul Kulmukhamedova,1,2,5 Sophie Marchal,1,2 Lina Bezdetnaya1,2 1Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, 2Research Department, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France; 3Laboratory of Biophysics and Biotechnology, 4International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus; 5Department of Radiology, Medical Company Sunkar, Almaty, Kazakhstan Abstract: The increasing number of publications on the subject shows that nanomedicine is an attractive field for investigations aiming to considerably improve anticancer chemotherapy. Based on selective tumor targeting while sparing healthy tissue, carrier-mediated drug delivery has been expected to provide significant benefits to patients. However, despite reduced systemic toxicity, most nanodrugs approved for clinical use have been less effective than previously anticipated. The gap between experimental results and clinical outcomes demonstrates the necessity to perform comprehensive drug screening by using powerful preclinical models. In this context, in vitro three-dimensional models can provide key information on drug behavior inside the tumor tissue. The multicellular tumor spheroid (MCTS model closely mimics a small avascular tumor with the presence of proliferative cells surrounding quiescent cells and a necrotic core. Oxygen, pH and nutrient gradients are similar to those of solid tumor. Furthermore, extracellular matrix (ECM components and stromal cells can be embedded in the most sophisticated spheroid design. All these elements together with the physicochemical properties of nanoparticles (NPs play a key role in drug transport, and therefore, the MCTS model is appropriate to assess the ability of NP to penetrate the tumor tissue. This review presents recent developments in MCTS models for a

  15. Silk Electrogel Based Gastroretentive Drug Delivery System

    Science.gov (United States)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  16. Tools and Methods for Hardening Communication Security of Energy Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Shrirang [Applied Communication Sciences, Basking Ridge, NJ (United States); Lin, Yow-Jian [Applied Communication Sciences, Basking Ridge, NJ (United States); Ghosh, Abhrajit [Applied Communication Sciences, Basking Ridge, NJ (United States); Samtani, Sunil [Applied Communication Sciences, Basking Ridge, NJ (United States); Kang, Jaewon [Applied Communication Sciences, Basking Ridge, NJ (United States); Siegell, Bruce [Applied Communication Sciences, Basking Ridge, NJ (United States); Kaul, Vikram [Applied Communication Sciences, Basking Ridge, NJ (United States); Unger, John [Applied Communication Sciences, Basking Ridge, NJ (United States); De Bruet, Andre [DTE Energy, Detroit, MI (United States); Martinez, Catherine [DTE Energy, Detroit, MI (United States); Vermeulen, Gerald [DTE Energy, Detroit, MI (United States); Rasche, Galen [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Sternfeld, Scott [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Berthier, Robin [Univ. of Illinois, Urbana-Champaign, IL (United States); Bobba, Rakesh [Univ. of Illinois, Urbana-Champaign, IL (United States); Campbell, Roy [Univ. of Illinois, Urbana-Champaign, IL (United States); Sanders, Williams [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-09-28

    This document summarizes the research and development work the TT Government Solutions (TTGS), d.b.a. Applied Communication Sciences (ACS), team performed for the Department of Energy Cybersecurity for Energy Delivery Systems (CEDS) program. It addresses the challenges in protecting critical grid control and data communication, including the identification of vulnerabilities and deficiencies of communication protocols commonly used in energy delivery systems (e.g., ICCP, DNP3, C37.118, C12.22), as well as the development of effective means to detect and prevent the exploitation of such vulnerabilities and deficiencies.

  17. Solid state low power pulsed NMR spectrometer system

    International Nuclear Information System (INIS)

    Nadkarni, S.S.; Parthasarathy, T.G.; Menon, M.P.S.; Hannurkar, P.R.

    1981-01-01

    A pulsed nuclear magnetic resonance spectrometer system is described for relaxation time studies on solid and liquid samples. The spectrometer design is fully solid state and a special microcomputer interface is incorporated for automatic evaluation of the relaxation times. The prototype system has been designed to operate at 9 MHz, but the modular concept used in the construction permits operation at any frequency in the range 5-10 MHz. The system has a recovery time of 15 micro seconds at 9 MHz. The range of measurement for the spin-lattice relaxation time is 0.1 millisecond to 1000 seconds; for spin-spin relaxation time, the range is 14μ seconds to 100 milliseconds. (author)

  18. Printing technologies in fabrication of drug delivery systems

    DEFF Research Database (Denmark)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri

    2013-01-01

    INTRODUCTION: There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way...... for personalized dosing and tailor-made dosage forms.\

  19. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  20. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    Science.gov (United States)

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  1. Ocular Insert: Dosage Form for Sustain Opthalmic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-06-01

    Full Text Available Except for skin, the eye is the most easily accessible site for topical administration of a medication. Traditional topical ophthalmic formulations (eye drops and ointments have poor bioavailability because of rapid pre-corneal elimination, conjunctival absorption, solution drainage by gravity, induced lacrimation and normal tear turnover. This leads to frequent installations of concentrated medication to achieve a therapeutic effect. The typical “pulse-entry” type drug release observed with ocular aqueous solutions (eye drops, suspensions and ointments can be replaced by more controlled, sustained, and continuous drug delivery, using a controlled-release ocular drug delivery system. Ocular inserts are solid or semisolid sterile preparations, of appropriate size and shape, designed to be inserted behind the eyelid or held on the eye and to deliver drugs for topical or systemic effect. These are polymeric systems into which the drug is incorporated as a solution or dispersion. They are better tolerated as to drainage and tear flow compared with other ophthalmic formulation and produce reliable drug release in the conjunctival cul-de-sac.

  2. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    Science.gov (United States)

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  3. Implementation of a chronic unilateral intraparenchymal drug delivery system in a swine model.

    Science.gov (United States)

    Kim, Inyong; Paek, Seungleal; Nelson, Brian D; Knight, Emily J; Marsh, Michael P; Bieber, Allan J; Bennet, Kevin E; Lee, Kendall H

    2014-04-30

    Systemic delivery of pharmacologic agents has led to many significant advances in the treatment of neurologic and psychiatric conditions. However, this approach has several limitations, including difficulty penetrating the blood-brain barrier and enzymatic degradation prior to reaching its intended target. Here, we describe the testing of a system allowing intraparenchymal (IPa) infusion of therapeutic agents directly to the appropriate anatomical targets, in a swine model. Five male pigs underwent 3.0T magnetic resonance (MR) guided placement of an IPa catheter into the dorso-medial putamen, using a combined system of the Leksell stereotactic arc, a Mayo-developed MRI-compatible pig head frame, and a custom-designed Fred Haer Company (FHC) delivery system. Our results show hemi-lateral coverage of the pig putamen is achievable from a single infusion point and that the volume of the bolus detected in each animal is uniform (1544±420mm(3)). The IPa infusion system is designed to isolate the intracranial catheter from bodily-induced forces while delivering drugs and molecules into the brain tissue by convection-enhanced delivery, with minimal-to-no catheter track backflow. This study presents an innovative IPa drug delivery system, which includes a sophisticated catheter and implantable pump designed to deliver drugs and various molecules in a precise and controlled manner with limited backflow. It also demonstrates the efficacy of the delivery system, which has the potential to radically impact the treatment of a wide range of neurologic conditions. Lastly, the swine model used here has certain advantages for translation into clinical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. On prilled Nanotubes-in-Microgel Oral Systems for protein delivery.

    Science.gov (United States)

    de Kruif, Jan Kendall; Ledergerber, Gisela; Garofalo, Carla; Fasler-Kan, Elizaveta; Kuentz, Martin

    2016-04-01

    Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 μL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 μm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Training Requirements and Training Delivery in the Total Army School System

    National Research Council Canada - National Science Library

    Winkler, John

    1999-01-01

    This report analyzes training requirements and school delivery of training in the Total Army School System, focusing on the system's ability to meet its training requirements in Reserve Component Training Institutions...

  6. Application of drug delivery system to boron neutron capture therapy for cancer.

    Science.gov (United States)

    Yanagië, Hironobu; Ogata, Aya; Sugiyama, Hirotaka; Eriguchi, Masazumi; Takamoto, Shinichi; Takahashi, Hiroyuki

    2008-04-01

    Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and alphaparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 - 9 mum) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na(2)(10)B(12)H(11)SH: BSH) and borono-phenylalanine ((10)BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. We performed literature searches related to boron delivery systems in vitro and in vivo. We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.

  7. An implantable thermoresponsive drug delivery system based on Peltier device.

    Science.gov (United States)

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Use of radiopharmaceuticals in the development of drug delivery systems

    International Nuclear Information System (INIS)

    Frier, M.

    1997-01-01

    Full text. Nuclear medicine imaging techniques have great potential in the study of the behaviour of drug formulations and drug delivery systems in human subjects. No other technique can locate so precisely the site of disintegration of a tablet in the Gl tract, the depth of penetration of a nebulized solution into the lung, or the residence time of a drug on the cornea. By using the gamma camera to image the in vivo distribution of pharmaceutical formulations radio labelled with a suitable gamma emitting radionuclide, images may be used to quantify the biodistribution, release and kinetics of drug formulations and delivery from novel carrier systems and devices. Radionuclide tracer techniques allow correlation between the observed pharmacological effects and the precise site of delivery. The strength of the technique lies in the quantitative nature of radionuclide images. Example will be shown of studies which examine the rate of transit of orally-administered formulations through the GI tract, as well as describing the development of devices for specific targeting of drugs to the colon. Data will also demonstrate the effectiveness of devices such as spacers in pulmonary drug delivery, in both normal volunteers, and in asthmatic subjects. Such studies not only provide data on the nature and characteristics of a product, such as reliability and reproducibility but, may also be used in submission to Regulatory Authorities in product registration dossiers

  9. A remotely operated drug delivery system with dose control

    KAUST Repository

    Yi, Ying; Kosel, Jü rgen

    2017-01-01

    include an effective actuation stimulus and a controllable dose release mechanism. This work focuses on remotely powering an implantable drug delivery system and providing a high degree of control over the released dose. This is accomplished by integration

  10. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    Science.gov (United States)

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (Pdelivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  11. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery

    Directory of Open Access Journals (Sweden)

    Jones JJ

    2016-06-01

    Full Text Available Jason J Jones,1 Jeffrey Chu,2 Jacob Graham,2 Serge Zaluski,3 Guillermo Rocha4 1Jones Eye Clinic, Sioux City, IA, 2Quorum Consulting Inc., San Francisco, CA, USA; 3VISIS, Perpignan, France; 4Ocular Microsurgery & Laser Centre, Brandon, MB, Canada Purpose: The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Methods: Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. Results: The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%–12.0% (P<0.001 for data from Canada and the US and P<0.05 for data from France. Use of the preloaded delivery system also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Conclusion: Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity. Keywords: time and motion, provider impact, surgical throughput, IOL

  12. Ex vivo investigation of magnetically targeted drug delivery system

    International Nuclear Information System (INIS)

    Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

    2007-01-01

    In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel

  13. Targeted multidrug delivery system to overcome chemoresistance in breast cancer

    Directory of Open Access Journals (Sweden)

    Tang Y

    2017-01-01

    Full Text Available Yuan Tang,1 Fariborz Soroush,1 Zhaohui Tong,2 Mohammad F Kiani,1 Bin Wang1,3 1Department of Mechanical Engineering, Temple University, Philadelphia, PA, 2Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 3Department of Biomedical Engineering, Widener University, Chester, PA, USA Abstract: Chemotherapy has been widely used in breast cancer patients to reduce tumor size. However, most anticancer agents cannot differentiate between cancerous and normal cells, resulting in severe systemic toxicity. In addition, acquired drug resistance during the chemotherapy treatment further decreases treatment efficacy. With the proper treatment strategy, nanodrug carriers, such as liposomes/immunoliposomes, may be able to reduce undesired side effects of chemotherapy, to overcome the acquired multidrug resistance, and to further improve the treatment efficacy. In this study, a novel combinational targeted drug delivery system was developed by encapsulating antiangiogenesis drug bevacizumab into liposomes and encapsulating chemotherapy drug doxorubicin (DOX into immunoliposomes where the human epidermal growth factor receptor 2 (HER2 antibody was used as a targeting ligand. This novel combinational system was tested in vitro using a HER2 positive and multidrug resistant breast cancer cell line (BT-474/MDR, and in vivo using a xenograft mouse tumor model. In vitro cell culture experiments show that immunoliposome delivery led to a high cell nucleus accumulation of DOX, whereas free DOX was observed mostly near the cell membrane and in cytoplasm due to the action of P-gp. Combining liposomal bevacizumab with immunoliposomal DOX achieved the best tumor growth inhibition and the lowest toxicity. Tumor size decreased steadily within a 60-day observation period indicating a potential synergistic effect between DOX and bevacizumab through the targeted delivery. Our findings clearly indicate that tumor growth was significantly

  14. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2006-04-01

    Full Text Available The article considers contemporary systems for controlled delivery of active agents, such as drugs, agricultural chemicals, pollutants and additives in the environment. A useful classification of the available controlled release systems (CRS is proposed according to the type of control (passive, active or self-preprogrammed and according to the main controlling mechanism (diffusion, swelling, dissolution or erosion. Special attention is given to some of the most used CRS - polymer monoliths. The structural and physical-chemical characteristics of CRS as well as the basic approaches to their production are examined. The basic mechanisms of controlled agent release are reviewed in detail and factors influencing the release kinetics are classified according to their importance. The present study can be helpful for understanding and applying the available mathematical models and for developing more comprehensive ones intended for design of new controlled delivery systems.

  15. The influences of patient's satisfaction with medical service delivery, assessment of medical service, and trust in health delivery system on patient's life satisfaction in China.

    Science.gov (United States)

    Tang, Liyang

    2012-09-14

    Patient's satisfaction with medical service delivery/assessment of medical service/trust in health delivery system may have significant influence on patient's life satisfaction in China's health delivery system/in various kinds of hospitals.The aim of this study was to test whether and to what extent patient's satisfaction with medical service delivery/patient's assessments of various major aspects of medical service/various major aspects of patient's trust in health delivery system influenced patient's life satisfaction in China's health delivery system/in various kinds of hospitals. This study collaborated with National Bureau of Statistics of China to carry out a 2008 national urban resident household survey in 17 provinces, autonomous regions, and municipalities directly under the central government (N = 3,386), and specified ordered probit models were established to analyze dataset from this household survey. The key considerations in generating patient's life satisfaction involved patient's overall satisfaction with medical service delivery, assessment of doctor-patient communication, assessment of medical cost, assessment of medical treatment process, assessment of medical facility and hospital environment, assessment of waiting time for medical service, trust in prescription, trust in doctor, and trust in recommended medical examination. But the major considerations in generating patient's life satisfaction were different among low level public hospital, high level public hospital, and private hospital. The promotion of patient's overall satisfaction with medical service delivery, the improvement of doctor-patient communication, the reduction of medical cost, the improvement of medical treatment process, the promotion of medical facility and hospital environment, the reduction of waiting time for medical service, the promotion of patient's trust in prescription, the promotion of patient's trust in doctor, and the promotion of patient's trust in

  16. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    Science.gov (United States)

    Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

    2011-10-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

  17. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    Science.gov (United States)

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  18. Targeted nanodrug delivery systems for the treatment of Tuberculosis

    CSIR Research Space (South Africa)

    Lemmer, Yolandy

    2010-06-01

    Full Text Available patient treatment compliance and drug resistance pose a great challenge to TB treatment programs worldwide. To improve the current inadequate therapeutic management of TB, a polymeric anti-TB nanodrug delivery system for anti-TB drugs was developed...

  19. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Science.gov (United States)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  20. On-The-Move Nutrient Delivery System - Description and Initial Evaluation

    National Research Council Canada - National Science Library

    Mountain, Scott

    2004-01-01

    .... A novel nutrient delivery system has been developed to provide Warfighters on-demand access to flavored electrolyte- and carbohydrate-enhanced drinks, to provide hydration, and energy to sustain work...

  1. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    OpenAIRE

    Muhammad Zaman; Junaid Qureshi; Hira Ejaz; Rai Muhammad Sarfraz; Hafeez ullah Khan; Fazal Rehman Sajid; Muhammad Shafiq ur Rehman

    2016-01-01

    Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes dif...

  2. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  3. Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement.

    Science.gov (United States)

    Wang, Yong; Yuan, Fan

    2006-01-01

    It is a challenge to deliver therapeutic genes to tumor cells using viral vectors because (i) the size of these vectors are close to or larger than the space between fibers in extracellular matrix and (ii) viral proteins are potentially toxic in normal tissues. In general, gene delivery is hindered by various physiological barriers to virus transport from the site of injection to the nucleus of tumor cells and is limited by normal tissue tolerance of toxicity determined by local concentrations of transgene products and viral proteins. To illustrate the obstacles encountered in the delivery and yet limit the scope of discussion, this review focuses only on extracellular transport in solid tumors and distribution of viral vectors in normal organs after they are injected intravenously or intratumorally. This review also discusses current strategies for improving intratumoral transport and specificity of viral vectors.

  4. Commissioning and quality assurance for VMAT delivery systems: An efficient time-resolved system using real-time EPID imaging.

    Science.gov (United States)

    Zwan, Benjamin J; Barnes, Michael P; Hindmarsh, Jonathan; Lim, Seng B; Lovelock, Dale M; Fuangrod, Todsaporn; O'Connor, Daryl J; Keall, Paul J; Greer, Peter B

    2017-08-01

    An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time-efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time-resolved commissioning and QA of VMAT control systems which meets these criteria. The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in-house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry

  5. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    Science.gov (United States)

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  6. Design of Drug Delivery Systems Containing Artemisinin and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Blessing Atim Aderibigbe

    2017-02-01

    Full Text Available Artemisinin and its derivatives have been reported to be experimentally effective for the treatment of highly aggressive cancers without developing drug resistance, they are useful for the treatment of malaria, other protozoal infections and they exhibit antiviral activity. However, they are limited pharmacologically by their poor bioavailability, short half-life in vivo, poor water solubility and long term usage results in toxicity. They are also expensive for the treatment of malaria when compared to other antimalarials. In order to enhance their therapeutic efficacy, they are incorporated onto different drug delivery systems, thus yielding improved biological outcomes. This review article is focused on the currently synthesized derivatives of artemisinin and different delivery systems used for the incorporation of artemisinin and its derivatives.

  7. Dendrimer advances for the central nervous system delivery of therapeutics.

    Science.gov (United States)

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  8. Development and evaluation of diclofenac sodium thermorevesible subcutaneous drug delivery system.

    Science.gov (United States)

    Nasir, Fazli; Iqbal, Zafar; Khan, Jamshaid A; Khan, Abad; Khuda, Fazli; Ahmad, Lateef; Khan, Amirzada; Khan, Abbas; Dayoo, Abdullah; Roohullah

    2012-12-15

    The objective of current work was to develop and evaluate thermoreversible subcutaneous drug delivery system for diclofenac sodium. The poloxamer 407, methyl cellulose, hydroxypropyl methyl cellulose and polyethylene glycol were used alone and in combination in different ratios to design the delivery system. The physical properties like Tsol-gel, viscosity, clarity of solution and gel were evaluated. The in vitro release of the drug delivery system was evaluated using membrane less method and the drug release kinetics and mechanism was predicted by applying various mathematical models to the in vitro dissolution data. Rabbits were used as in vivo model following subcutaneous injection to predict various pharmacokinetics parameters by applying Pk-Summit software. The in vitro and in vivo data revealed that the system consisting of the poloxamer 407 in concentration of 20% (DP20) was the most capable formulation for extending the drug release and maintaining therapeutic blood level of DS for longer duration (144 h). The data obtained for drug content after autoclaving the solutions indicate that autoclaving results in 6% degradation of DS. The data also suggested that the studied polymers poloxamer, MC and PG are good candidate to extend the drug release possessing a unique thermoreversible property. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Bioinspired silica as drug delivery systems and their biocompatibility

    DEFF Research Database (Denmark)

    Steven, Christopher R.; Busby, Grahame A.; Mather, Craig

    2014-01-01

    Silica nanoparticles have been shown to have great potential as drug delivery systems (DDS), however, their fabrication often involves harsh chemicals and energy intensive laborious methods. This work details the employment of a bioinspired "green" method for the controlled synthesis of silica, use...

  10. A solid oxide fuel cell system for buildings

    International Nuclear Information System (INIS)

    Zink, Florian; Lu, Yixin; Schaefer, Laura

    2007-01-01

    This paper examines an integrated solid oxide fuel cell (SOFC) absorption heating and cooling system used for buildings. The integrated system can provide heating/cooling and/or hot water for buildings while consuming natural gas. The aim of this study is to give an overall description of the system. The possibility of such an integrated system is discussed and the configuration of the system is described. A system model is presented, and a specific case study of the system, which consists of a pre-commercial SOFC system and a commercial LiBr absorption system, is performed. In the case study, the detailed configuration of an integrated system is given, and the heat and mass balance and system performance are obtained through numerical calculation. Based on the case study, some considerations with respect to system component selection, system configuration and design are discussed. Additionally, the economic and environmental issues of this specific system are evaluated briefly. The results show that the combined system demonstrates great advantages in both technical and environmental aspects. With the present development trends in solid oxide fuel cells and the commercial status of absorption heating and cooling systems, it is very likely that such a combined system will become increasingly feasible within the following decade

  11. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    Science.gov (United States)

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion.

    Science.gov (United States)

    Liu, Yanhua; Chen, Lihong; Zhou, Chengming; Yang, Jianhong; Hou, Yanhui; Wang, Wenping

    2016-01-01

    Oxymatrine (OM) can be metabolized to matrine in gastrointestinal ileocecal valve after oral administration, which affects pharmacological activity and reduce bioavailability of OM. A type of multiple-unit alginate-chitosan (Alg-Cs) floating beads was prepared by the ionotropic gelation method for gastroretention delivery of OM. A solid dispersion technique was applied and incorporated into beads to enhance the OM encapsulation efficiency (EE) and sustain the drug release. The surface morphology and internal hollow structure of beads were evaluated using optical microscopy and scanning electron microscopy (SEM). The developed Alg-Cs beads were spherical in shape with hollow internal structure and had particle size of 3.49 ± 0.09 mm and 1.33 ± 0.09 mm for wet and dried beads. Over 84% of the optimized OM solid dispersion-loaded Alg-Cs beads were able to continuously float over the simulated gastric fluid for 12 h in vitro. The OM solid dispersion-loaded Alg-Cs beads showed drug EE of 67.07%, which was much higher than that of beads loading with pure OM. Compared with the immediate release of OM capsules and pure OM-loaded beads, the release of OM from solid dispersion-loaded Alg-Cs beads was in a sustained-release manner for 12 h. Prolonged gastric retention time of over 8.5 h was achieved for OM solid dispersion-loaded Alg-Cs floating beads in healthy rabbit in in vivo floating ability evaluated by X-ray imaging. The developed Alg-Cs beads loading with OM solid dispersion displayed excellent performance features characterized by excellent gastric floating ability, high drug EE and sustained-release pattern. The study illustrated the potential use of Alg-Cs floating beads combined with the solid dispersion technique for prolonging gastric retention and sustaining release of OM, which could provide a promising drug delivery system for gastric-specific delivery of OM for bioavailability enhancement.

  13. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  15. Majorana modes in solid state systems and its dynamics

    Science.gov (United States)

    Zhang, Qi; Wu, Biao

    2018-04-01

    We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

  16. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  17. 47 CFR 63.02 - Exemptions for extensions of lines and for systems for the delivery of video programming.

    Science.gov (United States)

    2010-10-01

    ... systems for the delivery of video programming. 63.02 Section 63.02 Telecommunication FEDERAL... systems for the delivery of video programming. (a) Any common carrier is exempt from the requirements of... with respect to the establishment or operation of a system for the delivery of video programming. [64...

  18. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Qiu J

    2015-10-01

    Full Text Available Jichuan Qiu,1 Ruibin Zhang,2 Jianhua Li,1 Yuanhua Sang,1 Wei Tang,3 Pilar Rivera Gil,4 Hong Liu1,51Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, 2Blood Purification Center, Jinan Central Hospital, 3Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, People’s Republic of China; 4Institute of Chemistry, Rovira i Virgili University, Tarragona, Spain; 5Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People’s Republic of ChinaAbstract: Graphene quantum dots (GQDs were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox. The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs. The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells.Keywords: graphene quantum dots, drug delivery, pH-sensitive, controlled release, traceable

  19. Sustained Cytotoxicity of Wogonin on Breast Cancer Cells by Encapsulation in Solid Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jong-Suep Baek

    2018-03-01

    Full Text Available While wogonin has been known to have cytotoxicity against various cancer cells, its bioavailability and cytotoxicity are low due to its low water solubility. Therefore, wogonin-loaded solid lipid nanoparticles were fabricated using a hot-melted evaporation technique. The highest solubility of wogonin was observed in stearic acid. Hence, wogonin-loaded solid lipid nanoparticles were composed of stearic acid as the lipid matrix. The physicochemical properties of the wogonin-loaded solid lipid nanoparticles were evaluated by dynamic laser scattering and scanning electron microscopy. The wogonin-loaded solid lipid nanoparticles exhibited sustained and controlled release up to 72 h. In addition, it was observed that the wogonin-loaded solid lipid nanoparticles exhibited enhanced cytotoxicity and inhibited poly (ADP-ribose polymerase in MCF-7 breast cancer cells. Overall, the results indicate that wogonin-loaded solid lipid nanoparticles could be an efficient delivery system for the treatment of breast cancer.

  20. Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery.

    Science.gov (United States)

    Long, Jingjunjiao; Gholizadeh, Hamideh; Lu, Jun; Bunt, Craig; Seyfoddin, Ali

    2017-01-01

    Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation.

    Science.gov (United States)

    Mustapha, Omer; Kim, Kyung Soo; Shafique, Shumaila; Kim, Dong Shik; Jin, Sung Giu; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-02-01

    The objective of this study was to develop a novel solid self-nanoemulsifying drug delivery system (SNEDDS) using a membrane emulsification technique involving Shirasu porous glass (SPG) which produced very small and uniform emulsion droplets, resulting in enhanced solubility, dissolution and oral bioavailability of poorly water-soluble cilostazol. The effects of carriers on the drug solubility were assessed, and pseudo-ternary phase diagrams were plotted. Among the liquid SNEDDS formulations tested, the liquid SNEDDS composed of peceol (oil), Tween 20 (surfactant) and Labrasol (cosurfactant) at a weight ratio of 15/55/30, produced the smallest emulsion droplet size. The cilostazol-loaded liquid SNEDDS formulation was suspended in the distilled water and subjected to SPG membrane emulsification. Calcium silicate was added as a solid carrier in this liquid SNEDDS, completely suspended and spray-dried, leading to the production of a cilostazol-loaded solid SNEDDS. The emulsion droplet size, solubility and dissolution of the emulsified solid SNEDDS were assessed as compared to the solid SNEDDS prepared without emulsification. Moreover, the physicochemical characteristics and pharmacokinetics in rats were evaluated with the emulsified solid SNEDDS. The emulsified solid SNEDDS provided significantly smaller and more uniform nanoemulsions than did the non-emulsified solid SNEDDS. The emulsified solid SNEDDS showed significantly higher drug solubility and dissolution as compared to the non-emulsified solid SNEDDS. The crystalline drug in it was converted into the amorphous state. Moreover, in rats, it gave significantly higher initial plasma concentrations and AUC compared to the drug powder, suggesting its improved oral bioavailability of cilostazol. Thus, this novel solid SNEDDS developed using a membrane emulsification technique represents a potentially powerful oral delivery system for cilostazol. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Organoclays for drug delivery Systems

    OpenAIRE

    Canovas Creus, Alba

    2008-01-01

    Modified clays can be used as carriers of drugs due to their suitable properties and structure in order to achieve improvements in drug delivery. The study of this thesis starts with an introduction to mineral clays and its classification, properties and characterization, then deepens into modified clays (properties, comparison with mineral clays, applications and procedure of modification). Another chapter is focused in drug delivery: definition, its difficulties nowadays and the different w...

  3. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    Science.gov (United States)

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from Salton Sea accounting unit.

  4. Patient Populations, Clinical Associations, and System Efficiency in Healthcare Delivery System

    Science.gov (United States)

    Liu, Yazhuo

    The efforts to improve health care delivery usually involve studies and analysis of patient populations and healthcare systems. In this dissertation, I present the research conducted in the following areas: identifying patient groups, improving treatments for specific conditions by using statistical as well as data mining techniques, and developing new operation research models to increase system efficiency from the health institutes' perspective. The results provide better understanding of high risk patient groups, more accuracy in detecting disease' correlations and practical scheduling tools that consider uncertain operation durations and real-life constraints.

  5. Development of a Gastroretentive Drug Delivery System based on ...

    African Journals Online (AJOL)

    Erah

    Purpose: The aim of this work was to synthesize superporous hydrogels of rosiglitazone using chitosan and to study its swelling behaviour for application as a gastroretentive drug delivery system. Methods: Chitosan superporous hydrogels were synthesized using glyoxal as a crosslinking agent by gas blowing method.

  6. Online Instruction: An Alternative Delivery System for Higher Education

    Science.gov (United States)

    Wronkovich, Michael

    2003-01-01

    In an increasingly technological society, delivery systems for professional development and higher education have greatly expanded. Video conferencing and web-based alternatives provide opportunities to extend the college campus far beyond the boundaries traditionally considered feasible. Adult learners have found the convenience of web-based…

  7. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.

    Science.gov (United States)

    Chen, Zhi; Wang, Ting; Yan, Qing

    2018-02-01

    Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.

  8. A Review of Analytical Methods for the Identification and Characterization of Nano Delivery Systems in Food

    NARCIS (Netherlands)

    Luykx, D.M.A.M.; Peters, R.J.B.; Ruth, van S.M.; Bouwmeester, H.

    2008-01-01

    Detection and characterization of nano delivery systems is an essential part of understanding the benefits as well as the potential toxicity of these systems in food. This review gives a detailed description of food nano delivery systems based on lipids, proteins, and/or polysaccharides and

  9. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    Science.gov (United States)

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  10. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Yaozhong Hu

    2017-11-01

    Full Text Available The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs. The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs. Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as

  11. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    Science.gov (United States)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  12. A higher-order-mode fiber delivery for Ti:Sapphire femtosecond lasers

    DEFF Research Database (Denmark)

    Jespersen, Kim Giessmann; Le, Tuan; Grüner-Nielsen, Lars Erik

    2010-01-01

    We report the first higher-order-mode fiber with anomalous dispersion at 800nm and demonstrate its potential in femtosecond pulse delivery for Ti:Sapphire femtosecond lasers. We obtain 125fs pulses after propagating a distance of 3.6 meters in solid-silica fiber. The pulses could be further...... compressed in a quartz rod to nearly chirp-free 110fs pulses. Femtosecond pulse delivery is achieved by launching the laser output directly into the delivery fiber without any pre-chirping of the input pulse. The demonstrated pulse delivery scheme suggests scaling to >20meters for pulse delivery in harsh...

  13. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  14. Application of nanohydrogels in drug delivery systems: recent patents review.

    Science.gov (United States)

    Dalwadi, Chintan; Patel, Gayatri

    2015-01-01

    Nanohydrogel combines the advantages of hydrogel and nano particulate systems. Similar to the hydrogel and macrogel, nanohydrogel can protect the drug and control drug release by stimuli responsive conformation or biodegradable bond into the polymer networks. Nanohydrogel has drawn huge interest due to their potential applications, such as carrier in target-specific controlled drug delivery, absorbents, chemical/biological sensors, and bio-mimetic materials. Similar to the nanoparticles, stimuli responsive nanohydrogel can easily be delivered in the liquid form for parenteral drug delivery application. This review highlights the methods to prepare nanohydrogel based on natural and synthetic polymers for diverse applications in drug delivery. It also encompasses the drug loading and drug release mechanism of the nanohydrogel formulation and patents related to the composition and chemical methods for preparation of nanohydrogel formulation with current status in clinical trials.

  15. Delivery Systems for Birch-Bark Triterpenoids and Their Derivatives in Anticancer Research.

    Science.gov (United States)

    Mierina, Inese; Vilskersts, Reinis; Turks, Maris

    2018-05-29

    Birch-bark triterpenoids and their semi-synthetic derivatives possess a wide range of biological activities including cytotoxic effects on various tumour cell lines. However, due to the low solubility and bioavailability, their medicinal applications are rather limited. The use of various nanotechnology-based drug delivery systems is rapidly developing approach to the solubilisation of insufficiently bioavailable pharmaceuticals. Herein, the drug delivery systems deemed to be applicable for birch-bark triterpenoid structures are reviewed. The aforementioned disadvantages of birch-bark triterpenoids and their semi-synthetic derivatives can be overcome through their incorporation into organic nanoparticles, which include various dendrimeric systems, as well as embedding the active compounds into polymer matrices or complexation with carbohydrate nanoparticles without covalent bonding. Some of the known triterpenoid delivery systems consist of nanoparticles featuring inorganic cores covered with carbohydrates or other polymers. Methods for delivering the title compounds through encapsulation and emulsification into lipophilic media are also suitable. Besides, the birch-bark triterpenoids can form self-assembling systems with increased bio-availability. Even more, the self-assembling systems are used as carriers for delivering other chemotherapeutic agents. Another advantage besides increased bioavailability and anticancer activity is the reduced overall systemic toxicity in most of the cases, when triterpenoids are delivered with any of the carriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. A pulsed mode electrolytic drug delivery device

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Foulds, Ian G.

    2015-01-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach

  17. Development of oral food-grade delivery systems: current knowledge and future challenges.

    Science.gov (United States)

    Benshitrit, Revital Cohen; Levi, Carmit Shani; Tal, Sharon Levi; Shimoni, Eyal; Lesmes, Uri

    2012-01-01

    In recent years there has been an increasing interest in the development of new and efficient oral food delivery systems as tools to prevent disease and promote human health and well-being. Such vehicles are sought to protect bioactive ingredients added to food while controlling and targeting their release as they pass through the human gastrointestinal tract (GIT). This review aims to summarize the key concepts of food delivery systems, their characterization and evaluation. Particularly, evaluation of their performance within the human GIT is discussed. To this end an overview of several in vivo and in vitro methods currently applied for the study of such systems is given. Although considered to be still in its infancy, this promising field of research is likely to infiltrate into real products through rational design. In order for such efforts to materialize into real products some challenges still need to be met and are discussed herein. Overall, it seems that adopting a comprehensive pharmacological approach and relevant cutting edge tools are likely to facilitate innovations and help elucidate and perhaps tailor delivery systems' behavior in the human GIT.

  18. Quantitative dosimetric verification of an IMRT planning and delivery system

    International Nuclear Information System (INIS)

    Low, D.A.; Mutic, S.; Dempsey, J.F.; Gerber, R.L.; Bosch, W.R.; Perez, C.A.; Purdy, J.A.

    1998-01-01

    Background and purpose: The accuracy of dose calculation and delivery of a commercial serial tomotherapy treatment planning and delivery system (Peacock, NOMOS Corporation) was experimentally determined. Materials and methods: External beam fluence distributions were optimized and delivered to test treatment plan target volumes, including three with cylindrical targets with diameters ranging from 2.0 to 6.2 cm and lengths of 0.9 through 4.8 cm, one using three cylindrical targets and two using C-shaped targets surrounding a critical structure, each with different dose distribution optimization criteria. Computer overlays of film-measured and calculated planar dose distributions were used to assess the dose calculation and delivery spatial accuracy. A 0.125 cm 3 ionization chamber was used to conduct absolute point dosimetry verification. Thermoluminescent dosimetry chips, a small-volume ionization chamber and radiochromic film were used as independent checks of the ion chamber measurements. Results: Spatial localization accuracy was found to be better than ±2.0 mm in the transverse axes (with one exception of 3.0 mm) and ±1.5 mm in the longitudinal axis. Dosimetric verification using single slice delivery versions of the plans showed that the relative dose distribution was accurate to ±2% within and outside the target volumes (in high dose and low dose gradient regions) with a mean and standard deviation for all points of -0.05% and 1.1%, respectively. The absolute dose per monitor unit was found to vary by ±3.5% of the mean value due to the lack of consideration for leakage radiation and the limited scattered radiation integration in the dose calculation algorithm. To deliver the prescribed dose, adjustment of the monitor units by the measured ratio would be required. Conclusions: The treatment planning and delivery system offered suitably accurate spatial registration and dose delivery of serial tomotherapy generated dose distributions. The quantitative dose

  19. Communications data delivery system analysis : public workshop read-ahead document.

    Science.gov (United States)

    2012-04-09

    This document presents an overview of work conducted to date around development and analysis of communications data delivery systems for : supporting transactions in the connected vehicle environment. It presents the results of technical analysis of ...

  20. Noninvasive delivery systems for peptides and proteins in osteoporosis therapy: a retroperspective.

    Science.gov (United States)

    Hoyer, Herbert; Perera, Glen; Bernkop-Schnürch, Andreas

    2010-01-01

    The aim of this review is to provide the reader general and inspiring prospects in various attempts to make noninvasive delivery systems of calcitonin and teriparatide feasible and as convenient as possible. Calcitonin and teriparatide play an important role in both calcium homeostasis and bone remodelling. Currently calcitonin is available as a subcutaneous injection and as a nasal spray whereas teriparatide is administered subcutaneously. In the past few years, an increasing number of articles about drug delivery systems for calcitonin and teriparatide have been published. These delivery systems have been developed to overcome the inherent barriers for the uptake across the diverse membranes on the various routes for protein and peptide delivery. Co-administration of permeation enhancers, mucoadhesive agents, viscosity modifying agents, multifunctional polymers, protease inhibitors as well as encapsulation and chemical modification are utilized in order to improve calcitonin and teriparatide absorption after oral, nasal, pulmonal, or buccal administration. The majority of research groups have been working on the development of formulations based on the encapsulation of molecules in biodegradable and biocompatible polymeric nanoparticles. However these observations are based on data obtained under different experimental conditions. Hence, it is difficult to compare the obtained results in order to draw general conclusions about the most promising characteristics required for oral and nasal formulations for these peptides.

  1. Future of Automated Insulin Delivery Systems

    NARCIS (Netherlands)

    Castle, Jessica R.; DeVries, J. Hans; Kovatchev, Boris

    2017-01-01

    Advances in continuous glucose monitoring (CGM) have brought on a paradigm shift in the management of type 1 diabetes. These advances have enabled the automation of insulin delivery, where an algorithm determines the insulin delivery rate in response to the CGM values. There are multiple automated

  2. Solid waste information and tracking system server conversion project management plan

    International Nuclear Information System (INIS)

    MAY, D.L.

    1999-01-01

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  3. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  4. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  5. Buccal Mucosa as A Route for Systemic Drug Delivery: A Review

    OpenAIRE

    Dhaval A. Pate; M. R. Pate; K. R. Pate; N. M. Pate

    2012-01-01

    Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. The mucosa has a rich blood supply and it is relatively permeable. It is the objective of this article to review buccal drug delivery by discussing the structure and environment of the oral mucosa and the experimental methods used in assessing buccal drug permeation/absorption. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based deliv...

  6. Nanotechnology-Based Drug Delivery Systems for Treatment of Tuberculosis--A Review.

    Science.gov (United States)

    da Silva, Patricia Bento; de Freitas, Eduardo Sinésio; Bernegossi, Jessica; Gonçalez, Maíra Lima; Sato, Mariana Rillo; Leite, Clarice Queico Fujimura; Pavan, Fernando Rogério; Chorilli, Marlus

    2016-02-01

    Tuberculosis (TB) is an infectious and transmissible disease that is caused by Mycobacterium tuberculosis and primarily affects the lungs, although it can affect other organs and systems. The pulmonary presentation of TB, in addition to being more frequent, is also the most relevant to public health because it is primarily responsible for the transmission of the disease. The to their low World Health Organization (WHO) recommends a combined therapeutic regimen of several drugs, such as rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (ETB). These drugs have low plasma levels after oral administration, due to their low water solubility, poor permeability and ability to be rapidly metabolized by the liver and at high concentrations. Furthermore, they have short t₁/₂ (only 1-4 hours) indicating a short residence in the plasma and the need for multiple high doses, which can result in neurotoxicity and hepatotoxicity. Nanotechnology drug delivery systems have considerable potential for the treatment of TB. The systems can also be designed to allow for the sustained release of drugs from the matrix and drug delivery to a specific target. These properties of the systems enable the improvement of the bioavailability of drugs, can reduce the dosage and frequency of administration, and may solve the problem of non-adherence to prescribed therapy, which is a major obstacle to the control of TB. The purpose of this study was to systematically review nanotechnology-based drug delivery systems for the treatment of TB.

  7. A multi-function low solide angle system

    International Nuclear Information System (INIS)

    Yan Sujuan; Yao Linong

    2001-01-01

    A multi-function low solid angle system for direct and indirect measurement of radioactivity or emission rate of most α, β and EC emitting nuclides are described in this paper. The measurement result of 241 Am and 90 Sr- 90 Y are given

  8. NILDE, Network Inter Library Document Exchange: An Italian Document Delivery System

    Science.gov (United States)

    Brunetti, F.; Gasperini, A.; Mangiaracina, S.

    2007-10-01

    This poster presents NILDE, a document delivery system supporting the exchange of documents via the internet. The system has been set up by the Central Library of the National Research Council of Bologna (Italy) in order to make use of new internet technology, to promote cooperation between Italian university libraries and research libraries, and to achieve quick response times in satisfying DD requests. The Arcetri Astrophysical Observatory Library was the first astronomical library to join the NILDE project from its earliest days in 2002. Many were the reasons for this choice: automation of the DD processes, security and reliability of the network, creation of usage statistics and reports, reduction of DD System management costs and so on. This work describes the benefits of NILDE and discusses the role of an organized document delivery system as an important tool to cope with the difficult constraints of the publishing market.

  9. Quality of experience management in mobile content delivery systems

    NARCIS (Netherlands)

    Agboma, F.; Liotta, A.

    2012-01-01

    This study contributes towards the relatively new but growing discipline of QoE management in content delivery systems. The study focuses on the development of a QoE-based management framework for the construction of QoE models for different types of multimedia contents delivered onto three typical

  10. Recent advances in medicinal chemistry and pharmaceutical technology--strategies for drug delivery to the brain.

    Science.gov (United States)

    Denora, Nunzio; Trapani, Adriana; Laquintana, Valentino; Lopedota, Angela; Trapani, Giuseppe

    2009-01-01

    This paper provides a mini-review of some recent approaches for the treatment of brain pathologies examining both medicinal chemistry and pharmaceutical technology contributions. Medicinal chemistry-based strategies are essentially aimed at the chemical modification of low molecular weight drugs in order to increase their lipophilicity or the design of appropriate prodrugs, although this review will focus primarily on the use of prodrugs and not analog development. Recently, interest has been focused on the design and evaluation of prodrugs that are capable of exploiting one or more of the various endogenous transport systems at the level of the blood brain barrier (BBB). The technological strategies are essentially non-invasive methods of drug delivery to malignancies of the central nervous system (CNS) and are based on the use of nanosystems (colloidal carriers) such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, polymeric micelles and dendrimers. The biodistribution of these nanocarriers can be manipulated by modifying their surface physico-chemical properties or by coating them with surfactants and polyethylene-glycols (PEGs). Liposomes, surfactant coated polymeric nanoparticles, and solid lipid nanoparticles are promising systems for delivery of drugs to tumors of the CNS. This mini-review discusses issues concerning the scope and limitations of both the medicinal chemistry and technological approaches. Based on the current findings, it can be concluded that crossing of the BBB and drug delivery to CNS is extremely complex and requires a multidisciplinary approach such as a close collaboration and common efforts among researchers of several scientific areas, particularly medicinal chemists, biologists and pharmaceutical technologists.

  11. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhiyue Zhang

    2012-01-01

    Full Text Available The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis.

  12. Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis

    International Nuclear Information System (INIS)

    Zhang, Z.; Huang, G.

    2012-01-01

    The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis

  13. A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor networks.

    Science.gov (United States)

    Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang

    2009-01-01

    The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  14. Does the commonly used pH-stat method with back titration really quantify the enzymatic digestibility of lipid drug delivery systems? A case study on solid lipid nanoparticles (SLN).

    Science.gov (United States)

    Heider, Martha; Hause, Gerd; Mäder, Karsten

    2016-12-01

    Enzymatic digestion of lipid drug carriers is very important. Commonly, pancreatin induced formation of fatty acids is monitored by the pH-stat method, which provides a fast, but unspecific readout. However, according to the literature, the pKa values of long chain fatty acids are strongly dependent on the local environment and might vary between 4.2 and 10.15. The high pKa values would lead to an incomplete detection of the lipid digestion and false results. In order to investigate these issues in more detail, we produced cetyl palmitate solid lipid nanoparticles (CP-SLN) stabilized with poloxamer 188 or polysorbate 80. The digestion of CP-SLN was investigated by two different and independent readouts. A HPTLC assay was used in addition to the pH-stat method (with or without back titration). An incomplete digestion of CP-SLN was observed with all methods. Partial digestion of polysorbate 80 contributed to the formation of fatty acids. Depending on the investigated system and the experimental conditions (FaSSIF or FeSSIF) the results of both readout methods were comparable or not. For example, in FeSSIF conditions, the values detected by HPTLC were roughly twice as high as the pH-stat results. Our findings on solid lipids agree with data from Helbig et al. on lipid emulsions, where a gas chromatography method detected much higher values than the pH-stat assay (Food Hydrocoll. 28 (2012) 10-19). The results of our pH-stat experiments with back titration at different pH values showed increased values for fatty acids from pH 7.5 to pH 10. The values obtained by back titration at high pH values (pH 9 or higher) did exceed the digestion values measured by HPTLC. Therefore, we conclude that the pH-stat method might give the same results as more specific reference methods, but it might also both under- (without back titration) or overestimate (with back titration) the enzymatic digestion of lipid drug delivery systems. A further outcome of our study was the proof that

  15. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Hwang, Tae Heon; Kim, Jin Bum; Yang, Da Som; Ryu, WonHyoung; Park, Yong-il

    2013-01-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  16. Dose error analysis for a scanned proton beam delivery system

    International Nuclear Information System (INIS)

    Coutrakon, G; Wang, N; Miller, D W; Yang, Y

    2010-01-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 x 10 x 8 cm 3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  17. Commissioning and quality assurance for the treatment delivery components of the AccuBoost system.

    Science.gov (United States)

    Iftimia, Ileana; Talmadge, Mike; Ladd, Ron; Halvorsen, Per

    2015-03-08

    The objective for this work was to develop a commissioning methodology for the treatment delivery components of the AccuBoost system, as well as to establish a routine quality assurance program and appropriate guidance for clinical use based on the commissioning results. Various tests were developed: 1) assessment of the accuracy of the displayed separation value; 2) validation of the dwell positions within each applicator; 3) assessment of the accuracy and precision of the applicator localization system; 4) assessment of the combined dose profile of two opposed applicators to confirm that they are coaxial; 5) measurement of the absolute dose delivered with each applicator to confirm acceptable agreement with dose based on Monte Carlo modeling; 6) measurements of the skin-to-center dose ratio using optically stimulated luminescence dosimeters; and 7) assessment of the mammopad cushion's effect on the center dose. We found that the difference between the measured and the actual paddle separation is < 0.1 cm for the separation range of 3 cm to 7.5 cm. Radiochromic film measurements demonstrated that the number of dwell positions inside the applicators agree with the values from the vendor, for each applicator type and size. The shift needed for a good applicator-grid alignment was within 0.2 cm. The dry-run test using film demonstrated that the shift of the dosimetric center is within 0.15 cm. Dose measurements in water converted to polystyrene agreed within 5.0% with the Monte Carlo data in polystyrene for the same applicator type, size, and depth. A solid water-to-water (phantom) factor was obtained for each applicator, and all future annual quality assurance tests will be performed in solid water using an average value of 1.07 for the solid water-to-water factor. The skin-to-center dose ratio measurements support the Monte Carlo-based values within 5.0% agreement. For the treatment separation range of 4 cm to 8cm, the change in center dose would be < 1.0% for all

  18. Computer-aided design model for anaerobic-phased-solids digester system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Zhang, R. [University of California, Davis, CA (United States); Tiangco, V. [California Energy Commission, Sacramento, CA (United States)

    1999-07-01

    The anaerobic-phased-solids (APS) digester system is a newly developed anaerobic digestion system for converting solid wastes, such as crop residues and food wastes, into biogas for power and heat generation. A computer-aided engineering design model has been developed to design the APS-digester system and study the heat transfer from the reactors and energy production of the system. Simulation results of a case study are presented by using the model to predict the heating energy requirement and biogas energy production for anaerobic digestion of garlic waste. The important factors, such as environmental conditions, insulation properties, and characteristics of the wastes, on net energy production are also investigated. (author)

  19. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system.

    Science.gov (United States)

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto; Fresta, Massimo; Cosco, Donato

    2018-01-01

    The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20-40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100-200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems.

  20. A sight on protein-based nanoparticles as drug/gene delivery systems.

    Science.gov (United States)

    Salatin, Sara; Jelvehgari, Mitra; Maleki-Dizaj, Solmaz; Adibkia, Khosro

    2015-01-01

    Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.