Partitioning Pythagorean Triangles Using Pythagorean Angles
Swenson, Carl E.; Yandl, Andre L.
2012-01-01
Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.
Solid angles III. The role of conformers in solid angle calculations
White, D
1995-06-14
Full Text Available The values of the solid angles Omega for a range of commonly encountered ligands in organometallic chemistry (phosphines, phosphites, amines, arsines and cyclopentadienyl rings) have been determined. The solid angles were derived from a single...
Elliptic solid-on-solid model's partition function as a single determinant
Galleas, W
2016-01-01
In this work we express the partition function of the integrable elliptic solid-on-solid model with domain-wall boundary conditions as a single determinant. This representation appears naturally as the solution of a system of functional equations governing the model's partition function.
Thermodynamics of phenanthrene partition into solid organic matter from water
CHEN Bao-liang; ZHU Li-zhong; TAO Shu
2005-01-01
The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids (three soils and a bentonite) from water were investigated. The thermodynamics parameters (Δ H, Δ G°, Δ S°, ) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from - 7.93 to - 17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid(i.e., - 18.6 k J/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2k J/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene(i. e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i. e., 18.6 kJ/mol). The standard free energy changes, Δ G°, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes,ΔS° , show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene,the partition coefficients normalized by organic carbon contents decrease with increasing system temperature(i. e., In Koc = -0.284In S +9.82( n =4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.
On Ruby's solid angle formula and some of its generalizations
Friot, Samuel
2014-01-01
Using the Mellin-Barnes representation, we show that Ruby's solid angle formula and some of its generalizations may be expressed in a compact way in terms of the Appell F4 and Lauricella Fc functions.
Liquid/liquid/solid contact angles
Borocco, Marine; Pellet, Charlotte; Authelin, Jean-René; Clanet, Christophe; Quéré, David; Compagnie des Interfaces Team
2016-11-01
Many studies have investigated solid/liquid/air interfaces and their corresponding wetting properties. We discuss what happens in less-studied liquid/liquid/solid systems, and focus on questions of dynamical wetting in a tube, having in mind applications in detergency. We use a capillary tube filled with water and containing a slug of silicone oil (or vice-versa), and present a series of experiments to determine static and dynamic wetting properties corresponding to this situation. We also discuss interfacial aging of such systems.
UPPER LIMITS FOR THE CONTACT ANGLES OF LIQUIDS ON SOLIDS
available on equilibrium contact angles . These data were obtained under well- controlled and comparable experimental conditions for many liquids on...Earlier systematic studies of the angle of contact (theta) exhibited by drops of liquid on plane solid surfaces of low surface energy have made data...From the parameters defining this straight line, estimates can be made of the limiting contact angles for each liquid.
A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy
D' Souza, Warren D; Nazareth, Daryl P [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Zhang, Hao H; Shi Leyuan [Department of Industrial and Systems Engineering, University of Wisconsin, Madison, WI (United States); Meyer, Robert R [Computer Sciences Department, University of Wisconsin, Madison, WI (United States)], E-mail: dsouzaw@ohsu.edu
2008-06-21
Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.
A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy
D'Souza, Warren D.; Zhang, Hao H.; Nazareth, Daryl P.; Shi, Leyuan; Meyer, Robert R.
2008-06-01
Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.
Equilibrium contact angles of liquid droplets on ideal rough solids.
Kang, Hie Chan; Jacobi, Anthony M
2011-12-20
This work proposes a theoretical model for predicting the apparent equilibrium contact angle of a liquid on an ideal rough surface that is homogeneous and has a negligible body force, line tension, or contact angle hysteresis between solid and liquid. The model is derived from the conservation equations and the free-energy minimization theory for the changes of state of liquid droplets. The work of adhesion is expressed as the contact angles in the wetting process of the liquid droplets. Equilibrium contact angles of liquid droplets for rough surfaces are expressed as functions of the area ratios for the solid, liquid, and surrounding gas and the roughness ratio and wetting ratio of the liquid on the solid for the partially and fully wet states. It is found that the ideal critical angle for accentuating the contact angles by the surface roughness is 48°. The present model is compared with existing experimental data and the classical Wenzel and Cassie-Baxter models and agrees with most of the experimental data for various surfaces and liquids better than does the Wenzel model and accounts for trends that the Wenzel model cannot explain.
PARTITION OF UNITY FINITE ELEMENT METHOD FOR SHORT WAVE PROPAGATION IN SOLIDS
LI Xi-kui; ZHOU Hao-yang
2005-01-01
A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element shape functions, which form a partition of unity, with the local subspaces defined on the corresponding shape functions, which include a priori knowledge about the wave motion equation in trial spaces and approximately reproduce the highly oscillatory properties within a single element. Numerical examples demonstrate the performance of the proposed partition of unity finite element in both computational accuracy and efficiency.
HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING
Eckman, R.R.
1982-10-01
The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal
Contact angle of a nanodrop on a nanorough solid surface.
Berim, Gersh O; Ruckenstein, Eli
2015-02-21
The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.
Surface free energy of a solid from contact angle hysteresis.
Chibowski, Emil
2003-04-25
Nature of contact angle hysteresis is discussed basing on the literature data (Colloids Surf. A 189 (2001) 265) of dynamic advancing and receding contact angles of n-alkanes and n-alcohols on a very smooth surface of 1,1,2,-trichloro-1,2,2,-trifluoroethane (FC-732) film deposited on a silicon plate. The authors considered the liquid absorption and/or retention (swelling) processes responsible for the observed hysteresis. In this paper hysteresis is considered to be due to the liquid film left behind the drop during retreating of its contact line. Using the contact angle hysteresis an approach is suggested for evaluation of the solid surface free energy. Molecular spacing and the film structure are discussed to explain the difference in n-alkanes and n-alcohols behaviour as well as to explain the difference between dispersion free energy gamma(s)(d) and total surface free energy gamma(s)(tot) of FC-732, as determined from the advancing contact angles and the hysteresis, respectively.
``DELF'', a large solid angle detection system for heavy fragments
Bougault, R.; Duchon, J.; Gautier, J. M.; Genoux-Lubain, A.; Le Brun, C.; Lecolley, J. F.; Lefebvres, F.; Louvel, M.; Mosrin, P.; Regimbart, R.
1987-09-01
To detect the heavy fragments ( Z > 8) emitted at large angle (30° < θ < 150°) in heavy ion collisions at GANIL, a large solid angle detection system has been built. It consists of 18 independent cells surrounding the target, the beam axis being the revolution axis. In each cell, a fragment penetrates at first into a parallel plate avalanche counter with localization which gives velocity, position and {∂E}/{∂x} measurements and then into an ionization chamber with longitudinal field for the residual energy measurement. The Z evaluation is performed over a large range of velocities (0.05 < {E}/{A} < 5 MeV/u) for atomic numbers ranging from 8 to 90.
Optical trapping of nanoparticles by full solid-angle focusing
Salakhutdinov, Vsevolod; Carbone, Luigi; Giacobino, Elisabeth; Bramati, Alberto; Leuchs, Gerd
2015-01-01
We propose and implement a dipole-trap for nanoparticles that is based on focusing from the full solid angle with a deep parabolic mirror. The key aspect is the generation of a linear-dipole mode. For such a mode, our calculations predict a trapping potential that is deeper and tighter than the potential obtainable with microscope objectives. We demonstrate the trapping of dot-in-rod nanoparticles. From the detected fluorescence photons we obtain intensity correlation functions of second order with $g^{(2)}(0)< 0.5$, suggesting the trapping of a single quantum emitter.
Zhang, Sai; Zhang, Yu; Gao, Xiao-Wei
2014-12-01
In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid—solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevitably induce total reflection. However, incident waves with big oblique angles through the liquid—solid superlattice will produce a superwide angle transmission in a certain frequency range so that total reflection does not occur. Together with the simulation by finite element analysis, theoretical analysis by using transfer matrix method suggests the Bragg scattering of the Lamb waves as the physical mechanism of acoustic wave super-propagation far beyond the critical angle. Incident angle, filling fraction, and material thickness have significant influences on propagation. Superwide-angle propagation phenomenon may have potential applications in nondestructive evaluation of layered structures and controlling of energy flux.
A novel solid-angle tomosynthesis (SAT) scanning scheme
Zhang Jin; Yu, Cedric [Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, Maryland 21201 and Xcision Medical System, LLC, 12707 Chapel Chase Drive, Clarksville, Maryland 21209 (United States)
2010-08-15
Purpose: Digital tomosynthesis (DTS) recently gained extensive research interests in both diagnostic and radiation therapy fields. Conventional DTS images are generated by scanning an x-ray source and flat-panel detector pair on opposite sides of an object, with the scanning trajectory on a one-dimensional curve. A novel tomosynthesis method named solid-angle tomosynthesis (SAT) is proposed, where the x-ray source scans on an arbitrary shaped two-dimensional surface. Methods: An iterative algorithm in the form of total variation regulated expectation maximization is developed for SAT image reconstruction. The feasibility and effectiveness of SAT is corroborated by computer simulation studies using three-dimensional (3D) numerical phantoms including a 3D Shepp-Logan phantom and a volumetric CT image set of a human breast. Results: SAT is able to cover more space in Fourier domain more uniformly than conventional DTS. Greater coverage and more isotropy in the frequency domain translate to fewer artifacts and more accurately restored features in the in-plane reconstruction. Conclusions: Comparing with conventional DTS, SAT allows cone-shaped x-ray beams to project from more solid angles, thus provides more coverage in the spatial-frequency domain, resulting in better quality of reconstructed image.
Bounds for solid angles of lattices of rank three
Fukshansky, Lenny
2010-01-01
We find sharp absolute constants $C_1$ and $C_2$ with the following property: every well-rounded lattice of rank 3 in a Euclidean space has a minimal basis so that the solid angle spanned by these basis vectors lies in the interval $[C_1,C_2]$. In fact, we show that these absolute bounds hold for a larger class of lattices than just well-rounded, and the upper bound holds for all. We state a technical condition on the lattice that may prevent it from satisfying the absolute lower bound on the solid angle, in which case we derive a lower bound in terms of the ratios of successive minima of the lattice. We use this result to show that among all spherical triangles on the unit sphere in $\\mathbb R^N$ with vertices on the minimal vectors of a lattice, the smallest possible area is achieved by a configuration of minimal vectors of the (normalized) face centered cubic lattice in $\\mathbb R^3$. Such spherical configurations come up in connection with the kissing number problem.
Defined solid-angle counter with variable geometry
Garcia-Torano, E. [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: e.garciatorano@ciemat.es; Duran Ramiro, T. [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Burgos, C. [Division de Infraestrutura General Tecnica, CIEMAT, Madrid (Spain); Begona Ahedo, M. [Unidad de Ingenieria y Obras, CIEMAT, Madrid (Spain)
2008-06-15
We describe a defined solid-angle counter for the standardization of radioactive sources of alpha-particle emitters. It has been built with the aim of combining good counting efficiencies, low uncertainties and flexibility of operation. The distance between source and detector can be changed in a continuous way with a precision guide and a ball screw from 8 to 19 cm, which correspond to counting efficiencies between 0.023 and 0.004 for small size sources. A linear encoder allows the accurate determination of the source position. Alpha spectra of the sources are measured with an implanted silicon detector with an active area of 2000 mm{sup 2}. Uncertainties, excluding counting statistics, are below 0.1%.
Understanding contact angle hysteresis on an ambient solid surface
Wang, Yong Jian; Guo, Shuo; Chen, Hsuan-Yi; Tong, Penger
2016-05-01
We report a systematic study of contact angle hysteresis (CAH) with direct measurement of the capillary force acting on a contact line formed on the surface of a long glass fiber intersecting a liquid-air interface. The glass fiber of diameter 1 -2 μ m and length 100 -200 μ m is glued onto the front end of a rectangular cantilever beam, which is used for atomic force microscopy. From the measured hysteresis loop of the capillary force for 28 different liquids with varying surface tensions and contact angles, we find a universal behavior of the unbalanced capillary force in the advancing and receding directions and the spring constant of a stretched meniscus by the glass fiber. Measurements of the capillary force and its fluctuations suggest that CAH on an ambient solid surface is caused primarily by two types of coexisting and spatially intertwined defects with opposite natures. The contact line is primarily pinned by the relatively nonwetting (repulsive) defects in the advancing direction and by the relatively wetting (attractive) defects in the receding direction. Based on the experimental observations, we propose a "composite model" of CAH and relevant scaling laws, which explain the basic features of the measured hysteresis force loops.
Understanding contact angle hysteresis on an ambient solid surface.
Wang, Yong Jian; Guo, Shuo; Chen, Hsuan-Yi; Tong, Penger
2016-05-01
We report a systematic study of contact angle hysteresis (CAH) with direct measurement of the capillary force acting on a contact line formed on the surface of a long glass fiber intersecting a liquid-air interface. The glass fiber of diameter 1-2μm and length 100-200μm is glued onto the front end of a rectangular cantilever beam, which is used for atomic force microscopy. From the measured hysteresis loop of the capillary force for 28 different liquids with varying surface tensions and contact angles, we find a universal behavior of the unbalanced capillary force in the advancing and receding directions and the spring constant of a stretched meniscus by the glass fiber. Measurements of the capillary force and its fluctuations suggest that CAH on an ambient solid surface is caused primarily by two types of coexisting and spatially intertwined defects with opposite natures. The contact line is primarily pinned by the relatively nonwetting (repulsive) defects in the advancing direction and by the relatively wetting (attractive) defects in the receding direction. Based on the experimental observations, we propose a "composite model" of CAH and relevant scaling laws, which explain the basic features of the measured hysteresis force loops.
Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J
2010-11-01
The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.
Neptunium(V) partitioning to uranium(VI) oxide and peroxide solids.
Douglas, Matthew; Clark, Sue B; Friese, Judah I; Arey, Bruce W; Buck, Edgar C; Hanson, Brady D
2005-06-01
Metaschoepite, [(UO2)8O2(OH)12] x 10H2O, and metastudtite, UO4 x 4H2O, are alteration phases anticipated in a spent nuclear fuel repository following the moist oxidation of UO2 on a geologic time scale. Dissolved concentrations and hence potential mobility of other radionuclides in the fuel, such as the neptunyl cation (NpO2+), will likely be determined by the extent of their partitioning into these U(VI) solids. 237Np is of particular interest due to its potential high mobility and long half-life (2.1 x 10(6) years.) In this study, metaschoepite has been precipitated and subsequently transformed to studtite in the presence of dissolved Np. The metaschoepite and studtite solids that formed initially contained dissolution studies of these solids at pH 6 demonstrate release of Np that exceeds congruent dissolution of U from metastudtite; furthermore, the released Np cation remains in solution. Thus, although the Np partitions into the metastudtite solid initially, it is released to solution over time, indicating that metastudtite is not likely to serve as a host solid for Np incorporation or sorption of the neptunyl cation on long time scales.
Improvement of effective solid angle using virtual-pivot holder and large EDS detector.
Koshiya, Shogo; Kimoto, Koji
2017-02-01
This paper describes the effective solid angle improvement achieved using a large-area silicon drift detector together with a virtual-pivot double-tilt specimen holder. The virtual-pivot mechanism enables various designs of specimen-retaining and can reduce the shadowing effect. Energy-dispersive X-ray spectra were measured and converted into effective solid angles using different types of specimen holders and specimens. The investigated shadowing-free mechanical system yielded effective solid angles approaching the nominal solid angle of 0.464sr. In addition, we have demonstrated the availability of the plastic (polyetheretherketone) specimen holder for low system noise.
The high granularity and large solid angle detection array EXPADES
Strano, E., E-mail: estrano@pd.infn.it [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Anastasio, A. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Bettini, M. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Boiano, C. [INFN – Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Cassese, C. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Castellani, L.; Corti, D. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Di Meo, P. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Galet, G. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Glodariu, T. [NIPNE, Str. Reactorului No. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); Grebosz, J. [IFJ PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Guglielmetti, A. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, I-20133 Milano (Italy); INFN – Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, I-80126 Napoli (Italy); INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Manea, C. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Mazzocco, M.; Molini, P. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nicoletto, M. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); and others
2013-12-15
Highlights: • We realized a detection array for Exotic Radioactive Ion Beams. • High granularity (32 × 32 pixels 2 × 2 mm wide for 8 telescopes). • High solid angle (8 telescopes 64 × 64 mm wide in a cylindrical configuration covering up to 2.6 sr). • We tested each component of the array by both alpha particles and in-beam environment. • We measured the angular distribution for {sup 17}O elastic scattering on a {sup 58}Ni target. -- Abstract: The EXPADES (EXotic PArticle DEtection System) detector array consists of 16 Double Side Silicon Strip Detectors (DSSSD) with active areas of 64 × 64 mm{sup 2}, arranged in 8 ΔE (40/50 μm)–E (300 μm) telescopes. All detector faces are segmented into 32 × 2-mm wide strips, ensuring a 2 × 2 mm{sup 2} pixel configuration. Eight ionization chambers can be alternatively used as ΔE stages or, if needed, as an additional third layer for more complex triple telescopes. The signals from silicon ΔE layers and from ionization chambers are read by standard electronics, while innovative 32-channel ASIC chips are employed for the readout of the E stages. The results of off-line tests with alpha sources and from the first in-beam experiment with a {sup 17}O beam are presented.
Hong, Seung Do; Ha, Man Yeong; Balachandar, S
2009-11-01
The present study investigates the variation of static contact angle of a water droplet in equilibrium with a solid surface in the absence of a body force and the dynamic contact angles of water droplet moving on a solid surface for different characteristic energies using the molecular dynamics simulation. With increasing characteristic energy, the static contact angle in equilibrium with a solid surface in the absence of a body force decreases because the hydrophobic surface changes its characteristics to the hydrophilic surface. In order to consider the effect of moving water droplet on the dynamic contact angles, we apply the constant acceleration to an individual oxygen and hydrogen atom. In the presence of a body force, the water droplet changes its shape with larger advancing contact angle than the receding angle. The dynamic contact angles are compared with the static contact angle in order to see the effect of the presence of a body force.
Contact Angles on a Soft Solid: From Young’s Law to Neumann’s Law
Marchand, A.; Das, S.; Snoeijer, J.H.; Andreotti, B.
2012-01-01
The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young’s relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact angles differently from those predicted by Neumann’s
LI Jianxin; YAN Jianhua; CHI Yong
2007-01-01
The content of heavy metals in the main physical compositions of municipal solid waste (MSW) is analyzed.The effects of temperature,chlorine and water on the partitioning of heavy metals are studied using a laboratory fluidized-bed (FB) furnace with simulated MSW composition.The experimental results show that temperature and chloride content in the feed have significant influence on the volatility of heavy metals;especially those of lower boiling point such as Hg,Cd and Zn.The influence of water is slight.
Contact angles on a soft solid: from Young's law to Neumann's law
Marchand, Antonin; Snoeijer, Jacco H; Andreotti, Bruno
2012-01-01
The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young's relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact angles different from that predicted by Neumann's law, which applies when the drop is floating on another liquid. Here we derive an elasto-capillary model for contact angles on a soft solid, by coupling a mean-field model for the molecular interactions to elasticity. We demonstrate that the limit of vanishing elastic modulus yields Neumann's law or a slight variation thereof, depending on the force transmission in the solid surface layer. The change in contact angle from the rigid limit (Young) to the soft limit (Neumann) appears when the length scale defined by the ratio of surface tension to elastic modulus $\\gamma/E$ reaches a few molecular sizes.
Comparing contact angle measurements and surface tension assessments of solid surfaces.
Cwikel, Dory; Zhao, Qi; Liu, Chen; Su, Xueju; Marmur, Abraham
2010-10-05
Four types of contact angles (receding, most stable, advancing, and "static") were measured by two independent laboratories for a large number of solid surfaces, spanning a large range of surface tensions. It is shown that the most stable contact angle, which is theoretically required for calculating the Young contact angle, is a practical, useful tool for wettability characterization of solid surfaces. In addition, it is shown that the experimentally measured most stable contact angle may not always be approximated by an average angle calculated from the advancing and receding contact angles. The "static" CA is shown in many cases to be very different from the most stable one. The measured contact angles were used for calculating the surface tensions of the solid samples by five methods. Meaningful differences exist among the surface tensions calculated using four previously known methods (Owens-Wendt, Wu, acid-base, and equation of state). A recently developed, Gibbsian-based correlation between interfacial tensions and individual surface tensions was used to calculate the surface tensions of the solid surfaces from the most stable contact angle of water. This calculation yielded in most cases higher values than calculated with the other four methods. On the basis of some low surface energy samples, the higher values appear to be justified.
Effect of Moisture on Partitioning of Heavy Metals in Incineration of Municipal Solid Waste
蒙爱红; 李清海; 贾金岩; 张衍国
2012-01-01
The effect of moisture in municipal solid waste (MSW) on partitioning of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) was studied in a laboratory tubular furnace by using simulated MSW. The moisture in MSW influences heavy metals in following ways, to increase the moisture in flue gas and decrease the combustion temperature, to prolong the combustion time, and to prolong the releasing time of volatiles with the furnace temperature decreased by increasing the moisture. The volatilization of Pb, Zn and Cd was enhanced by increasing the moisture in MSW because of the prolonged combustion time. For Pb and Zn, the combustion time was important at higher temperature, while for Cd, it was important at low temperature. The moisture content showed slight effect on Cu partitioning. When extra chlorine was added to MSW, such as 1%PVC + 0.5%NaCl, the volatilization of Pb, Zn and Cu was enhanced by increasing the moisture because water evaporation reduced the temperature and increased devolatilization time. At higher temperature, NaCl tends to decompose and generates more free chlorine, producing more metal chlorides. Since Cd is a strong volatile heavy metal in MSW, the effect of moisture content on its volatilization is less than that of Pb, Zn or Cu during the MSW incineration.
The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...
Development of a software package for solid-angle calculations using the Monte Carlo method
Zhang, Jie, E-mail: zhangjie_scu@163.com [Key Laboratory for Neutron Physics of Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621900 (China); College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Chen, Xiulian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Changsheng [Key Laboratory for Neutron Physics of Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621900 (China); Li, Gang [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xu, Jiayun, E-mail: xjy@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Sun, Guangai [Key Laboratory for Neutron Physics of Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621900 (China)
2014-02-01
Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C{sup ++}, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4. -- Highlights: • This software package (SAC) can give accurate solid-angle values. • SAC calculate solid angles using the Monte Carlo method and it has higher computation speed than Geant4. • A simple but effective variance reduction technique which was put forward by the authors has been applied in SAC. • A visualization function and a graphical user interface are also integrated in SAC.
Development of a software package for solid-angle calculations using the Monte Carlo method
Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai
2014-02-01
Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.
Description of EQSAM4: gas-liquid-solid partitioning model for global simulations
Metzger, S.; Steil, B.; Xu, L.; Penner, J. E.; Lelieveld, J.
2011-10-01
We introduce version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), which is part of our aerosol chemistry-microphysics module (GMXe) and chemistry-climate model (EMAC). We focus on the relative humidity of deliquescence (RHD) based water uptake of atmospheric aerosols, as this is important for atmospheric chemistry and climate modeling, e.g. to calculate the aerosol optical depth (AOD). Since the main EQSAM4 applications will involve large-scale, long-term and high-resolution atmospheric chemistry-climate modeling with EMAC, computational efficiency is an important requirement. EQSAM4 parameterizes the composition and water uptake of multicomponent atmospheric aerosols by considering the gas-liquid-solid partitioning of single and mixed solutes. EQSAM4 builds on analytical, and hence CPU efficient, aerosol hygroscopic growth parameterizations to compute the aerosol liquid water content (AWC). The parameterizations are described in the companion paper (Metzger et al., 2011) and only require a compound specific coefficient νi to derive the single solute molality and the AWC for the whole range of water activity (aw). νi is pre-calculated and applied during runtime by using internal look-up tables. Here, the EQSAM4 equilibrium model is described and compared to the more explicit thermodynamic model ISORROPIA II. Both models are imbedded in EMAC/GMXe. Box model inter-comparisons, including the reference model E-AIM, and global simulations with EMAC show that gas-particle partitioning, including semi-volatiles and water, is in good agreement. A more comprehensive box model inter-comparison of EQSAM4 with EQUISOLV II is subject of the revised publication of Xu et al. (2009), i.e. Xu et al. (2011).
Kong, Bin; Yang, Xiaozhen
2006-02-28
We have studied two types of topological substrates--the continuous solid substrates (CSS) and the discontinuous solid substrates (DSS)--by using the dissipative particle dynamics (DPD) method for a better understanding of the contact angle hysteresis on two such substrates. After the validation of DPD in the system, we found that DSS has a different distribution of the metastable states from that of CSS and that DSS has relatively larger contact angle hysteresis at lower temperature. Obtained results also show that CSS is more suitable for making an ultrahydrophobic or ultralyophobic surface than DSS from the point of view of dynamic wettability.
Do, Hainam; Wheatley, Richard J.
2016-08-01
A robust and model free Monte Carlo simulation method is proposed to address the challenge in computing the classical density of states and partition function of solids. Starting from the minimum configurational energy, the algorithm partitions the entire energy range in the increasing energy direction ("upward") into subdivisions whose integrated density of states is known. When combined with the density of states computed from the "downward" energy partitioning approach [H. Do, J. D. Hirst, and R. J. Wheatley, J. Chem. Phys. 135, 174105 (2011)], the equilibrium thermodynamic properties can be evaluated at any temperature and in any phase. The method is illustrated in the context of the Lennard-Jones system and can readily be extended to other molecular systems and clusters for which the structures are known.
Rehmann, Lars; Prpich, George P; Daugulis, Andrew J
2008-10-01
The feasibility of a two-step treatment process has been assessed at laboratory scale for the remediation of soil contaminated with a model mixture of polycyclic aromatic hydrocarbons (PAHs) (phenanthrene, pyrene, and fluoranthene). The initial step of the process involved contacting contaminated soil with thermoplastic, polymeric pellets (polyurethane). The ability of three different mobilizing agents (water, surfactant (Biosolve) and isopropyl alcohol) to enhance recovery of PAHs from soil was investigated and the results were compared to the recovery of PAHs from dry soil. The presence of isopropyl alcohol had the greatest impact on PAH recovery with approximately 80% of the original mass of PAHs in the soil being absorbed by the polymer pellets in 48 h. The second stage of the suggested treatment involved regeneration of the PAH loaded polymers via PAH biodegradation, which was carried out in a solid-liquid two-phase partitioning bioreactor. In addition to the PAH containing polymer pellets, the bioreactor contained a microbial consortium that was pre-selected for its ability to degrade the model PAHs and after a 14 d period approximately 78%, 62% and 36% of phenanthrene, pyrene, and fluoranthene, respectively, had been desorbed from the polymer and degraded. The rate of phenanthrene degradation was shown to be limited by mass transfer of phenanthrene from the polymer pellets. In case of pyrene and fluoranthene a combination of mass transfer and biodegradation rate might have been limiting.
Hui Zhou; Jin Sun; Aihong Meng; Qinghai Li; Yanguo Zhang
2014-01-01
Oxides of silicon, aluminium and calcium are normally dominant minerals during municipal solid waste (MSW) combustion. In flue gas, SiO2, Al2O3 and CaO all act as sorbents capturing heavy metals (and semi-volatile organics). To further understand the effect of sorbents during MSW combustion, the effects of SiO2, Al2O3 and CaO on Cu partitioning were experimentally investigated by the combustion of synthetic MSW in a tubular furnace and their effects on Cu speciation were studied by thermodynamic equilibrium calculations using ChemKin software. The experiments show that CaO has the highest Cu sorption efficiency at 900 °C, followed by Al2O3 and SiO2. Thermodynamic equilibrium calculations show that for Cu the addition of SiO2 and Al2O3 reduces the amount of liquid CuCl, which is more volatile. However, the addition of CaO has little influence on chemical sorption of Cu, indicating that the sorption of CaO is resulted from physical sorption.
Jiang, Ruifen; Lin, Wei; Wen, Sijia; Zhu, Fang; Luan, Tiangang; Ouyang, Gangfeng
2015-08-07
A fully automated solid phase microextraction (SPME) depletion method was developed to study the partition coefficient of organic compound between complex matrix and water sample. The SPME depletion process was conducted by pre-loading the fiber with a specific amount of organic compounds from a proposed standard gas generation vial, and then desorbing the fiber into the targeted samples. Based on the proposed method, the partition coefficients (Kmatrix) of 4 polyaromatic hydrocarbons (PAHs) between humic acid (HA)/hydroxypropyl-β-cyclodextrin (β-HPCD) and aqueous sample were determined. The results showed that the logKmatrix of 4 PAHs with HA and β-HPCD ranged from 3.19 to 4.08, and 2.45 to 3.15, respectively. In addition, the logKmatrix values decreased about 0.12-0.27 log units for different PAHs for every 10°C increase in temperature. The effect of temperature on the partition coefficient followed van't Hoff plot, and the partition coefficient at any temperature can be predicted based on the plot. Furthermore, the proposed method was applied for the real biological fluid analysis. The partition coefficients of 6 PAHs between the complex matrices in the fetal bovine serum and water were determined, and compared to ones obtained from SPME extraction method. The result demonstrated that the proposed method can be applied to determine the sorption coefficients of hydrophobic compounds between complex matrix and water in a variety of samples.
1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.
Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke
2015-12-01
This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.
Lazar, Markus, E-mail: lazar@fkp.tu-darmstadt.de [Heisenberg Research Group, Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt (Germany); Po, Giacomo [Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095 (United States)
2014-01-24
A representation of the solid angle and the Burgers formula as line integral is derived in the framework of the theory of gradient elasticity of Helmholtz type. The gradient version of the Eshelby–deWit representation of the Burgers formula of a closed dislocation loop is given. Such a form is suitable for the numerical implementation in 3D dislocation dynamics (DD).
Characterization of actinide targets by low solid-angle alpha particle counting
Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S
1999-01-01
Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...
Comparison of contact angle hysteresis of different probe liquids on the same solid surface.
Chibowski, Emil; Jurak, Malgorzata
2013-02-01
Advancing and receding contact angles of water, formamide and diiodomethane were measured on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on three different solid supports-glass, mica and poly(methyl methacrylate). Up to five statistical monolayers were deposited on the surfaces by spreading DPPC solution. It was found that even on five statistical DPPC monolayers, the hysteresis of a given liquid depends on the kind of solid support. Also on the same solid support the contact angle hysteresis is different for each probe liquid used. The AFM images show that the heights of roughness of the DPPC films cannot be the primary cause of the observed hysteresis because the heights are too small to cause the observed hystereses. It is believed that the hysteresis is due to the liquid film present right behind the three-phase solid surface/liquid drop/gas (vapour) contact line and the presence of Derjaguin pressure. The value of contact angle hysteresis depends on both the solid surface and liquid properties as well as on intermolecular interactions between them.
Transfer functions for solid solution partitioning of cadmium for Australian soils
Vries, de W.; Mc Laughlin, M.J.; Groenenberg, J.E.
2011-01-01
To assess transport and ecotoxicological risks of metals, such as cadmium (Cd) in soils, models are needed for partitioning and speciation. We derived regression-based “partition-relations” based on adsorption and desorption experiments for main Australian soil types. First, batch adsorption experim
Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu; Schwendeman, D.W., E-mail: schwed@rpi.edu
2016-01-15
We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solid Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.
EFFECT OF NOZZLE FAN ANGLE ON SPRAYS IN GAS-SOLID RISER FLOW
Muhammad; M.; R.; Qureshi; Chao; Zhu; Chao-Hsin; Lin; Liang-Shih; Fan
2006-01-01
A three-dimensional simulation study is performed for investigating the hydrodynamic behaviors of a cross-flow liquid nitrogen spray injected into an air-fluidized catalytic cracking (FCC) riser of rectangular cross-section. Rectangular nozzles with a fixed aspect ratio but different fan angles are used for the spray feeding. While our numerical simulation reveals a generic three-phase flow structure with strong three-phase interactions under rapid vaporization of sprays, this paper tends to focus on the study of the effect of nozzle fan angle on the spray coverage as well as vapor flux distribution by spray vaporization inside the riser flow. The gas-solid (air-FCC) flow is simulated using the multi-fluid method while the evaporating sprays (liquid nitrogen) are calculated using the Lagrangian trajectory method, with a strong two-way coupling between the Eulerian gas-solid flow and the Lagrangian trajectories of spray. Our simulation shows that the spray coverage is basically dominated by the spray fan angle. The spray fan angle has a very minor effect on spray penetration. The spray vaporization flux per unit area of spray coverage is highly non-linearly distributed along the spray penetration. The convection of gas-solid flow in a riser leads to a significant downward deviation of vapor generated by droplet vaporization, causing a strong recirculating wake region in the immediate downstream area of the spray.
Hydrogen and deuterium NMR of solids by magic-angle spinning
Eckman, R.R.
1982-10-01
The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, ..beta../sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of ..beta... A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of /sup 1/H with /sup 2/H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids.
Bratchenko, M I
2001-01-01
A novel method of Monte Carlo simulation of small-angle reflection of charged particles from solid surfaces has been developed. Instead of atomic-scale simulation of particle-surface collisions the method treats the reflection macroscopically as 'condensed history' event. Statistical parameters of reflection are sampled from the theoretical distributions upon energy and angles. An efficient sampling algorithm based on combination of inverse probability distribution function method and rejection method has been proposed and tested. As an example of application the results of statistical modeling of particles flux enhancement near the bottom of vertical Wehner cone are presented and compared with simple geometrical model of specular reflection.
Ma, Xiao-kui; Daugulis, Andrew J
2014-01-01
Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations.
The wetting problem of fluids on solid surfaces: Dynamics of lines and contact angle hysteresis
Gouin, Henri
2001-01-01
8 pages; International audience; In 1805, Young was the first who introduced an expression for contact angle in static, but today, the motion of the contact-line formed at the intersection of two immiscible fluids and a solid is still subject to dispute. By means of the new physical concept of line viscosity, the equations of motions and boundary conditions for fluids in contact on a solid surface together with interface and contact-line are revisited. A new Young-Dupré equation for the dynam...
Force of adhesion upon loss of contact angle hysteresis: when a liquid behaves like a solid.
Escobar, Juan V; Castillo, Rolando
2013-11-27
The theoretically predicted vanishment of the macroscopic contact angle hysteresis is found experimentally along with a small but finite force of adhesion (F(Ad)≈-0.5 μN) that, unexpectedly, is independent of the history of the preload. Our results agree with the prediction of a model in which the surface tension of the liquid provides the counterpart of the restoring force of an elastic solid, evidencing that the dewetting of a liquid in the absence of strong pinning points is equivalent to the detachment of an elastic solid.
Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR
Rosay, Melanie; Blank, Monica; Engelke, Frank
2016-03-01
Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.
Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.
Hung, Ivan; Gan, Zhehong
2015-07-01
Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended.
Drops on soft solids: Free energy and double transition of contact angles
Lubbers, Luuk A; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H
2013-01-01
The equilibrium shape of liquid drops on elastic substrates is determined by minimising elastic and capillary free energies. The problem is governed by three length scales: the size of the drop $R$, the molecular size $a$, and the ratio of surface tension to elastic modulus $\\gamma/E$. We show that the contact angles undergo two transitions upon changing the substrates from rigid to soft. The microscopic wetting angles deviate from Young's law when $\\gamma/Ea \\gg 1$, while the apparent macroscopic angle only changes in the very soft limit $\\gamma/ER \\gg 1$. Details of the elastic deformations are worked out in the simplifying case where the surface energy of the solid is assumed independent of the elastic strain. The total free energy is found to be lowest on softer substrates, consistent with recent experiments. Finally, we discuss how the variational framework can be generalized to properly account for surface stress.
Adouni, M; Shirazi-Adl, A
2014-05-01
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics-kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17Nm is varied by ±50% to 25.5Nm and 8.5Nm. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.
Kuchin, Igor V; Starov, Victor M
2016-05-31
A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.
Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.
2008-01-01
In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total dissolve
Chen, H.; Van der Zwaag, S.
2010-01-01
The soft impingement effect at the later stage of partitioning phase transformations has been modeled both for the diffusion-controlled growth model and for the mixed-mode model. Instead of the linear and exponential approximations for the concentration gradient in front of the interface used in the
Abbas, Mahmoud I., E-mail: mabbas@physicist.net [Physics Department, Faculty of Science, Alexandria University, 21511 Alexandria (Egypt); Hammoud, Sami [Physics Department, Faculty of Science, Beirut Arab University, Beirut (Lebanon); Physics Department, Faculty of Science and Art, Lebanese International University (Lebanon); Ibrahim, Tarek; Sakr, Mohamed [Physics Department, Faculty of Science, Beirut Arab University, Beirut (Lebanon)
2015-01-21
In this article, we introduce a direct analytical mathematical method for calculating the solid angle, Ω, subtended at a point by closed elliptical contours. The solid angle is required in many areas of optical and nuclear physics to estimate the flux of particle beam of radiation and to determine the activity of a radioactive source. The validity of the derived analytical expressions was successfully confirmed by the comparison with some published data (Numerical Method)
A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies
Cui, Guoqiang; Hannigan, J. M.; Loeckenhoff, R.; Matinaga, F. M.; Raymer, M. G.; Bhongale, S.; Holland, M.; Mosor, S.; Chatterjee, S.; Gibbs, H. M.; Khitrova, G.
2006-01-01
We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature $50\\mathrm{\\mu m}$. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and the cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a d...
Kuchin, I; Starov, V
2015-05-19
A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid substrates is developed in terms of the shape of the disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr contact angle θ ≠ θe, correspond to the state of slow "microscopic" advancing or receding motion of the liquid if θe contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing, θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown now that (i) both advancing and receding contact angles of a droplet on a on smooth, homogeneous solid substrate can be calculated based on shape of disjoining/conjoining pressure isotherm, and (ii) both advancing and receding contact angles depend on the drop volume and are not unique characteristics of the liquid-solid system. The latter is different from advancing/receding contact angles in thin capillaries. It is shown also that the receding contact angle is much closer to the equilibrium contact angle than the advancing contact angle. The latter conclusion is unexpected and is in a contradiction with the commonly accepted view that the advancing contact angle can be taken as the first approximation for the equilibrium contact angle. The dependency of hysteresis contact angles on the drop volume has a direct experimental confirmation.
Absence of solid angle deficit singularities in beyond-generalized proca theories
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-12-01
In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) scalar-tensor theories, which are outside the domain of second-order Horndeski theories, it is known that there exists a solid angle deficit singularity in the case where the parameter αH characterizing the deviation from Horndeski theories approaches a nonvanishing constant at the center of a spherically symmetric body. Meanwhile, it was recently shown that second-order generalized Proca theories with a massive vector field Aμ can be consistently extended to beyond-generalized Proca theories, which recover shift-symmetric GLPV theories in the scalar limit Aμ→∇μχ . In beyond-generalized Proca theories up to quartic-order Lagrangians, we show that solid angle deficit singularities are generally absent due to the existence of a temporal vector component. We also derive the vector-field profiles around a compact object and show that the success of the Vainshtein mechanism operated by vector Galileons is not prevented by new interactions in beyond generalized Proca theories.
Changes in contact angle providing evidence for surface alteration in multi-component solid foods
Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan
2015-11-01
Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.
Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.
Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko
2014-03-01
Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.
Some remarks on the solid surface tension determination from contact angle measurements
Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław
2017-05-01
The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.
Golden, G A; Rubin, R T; Mason, R P
1998-01-19
The classical, genomic mechanisms of steroid hormone action cannot account for their rapid cellular effects. Membrane-bound steroid receptors have been partially characterized, but many rapid steroid effects occur in the absence of steroid-protein binding. Although it has been proposed that these effects could be due to steroid-induced biophysical alterations of the cell membrane, only indirect supporting evidence for this hypothesis has been forthcoming. In the present study, the ability of cortisol and estradiol (E2), natural steroids of different lipophilicity, to induce alterations in a model membrane (lecithin) bilayer was examined directly by small-angle X-ray diffraction under physiologic-like conditions. Within minutes, both steroids partitioned to distinct sites in the membrane. With increasing membrane cholesterol content, cortisol was displaced toward the polar headgroup region of the phospholipid bilayer, whereas E2 was displaced in the opposite direction, toward the nonpolar hydrocarbon core. Membrane-based partition coefficients (Kp[mem]) for both steroids (>100:1) were highest at those cholesterol concentrations that displaced the steroids toward the headgroup region (high cholesterol for cortisol; low for E2). Both steroids, when located in the headgroup region, increased overall bilayer width by 3-4 A, a change that could modulate the structure and function of integral membrane proteins independent from steroid effects on the genome.
Riedel, Kerstin; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai [Institut fuer Molekulare Biotechnologie, Abteilung Molekulare Biophysik/NMR-Spektroskopie (Germany)], E-mail: raman@imb-jena.de
2005-04-15
It is demonstrated that the spatial proximity of {sup 1}H nuclei in hydrogen bonded base-pairs in RNAs can be conveniently mapped via magic angle spinning solid state NMR experiments involving proton spin diffusion driven chemical shift correlation of low gamma nuclei such as the imino and amino nitrogens of nucleic acid bases. As different canonical and non-canonical base-pairing schemes encountered in nucleic acids are characterised by topologically different networks of proton dipolar couplings, different base-pairing schemes lead to characteristic cross-peak intensity patterns in such correlation spectra. The method was employed in a study of a 100 kDa RNA composed of 97 CUG repeats, or (CUG){sub 97} that has been implicated in the neuromuscular disease myotonic dystrophy. {sup 15}N-{sup 15}N chemical shift correlation studies confirm the presence of Watson-Crick GC base pairs in (CUG){sub 97}.
Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.
Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj
2016-02-01
Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.
A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies
Cui, Guoqiang; Hannigan, J. M.; Loeckenhoff, R.; Matinaga, F. M.; Raymer, M. G.; Bhongale, S.; Holland, M.; Mosor, S.; Chatterjee, S.; Gibbs, H. M.; Khitrova, G.
2006-03-01
We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature 50 µm. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a diffraction-limited (sub-micron) mode-waist at the planar mirror, leading to a large coupling constant between the cavity mode and QD. The half-monolithic design gives more spatial and spectral tuning abilities, relatively to fully monolithic structures. This unique micro-cavity design will potentially enable us to both reach the cavity quantum electrodynamics (QED) strong coupling regime and realize the deterministic generation of single photons on demand.
Equilibrium gas-liquid-solid contact angle from density-functional theory
Pereira, Antonio
2010-01-01
We investigate the equilibrium of a fluid in contact with a solid boundary through a density-functional theory. Depending on the conditions, the fluid can be in one phase, gas or liquid, or two phases, while the wall induces an external field acting on the fluid particles. We first examine the case of a liquid film in contact with the wall. We construct bifurcation diagrams for the film thickness as a function of the chemical potential. At a specific value of the chemical potential, two equally stable films, a thin one and a thick one, can coexist. As saturation is approached, the thickness of the thick film tends to infinity. This allows the construction of a liquid-gas interface that forms a well defined contact angle with the wall.
Mayer, P.; Vaes, W.H.J.; Hermens, J.L.M.
2000-01-01
The use of solid-phase microextraction with poly(dimethylsiloxane) (PDMS)-coated glass fibers for the extraction and analysis of hydrophobic organic analytes is increasing. The literature on this topic is characterized by large discrepancies in partition coefficients and an uncertainty of whether hi
Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.
2005-01-01
The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected
Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.
2005-01-01
The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected
Schröder, T.J.
2005-01-01
In this study, the solid-solution partitioning of Cd, Cr, Cu, Ni, Pb, Zn and As in floodplain soils of the Dutch part of the rivers Rhine and Meuse is assessed by combining extensive field sampling with advanced geochemical modelling. The aim of this study was threefold: to develop tools to study th
Liquid transfer between two solid surfaces with the effect of contact angle hysteresis
Chen, Huanchen; Tang, Tian; Amirfazli, Alidad
2013-11-01
Drop transfer from one solid surface to another (e.g. due to the approach of a surface from top to a sessile drop resting on a lower surface) is widely observed in many industrial areas, e.g. offset printing. This process is governed by many factors such as the contact angle (CA) and contact angle hysteresis (CAH) of surfaces, viscosity of the liquid and the rate at which the donor and acceptor surfaces are separated. In this work, an experimental apparatus is developed to study the transfer of liquid drop between surfaces, with the particular focus on addressing the effect of the surfaces' CAH when the loading speed is low (transfer is quasi-static). In the experiment, a liquid bridge between the two surfaces is first formed by compression; then stretched to the point of breakage. By using surfaces that have similar CA but dissimilar CAH, the liquid transfer ratio (the amount of liquid transferred to the acceptor surface over the total amount of liquid) is found to be significantly influenced by CAH. In addition, as a result of CAH, the maximum compression of the liquid bridge is found to play an important role in determining the transfer ratio. These findings can be very helpful for the design of surfaces and loading conditions to achieve desired transfer ratios in practice.
Tomei, M Concetta; Annesini, M Cristina; Daugulis, Andrew J
2012-11-01
Used automobile tire pieces were tested for their suitability as the sequestering phase in a two-phase partitioning bioreactor to treat 2,4-dichlorophenol (DCP). Abiotic sorption tests and equilibrium partitioning tests confirmed that tire "crumble" possesses very favourable properties for this application with DCP diffusivity (4.8 × 10(-8) cm(2)/s) and partition coefficient (31) values comparable to those of commercially available polymers. Biodegradation tests further validated the effectiveness of using waste tires to detoxify a DCP solution, and allow for enhanced biodegradation compared to conventional single-phase operation. These results establish the potential of using a low-cost waste material to assist in the bioremediation of a toxic aqueous contaminant.
Grandinetti, P.J. [Ohio State Univ., Columbus, OH (United States); Baltisberger, J.H. [Berea College, KY (United States); Farnan, I.; Stebbins, J.F. [Stanford Univ., CA (United States); Werner, U.; Pines, A. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)
1995-08-10
Five distinctly resolved {sup 17}O solid-state NMR resonances in room temperature coesite, an SiO{sub 2} polymorph, have been observed and assigned using dynamic angle spinning (DAS) at 11.7 T along with magic angle spinning (MAS) spectra at 9.4 and 11.7 T. The {sup 17}O quadrupolar parameters for each of the five oxygen environments in coesite are correlated with the Si-O-Si bridging bond angles determined by diffraction experiments. The sign of e{sup 2}-qQ/h along with the orientation of the electric field gradient for oxygen in the Si-O-Si linkage were determined from a Townes-Dailey analysis of the data. 41 refs., 7 figs., 5 tabs.
Czerwinski, Bartlomiej, E-mail: bartlomiej.czerwinski@uj.edu.pl [Goszczynski College, pl. Krasinskiego 1, 34-400 Nowy Targ (Poland); Rzeznik, Lukasz; Paruch, Robert [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Garrison, Barbara J. [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States); Postawa, Zbigniew [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)
2011-07-15
Molecular dynamics computer simulations have been used to investigate the effect of the cluster size on the sputtering yield dependence on the impact angle. Ar{sub 366} and Ar{sub 2953} cluster projectiles with 14.75 keV of incident energy are directed at the surface of a solid benzene crystal described by a coarse-grained representation at angles between 0 deg. and 70 deg. It is observed that the shape of the angular dependence of sputtering efficiency is strongly affected by the cluster size. For the Ar{sub 366} cluster, the sputtering yield only slightly increases with the impact angle, has a broad maximum around 40 deg., and decreases at larger angles. For the Ar{sub 2953} cluster, the yield strongly increases with the impact angle, has a maximum around 45 deg. followed by a steep decrease at larger angles. For both investigated cluster projectiles the primary energy is deposited so close to the surface so that the sputtering efficiency only weekly benefits from the shift of the deposited energy profile toward the surface which occurs at larger impact angles. In this study, molecular dynamics computer simulations are used to probe the effect of the impact angle on the efficiency of ejection molecules emitted from solid benzene by 14.75 keV Ar{sub 366} and Ar{sub 2953} clusters.
Bryan, C. R.; Heath, J. E.; Hjelm, R.; Taylor, M.; Olds, D.; Dewers, T. A.
2014-12-01
We present novel oedometric small angle neutron scattering (SANS) on deforming clay-rich materials. Oedometric SANS involves a non-hydrostatic pressure vessel (i.e., the oedometer) that places a porous sample under uniaxial strain with control of applied pore pressure. The oedometer is optimized for neutron optics of SANS on the Low-Q Diffractometer of the Los Alamos Neutron Science Center. The device enables normal oedometric measurements of time-dependent compaction, but with SANS for in situ observation of pore structure evolution under uniaxial strain as a function of effective stress and pore fluid compositions. We present preliminary examination of clay compaction and testing of the device. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas
2010-04-01
We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.
Connan, O. [Laboratoire de Radioecologie de Cherbourg-Octeville, Institut de Radioprotection et de Surete nucleaire (IRSN), Service d' Etudes et du Comportement des Radionucleides dans l' Environnement (SECRE), rue Max Pol Fouchet, 50130 Cherbourg-Octeville (France)], E-mail: olivier.connan@irsn.fr; Boust, D. [Laboratoire de Radioecologie de Cherbourg-Octeville, Institut de Radioprotection et de Surete nucleaire (IRSN), Service d' Etudes et du Comportement des Radionucleides dans l' Environnement (SECRE), rue Max Pol Fouchet, 50130 Cherbourg-Octeville (France); Billon, G. [Laboratoire de Chimie Analytique et Marine, Universite des sciences et technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Solier, L.; Rozet, M.; Bouderbala, S. [Laboratoire de Radioecologie de Cherbourg-Octeville, Institut de Radioprotection et de Surete nucleaire (IRSN), Service d' Etudes et du Comportement des Radionucleides dans l' Environnement (SECRE), rue Max Pol Fouchet, 50130 Cherbourg-Octeville (France)
2009-10-15
A sequential extraction protocol has been used to determine the solid-phase partition of {sup 210}Po and {sup 210}Pb in anoxic marine sediment from the roads of Cherbourg (France) in the central English Channel. Measurements were also obtained in pore waters, in which {sup 210}Po activities range between 1 and 20 mBq L{sup -1} and {sup 210}Pb activities between 2.4 and 3.8 mBq L{sup -1}, with highest activities in the topmost layer. These activities are higher than in seawater, suggesting that sediment act as a source of both {sup 210}Po and {sup 210}Pb for overlying water. The {sup 210}Po profile in the pore waters is apparently correlated with those obtained for Fe, Mn and SO{sub 4}{sup 2-}, suggesting an influence of early diagenetic processes on the {sup 210}Po solid-liquid distribution. In the sediment, {sup 210}Po is predominantly bound to organic matter or chromium reducible sulphides, and residuals (clay minerals and refractory oxides). Our results indicate that {sup 210}Po is not significantly bound to AVS, i.e. acid volatile sulphides: bioturbation could play a role by the early redistribution of {sup 210}Po bound to acid volatile sulphides in the sediment. {sup 210}Po, {sup 210}Pb and Pb exhibit differences in terms of distribution, probably due to a different mode of penetration in the sediment. This work provides information on solid and liquid distribution of {sup 210}Po and {sup 210}Pb in marine sediment. These data are very scarce in the litterature.
The contact angle of wetting of the solid phase of soil before and after chemical modification
Tyugai Zemfira
2015-07-01
Full Text Available Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. Wettability of surface is usually expressed in terms of contact angle (CA measurement. If the CA between liquid and solid surface is less than 90°, the surface is called hydrophilic, otherwise the surface is called hydrophobic. If the CA of water droplet on hydrophilic surface is in a range of 0-30° this surface is called superhydrophilic. In case of superhydrophobic surfaces the CA exceeds 150° that means that these surfaces are extremely difficult to wet. CA of wetting of mineral soil particles depends on the overlying organic and iron compounds. The object of study is a sample of the humus-accumulative horizon of typical chernozem (Kursk, Russia and two samples (horizons A1, B2 of red ferrallitic soils (Fr. Norfolk, NE Oceania. The soil samples were analyzed for organic carbon, forms of non-silicate iron and hydrophobic-hydrophilic composition of humic substances. CA of wetting was determined in the intact samples and after removal of organic matter (H2O2 treatment, amorphous and crystallized forms of iron. Static contact angles were determined with the sessile drop method using a digital goniometer (Drop Shape Analysis System, DSA100, Krüss GmbH, Hamburg, Germany. The contact angle was calculated by the Young–Laplace method (fitting of Young–Laplace equation to the drop shape. The measurements were repeated 10-15 times for every sample. Oxidation of organic matter (H2O2 treatment causes an increase in the values of CA of wetting (in chernozem from 9.3 to 28,0-29.5º, in ferrallitic soil from 18.0 − 27.3 to 22.4 − 33.4º. CA remained constant for chernozem and slightly decreased in the case of ferrallitic soil, when the removal of amorphous and crystallized forms of iron was performed on samples pretreated with H2O2. CA increase occurs after successive removal of nonsilicate forms of iron from soil samples of
Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.
Nishiyama, Takashi; Yamada, Yutaka; Ikuta, Tatsuya; Takahashi, Koji; Takata, Yasuyuki
2015-01-27
Nanobubbles exist at solid-liquid interfaces between pure water and hydrophobic surfaces with very high stability, lasting in certain cases up to several days. Not only semispherical but also other shapes, such as micropancakes, are known to exist at such interfaces. However, doubt has been raised as to whether or not the nanobubbles are gas-phase entities. In this study, surface nanobubbles at a pure water-highly ordered pyrolytic graphite (HOPG) interface were investigated by peak force quantitative nanomechanics (PF-QNM). Multiple isolated nanobubbles generated by the solvent-exchange method were present on the terraced areas, avoiding the steps of the HOPG surface. Adjacent nanobubbles coalesced and formed metastable nanobubbles. Coalescence was enhanced by the PF-QNM measurement. We determined that nanobubbles can exist for a long time because of nanoscale contact angle hysteresis at the water-HOPG interface. Moreover, the hydrophilic steps of HOPG were avoided during coalescence, providing evidence that the nanobubbles are truly gas phase.
A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy
Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Madhu, P. K., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075 (India)
2015-05-14
A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.
Ahmad Yusuf Ismail
2011-12-01
Full Text Available 0 0 1 332 1894 International Islamic University 15 4 2222 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} The micro-perforated panel (MPP is recently well-known as an alternative ‘green‘ sound absorber replacing the conventional porous materials. Constructed from a solid panel which provides a non-abrassive structure and also an optically attractive surface, there gives a feasibility to implement such a panel inside a vehicle cabin. This paper is the preliminary study to investigate the sound transmission loss (TL of a solid panel coupled with a micro-perforated panel to form a doube-leaf partition which is already known as a lightweigth stucture for noise insulation in vehicles and buildings. The mathematical model for the TL subjected to normal incidence of acoustic excitation is derived. The results show that its performance substantially improves at the troublesome frequency of mass-air-mass resonance which occurs in the conventional double-leaf solid partition. This is important particularly for the noise source predominant at low frequencies. This can also be controlled by tuning the hole size and number as well as the air gap between the panels. ABSTRAK: Panel bertebuk mikro (micro-perforated panel (MPP kebelakangan ini dikenali sebagai alternatif penyerap bunyi yang mesra alam menggantikan bahan berliang lazim. Dibina daripada satu panel padu yang memberikan satu struktur tak lelas dan juga satu permukaan yang menarik, ia memberikan kemungkinan penggunaan panel tersebut di dalam kabin kenderaan. Tesis ini merupakan kajian permulaan dalam mengkaji hilang pancaran bunyi
Supramolecular ionics: electric charge partition within polymers and other non-conducting solids
FERNANDO GALEMBECK
2001-12-01
Full Text Available Electrostatic phenomena in insulators have been known for the past four centuries, but many related questions are still unanswered, for instance: which are the charge-bearing species in an electrified organic polymer, how are the charges spatially distributed and which is the contribution of the electrically charged domains to the overall polymer properties? New scanning probe microscopies were recently introduced, and these are suitable for the mapping of electric potentials across a solid sample thus providing some answers for the previous questions. In this work, we report results obtained with two of these techniques: scanning electric potential (SEPM and electric force microscopy (EFM. These results were associated to images acquired by using analytical electron microscopy (energy-loss spectroscopy imaging in the transmission electron microscope, ESI-TEM for colloid polymer samples. Together, they show domains with excess electric charges (and potentials extending up to hundreds of nanometers and formed by large clusters of cations or anions, reaching supramolecular dimensions. Domains with excess electric charge were also observed in thermoplastics as well as in silica, polyphosphate and titanium oxide particles. In the case of thermoplastics, the origin of the charges is tentatively assigned to their tribochemistry, oxidation followed by segregation or the Mawell-Wagner-Sillars and Costa Ribeiro effects.A eletrificação de sólidos é conhecida há quatro séculos, mas há muitas questões importantes sobre este assunto, ainda não respondidas: por exemplo, quais são as espécies portadoras de cargas em um polímero isolante eletrificado, como estas cargas estão espacialmente distribuídas e qual é a contribuição destas cargas para as propriedades do polímero? Técnicas microscópicas introduzidas recentemente são apropriadas para o mapeamento de potenciais elétricos ao longo de uma superfície sólida, portanto podem responder a
Modulation of cross polarization in motionally averaged solids by Variable Angle Spinning NMR
Espinosa, Catalina A.; Thureau, Pierre; Shapiro, Rebecca A.; Litvak, Ilya M.; Martin, Rachel W.
2011-01-01
In systems where the dipolar couplings are partially averaged by molecular motion, cross-polarization is modulated by sample spinning. The cross-polariation efficiency in Variable Angle Spinning (VAS) and Switched Angle Spinning (SAS) experiments on mobile samples is therefore strongly dependent on the spinning angle. We describe simulations and experimental measurements of these effects over a range of spinning angles from 0° to 90°. PMID:21743604
Sheppard, Steve; Long, Jeff; Sanipelli, Barb (ECOMatters Inc., Pinawa (Canada)); Sohlenius, Gustav (Geological Survey of Sweden (SGU), Uppsala (Sweden))
2009-03-15
Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications
Mao, Kanmi [Iowa State Univ., Ames, IA (United States)
2011-01-01
The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., ^{13}C and ^{15}N) via the sensitive high-{gamma} nuclei (e.g., ^{1}H and ^{19}F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for ^{1}H-^{1}H homonuclear decoupling. Also presented is a simple new strategy for optimization of ^{1}H-^{1}H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in ^{1}H detected 2D ^{1}H{l_brace}^{13}C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional ^{13}C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear ^{1}H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5_{m}^{$\\bar{x}$}, PMLG5_{mm}^{$\\bar{x}$x} and SAM3) were analyzed to maximize the performance of through-bond transfer based
Principles of spin-echo modulation by J-couplings in magic-angle-spinning solid-state NMR.
Duma, Luminita; Lai, Wai Cheu; Carravetta, Marina; Emsley, Lyndon; Brown, Steven P; Levitt, Malcolm H
2004-06-21
In magic-angle-spinning solid-state NMR, the homonuclear J-couplings between pairs of spin-1/2 nuclei may be determined by studying the modulation of the spin echo induced by a pi-pulse, as a function of the echo duration. We present the theory of J-induced spin-echo modulation in magic-angle-spinning solids, and derive a set of modulation regimes which apply under different experimental conditions. In most cases, the dominant spin-echo modulation frequency is exactly equal to the J-coupling. Somewhat surprisingly, the chemical shift anisotropies and dipole-dipole couplings tend to stabilise--rather than abscure--the J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing 13C spin pairs.
Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy
2017-04-18
Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong (1)H-(1)H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, (1)H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow (1)H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity
Drops on soft solids: Free energy and double transition of contact angles
Lubbers, Luuk A.; Weijs, Joost H.; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H.
2013-01-01
The equilibrium shape of liquid drops on elastic substrates is determined by minimising elastic and capillary free energies, focusing on thick incompressible substrates. The problem is governed by three length scales: the size of the drop $R$, the molecular size $a$, and the ratio of surface tension to elastic modulus $\\gamma/E$. We show that the contact angles undergo two transitions upon changing the substrates from rigid to soft. The microscopic wetting angles deviate from Young's law when...
Rao, D V; Brunetti, A; Gigante, G E; Takeda, T; Itai, Y; Akatsuka, T
2002-01-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic K alpha radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. (authors)
How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles
Rame, Enrique
2001-01-01
A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.
Jonker, Michiel T O
2016-01-01
Octanol-water partition coefficients (Kow ) are widely used in fate and effects modelling of chemicals. Still, high quality experimental Kow data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and
Bandyopadhyay, J
2011-05-01
Full Text Available -1 Polymer Volume 52, Issue 12, 26 May 2011, Pages 2628?2642 Determination of structural changes of dispersed clay platelets in a polymer blend during solid-state rheological property measurement by small-angle X-ray scattering ? Jayita Bandyopadhyaya... frequency and temperature sweep tests. Graphical abstract Keywords ? Blend composites; ? Small-angle X-ray scattering; ? Solid-state rheology ...
Avram, Liat; Goldbourt, Amir; Cohen, Yoram
2016-01-18
Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1)H/(13)C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.
Madhu, P K
2009-02-01
High-resolution NMR spectroscopy of (1)H spins in the solid state is normally rendered difficult due to the strong homonuclear (1)H-(1)H dipolar couplings. Even under very high-speed magic-angle spinning (MAS) at ca. 60-70kHz, these couplings are not completely removed. An appropriate radiofrequency pulse scheme is required to average out the homonuclear dipolar interactions in combination with MAS to get high-resolution (1)H NMR spectrum in solid state. Several schemes have been introduced in the recent past with a variety of applications also envisaged. Development of some of these schemes has been made possible with a clear understanding of the underlying spin physics based on bimodal Floquet theory. The utility of these high-resolution pulse schemes in combination with MAS has been demonstrated for spinning speeds of 10-65kHz in a range of (1)H Larmor frequencies from 300 to 800MHz.
Saqib, Naeem; Bäckström, Mattias
2014-12-01
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hernández, María; Quijano, Guillermo; Thalasso, Frédéric; Daugulis, Andrew J; Villaverde, Santiago; Muñoz, Raúl
2010-08-01
A comparative study of the performance of solid and liquid non-aqueous phases (NAPs) to enhance the mass transfer and biodegradation of hexane by Pseudomonas aeruginosa in two-phase partitioning bioreactors (TPPBs) was undertaken. A preliminary NAP screening was thus carried out among the most common solid and liquid NAPs used in pollutant biodegradation. The polymer Kraton G1657 (solid) and the liquid silicone oils SO20 and SO200 were selected from this screening based on their biocompatibility, resistance to microbial attack, non-volatility and high affinity for hexane (low partition coefficient: K = C(g)/C(NAP), where C(g) and C(NAP) represent the pollutant concentration in the gas phase and NAP, respectively). Despite the three NAPs exhibited a similar affinity for hexane (K approximately 0.0058), SO200 and SO20 showed a superior performance to Kraton G1657 in terms of hexane mass transfer and biodegradation enhancement. The enhanced performance of SO200 and SO20 could be explained by both the low interfacial area of this solid polymer (as a result of the large size of commercial beads) and by the interference of water on hexane transfer (observed in this work). When Kraton G1657 (20%) was tested in a TPPB inoculated with P. aeruginosa, steady state elimination capacities (ECs) of 5.6 +/- 0.6 g m(-3) h(-1) were achieved. These values were similar to those obtained in the absence of a NAP but lower compared to the ECs recorded in the presence of 20% of SO200 (10.6 +/- 0.9 g m(-3) h(-1)). Finally, this study showed that the enhancement in the transfer of hexane supported by SO200 was attenuated by limitations in microbial activity, as shown by the fact that the ECs in biotic systems were far lower than the maximum hexane transfer capacity recorded under abiotic conditions.
Magic-Angle-Spinning Solid-State NMR of Membrane Proteins
Baker, Lindsay A.; Folkers, Gert E.; Sinnige, Tessa; Houben, Klaartje; Kaplan, M.; van der Cruijsen, Elwin A W; Baldus, Marc
2015-01-01
Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this
Characterisation of porous solids using small-angle scattering and NMR cryoporometry\\ud
2004-01-01
The characteristics of several porous systems have been studied by the use of small-angle neutron scattering [SANS] and nuclear magnetic resonance [NMR] techniques. The measurements reveal different characteristics for sol-gel silicas, activated carbons and ordered mesoporous silicas of the MCM and SBA type. Good agreement is obtained between gas adsorption measurements and the NMR and SANS results for pore sizes above 10 nm. Recent measurements of the water/ice phase transformation in SBA si...
Tomei, M. Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, 00015 Monterotondo Scalo (Rome) (Italy); Rita, Sara; Angelucci, Domenica Mosca [Water Research Institute, C.N.R., Via Salaria km 29.300, 00015 Monterotondo Scalo (Rome) (Italy); Annesini, M. Cristina [Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)
2011-07-15
Highlights: {yields} We investigate the biodegradation of a phenolic mixture (2,4-dimethylphenol and 4-nitrophenol). {yields} We identify an effective polymer to absorb these substrates. {yields} We utilize the polymer in a Two Phase Partitioning Bioreactor (TPPB) to overcome cytotoxicity. {yields} The polymer-based TPPB significantly out-performs a single phase system. {yields} The re-release of the substrates at differing rates (based on the partition coefficients) affects the process kinetics. - Abstract: The biological treatment of phenolics is constrained by the inherent cytotoxicity of these compounds. One method to alleviate such toxicity is to add a sequestering phase to absorb, and subsequently release, the substrate(s) to the micro-organisms; such a system is termed a Two Phase Partitioning Bioreactor. Here we have compared the performance of a TPPB, relative to single phase operation, in which a small volume (5%, v/v) of beads of the polymer Hytrel 8206 was used to treat aqueous mixtures of 2,4-dimethylphenol and 4-nitrophenol. Hytrel 8206 was selected from a range of polymers that were tested for their partition coefficients (PCs) for the target molecules, with the more hydrophobic compound (2,4-dimethylphenol) having a higher PC value (201) than 4-nitrophenol (143). Significantly increased removal rates for both substrates were demonstrated in TPPB mode relative to single phase operation. Additionally, the differential release of the compounds to the aqueous phase and their distinct PC values changed the kinetic pattern of the biotreatment system, smoothing out the cellular oxygen demand. Release of the substrates by the polymer over 60 operating cycles was virtually complete (>97%) demonstrating the reusability and robustness of the use of polymers in overcoming cytotoxicity of phenolic substrates.
Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E
2015-07-07
The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.
Equilibrium gas-liquid-solid contact angle from density-functional theory
Pereira, Antonio; Kalliadasis, Serafim
2010-01-01
We investigate the equilibrium of a fluid in contact with a solid boundary through a density-functional theory. Depending on the conditions, the fluid can be in one phase, gas or liquid, or two phases, while the wall induces an external field acting on the fluid particles. We first examine the case of a liquid film in contact with the wall. We construct bifurcation diagrams for the film thickness as a function of the chemical potential. At a specific value of the chemical potential, two equal...
Ragot, S; Becker, P J; Ragot, Sebastien; Gillet, Jean-Michel; Becker, Pierre J
2001-01-01
In this paper we show that 1-electron properties such as Compton profiles and structure factors of crystals can be asymptotically retrieved through cluster-based calculations, followed by an appropriate partition of the 1-electron reduced density matrix (1RDM). This approach, conceptually simple, is checked with respects to both position and momentum spaces simultaneously for insulators and a covalent crystal. Restricting the calculations to small clusters further enables a fair description of local correlation effects in ionic compounds, which improves both Compton profiles and structure factors vs. their experimentally determined counterparts.
Large angle solid state position sensitive x-ray detector system
Kurtz, D.S.; Ruud, C.O.
1998-03-03
A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.
Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy
Sengupta, Ishita; Nadaud, Philippe S.; Helmus, Jonathan J.; Schwieters, Charles D.; Jaroniec, Christopher P.
2012-01-01
Biomacromolecules that are challenging for the usual structural techniques can be studied with atomic resolution by solid-state nuclear magnetic resonance. However, the paucity of >5 Å distance restraints, traditionally derived from measurements of magnetic dipole-dipole couplings between protein nuclei, is a major bottleneck that hampers such structure elucidation efforts. Here we describe a general approach that enables the rapid determination of global protein fold in the solid phase via measurements of nuclear paramagnetic relaxation enhancements (PREs) in several analogs of the protein of interest containing covalently-attached paramagnetic tags, without the use of conventional internuclear distance restraints. The method is demonstrated using six cysteine-EDTA-Cu2+ mutants of the 56-residue B1 immunoglobulin-binding domain of protein G, for which ~230 longitudinal backbone 15N PREs corresponding to ~10-20 Å distances were obtained. The mean protein fold determined in this manner agrees with the X-ray structure with a backbone atom root-mean-square deviation of 1.8 Å. PMID:22522262
Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation
Chmelka, B. F.; Mueller, K. T.; Pines, A.; Stebbins, J.; Wu, Y.; Zwanziger, J. W.
1989-05-01
IT is widely lamented that despite its unqualified success with spin-1/2 nuclei such as 13C, 29Si and31P, the popular NMR technique of magic-angle spinning (MAS) has experienced a somewhat restricted applicability among quadrupolar nuclei such as 17O, 23Na and 27A1 (refs 1-3). The resolution in the central (1/2 lrarr-1/2) transition of these non-integer quadrupolar spins under MAS is thought to be limited primarily by second-order quadrupolar broadening. Such effects of second-order spatial anisotropy cannot be eliminated by rotation about a fixed axis or by multiple-pulse techniques4,5. More general mechanisms of sample reorientation (refs 6-8 and A. Samoson and A. Pines, manuscript in preparation) can, however, make high-resolution NMR of quadrupolar nuclei feasible. MAS is implemented by spinning a sample about a single axis so that second-rank spherical harmonics (which give rise to first-order broadening through anisotropy of electrical and magnetic interactions) are averaged away. But dynamic-angle-spinning (DAS) and double-rotation (DOR) NMR involve spinning around two axes, averaging away both the second- and fourth-rank spherical harmonics, which are responsible for second-order broadening. Here we present the application of these new techniques to 17O in two minerals, cristobalite (SiO2) and diopside (CaMgSi2O6). This work goes beyond previous results on 23Na (ref. 8) by showing the first experimental results using DAS and by demonstrating the application of DOR to the resolution of distinct oxygen sites in an important class of oxide materials.
Lamsal, B P; Wang, H; Johnson, L A
2011-06-01
Two corn preparation methods, rollermill flaking and hammermill grinding, were compared for efficient processing of corn into ethanol by granular starch hydrolysis and simultaneous fermentation by yeast Saccharomyces cerevisiae. Corn was either ground in a hammermill with different size screens or crushed in a smooth-surfaced rollermill at different roller gap settings. The partitioning of beer solids and size distribution of solids in the thin stillage were compared. The mean particle diameter d(50) for preparations varied with set-ups and ranged between 210 and 340 μm for ground corn, and 1180-1267 μm for flaked corn. The ethanol concentrations in beer were similar (18-19% v/v) for ground and flaked preparations, however, ethanol productivity increased with reduced particle size. Roller versus hammermilling of corn reduced solids in thin stillage by 28%, and doubled the volume percent of fines (d(50) ∼ 7 μm)in thin stillage and decreased coarse (d(50) ∼ 122 μm) by half compared to hammermilling.
Sven M. Ivansson
2009-01-01
Full Text Available Phononic crystals (PCs can be used as acoustic frequency selective insulators and filters. In a two-dimensional (2D PC, cylindrical scatterers with a common axis direction are located periodically in a host medium. In the present paper, the layer multiple-scattering (LMS computational method for wave propagation through 2D PC slabs is formulated and implemented for general 3D incident-wave directions and polarizations. Extensions are made to slabs with cylindrical scatterers of different types within each layer. As an application, the problem is considered to design such a slab with small sound transmittance within a given frequency band and solid angle region for the direction of the incident plane wave. The design problem, with variable parameters characterizing the scatterer geometry and material, is solved by differential evolution, a global optimization algorithm for efficiently navigating parameter landscapes. The efficacy of the procedure is illustrated by comparison to a direct Monte Carlo method.
Yoshizaki, Mayuko; Kobayashi, Yukari; Shimizu, Masanori; Maruyama, Kouichi
2015-01-01
A simultaneous determination method was examined for 312 pesticides (including isomers) in muscle of livestock and marine products by GC-MS. The pesticide residues extracted from samples with acetone and n-hexane were purified by acetonitrile-n-hexane partitioning, and C18 and SAX/PSA solid-phase extraction without using GPC. Matrix components such as cholesterol were effectively removed. In recovery tests performed by this method using pork, beef, chicken and shrimp, 237-257 pesticides showed recoveries within the range of 70-120% in each sample. Validity was confirmed for 214 of the target pesticides by means of a validation test using pork. In comparison with the Japanese official method using GPC, the treatment time of samples and the quantity of solvent were reduced substantially.
DRAGAN MARKOVIC
2007-08-01
Full Text Available A new theoretical approach to the headspace/solid phase microextraction (HS/SPME process is proposed and tested by the analysis of pesticide residues of water samples. The new approach focuses on mass transfer at the sample/gas phase and gas phase/SPME polymer interfaces. The presented model provides a directly proportional relationship between the amount of analytes sorbed by the SPME fiber and their initial concentrations in the sample. Also, the expression indicates that quantification is possible before partition equilibrium is attained. Experimental data for pesticides belonging to various classes of organic compounds were successfully interpreted by the developed model. Additionally, a linear dependence of the amount of pesticide sorbed on the initial analyte concentration in aqueous solution was obtained for a sampling time shorter than that required to reach sorption equilibrium.
Fabio Burderi
2007-05-01
Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.
Grabowska, I; Dehaen, W; Radecka, H; Radecki, J
2016-05-01
In this article we present the results of the studies on interactions between the VC1 domain of the Receptor for Advanced Glycation End Products (RAGE) and its ligand, the S100B protein, performed by contact angle measurements. Histidine-tagged (His6) VC1-RAGE domain was covalently bonded to Cu(II) or Ni(II) complexes with dipyrromethene (DPM) self-assembled on gold surface. The method based on the theory of van Oss was used for the purpose of determining the Lifshitz-van der Waals (γ(LW)) component as well as the electron acceptor-electron donor (the Lewis acid-base, γ(+)-γ(-)) parameters of the VC1-RAGE-S100B complex. Moreover, the surface free energies of the interactions between the VC1 domain attached to the surface and the ligand present in the aqueous phase were determined. The specificity of the VC1- RAGE interactions with the ligand studied was also proved.
Ngankam, P. A.; Schaaf, P.; Voegel, J. C.; Cuisinier, F. J. G.
1999-03-01
Mineralization of calcium phosphate salts at a solid/liquid silica interface was examined by means of scanning angle reflectometry (SAR). A critical supersaturation of 7.60±0.15 mM was found to be the lowest calcium phosphate concentration at pH 6.85 at which the reflectivity at the Brewster angle started to vary. The analyses of the signals by mean of the homogeneous isotropic layer model led to layer thicknesses of about 3.5 μm also characterized by very low mean refractive index increments. These observations were completed by complementary experiments. Scanning and transmission electron microscopy led to similar layer thicknesses with crystallites dispersed in the whole layer confirming thus SAR results. X-ray analyses showed a presence of brushite (DCPD) at the silica interface. A pH of 5.44 was estimated for the acidic silica interface for which DCPD is nucleated after addition of 7.60±0.15 mM calcium and phosphate. However, at this pH value, the solution is largely supersaturated with respect to hydroxyapatite (HAP theoretical saturating concentration: 1.37 mM). A faster growth of DCPD crystals compared to HAP crystals is thus assumed to explain our observations.
L Muthuselvi; Aruna Dhathathreyan
2006-03-01
Adhesion of zein to solid substrates has been studied using surface energy profiles as indices and by adhesion mapping using atomic force microscopy (AFM). Different plasticizers like glycerol and sorbitol have been used to form mixed films with zein and properties of these films are studied using surface energy profiles. Comparison of the results from the different mixed samples with those from the pure zein films showed that force mapping could identify areas rich in protein. The adhesion maps produced were deconvoluted from sample topography and contrasted with the data obtained from contact angle measurements. A comparison of the two methods shows that the extent of contact angle hysteresis is indicative of both hydrophobicity of the surface as well as the force of adhesion. Mechanical properties and microstructure of zein films prepared by casting from solutions and using Langmuir-Blodgett film technique have been investigated. Pure zein seemed brittle and exhibited an essentially linear relationship between stress and strain. Films with plasticizer were tougher than these films. In general, mixed films showed better mechanical properties than pure films and had higher ultimate tensile strength and increased per cent elongation. Further, the mixed films of zein showed a higher force of adhesion compared to the pure films.
Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A
2011-11-01
Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.
Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.
Kempgens, Pierre; Britton, Jonathan
2016-05-01
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and 'high speed' (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.
Son, Yangsoo; Kim, Chongyoup; Yang, Doo Ho; Ahn, Dong June
2008-03-18
Even though the inkjet technology has been recognized as one of the most promising technologies for electronic and bio industries, the full understanding of the dynamics of an inkjet droplet at its operating conditions is still lacking. In this study, the normal impact of water droplets on solid substrates was investigated experimentally. The size of water droplets studied here was 46 microm and was much smaller than the most of the previous studies on drop impact. The Weber number (We) and Reynolds number (Re) were 0.05-2 and 10-100, respectively, and the Ohnesorge number was fixed at 0.017. The wettability of the solid substrate was varied by adsorbing a self-assembled monolayer of octadecyltrichlorosilane followed by the exposure to UV-ozone plasma. The impact scenarios for low We impacts were found to be qualitatively different from the high to moderate We impacts. Neither the development of a thin film and lamella under the traveling sphere nor the entrapment of small bubbles was observed. The dynamics of droplet impact at the conditions studied here is found to proceed under the combined influences of inertia, surface tension, and viscosity without being dominated by one specific mechanism. The maximum spreading factor (beta), the ratio of the diameter of the wetted surface and the drop diameter before impact, was correlated well with the relationship ln beta=0.090 ln We/(fs-cos theta)+0.151 for three decades of We/(fs-cos theta), where theta is the equilibrium contact angle, and fs is the ratio between the surface areas contacting the air and the solid substrate. The result implies that the final shape of the droplet is determined by the surface phenomenon rather than fluid mechanical effects.
Quijano, Guillermo [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico); Rocha-Rios, Jose [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Ingenieria de Procesos e Hidraulica (IPH), Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Hernandez, Maria; Villaverde, Santiago [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Revah, Sergio [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa, c/o IPH, UAM-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Munoz, Raul, E-mail: mutora@iq.uva.es [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Thalasso, Frederic [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico)
2010-03-15
The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a{sub g}) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a{sub g} were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a{sub g} were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O{sub 2} L{sup -1} h{sup -1} and 1.3 g O{sub 2} L{sup -1} h{sup -1} were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a{sub g} rather than to the establishment of a high-performance gas/vector/water transfer pathway.
Zhu, Meng; Tu, Chen; Hu, Xuefeng; Zhang, Haibo; Zhang, Lijuan; Wei, Jing; Li, Yuan; Luo, Yongming; Christie, Peter
2016-11-01
Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0-4weeks), 6.7-74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4-8weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of DPAA.
Konoplev, A. E-mail: konoplev@obninsk.com; Kaminski, S.; Klemt, E.; Konopleva, I.; Miller, R.; Zibold, G
2002-07-01
The methodology for estimating radiocaesium distribution between solid and liquid phases in lakes is applied for three prealpine lakes: Lake Constance (Germany), Lake Lugano (Switzerland) and Lake Vorsee (Germany). It is based on use of the exchangeable distribution coefficient and application of the exchangeable radiocaesium interception potential (RIP{sup ex}). The methodology was tested against experimental data. Good agreement was found between estimated and measured {sup 137}Cs concentrations in Lake Constance and Lake Lugano, whereas for Lake Vorsee a discrepancy was found. Bottom sediments in Lake Vorsee are composed mainly of organic material and probably cannot be described in terms of the specific sorption characteristics attributed to illitic clay minerals.
Konoplev, A; Kaminski, S; Klemt, E; Konopleva, I; Miller, R; Zibold, G
2002-01-01
The methodology for estimating radiocaesium distribution between solid and liquid phases in lakes is applied for three prealpine lakes: Lake Constance (Germany), Lake Lugano (Switzerland) and Lake Vorsee (Germany). It is based on use of the exchangeable distribution coefficient and application of the exchangeable radiocaesium interception potential (RIPex). The methodology was tested against experimental data. Good agreement was found between estimated and measured 137Cs concentrations in Lake Constance and Lake Lugano, whereas for Lake Vorsee a discrepancy was found. Bottom sediments in Lake Vorsee are composed mainly of organic material and probably cannot be described in terms of the specific sorption characteristics attributed to illitic clay minerals.
Large solid-angle polarisation analysis at thermal neutron wavelengths using a sup 3 He spin filter
Heil, W; Cywinski, R; Humblot, H; Ritter, C; Roberts, T W; Stewart, J R
2002-01-01
The strongly spin-dependent absorption of neutrons in nuclear spin-polarised sup 3 He opens up the possibility of polarising neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. In this paper we describe the first large solid-angle polarisation analysis measurement using a sup 3 He neutron spin filter at thermal neutron wavelengths (lambda=2.5 A). This experiment was performed on the two-axis diffractometer D1B at the Institut Laue-Langevin using a banana-shaped filter cell (530 cm sup 3 ) filled with sup 3 He gas with a polarisation of P=52% at a pressure of 2.7 bar. A comparison is made with a previous measurement on D7 using a cold neutron beam on the same sample, i.e. amorphous ErY sub 6 Ni sub 3. Using uniaxial polarisation analysis both the nuclear and magnetic cross-sections could be extracted over the range of scattering-vectors [0.5<=Q(A sup - sup 1)<=3.5]. The results are in qualitative and quantitative agreement with the D7-data, whe...
Praz, Christophe; Roulet, Yves-Alain; Berne, Alexis
2017-04-01
A new method to automatically classify solid hydrometeors based on Multi-Angle Snowflake Camera (MASC) images is presented. For each individual image, the method relies on the calculation of a set of geometric and texture-based descriptors to simultaneously identify the hydrometeor type (among six predefined classes), estimate the degree of riming and detect melting snow. The classification tasks are achieved by means of a regularized multinomial logistic regression (MLR) model trained over more than 3000 MASC images manually labeled by visual inspection. In a second step, the probabilistic information provided by the MLR is weighed on the three stereoscopic views of the MASC in order to assign a unique label to each hydrometeor. The accuracy and robustness of the proposed algorithm is evaluated on data collected in the Swiss Alps and in Antarctica. The algorithm achieves high performance, with a hydrometeor-type classification accuracy and Heidke skill score of 95 % and 0.93, respectively. The degree of riming is evaluated by introducing a riming index ranging between zero (no riming) and one (graupel) and characterized by a probable error of 5.5 %. A validation study is conducted through a comparison with an existing classification method based on two-dimensional video disdrometer (2DVD) data and shows that the two methods are consistent.
Huotari, S; Sahle, Ch J; Henriquet, Ch; Al-Zein, A; Martel, K; Simonelli, L; Verbeni, R; Gonzalez, H; Lagier, M C; Ponchut, C; Moretti Sala, M; Krisch, M; Monaco, G
2017-03-01
An end-station for X-ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end-station is dedicated to the study of shallow core electronic excitations using non-resonant inelastic X-ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X-ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end-station provides an unprecedented instrument for X-ray Raman scattering, which is a spectroscopic tool of great interest for the study of low-energy X-ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.
Mehryan, S. A. M.; Ghalambaz, Mohammad; Ismael, Muneer A.; Chamkha, Ali J.
2017-02-01
This paper investigates numerically the problem of unsteady natural convection inside a square cavity partitioned by a flexible impermeable membrane. The finite element method with the arbitrary Lagrangian-Eulerian (ALE) technique has been used to model the interaction of the fluid and the membrane. The horizontal walls of the cavity are kept adiabatic while the vertical walls are kept isothermal at different temperatures. A uniform magnetic field is applied onto the cavity with different orientations. The cavity has been provided by two eyelets to compensate volume changes due the movement of the flexible membrane. A parametric study is carried out for the pertinent parameters, which are the Rayleigh number (105-108), Hartmann number (0-200) and the orientation of the magnetic field (0-180°). The change in the Hartmann number affects the shape of the membrane and the heat transfer in the cavity. The angle of the magnetic field orientation also significantly affects the shape of the membrane and the heat transfer in the cavity.
Nakai, Toshihito; Toda, Mitsuru; Ashida, Jun; Hobo, Fumio; Endo, Yuki; Utsumi, Hiroaki; Nemoto, Takahiro; Mizuno, Takashi
2017-06-01
Sensitivity enhancement in solid-state nuclear magnetic resonance using a cryocoil magic-angle-spinning system was investigated, by comparing, at room temperature and at cryogenic temperature, the signal-to-noise ratios of the multiple-quantum magic-angle-spinning spectra as well as the conventional spectra for a low-γ nucleus 85Rb in RbNO3. The increase of the sample-coil quality-factor and the thermal noise reduction were found to enhance the sensitivities by approximately 4.5 times; the former yielded the further doubled signal increase in the multiple-quantum spectroscopy via the increase of the radio-frequency field strengths. Eventually, 20-30 times of the sensitivity enhancement were realized in the two-dimensional multiple-quantum magic-angle-spinning spectra.
Petit-Bromet, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1968-07-01
The extractive phase is made up of a TLA solution in cyclohexanol adsorbed on a solid poly-trifluorochloroethylene support (sold commercially as voltalef or KEL-F). The mixture obtained is homogeneous and can be used for partition chromatography. For a solution of hydrochloric acid stronger than 1 M, the amine is quantitatively in the form of the chlorohydrate. The partition curve for U(VI) between the 2 N hydrochloric acid aqueous phase and the organic TLA phase has two steps which can be explained by assuming that two complexes exist in the organic phase. The equilibrium constants for extraction have been determined. The homogeneity of the voltalef-amine mixture has made it possible to build up a column with reproducible characteristics. Under the operational conditions adopted, the height of the equivalent theoretical plate is about 3 mm. A plot of all the curves giving the variations in the partition function of U(VI), Fe(III), Cu(II), Sr(II) and Cs(I) as a function of the hydrochloric acid concentration makes it possible to predict the conditions under which these elements may be separated. [French] La phase extractive est constituee d'une solution de TLA dans le cyclohexanol adsorbe sur un support solide de polytrifluorochloroethylene (commercialise sous le nom de voltalef ou KEL-F). Le melange obtenu est homogene et peut etre utilise en chromatographie de partage. Pour une concentration d'acide chlorhydrique en solution superieure a 1 M, l'amine est quantitativement sous forme de chlorhydrate. La courbe de partage de U(VI) entre la phase aqueuse d'acide chlorhydrique 2 N et la phase organique de TLA presente deux paliers que l'on peut interpreter en admettant l'existence de deux complexes en phase organique. Les constantes des equilibres d'extraction ont ete determinees. L'homogeneite du melange voltalef-amine a permis de constituer une colonne.dont les caracteristiques sont reproductibles. Dans les conditions de
粗糙表面上的接触角滞后现象与滞后张力%Contact Angle Hysteresis and Hysteresis Tension on Rough Solid Surface
王晓东; 彭晓峰; 王补宣
2004-01-01
Observation and measurement were conducted to investigate contact angle and its hysteresis on rough surface. The experimental results indicate that the increase in solid surface roughness enlarges advancing contact angle and decreases receding contact angle, resulting in enhanced hysteresis. It was observed that when Young's contact angle θy ＜ 90°, as the roughness of solid surface increased the extent of the decrease in receding contact angle exceeded that of the increase in advancing contact angle. Based on the experimental observations, the concept of hysteresis tension was introduced to describe the contact angle hysteresis behavior on rough solid surface. The model provides a thoughtful understanding of the physical nature of contact angle hysteresis, in particular an instructive description of the influence of surface roughness on the hysteresis. The prediction of the model is found in quite good agreement with the experimental observation and measurement.
Pandey, Manoj Kumar; Amoureux, Jean-Paul; Asakura, Tetsuo; Nishiyama, Yusuke
2016-08-10
(14)N/(14)N correlations are vital for structural studies of solid samples, especially those in which (15)N isotopic enrichment is challenging, time-consuming and expensive. Although (14)N nuclei have high isotopic abundance (99.6%), there are inherent difficulties in observing (14)N/(14)N correlations due to limited resolution and sensitivity related to: (i) low (14)N gyromagnetic ratio (γ), (ii) large (14)N quadrupolar couplings, (iii) integer (14)N spin quantum number (I = 1), and (iv) very weak (14)N-(14)N dipolar couplings. Previously, we demonstrated a proton-detected 3D (14)N/(14)N/(1)H correlation experiment at fast magic angle spinning (MAS) on l-histidine·HCl·H2O utilizing a through-bond (J) and residual dipolar-splitting (RDS) based heteronuclear multiple quantum correlation (J-HMQC) sequence mediated through (1)H/(1)H radio-frequency driven recoupling (RFDR). As an extension of our previous work, in this study we show the utility of dipolar-based HMQC (D-HMQC) in combination with (1)H/(1)H RFDR mixing to obtain sensitivity enhanced (14)N/(14)N correlations in more complex biological solids such as a glycyl-l-alanine (Gly-l-Ala) dipeptide, and parallel (P) and antiparallel (AP) β-strand alanine tripeptides (P-(Ala)3 and AP-(Ala)3, respectively). These systems highlight the mandatory necessity of 3D (14)N/(14)N/(1)H measurements to get (14)N/(14)N correlations when the amide proton resonances are overlapped. Moreover, the application of long selective (14)N pulses, instead of short hard ones, is shown to improve the sensitivity. Globally, we demonstrate that replacing J-scalar with dipolar interaction and hard- with selective-(14)N pulses allows gaining a factor of ca. 360 in experimental time. On the basis of intermolecular NH/NH distances and (14)N quadrupolar tensor orientations, (14)N/(14)N correlations are effectively utilized to make a clear distinction between the parallel and antiparallel arrangements of the β-strands in (Ala)3 through the
Endo, Satoshi; Droge, Steven T J; Goss, Kai-Uwe
2011-02-15
The fiber-water partition coefficient, K(fw), is decisive for performance of solid-phase microextraction (SPME) techniques in organic chemical analyses. In this study, polyacrylate (PA)-coated fiber was evaluated for its K(fw) values toward diverse neutral organic compounds. Literature K(fw) data were thoroughly evaluated, and additional K(fw) values for 69 compounds were measured in phosphate-buffered saline (PBS) solution at 37 °C. These K(fw) data, spanning over 6 orders of magnitude, were used to construct polyparameter linear free energy relationship (PP-LFER) models. The PP-LFER models fit well to the data with a standard deviation of 0.15-0.23 log units. Additional experiments indicated that the differences in temperature (25 vs 37 °C), electrolyte concentrations (pure water vs PBS), and conditioning methods (heat vs methanol) had only minor influences (<0.3 log units) on K(fw). Using the established PP-LFERs, the SPME extraction efficiency of PA coating toward compounds of differing polarity was evaluated in comparison to poly(dimethylsiloxane) (PDMS) coating. PA exhibited higher extraction capacities for H-bond donor compounds (e.g., phenols, anilines, amides, and many drugs and pesticides) with the estimated K(fw) values being 1-4 log units higher than those of PDMS. Also, PA was shown to be more efficient than PDMS for hydrophobic aromatic compounds.
Welzel, Petra B; Rauwolf, Cordula; Yudin, Olexandr; Grundke, Karina
2002-07-01
The interaction of inorganic ions with low-energy hydrophobic surfaces was examined using model systems of solid polymers without ionizable functional surface groups in aqueous electrolyte solutions. Low-rate dynamic contact angle measurements with captive bubbles in conjunction with axisymmetric drop shape analysis (ADSA) were performed to study the influence of electrolyte ions (in the aqueous test solutions) on the wettability of the polymers. When various types of ions were used, no significant change in advancing and receding contact angles was observed. The contact angle hysteresis was small. The zeta potential of the model polymers in aqueous electrolyte solutions was determined from streaming potential measurements. The variation of the zeta potential at different pH levels indicates preferential adsorption of hydroxyl ions at this interface. However, the presence of electrolytes at the interface between water and the different model polymers did not influence the macroscopic contact angle. The results may suggest the absence of any specific interaction between the ions and the solid polymer, as this should result in changes of hydrophobicity. Similar to the air/water interface, the composition and the potential of the polymer/water interface are obviously determined predominantly by the aqueous phase with only slight influence from the solid phase.
Parthasarathy, Sudhakar
2013-09-17
Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the
PARTHASARATHY, SUDHAKAR; NISHIYAMA, YUSUKE; ISHII, YOSHITAKA
2013-01-01
CONSPECTUS Recent research in fast magic angle spinning (MAS) methods has drastically improved in the resolution and sensitivity for NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarizes recent and ongoing developments in this area by presenting 13C and 1H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of 20 kHz allows us to overcome major difficulties in 1H and 13C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (~ms/scan) using short 1H T1 values we can perform 1H SSNMR micro-analysis of paramagnetic systems in the μg scale with greatly improved sensitivity over that for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ~40 kHz can enhance the sensitivity and resolution of 13C biomolecular SSNMR measurements. Low-power 1H decoupling schemes under VFMAS offer excellent spectral resolution for 13C SSNMR by nominal 1H RF irradiation at ~10 kHz. By combining the VFMAS approach and enhanced 1H T1 relaxation by paramagnetic doping we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments for 13C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine 13C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary 13C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at 1H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and the ultra-high fields could allow for routine multi-dimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the prospects for studying bimolecules using 13
Mahady, K; Kondic, L
2015-01-01
In this paper, we present a computationally efficient method for including fluid-solid interactions into direct numerical simulations of the Navier--Stokes equations. This method is found to be as powerful as our earlier formulation [J. Comp. Phys., vol. 249: 243 (2015)], while outperforming the earlier method in terms of computational efficiency. The performance and efficacy of the presented method are demonstrated by computing contact angles of droplets at equilibrium. Furthermore, we study the instability of films due to destabilizing fluid-solid interactions, and discuss the influence of contact angle and inertial effects on film breakup. In particular, direct simulation results show an increase in the final characteristic length scales when compared to the predictions of a linear stability analysis, suggesting significant influence of nonlinear effects. Our results also show that emerging length scales differ, depending on a number of physical dimensions considered.
Sheppard, Steve (ECOMatters Inc. (Canada)); Sohlenius, Gustav (Sveriges geologiska undersoekning (Sweden)); Omberg, Lars-Gunnar (ALS Scandinavia AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden)); Grolander, Sara (Facilia AB (Sweden)); Norden, Sara (Svensk Kaernbraenslehantering AB (Sweden))
2011-11-15
Solid/liquid partition coefficients (K{sub d}) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. To indicate the uptake of radionuclides in biota concentration ratios (CR) between soil and biota are used. This report summarized K{sub d} data for regolith and marine sediments based on concentrations of 69 indigenous stable elements measured from samples collected at the Forsmark site and CR data concerning cereals growing on these soils. The samples included 50 regolith samples from agricultural land and wetlands, 8 samples of till collected at different depths, and two marine sediment samples. In addition, cereal grains, stems and roots were collected from 4 sites for calculation of CRs. The regolith samples represented the major 5 deposits, which can be used as arable land, at the site (clayey till, glacial clay, clay gyttja and peat (cultivated and undisturbed)). K{sub d} values were generally lower for peat compared to clay soils. There were also clear differences in K{sub d} resulting from differences in soil chemistry within each regolith type. Soil pH was the most important factor, and K{sub d} values for many elements were lower in acidic clay soils compared to basic clay soils. Although there were only a few samples of sandy till and marine sediment, the K{sub d} values were generally consistent with the corresponding regolith K{sub d} values. Of the different cereal parts the grain always had the lowest CR. In most cases, the root CR was significantly higher than the grain CR, whereas only for a few elements were the grain and stem CR values different
Metal separations using aqueous biphasic partitioning systems
Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W. [Argonne National Lab., IL (United States). Chemical Technology Div.
1996-05-01
Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.
Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka
2007-08-23
Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.
Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens
2015-02-01
The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT + pH), were compared with predicted log K(d + 1) values. Apart from selenate (R(2) = 0.43), the DRIFT + pH calibrations resulted in marginally better models to predict log K(d + 1) values (R(2) = 0.62-0.79), compared with those from PSLR-DRIFT (R(2) = 0.61-0.72) and MLR (R(2) = 0.54-0.79). The DRIFT + pH calibrations were applied to the prediction of log K(d + 1) values in the remaining 4313 soils. An example map of predicted log K(d + 1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT + pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d + 1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration.
Mahady, K.; Afkhami, S.; Kondic, L.
2016-06-01
In this paper, we present a computationally efficient method for including fluid-solid interactions into direct numerical simulations of the Navier-Stokes equations. This method is found to be as powerful as our earlier formulation [K. Mahady et al., "A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries," J. Comput. Phys. 294, 243 (2015)], while outperforming the earlier method in terms of computational efficiency. The performance and efficacy of the presented method are demonstrated by computing contact angles of droplets at equilibrium. Furthermore, we study the instability of films due to destabilizing fluid-solid interactions, and discuss the influence of contact angle and inertial effects on film breakup. In particular, direct simulation results show an increase in the final characteristic length scales when compared to the predictions of a linear stability analysis, suggesting significant influence of nonlinear effects. Our results also show that emerging length scales differ, depending on a number of physical dimensions considered.
Palai, Pabitra; Prabhu, N.; Kashyap, B. P.
2017-02-01
The effects of die channel angle (Φ) in hot ( 623 K) equi-channel angular pressing (ECAP) on microstructure, and tensile and compressive flow properties of AZ80 Mg alloy were investigated. Two solid ECAP dies, having Φ of (1) dual 60° and 120° in a single die and (2) 90° in another die, were designed for this purpose. Grain refinement with more than 40% reduction in average grain size along with submicron size second-phase β-precipitates was achieved after single-pass ECAP. A great variation in β-Mg17Al12 phase morphology with increasing flow stresses in tension and compression are found with decreasing value of angle Φ. There found an increasing effect on strain to failure with decrease in porosity and second-phase precipitate modification. However, there appears flow asymmetry between tension and compression with the latter exhibiting greater flow stress and strain to failure.
Ashida, Jun; Ohgo, Kosuke; Komatsu, Kohei; Kubota, Ayumi; Asakura, Tetsuo [Tokyo University of Agriculture and Technology, Department of Biotechnology (Japan)], E-mail: asakura@cc.tuat.ac.jp
2003-02-15
Spiders synthesize several kinds of silk fibers. In the primary structure of spider silk, one of the major ampullate (dragline, frame) silks, spidroin 1, and flagelliform silk (core fibers of adhesive spiral), there are common repeated X-Gly-Gly (X = Ala, Leu, Pro, Tyr, Glu, and Arg) sequences, which are considered to be related to the elastic character of these fibers. In this paper, two dimensional spin diffusion solid-state NMR under off magic angle spinning (OMAS), {sup 13}C chemical shift contour plots, and Rotational Echo DOuble Resonance (REDOR) were applied to determine the torsion angles of one Ala and two kinds of Gly residues in the Ala-Gly-Gly sequence of {sup 13}C=O isotope-labeled (Ala-Gly-Gly){sub 10}. The torsion angles were determined to be ({phi}, {psi}) = (-90 deg., 150 deg.) within an experimental error of {+-}10 deg. for each residue. This conformation is characterized as 3{sub 1} helix which is in agreement with the structure proposed from the X-ray powder diffraction pattern of poly(Ala-Gly-Gly). The 3{sub 1} helix of (Ala-Gly-Gly){sub 10} does not change by formic acid treatment although (Ala-Gly){sub 15} easily changes from the silk I conformation (the structure of Bombyx mori silk fibroin before spinning in the solid state) to silk II conformation (the structure of the silk fiber after spinning) by such treatment. Thus, the 3{sub 1} helix conformation of (Ala-Gly-Gly){sub 10} is considered very stable. Furthermore, the torsion angles of the 16th Leu residue of (Leu-Gly-Gly){sub 10} were also determined as ({phi}, {psi}) = (-90 deg., 150 deg.) and this peptide is also considered to take 3{sub 1} helix conformation.
Venus Singh Mithu
Full Text Available Two-dimensional (13C-(13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13C-(13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.
Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K.
2013-01-01
Two-dimensional 13C-13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of 13C-13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on 1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail. PMID:23326308
Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K
2013-01-01
Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1)H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.
Nanoscale fluid structure of liquid-solid-vapour contact lines for a wide range of contact angles
Nold, Andreas; Goddard, Benjamin D; Kalliadasis, Serafim
2015-01-01
We study the nanoscale behaviour of the density of a simple fluid in the vicinity of an equilibrium contact line for a wide range of Young contact angles between 40 and 135 degrees. Cuts of the density profile at various positions along the contact line are presented, unravelling the apparent step-wise increase of the film height profile observed in contour plots of the density. The density profile is employed to compute the normal pressure acting on the substrate along the contact line. We observe that for the full range of contact angles, the maximal normal pressure cannot solely be predicted by the curvature of the adsorption film height, but is instead softened -- likely by the width of the liquid-vapour interface. Somewhat surprisingly however, the adsorption film height profile can be predicted to a very good accuracy by the Derjaguin-Frumkin disjoining pressure obtained from planar computations, as was first shown in [Nold et al., Phys. Fluids, 26, 072001, 2014] for contact angles less than 90 degrees,...
张衍国; 李清海; 蒙爱红; 陈勇; 禚玉群; 陈昌和
2007-01-01
The effect of sulfur compounds (including sulfur,sulfide,sulfite and sulfate),initial concentration of heavy metal and operating conditions on Cd emission in municipal solid waste (MSW) incineration were investigated using a simulated tubular furnace and simulated MSW spiked with Cd. The concentration of Cd was measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES) after digesting the samples including bottom ash,fly ash and flue gas according to related USEPA methods. The results show that S and Na2S tend to increase Cd partitioning in bottom ash,whereas Na2SO3 and Na2SO4 tend to reduce Cd partitioning in bottom ash.The effect of sulfur compounds on Cd partitioning in bottom ash was in the sequence of Na2S＞S＞Na2SO3＞Na2SO4. chemical equilibrium analysis is also performed to determine the effect of sorbents on Cd adsorption. The calculations show that S presents strong affinity for Cd and restrains Cd adsorption by SiO2,whereas when temperature rises to between 830℃ and 1030℃,Cd adsorption efficiency of SiO2 is over 80% and the efficiency of Al2O3 is up to 85%.
Software Partitioning Technologies
2001-05-29
1 Software Partitioning Technologies Tim Skutt Smiths Aerospace 3290 Patterson Ave. SE Grand Rapids, MI 49512-1991 (616) 241-8645 skutt_timothy...Limitation of Abstract UU Number of Pages 12 2 Agenda n Software Partitioning Overview n Smiths Software Partitioning Technology n Software Partitioning...Partition Level OS Core Module Level OS Timers MMU I/O API Layer Partitioning Services 6 Smiths Software Partitioning Technology n Smiths has developed
接触角滞后现象的理论分析%Hysteresis of Contact Angle at Liquid-solid Interface
王晓东; 彭晓峰; 闵敬春; 刘涛
2001-01-01
A concept, resistance of liquid wetting solid surface, was introduced to investigate the contact anglecharacteristics of liquid touching solid surface in equilibrium. An expression and unified theory of liquid-solidcontact angle accounting for the resistance was theoretically obtained from mechanical and thermodynamic theoryrespectively, relating the wettability, advancing and receding contact angle with the roughness of the solidsurface. This new approach provides a thoughtful understanding of the physical nature of advancing and recedingcontact angle and the contact angle hysteresis phenomenon. Using this theoretical evidence, some phase-changetransport phenomena such as boiling nucleation, critical heat flux, minimum heat flux and droplet condensationwill be more intelligently described with a new discrimination. It is also possible to expose the effects of surfaceroughness on phase change heat transfer using a unique parameter, contact angle, other than the detail surfaceinformation.%通过引入"滞后阻力"的概念,分别用力学方法和热力学方法导出固体表面上液滴平衡时接触角应满足的条件;定性地给出了表面湿润性和前进接触角与后退接触角同表面粗糙度的关系,分析了前进接触角和后退接触角的物理意义;由此给出了接触角滞后现象的一种合理解释.本文的研究为汽液相变传热过程中的沸腾核化、临界热负荷、最小热流密度、珠状凝结等现象的深刻认识,开拓了新的思路,传统研究中对粗糙度影响的复杂定量化测量描述也可转化为用接触角单一参数表征和描述的简化方法.因此本文的认识对研究沸腾和凝结传热有重要的现实意义.
Christoph Meichner
2015-08-01
Full Text Available We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard® 184 and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025∘ results in an error of the refractive index of typically ±5 ⋅ 10−4. Information on the sample thickness is not required.
Meichner, Christoph; Schedl, Andreas E.; Neuber, Christian; Kreger, Klaus; Schmidt, Hans-Werner; Kador, Lothar
2015-08-01
We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard® 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025∘ results in an error of the refractive index of typically ±5 ṡ 10-4. Information on the sample thickness is not required.
Meichner, Christoph, E-mail: christoph.meichner@uni-bayreuth.de; Kador, Lothar, E-mail: lothar.kador@uni-bayreuth.de [University of Bayreuth, Institute of Physics and Bayreuth Institute of Macromolecular Research, Universitätsstrasse 30, 95447 Bayreuth (Germany); Schedl, Andreas E.; Neuber, Christian; Kreger, Klaus; Schmidt, Hans-Werner, E-mail: hans-werner.schmidt@uni-bayreuth.de [University of Bayreuth, Macromolecular Chemistry I, Bayreuth Institute of Macromolecular Research and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30, 95447 Bayreuth (Germany)
2015-08-15
We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard{sup ®} 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025{sup ∘} results in an error of the refractive index of typically ±5 ⋅ 10{sup −4}. Information on the sample thickness is not required.
Nizioł, Jacek, E-mail: niziol@agh.edu.pl [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków (Poland)
2014-12-21
DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day)
Ward, C A; Sefiane, K
2010-12-15
We review the thermodynamic approach to determining the surface tension of solid-fluid interfaces. If the pressure is in the narrow range where the contact angle, θ, can exist, then for isothermal systems, adsorption at the solid-liquid interface affects γ(SL) or θ, but γ(SV) is very nearly equal γ(LV), the surface tension of the adsorbing fluid. For a liquid partially filling a cylinder, the pressure in the liquid phase at the three-phase line, x(3)(L), depends on the curvature of the three-phase line, C(cl), but the line tension can play no role, since it acts perpendicular to the cylinder wall. C(cl) is decreased as the cylinder diameter is increased; x(3)(L) is increased; and θ increases. For a given value of C(cl), x(3)(L) can be changed by rotating the cylinder or by changing the height of the three-phase line in a gravitational field. In all cases, for water in borosilicate glass cylinders, the value of θ is shown to increase as x(3)(L) is increased. This behaviour requires the Gibbsian adsorption at the solid-liquid interface to be negative, indicating the liquid concentration in the interphase is less than that in the bulk liquid. For sessile droplets, the value of θ depends on both x(3)(L) and C(cl). If the value of θ for spherical sessile droplets is measured as a function of C(cl), the adsorption at the solid-liquid interface that would give that dependence can be determined. It is unnecessary to introduce the line tension hypothesis to explain the dependence of θ on C(cl). Adsorption at the solid-liquid interface gives a full explanation.
Goldbourt, A
2002-01-01
Experimental and theoretical aspects of the multiple-quantum magic-angle spinning experiment (MQMAS) are discussed in this review. The significance of this experiment, introduced by Frydman and Harwood, is in its ability to provide high-resolution NMR spectra of half-integer quadrupolar nuclei (I /geq 3/2). This technique has proved to be useful in various systems ranging from inorganic materials to biological samples. This review addresses the development of various pulse schemes aimed at improving the signal-to-noise ratio and anisotropic lineshapes. Representative spectra are shown to underscore the importance and applications of the MQMAS experiment. Refs. 97 (author)
Maruyoshi, Keisuke; Iuga, Dinu; Watts, Abigail E; Hughes, Colan E; Harris, Kenneth D M; Brown, Steven P
2017-07-25
The lower detection limit for 2 distinct crystalline phases by (1)H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is investigated for a minority amount of cimetidine (anhydrous polymorph A) in a physical mixture with the anhydrous HCl salt of cimetidine. Specifically, 2-dimensional (1)H double-quantum (DQ) MAS NMR spectra of polymorph A and the anhydrous HCl salt constitute fingerprints for the presence of each of these solid forms. For solid-state NMR data recorded at a (1)H Larmor frequency of 850 MHz and a MAS frequency of 30 kHz on ∼10 mg of sample, it is shown that, by following the pair of cross-peaks at a (1)H DQ frequency of 7.4 + 11.6 = 19.0 ppm that are unique to polymorph A, the level of detection for polymorph A in a physical mixture with the anhydrous HCl salt is a concentration of 1% w/w. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Tuo; Hong, Mei
2015-04-07
A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static (31)P NMR spectra of magnetically oriented 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the ability to generate a high-curvature phase. Two-dimensional (2D) (31)P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. (31)P- and (13)C-detected (1)H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the (31)P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. On the basis of this resolution, 2D (1)H-(31)P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not DHPC (31)P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the amphipathic helix induces high membrane curvature and localizes the protein to this phase, in good
Wang, Tuo; Hong, Mei
2015-01-01
A wide variety of membrane proteins induce membrane curvature for function, thus it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state NMR methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static 31P NMR spectra of magnetically oriented DMPC/DHPC bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the peptide with the ability to generate a high-curvature phase. 2D 31P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. 31P- and 13C-detected 1H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the 31P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. Based on this resolution, 2D 1H-31P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not the DHPC 31P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the M2 amphipathic helix induces high membrane curvature and localizes the protein to this phase, in excellent agreement with the membrane-scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are
Ellis, Jonathan S.; McHale, Glen; Hayward, Gordon L.; Thompson, Michael
2003-11-01
We have revisited the Blake-Tolstoi theory [Coll. Surf. 47, 135 (1990)] for molecular and hydrodynamic slip and applied it to the fundamental description of acoustic wave devices coupled to a liquid of finite thickness. The aim is to provide a framework for a predictive model for slip, based on surface-liquid interactions and contact angle. This theory provides a description of slip that links hydrodynamic boundary slip to a schematic, molecular description involving the wettability of the liquid-solid interface. We redevelop the model, using current acoustic sensors notation, then evaluate its qualitative behavior as a predictive model for slip length in the context of acoustic wave devices. Finally, we discuss the limitations of the model and consider the advantages of a predictive model for boundary slip.
Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering.
Findenegg, Gerhard H; Jähnert, Susanne; Müter, Dirk; Prass, Johannes; Paris, Oskar
2010-07-14
The adsorption of two organic fluids (n-pentane and perfluoropentane) in a periodic mesoporous silica material (SBA-15) is investigated by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. Structural changes are monitored as the ordered and disordered pores in the silica matrix are gradually filled with the fluids. The experiments yield integrated peak intensities from up to ten Bragg reflections from the 2D hexagonal pore lattice, and additionally diffuse scattering contributions arising from disordered (mostly intrawall) porosity. The analysis of the scattering data is based on a separation of these two contributions. Bragg scattering is described by adopting a form factor model for ordered pores of cylindrical symmetry which accounts for the filling of the microporous corona, the formation of a fluid film at the pore walls, and condensation of the fluid in the core. The filling fraction of the disordered intrawall pores is extracted from the diffuse scattering intensity and its dependence on the fluid pressure is analyzed on the basis of a three-phase model. The data analysis introduced here provides an important generalisation of a formalism presented recently (J. Phys. Chem. C, 2009, 13, 15201), which was applicable to contrast-matching fluids only. In this way, the adsorption behaviour of fluids into ordered and disordered pores in periodic mesoporous materials can be analyzed quantitatively irrespective of the fluid density.
Sharma, Kshama; Madhu, Perunthiruthy K; Mote, Kaustubh R
2016-08-01
One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text] can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.
Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.
Nishiyama, Yusuke
2016-09-01
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Roberts, J E; Bonar, L C; Griffin, R G; Glimcher, M J
1992-01-01
The properties of bone mineral change with age and maturation. Several investigators have suggested the presence of an initial or "precursor" calcium phosphate phase to help explain these differences. We have used solid state 31P magic angle sample spinning (MASS) nuclear magnetic resonance (NMR) and X-ray radial distribution function (RDF) analyses to characterize 11- and 17-day-old embryonic chick bone and fractions obtained from them by density fractionation. Density fractionation provides samples of bone containing Ca-P solid-phase deposits even younger and more homogeneous with respect to the age of mineral than the calcium phosphate (Ca-P) deposits in the whole bone samples. The analytical techniques yield no evidence for any distinct phase other than the poorly crystalline hydroxyapatite phase characteristic of mature bone mineral. In particular, there is no detectable crystalline brushite [DCPD, CaHPO4 2H2O less than 1%] or amorphous calcium phosphate (less than 8-10%) in the most recently formed bone mineral. A sizeable portion of the phosphate groups exist as HPO4(2-) in a brushite (DCPD)-like configuration. These acid phosphate moieties are apparently incorporated into the apatitic lattice. The most likely site for the brushite-like configuration is probably on the surface of the crystals.
Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.
2013-01-01
We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....
杨晓燕; 侯青叶; 杨忠芳
2013-01-01
以四川省成都平原区农田生态系统水稻土剖面为例,探讨了Cd分配系数及其影响因素.结果表明:Cd分配系数(Kd)在污染土壤环境和本底土壤环境中是不同的,在剖面PM3、PM-6和PM8剖面中污染环境中分配系数(Kd)大于本底环境中的分配系数.而在剖面PM-7中,本底环境中的分配系数(Kd)大于污染环境中的值.在污染环境Cd分配系数受土壤pH值、交换性Mg和铁硅氧化物的影响比较大,而在非污染环境中分配系数受到土壤可溶性Al、Cd全量和铁锰铝氧化物的影响较大.这些土壤的物化性质对分配系数造成影响,使得土壤滤渣和土壤原土中Cd形态含量存在差异.%For understanding geochemical behaviors of cadmium (Cd). it is essential to study the partitioning coefficient (Kd) of Cd and the factors controlling the Kd in soil environment. This study focuses on the distribution of Cd between the soil solution and soil solid phase in paddy soil profiles in Chengdu agro-ecosystems in Sichuan Province, in order to discuss the factors controlling the partition coefficient. It is known that the KA value of Cd in contaminated soils is different from that in the original soils. In profile PM-3, PM-6 and PM-8. the Kd in the contaminated soil layer is larger than that in the original layers, however, in profile PM-7 it is on the contrary. The results show that the partition coefficient of Cd is closely related with soil physical-chemical properties. The partition coefficient (Kd) is influenced by soil pH. exchangeable Al, and iron and silicon oxides in the contaminated soils, while in the original soils it is extremely sensitive to soil soluble Al, total cadmium and oxides of iron, manganese and aluminum. Because of the impact of these soil physical and chemical properties on the partiliun coefficient, the different distribution of geochemical species of cadmium between the soil residues and the original soils exists.
葛宋; 陈民†
2013-01-01
本文利用分子动力学方法模拟了液体在固体表面的接触角及液固界面热阻，并探讨了二者之间的关系。通过分别改变液固结合强度和固体的原子性质来分析接触角和界面热阻的关系及变化趋势。模拟结果显示增强液固间相互作用时，接触角减小的同时界面热阻也随之单调减小；而改变固体原子间结合强度和原子质量时，接触角几乎保持不变，但界面热阻显著改变。固体原子间结合强度和原子质量影响界面热阻的原因是其改变了固体的振动频率分布，导致液固原子间的振动耦合程度发生变化。本文的结果表明界面热阻不仅与由接触角所表征的液固结合强度有关，还与液固原子间的振动耦合程度有关。接触角与界面热阻间不存在单值的对应关系，不能单一地将接触角作为液固界面热阻的评价标准。%With the fast development of nanotechnology, the solid-liquid interfacial thermal resistance draws increasing research interest due to its importance in nanoscale energy transport. The contact angle is an important quantity characterizing the interfacial properties and is easy to be measured experimentally. Previous researchers have tried to correlate the contact angle to the interfacial thermal resistance. Using molecular dynamics simulation, we have calculated the contact angle and interfacial thermal resistance at a solid/liquid interface and discuss the relationship between the two quantities. The solid/liquid bonding strength and the solid properties are varied to test their effects on both contact angle and interfacial thermal resistance. The simulation results demonstrate that with increasing solid/liquid bonding strength, both the contact angle and interfacial thermal resistance decrease. However, the bonding strength between solid atoms and the solid atomic mass influence the interfacial resistance remarkably while they have little effect
Cooke, Cindy M.; Shaw, George; Lester, John N.; Collins, Chris D
2004-08-15
Two groups of chemicals are currently licensed for use in sheep dip products in the UK. These are organophosphate (OP) insecticides and synthetic pyrethroid (SP) insecticides. SPs are deemed to be less toxic to human health than OPs, although they are approximately 100 times more toxic to some elements of the aquatic environment. Three insecticides were selected for experimental investigation: diazinon, propetamphos (OPs) and cis-permethrin (SP), representative of the active ingredients used in sheep dip formulations, with additional uses in insect control in crops, and for domestic control of flies, mosquitoes, cockroaches, lice, ticks and spiders. The UK Government has recently reviewed agricultural practices relating to the disposal of used sheep dip, because the constituent insecticides are frequently detected in UK watercourses and the presence of these compounds is a severe hazard to the aquatic environment. Standard batch sorption experiments were carried out to investigate insecticide partitioning from water to soil, and the relationship between sorption and soil organic carbon content is discussed. Sorption isotherms and K{sub d} values showed that cis-permethrin adsorption was fastest on all five soils investigated, exhibiting the greatest total partitioning to the soil phase (83.8-94.8%) and high resistance to desorption. In comparison, the OP insecticides exhibited moderately strong soil adsorption as evidenced by their K{sub d} coefficients (diazinon K{sub d} 12-35 and propetamphos K{sub d} 9-60), with low sorption reversibility (<15%). Calculation of a hydrological retardation factor in a scenario representative of a typical UK environment suggested that SP insecticides such as cis-permethrin will not migrate in the soil profile due to their virtual immobility and strong soil retention, and thus waste sheep dip disposal to agricultural land should not pose a risk to aquatic life if applied with appropriate controls.
Sharma, Kshama; Madhu, P K; Agarwal, Vipin
2016-09-01
The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.
Mote, Kaustubh R; Madhu, Perunthiruthy K
2015-12-01
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping.
Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong
2017-04-15
Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples.
Thurber, Kent R; Tycko, Robert
2014-05-14
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin
2016-02-01
Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed on the hexagonal columnar and cubic phases of an acute-angle banana-shaped molecule, N(1,7)-S30. In the hexagonal columnar phase, three peaks appear at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that the two alkyl tails have different packing structures, and one of the tails has two different conformations within a single molecule. Combined cross-polarization/magic-angle spinning and pulse saturation transfer/magic-angle spinning measurements show that one of the alkyl chains is located inside and the other is located outside the columnar structure. In the cubic phase, pulse saturation transfer/magic-angle spinning measurement shows that only one peak appears at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that both of the alkyl chains are located outside the cubic structure.
Schou, Jørgen; Sørensen, H.
1982-01-01
Electron emission, i.e. electron reflection (ER) and secondary electron emission (SEE), was studied for solid H2 and D2 for oblique incidence of 1-3 keV electrons up to an angle of incidence θ of 83°. The ER coefficient η was small at low angles, and rose rapidly with increasing θ above 60...... at the largest angles. The results agree well with the existing qualitative tendencies described in the literature. The variation with the angle of incidence shows a fair agreement with an estimate based on data for the angular distribution of electrons ejected from ionized hydrogen molecules. In addition......, an ionization cascade treatment leads to an expression for the behavior of the yield of those secondary electrons that are generated directly by the primaries. The agreement with experimental data is good...
Peyronel, Fernanda; Ilavsky, Jan; Mazzanti, Gianfranco; Marangoni, Alejandro G.; Pink, David A.
2013-12-01
Ultra-small angle X-ray scattering has been used for the first time to elucidate, in situ, the aggregation structure of a model edible oil system. The three-dimensional nano- to micro-structure of tristearin solid particles in triolein solvent was investigated using 5, 10, 15, and 20% solids. Three different sample preparation procedures were investigated: two slow cooling rates of 0.5°/min, case 1 (22 days of storage at room temperature) and case 2 (no storage), and one fast cooling of 30°/min, case 3 (no storage). The length scale investigated, by using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, Argonne National Laboratory, covered the range from 300 Å to 10 μm. The unified fit and the Guinier-Porod models in the Irena software were used to fit the data. The former was used to fit 3 structural levels. Level 1 structures showed that the primary scatterers were essentially 2-dimensional objects for the three cases. The scatterers possessed lateral dimensions between 1000 and 4300 Å. This is consistent with the sizes of crystalline nanoplatelets present which were observed using cryo-TEM. Level 2 structures were aggregates possessing radii of gyration, Rg2 between 1800 Å and 12000 Å and fractal dimensions of either D2=1 for case 3 or 1.8≤D2≤2.1 for case 1 and case 2. D2 = 1 is consistent with unaggregated 1-dimensional objects. 1.8 ≤ D2 ≤ 2.1 is consistent with these 1-dimensional objects (below) forming structures characteristic of diffusion or reaction limited cluster-cluster aggregation. Level 3 structures showed that the spatial distribution of the level 2 structures was uniform, on the average, for case 1, with fractal dimension D3≈3 while for case 2 and case 3 the fractal dimension was D3≈2.2, which suggested that the large-scale distribution had not come to equilibrium. The Guinier-Porod model showed that the structures giving rise to the aggregates with a fractal dimension given by D2 in the unified fit level 2
Sinigoi, Loris; Bravin, Paola; Ebert, Cynthia; D'Amelio, Nicola; Vaccari, Lisa; Ciccarelli, Laura; Cantone, Sara; Basso, Alessandra; Gardossi, Lucia
2009-01-01
Porous and rigid methacrylic Synbeads were optimized and applied efficiently to the solid phase peptide synthesis with the objective of improving significantly volumetric yields (0.33 mol/L calculated on the basis of maximum chemical accessibility, i.e. the maximum number of functional groups that can be acylated by FmocCl) as compared to swelling commercial polymers (from 0.06 to 0.12 mol/L). The effects of the density of functional groups and spacer length were investigated obtaining a chemical accessibility of the functional groups up to 1 mmol/g(dry). High resolution magic angle spinning (HR-MAS) was exploited to evidence the presence of "solution-like" flexible linkers anchored on the rigid methacrylic backbone of Synbeads and to study the degree of functionalization by the Wang linker. To demonstrate the efficiency of the optimized Synbeads, the peptides Somatostatin and Terlipressin were synthesized. In the case of Somatostatin, final synthetic yields of 45 and 60% were achieved by following the HCTU/DIPEA and DIC/HOBt routes respectively, with the HPLC purity always higher than 83%. In the case of Terlipressin, the synthesis was carried out in parallel on Synbeads and also on TentaGel, ChemMatrix, and PS-DVB for comparison (DIC/HOBt route). The profiles describing the synthetic efficiency demonstrated that Synbeads leads to synthetic efficiency (86%) comparable to PS-DVB (96%) or ChemMatrix (84%). In order to gain a more precise picture of chemical and morphological features of Synbeads, their matrix was also characterized by exploiting innovative approaches based on FTIR microspectroscopy with a conventional source and with synchrotron radiation. A uniform distribution of the functional groups was evidenced through a detailed chemical mapping.
Schou, Jørgen; Sørensen, H.
1982-01-01
Electron emission, i.e. electron reflection (ER) and secondary electron emission (SEE), was studied for solid H2 and D2 for oblique incidence of 1-3 keV electrons up to an angle of incidence θ of 83°. The ER coefficient η was small at low angles, and rose rapidly with increasing θ above 60......-65°. Only at large angles and low energies were the results different for H2 and D2, those for H2 being the lower ones. The angular variation of the SEE coefficient δ may be written as δ(θ)=δ(0)(cos θ)3/2 up to an angle of 65-75°. For H2 the SEE coefficient is around 0.65 times that the D2 except...... at the largest angles. The results agree well with the existing qualitative tendencies described in the literature. The variation with the angle of incidence shows a fair agreement with an estimate based on data for the angular distribution of electrons ejected from ionized hydrogen molecules. In addition...
Février, Pierre; Simonin, Olivier; Squires, Kyle D.
2005-06-01
The velocity distribution of dilute suspensions of heavy particles in gas-solid turbulent flows is investigated. A statistical approach - the mesoscopic Eulerian formalism (MEF) - is developed in which an average conditioned on a realization of the turbulent carrier flow is introduced and enables a decomposition of the instantaneous particle velocity into two contributions. The first is a contribution from an underlying continuous turbulent velocity field shared by all the particles - the mesoscopic Eulerian particle velocity field (MEPVF) - that accounts for all particle-particle and fluid-particle two-point correlations. The second contribution corresponds to a distribution - the quasi-Brownian velocity distribution (QBVD) - that represents a random velocity component satisfying the molecular chaos assumption that is not spatially correlated and identified with each particle of the system. The MEF is used to investigate properties of statistically stationary particle-laden isotropic turbulence. The carrier flow is computed using direct numerical simulation (DNS) or large-eddy simulation (LES) with discrete particle tracking employed for the dispersed phase. Particle material densities are much larger than that of the fluid and the force of the fluid on the particle is assumed to reduce to the drag contribution. Computations are performed in the dilute regime for which the influences of inter-particle collisions and fluid-turbulence modulation are neglected. The simulations show that increases in particle inertia increase the contribution of the quasi-Brownian component to the particle velocity. The particle velocity field is correlated at larger length scales than the fluid, with the integral length scales of the MEPVF also increasing with particle inertia. Consistent with the previous work of Abrahamson (1975), the MEF shows that in the limiting case of large inertia, particle motion becomes stochastically equivalent to a Brownian motion with a random spatial
Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka
2016-02-01
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15% loss of signals for the highlighted residues while quenching as much as ~90% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)Cα correlation and 2D (13)Cα/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the
Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)
2016-02-15
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable
Peyronel, Fernanda; Marangoni, Alejandro G. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Ilavsky, Jan [Advanced Photon Source, Argonne National Laboratory, 9700S Cass Ave., Bldg. 434D, Argonne, Illinois 60439 (United States); Mazzanti, Gianfranco [Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Pink, David A. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Physics Department, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5 (Canada)
2013-12-21
Ultra-small angle X-ray scattering has been used for the first time to elucidate, in situ, the aggregation structure of a model edible oil system. The three-dimensional nano- to micro-structure of tristearin solid particles in triolein solvent was investigated using 5, 10, 15, and 20% solids. Three different sample preparation procedures were investigated: two slow cooling rates of 0.5°/min, case 1 (22 days of storage at room temperature) and case 2 (no storage), and one fast cooling of 30°/min, case 3 (no storage). The length scale investigated, by using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, Argonne National Laboratory, covered the range from 300 Å to 10 μm. The unified fit and the Guinier-Porod models in the Irena software were used to fit the data. The former was used to fit 3 structural levels. Level 1 structures showed that the primary scatterers were essentially 2-dimensional objects for the three cases. The scatterers possessed lateral dimensions between 1000 and 4300 Å. This is consistent with the sizes of crystalline nanoplatelets present which were observed using cryo-TEM. Level 2 structures were aggregates possessing radii of gyration, R{sub g2} between 1800 Å and 12000 Å and fractal dimensions of either D{sub 2}=1 for case 3 or 1.8≤D{sub 2}≤2.1 for case 1 and case 2. D{sub 2} = 1 is consistent with unaggregated 1-dimensional objects. 1.8 ≤ D{sub 2} ≤ 2.1 is consistent with these 1-dimensional objects (below) forming structures characteristic of diffusion or reaction limited cluster-cluster aggregation. Level 3 structures showed that the spatial distribution of the level 2 structures was uniform, on the average, for case 1, with fractal dimension D{sub 3}≈3 while for case 2 and case 3 the fractal dimension was D{sub 3}≈2.2, which suggested that the large-scale distribution had not come to equilibrium. The Guinier-Porod model showed that the structures giving rise to the aggregates
孙进; 李清海; 李国岫; 周会; 秦岭; 张衍国
2014-01-01
The effects of chlorides on the Cu partitioning and speciation in the municipal solid waste (MSW)incineration was investigated using thermodynamic equilibrium calculation and a simulated tubular furnace experiment. The thermodynamic calculation and experimental results show that the form and amount of chloride and the temperature impacted significantly on the Cu partitioning and speciation. Both organic PVC and inorganic NaCl could chlorides copper to form volatile CuCl, as a result, it promotes Cu distribution in fly ash. The NaCl had a more significant effect than the PVC does. The combustion temperature and properties of pyrolysis and combustion of chloride affected Cu partitioning and speciation synergistically. As the temperature increased, the chlorization effect of PVC decreased, whereas the chorization effect of NaCl increased. Incineration time had apparent influence on NaCl but almost no influence on PVC. The results of SEM-EDS show that Cu is present as oxide in bottom ash with PVC addition, while with NaCl addition, Cu as oxide and chloride. The element of Cu in the fly ash is in the form of chloride in small particles.%采用热力学平衡计算和管式炉实验的方法对垃圾焚烧中氯化物对铜迁移转化特性的影响进行了研究。热力学平衡计算和实验研究结果表明，氯化物的形态、含量及焚烧温度对铜的迁移转化特性有显著影响。无论是有机PVC还是无机NaCl对铜都有氯化作用，使其生成易蒸发的CuCl，从而促进铜向飞灰中的迁移分布，NaCl的影响大于PVC。焚烧温度、氯化物的热解特性与焚烧方式协同作用影响铜的迁移转化特性，随温度升高 PVC 的氯化作用减弱而 NaCl 的作用增强。焚烧时间对 PVC 没有显著影响，对 NaCl 的影响显著。扫描电镜-能谱分析(SEM-EDS)结果显示，添加PVC时铜在底渣中以氧化物的形态存在，而添加NaCl时铜以氧化物和氯化物的形态共存，飞灰中铜
Partitive descriptions in Korean
Keun Young Shin
2017-02-01
Full Text Available This paper examines Korean partitive constructions to investigate the typology of the partitive structure. In Korean, a quantifier precedes the nominal in a non-partitive, but it follows the nominal in a partitive. The relative order between a quantifier and its associated nominal indicates that a quantifier in Korean partitive does not function as a NP adjunct but takes a DP as its argument. I argue that Korean postnominal (floating quantifier constructions can be interpreted as partitives or pseudo-partitives/quantitatives because a postnominal (floating quantifier denoting a part-of relation can occur with a kind-denoting DP as well as a definite DP. I also propose that a quantifier denoting a part-of relation is associated with the argument of a verb via composition with a verbal predicate in the floating quantifier construction. This approach can provide an account for several idiosyncratic properties of floating quantifier constructions, which are difficult to capture under the assumption that a floating quantifier construction is derived by moving a quantifier away from its associated nominal. This article is part of the Special Collection: Partitives
Liekhus, K.; Grandy, J.; Chambers, A. [and others
1997-03-01
A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.
Combinatorics of set partitions
Mansour, Toufik
2012-01-01
Focusing on a very active area of mathematical research in the last decade, Combinatorics of Set Partitions presents methods used in the combinatorics of pattern avoidance and pattern enumeration in set partitions. Designed for students and researchers in discrete mathematics, the book is a one-stop reference on the results and research activities of set partitions from 1500 A.D. to today. Each chapter gives historical perspectives and contrasts different approaches, including generating functions, kernel method, block decomposition method, generating tree, and Wilf equivalences. Methods and d
Fuzzy Partition Models for Fitting a Set of Partitions.
Gordon, A. D.; Vichi, M.
2001-01-01
Describes methods for fitting a fuzzy consensus partition to a set of partitions of the same set of objects. Describes and illustrates three models defining median partitions and compares these methods to an alternative approach to obtaining a consensus fuzzy partition. Discusses interesting differences in the results. (SLD)
Kellerstein, M; Verbaarschot, J J M
2016-01-01
The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because of the bosonic determinant in the partially quenched partition function, the conditions of this theorem are violated allowing for spontaneous symmetry breaking in two dimensions or less. This goes back to work by Niedermaier and Seiler on nonamenable symmetries of the hyperbolic spin chain and earlier work by two of the auhtors on bosonic partition functions at nonzero chemical potential. In this talk we discuss chiral symmetry breaking for the bosonic partition function of QCD at nonzero isospin chemical potential and a bosonic random matrix theory at imaginary chemical potential and compare the results with the fermionic counterpart. In both cases the chiral symmetry group of the bosonic partition function is noncompact.
Carbon partitioning in photosynthesis.
Melis, Anastasios
2013-06-01
The work seeks to raise awareness of a fundamental problem that impacts the renewable generation of fuels and chemicals via (photo)synthetic biology. At issue is regulation of the endogenous cellular carbon partitioning between different biosynthetic pathways, over which the living cell exerts stringent control. The regulation of carbon partitioning in photosynthesis is not understood. In plants, microalgae and cyanobacteria, methods need be devised to alter photosynthetic carbon partitioning between the sugar, terpenoid, and fatty acid biosynthetic pathways, to lower the prevalence of sugar biosynthesis and correspondingly upregulate terpenoid and fatty acid hydrocarbons production in the cell. Insight from unusual but naturally occurring carbon-partitioning processes can help in the design of blueprints for improved photosynthetic fuels and chemicals production.
Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.
2006-01-01
A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum
Pallas, Norman R.
2016-03-01
The three-phase contact angle (θ) for the system cyclohexane/aniline/quartz has been measured from drop shapes as a function of temperature on approach to the cyclohexane/aniline upper consolute solution temperature Tc. The experiments employed exacting criteria previously established for thermodynamic-quality measurements at fluid interfaces. A first-order wetting transition from partial wetting to complete wetting was observed at a temperature Tw, 2.12 K below Tc. The contact angle vanishes at Tw, scaling as cos θ ˜ |T - Tc|β1-μ for T system. These results are in marked contrast to previous measurements on this system from measurements of capillary rise and meniscus curvature.
2009-11-01
incident angle on depolarization ratio and reected energy from polarized lights is also provided. DRDC Valcartier TR 2008-394 i Résumé Des capteurs ...41.5 -22 10 Laiton Brass 10 -37.5 11 Aluminium Aluminum 26 -37.5 12 Acier "sand-blasté" Sandblasted steel 41.5 -37.5 13 Acier naturel Natural steel 10
Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory
2014-08-28
The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.
Partition Function of Spacetime
Makela, Jarmo
2008-01-01
We consider a microscopic model of spacetime, where spacetime is assumed to be a specific graph with Planck size quantum black holes on its vertices. As a thermodynamical system under consideration we take a certain uniformly accelerating, spacelike two-surface of spacetime which we call, for the sake of brevity and simplicity, as {\\it acceleration surface}. Using our model we manage to obtain an explicit and surprisingly simple expression for the partition function of an acceleration surface. Our partition function implies, among other things, the Unruh and the Hawking effects. It turns out that the Unruh and the Hawking effects are consequences of a specific phase transition, which takes place in spacetime, when the temperature of spacetime equals, from the point of view of an observer at rest with respect to an acceleration surface, to the Unruh temperature measured by that observer. When constructing the partition function of an acceleration surface we are forced to introduce a quantity which plays the ro...
Partition density functional theory
Nafziger, Jonathan
Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
Distributed Evolutionary Graph Partitioning
Sanders, Peter
2011-01-01
We present a novel distributed evolutionary algorithm, KaFFPaE, to solve the Graph Partitioning Problem, which makes use of KaFFPa (Karlsruhe Fast Flow Partitioner). The use of our multilevel graph partitioner KaFFPa provides new effective crossover and mutation operators. By combining these with a scalable communication protocol we obtain a system that is able to improve the best known partitioning results for many inputs in a very short amount of time. For example, in Walshaw's well known benchmark tables we are able to improve or recompute 76% of entries for the tables with 1%, 3% and 5% imbalance.
Hysteresis during contact angles measurement.
Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D
2010-03-15
A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.
Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi
2016-01-01
Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detectio......-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples....
Equilibrium contact angle or the most-stable contact angle?
Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A
2014-04-01
It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.
Ito, Yuji; Imai, Masayuki; Takahashi, Shiro [Univ. of Tokyo, Tokai Naka Ibaraki (Japan)
1994-12-31
A small-angle neutron spectrometer (SANS-U) suitable for the study of mesoscopic structure in the field of polymer chemistry and biology, has been constructed at the guide hall of JRR-3M reactor at the Japan Atomic Energy Research Institute. The instrument is 32m long and utilizes a mechanical velocity selector and pinhole collimation to provide a continuous beam with variable wavelength in the range from 5 to 10{Angstrom}. The neutron detector is a 65 x 65cm{sup 2} 2D position sensitive proportional counter. The practical Q range of SANS-U is 0.0008 to 0.45{Angstrom}{sup -1}. The design, characteristics and performance of SANS-U are described with some biological studies using SANS-U.
New Aperture Partitioning Element
Griffin, S.; Calef, B.; Williams, S.
Postprocessing in an optical system can be aided by adding an optical element to partition the pupil into a number of segments. When imaging through the atmosphere, the recorded data are blurred by temperature-induced variations in the index of refraction along the line of sight. Using speckle imaging techniques developed in the astronomy community, this blurring can be corrected to some degree. The effectiveness of these techniques is diminished by redundant baselines in the pupil. Partitioning the pupil reduces the degree of baseline redundancy, and therefore improves the quality of images that can be obtained from the system. It is possible to implement the described approach on an optical system with a segmented primary mirror, but not very practical. This is because most optical systems do not have segmented primary mirrors, and those that do have relatively low bandwidth positioning of segments due to their large mass and inertia. It is much more practical to position an active aperture partitioning element at an aft optics pupil of the optical system. This paper describes the design, implementation and testing of a new aperture partitioning element that is completely reflective and reconfigurable. The device uses four independent, annular segments that can be positioned with a high degree of accuracy without impacting optical wavefront of each segment. This mirror has been produced and is currently deployed and working on the 3.6 m telescope.
Partitions with Initial Repetitions
George E. ANDREWS
2009-01-01
A variety of interesting connections with modular forms, mock theta functions and Rogers-Ramanujan type identities arise in consideration of partitions in which the smaller integers are repeated as summands more often than the larger summands. In particular, this concept leads to new interpre-tations of the Rogers-Selberg identities and Bailey's modulus 9 identities.
Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr; Madhu, P K; Vega, Shimon
2016-02-01
We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent.
Crowdsourcing Big Trace Data Filtering: a Partition-And Model
Yang, X.; Tang, L.
2016-06-01
GPS traces collected via crowdsourcing way are low-cost and informative and being as a kind of new big data source for urban geographic information extraction. However, the precision of crowdsourcing traces in urban area is very low because of low-end GPS data devices and urban canyons with tall buildings, thus making it difficult to mine high-precision geographic information such as lane-level road information. In this paper, we propose an efficient partition-and-filter model to filter trajectories, which includes trajectory partitioning and trajectory filtering. For the partition part, the partition with position and angle constrain algorithm is used to partition a trajectory into a set of sub-trajectories based on distance and angle constrains. Then, the trajectory filtering with expected accuracy method is used to filter the sub-trajectories according to the similarity between GPS tracking points and GPS baselines constructed by random sample consensus algorithm. Experimental results demonstrate that the proposed partition-and-filtering model can effectively filter the high quality GPS data from various crowdsourcing trace data sets with the expected accuracy.
On partitions avoiding right crossings
Yan, Sherry H F
2011-01-01
Recently, Chen et al. derived the generating function for partitions avoiding right nestings and posed the problem of finding the generating function for partitions avoiding right crossings. In this paper, we derive the generating function for partitions avoiding right crossings via an intermediate structure of partial matchings avoiding 2-right crossings and right nestings. We show that there is a bijection between partial matchings avoiding 2-right crossing and right nestings and partitions avoiding right crossings.
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Curtis, Joseph E; Nanda, Hirsh; Khodadadi, Sheila; Cicerone, Marcus; Lee, Hyo Jin; McAuley, Arnold; Krueger, Susan
2012-08-16
The structure, interactions, and interprotein configurations of the protein lysozyme were studied in a variety of phases. These properties have been studied under a variety of solution conditions before, during, and after freezing and after freeze-drying in the presence of glucose and trehalose. Contrast variation experiments have also been performed to determine which features of the scattering in the frozen solutions are from the protein and which are from the ice structure. Data from lysozyme at concentrations ranging from 1 to 100 mg/mL in solution and water ice with NaCl concentrations ranging from 0 to 0.4 mol/L are fit to model small-angle neutron scattering (SANS) intensity functions consisting of an ellipsoidal form factor and either a screened-Coulomb or hard-sphere structure factor. Parameters such as protein volume fraction and long dimension are followed as a function of temperature and salt concentration. The SANS results are compared to real space models of concentrated lysozyme solutions at the same volume fractions obtained from Monte Carlo simulations. A cartoon representation of the frozen lysozyme solution in 0 mol/L NaCl is presented based on the SANS and Monte Carlo results, along with those obtained from other complementary methods.
Partitional clustering algorithms
2015-01-01
This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...
The Fibonacci partition triangles
Fahr, Philipp
2011-01-01
In two previous papers we have presented partition formulae for the Fibonacci numbers motivated by the appearance of the Fibonacci numbers in the representation theory of the 3-Kronecker quiver and its universal cover, the 3-regular tree. Here we show that the basic information can be rearranged in two triangles. They are quite similar to the Pascal triangle of the binomial coefficients, but in contrast to the additivity rule for the Pascal triangle, we now deal with additivity along hooks, or, equivalently, with additive functions for valued translation quivers. As for the Pascal triangle, we see that the numbers in these Fibonacci partition triangles are given by evaluating polynomials. We show that the two triangles can be obtained from each other by looking at differences of numbers, it is sufficient to take differences along arrows and knight's moves.
Generalised twisted partition functions
Petkova, V B
2001-01-01
We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.
Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)
2007-01-15
Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.
Hadamard partitioned difference families
Buratti, Marco
2017-01-01
We prove that every Hadamard difference set of order $u^2$ leads to a partitioned difference family of any order $v\\equiv4u^2$ (mod $8u^2$) and blocks of sizes $4u^2-2u$, $4u^2$ and $4u^2+2u$ provided that the maximal prime power divisors of $v\\over4u^2$ are all greater than $4u^2+2u$.
A thermodynamic model of contact angle hysteresis
Makkonen, Lasse
2017-08-01
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
Wah, Benny; Breidigan, Jeffrey M.; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula
2017-04-11
Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesides and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order I. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.
Fast Balanced Partitioning of Grid Graphs is Hard
Feldmann, Andreas Emil
2011-01-01
We consider the k-Balanced Partitioning problem in which the n vertices of a graph are to be partitioned into k sets of size at most n/k while minimising the cut size, which is the number of edges cut. Due to our application we are interested in fast algorithms that will solve the problem on solid grid graphs. A grid graph is a finite subgraph of the infinite 2D grid. We call it solid if it is connected and has no holes. We are able to harness some recent results on the structure of cuts in solid grid graphs in order to improve the runtime of an algorithm by Simon and Teng for these graphs. This algorithm will compute a solution in which the set sizes of the partition are at most 2n/k . The cut size deviates by at most a factor of O(log k) from an optimal solution to k-Balanced Partitioning. The main contribution of our work however is a proof that shows that, unless P=NP, no FPTAS exists that will compute partitions in which the set sizes are at most (1 + \\eps)n/k for any \\eps > 0. This is true even if the c...
Gibbard, Philip L.; Lewin, John
2016-11-01
We review the historical purposes and procedures for stratigraphical division and naming within the Quaternary, and summarize the current requirements for formal partitioning through the International Commission on Stratigraphy (ICS). A raft of new data and evidence has impacted traditional approaches: quasi-continuous records from ocean sediments and ice cores, new numerical dating techniques, and alternative macro-models, such as those provided through Sequence Stratigraphy and Earth-System Science. The practical usefulness of division remains, but there is now greater appreciation of complex Quaternary detail and the modelling of time continua, the latter also extending into the future. There are problems both of commission (what is done, but could be done better) and of omission (what gets left out) in partitioning the Quaternary. These include the challenge set by the use of unconformities as stage boundaries, how to deal with multiphase records in ocean and terrestrial sediments, what happened at the 'Early-Mid- (Middle) Pleistocene Transition', dealing with trends that cross phase boundaries, and the current controversial focus on how to subdivide the Holocene and formally define an 'Anthropocene'.
EMPIRICAL MODELS OF PB AND CD PARTITIONING USING DATA FROM 13 SOILS, SEDIMENTS AND AQUIFER MATERIALS
Lead (Pb) and cadmium (Cd) are two of the most common toxicants found in contaminated environments. Because solubilization of these metallic elements from the solid phase can influence their fate, transport and bioavailability, the partitioning coefficient (Kd) for these metals ...
Palke, Aaron C; Stebbins, Jonathan F; Boatner, Lynn A
2013-11-04
We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.
Metal partitioning and toxicity in sewage sludge
Carlson-Ekvall, C.E.A.; Morrison, G.M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Sanitary Engineering
1995-12-31
Over 20 years of research has failed to provide an unequivocal correlation between chemically extracted metals in sewage sludge applied to agricultural soil and either metal toxicity to soil organisms or crop uptake. Partitioning of metals between phases and species can provide a better estimation of mobility and potential bioavailability. Partition coefficients, K{sub D} for Cd, Cu, Pb and Zn in a sludge/water solution were determined considering the sludge/water solution as a three-phase system (particulate, colloidal and electrochemically available) over a range of pH values, ionic strengths, contact times and sludge/water ratios and compared with the KD values for sludge/water solution as a two-phase system (aqueous phase and particulate phase). Partitioning results were interpreted in terms of metal mobility from sludge to colloids and in terms of potential bioavailability from colloids to electrochemically available. The results show that both mobility and potential bioavailability are high for Zn, while Cu partitions into the mobile colloidal phase which is relatively non-bioavailable. Lead is almost completely bound to the solid phase, and is neither mobile nor bioavailable. A comparison between K, values and toxicity shows that Zn in sludge is more toxic than can be accounted for in the aqueous phase, which can be due to synergistic effects between sludge organics and Zn. Copper demonstrates clear synergism which can be attributed to the formation of lipid-soluble Cu complexes with known sludge components such as LAS, caffeine, myristic acid and nonylphenol.
Banigan, James R.; Gayen, Anindita; Traaseth, Nathaniel J., E-mail: traaseth@nyu.edu [New York University, Department of Chemistry (United States)
2013-04-15
Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of {sup 15}N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the {sup 15}N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.
Mäenpää, Kimmo; Leppänen, Matti T.; Reichenberg, Fredrik
2011-01-01
with respect to equilibrium partitioning concentrations in lipids (Clipid,partitioning): (i) Solid phase microextraction in the headspace above the sample (HS-SPME) required optimization for its application to PCBs, and it was calibrated above external partitioning standards in olive oil. (ii) Equilibrium...
Orientation and velocity dependence of the nonequilibrium partition coefficient
Beatty, K. M.; Jackson, K. A.
1995-01-01
Monte Carlo simulations based on a Spin-1 Ising Model for binary alloys have been used to investigate the non-equilibrium partition coefficient (k(sub neq)) as a function of solid-liquid interface velocity and orientation. In simulations of Si with a second component k(sub neq) is greater in the [111] direction than the [100] direction in agreement with experimental results reported by Azlz et al. The simulated partition coefficient scales with the square of the step velocity divided by the diffusion coefficient of the secondary component in the liquid.
肖冉; 刘艳芬; 许文贞; 谭宗泉; 成斌; 孔伟; 叶邦角
2014-01-01
高通量µ子源是国际上µ子科学研究的重要条件。在中国散裂中子源的高能质子应用区中，运用蒙特卡罗工具Geant4和G4beamline软件设计了使用内靶超导螺线管俘获高通量表面µ子的束线。与传统的分离靶和基于四极磁铁的收集系统相比，大孔径超导螺线管可以将收集效率提高两个量级。通过对不同靶材的粒子产率进行分析得出石墨是最佳靶材，然后比较俘获螺线管与束流的不同偏转角度下收集的表面µ的产率，提出了合理的较高产率的俘获和输运螺线管的设计方案，并与常规磁铁方案比较，最终在衰变螺线管端口的表面µ通量高达108/s。%High intense muons are required by many applications in muon science. A large acceptance channel for surface muons was designed at China Spallation Neutron Source (CSNS) using a superconducting solenoid and an internal target, which can provide a large solid angle to collect intense surface muons. Compared to conventional separate target and collection system based on quadrupole magnets, a superconducting solenoid with large aperture can collect two orders larger of surface muons. This device was simulated by Geant4 and G4beamline. By analyzing the surface muon production ratio produced by the process that protons bombard four different materials, we chose the graphite as the target material. Then comparing the intensity of surface muon by different angles between the axis of the capture solenoids and the proton beam line, we proposed the capture and transport solenoid system with higher muon production ratio. Finally, the yield of surface muon at the exit of decay solenoid can be up to 108/s.
Instantons on ALE spaces and orbifold partitions
Dijkgraaf, Robbert; Sułkowski, Piotr
2008-03-01
We consider Script N = 4 theories on ALE spaces of Ak-1 type. As is well known, their partition functions coincide with Ak-1 affine characters. We show that these partition functions are equal to the generating functions of some peculiar classes of partitions which we introduce under the name 'orbifold partitions'. These orbifold partitions turn out to be related to the generalized Frobenius partitions introduced by G. E. Andrews some years ago. We relate the orbifold partitions to the blended partitions and interpret explicitly in terms of a free fermion system.
Instantons on ALE spaces and orbifold partitions
Dijkgraaf, Robbert
2008-01-01
We consider N=4 theories on ALE spaces of $A_{k-1}$ type. As is well known, their partition functions coincide with $A_{k-1}$ affine characters. We show that these partition functions are equal to the generating functions of some peculiar classes of partitions which we introduce under the name 'orbifold partitions'. These orbifold partitions turn out to be related to the generalized Frobenius partitions introduced by G. E. Andrews some years ago. We relate the orbifold partitions to the blended partitions and interpret explicitly in terms of a free fermion system.
Variable angle correlation spectroscopy
Lee, Y K [Univ. of California, Berkeley, CA (United States)
1994-05-01
In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.
Nanofluid surface wettability through asymptotic contact angle.
Vafaei, Saeid; Wen, Dongsheng; Borca-Tasciuc, Theodorian
2011-03-15
This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.
Partitioning ecosystems for sustainability.
Murray, Martyn G
2016-03-01
Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.
Songlin Wang
Full Text Available We present a general approach in 1H-detected 13C solid-state NMR (SSNMR for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS at ~80 kHz, and stereo-array-isotope-labeled (SAIL proteins [Kainosho M. et al., Nature 440, 52-57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg that was SAIL-labeled at seven isoleucine (Ile residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.
Wang, Songlin
2015-04-09
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.
Contact angle hysteresis on fluoropolymer surfaces.
Tavana, H; Jehnichen, D; Grundke, K; Hair, M L; Neumann, A W
2007-10-31
Contact angle hysteresis of liquids with different molecular and geometrical properties on high quality films of four fluoropolymers was studied. A number of different causes are identified for hysteresis. With n-alkanes as probe liquids, contact angle hysteresis is found to be strongly related to the configuration of polymer chains. The largest hysteresis is obtained with amorphous polymers whereas the smallest hysteresis occurs for polymers with ordered molecular chains. This is explained in terms of sorption of liquid by the solid and penetration of liquid into the polymer film. Correlation of contact angle hysteresis with the size of n-alkane molecules supports this conclusion. On the films of two amorphous fluoropolymers with different molecular configurations, contact angle hysteresis of one and the same liquid with "bulky" molecules is shown to be quite different. On the surfaces of Teflon AF 1600, with stiff molecular chains, the receding angles of the probe liquids are independent of contact time between solid and liquid and similar hysteresis is obtained for all the liquids. Retention of liquid molecules on the solid surface is proposed as the most likely cause of hysteresis in these systems. On the other hand, with EGC-1700 films that consist of flexible chains, the receding angles are strongly time-dependent and the hysteresis is large. Contact angle hysteresis increases even further when liquids with strong dipolar intermolecular forces are used. In this case, major reorganization of EGC-1700 chains due to contact with the test liquids is suggested as the cause. The effect of rate of motion of the three-phase line on the advancing and receding contact angles, and therefore contact angle hysteresis, is investigated. For low viscous liquids, contact angles are independent of the drop front velocity up to approximately 10 mm/min. This agrees with the results of an earlier study that showed that the rate-dependence of the contact angles is an issue only
A new angle on the Euler angles
Markley, F. Landis; Shuster, Malcolm D.
1995-01-01
We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.
Efficient FM Algorithm for VLSI Circuit Partitioning
M.RAJESH
2013-04-01
Full Text Available In FM algorithm initial partitioning matrix of the given circuit is assigned randomly, as a result for larger circuit having hundred or more nodes will take long time to arrive at the final partition if theinitial partitioning matrix is close to the final partitioning then the computation time (iteration required is small . Here we have proposed novel approach to arrive at initial partitioning by using spectralfactorization method the results was verified using several circuits.
INFLUENCE OF SURFACE-ROUGHNESS ON THE WETTING ANGLE
Zhou, X.B; de Hosson, J.T.M.
1995-01-01
In this paper the influence of surface roughness on contact angles in the system of liquid Al wetting solid surfaces of Al2O3 has been studied. It was observed that contact angles of liquid Al vary significantly on different rough surfaces of Al2O3 A model is proposed to correlate contact angles wit
孙进; 李清海; 李国岫; 蒙爱红; 张衍国
2014-01-01
为研究垃圾焚烧过程中NaCl的迁移和转化，在管式炉中进行了模拟垃圾焚烧实验，结合扫描电镜-能谱分析(SEM-EDS)和热力学平衡模拟计算，分析了温度、停留时间、烟气中的水分和 S 等对氯化钠迁移转化的影响。研究结果表明，温度升高能促进NaCl蒸发和分解，从而增加氯在飞灰和烟气中的分布。在1000℃时焚烧12 min后NaCl的迁移分布趋于稳定。SEM-EDS结果显示，800℃时NaCl以不规则的形态聚集在底渣基体表面；而1000℃时氯在底渣中扩散均匀，形成了半球状位错结构，飞灰中的氯为亚微米精细结构。热力学平衡计算表明，酸性氧化物Al2O3、SiO2与Na有很强的亲和力，能促进NaCl氧化分解生成HCl。烟气中的水分对Cl的迁移没有显著影响，水解的反应不易发生。烟气中的SO2和SO3能与NaCl反应生成Na2SO4促进其分解，且随温度降低促进效果越明显。%In order to investigate the partitioning and speciation of NaCl during municipal solid waste (MSW) incineration the artificial waste was experimentally burned in a quartz tube furnace. The scanning electron microscope-energy dispersive X-ray (SEM-EDS) analysis and thermodynamic equilibrium calculation were performed to study morphological transformation of chlorine. The factors include temperature, retention time, moisture in the flue gas and sulfur content on the NaCl partitioning. The results showed that temperature can promote the NaCl evaporation and decomposition, thus can increase chlorine distribution in fly ash and flue gas. After burning 12 min at 1 000℃ NaCl migration distribution tends to be stable in the experiments. The SEM-EDS results show that NaCl irregularly exists at the surface of slag substrate as the temperature is 800℃; and as the temperature is 1 000℃the chloride diffuse in the bottom slag, forming the half ball dislocation structure, while the chlorine forms the submicron fly ash in
... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...
Classification algorithms using adaptive partitioning
Binev, Peter
2014-12-01
© 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.
Sorption of comparatively nonpolar organic chemicals by natural solids not only can be predominated by partitioning with organic matter but also can reflect a substantial contribution from adsorption at low relative concentration. Sorption of nine polycyclic aromat...
Gentile statistics and restricted partitions
C S Srivatsan; M V N Murthy; R K Bhaduri
2006-03-01
In a recent paper (Tran et al, Ann. Phys. 311, 204 (2004)), some asymptotic number theoretical results on the partitioning of an integer were derived exploiting its connection to the quantum density of states of a many-particle system. We generalise these results to obtain an asymptotic formula for the restricted or coloured partitions $p_{k}^{s} (n)$, which is the number of partitions of an integer into the summand of th powers of integers such that each power of a given integer may occur utmost times. While the method is not rigorous, it reproduces the well-known asymptotic results for = 1 apart from yielding more general results for arbitrary values of .
Extremal sizes of subspace partitions
Heden, Olof; Nastase, Esmeralda; Sissokho, Papa
2011-01-01
A subspace partition $\\Pi$ of $V=V(n,q)$ is a collection of subspaces of $V$ such that each 1-dimensional subspace of $V$ is in exactly one subspace of $\\Pi$. The size of $\\Pi$ is the number of its subspaces. Let $\\sigma_q(n,t)$ denote the minimum size of a subspace partition of $V$ in which the largest subspace has dimension $t$, and let $\\rho_q(n,t)$ denote the maximum size of a subspace partition of $V$ in which the smallest subspace has dimension $t$. In this paper, we determine the values of $\\sigma_q(n,t)$ and $\\rho_q(n,t)$ for all positive integers $n$ and $t$. Furthermore, we prove that if $n\\geq 2t$, then the minimum size of a maximal partial $t$-spread in $V(n+t-1,q)$ is $\\sigma_q(n,t)$.
The Partition Ensemble Fallacy Fallacy
Nemoto, K; Nemoto, Kae; Braunstein, Samuel L.
2002-01-01
The Partition Ensemble Fallacy was recently applied to claim no quantum coherence exists in coherent states produced by lasers. We show that this claim relies on an untestable belief of a particular prior distribution of absolute phase. One's choice for the prior distribution for an unobservable quantity is a matter of `religion'. We call this principle the Partition Ensemble Fallacy Fallacy. Further, we show an alternative approach to construct a relative-quantity Hilbert subspace where unobservability of certain quantities is guaranteed by global conservation laws. This approach is applied to coherent states and constructs an approximate relative-phase Hilbert subspace.
Partitions of generalized split graphs
Shklarsky, Oren
2012-01-01
We discuss matrix partition problems for graphs that admit a partition into k independent sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k; `) minimal obstructions and hence all of these problems are polynomial time solvable. We provide upper bounds for the size of any (k; `) minimal obstruction when k = ` = 1 (split graphs), when k = 2; ` = 0 (bipartite graphs), and when k = 0; ` = 2 (co-bipartite graphs). When k = ` = 1, we construct an exponential size spl...
The complexity of string partitioning
Condon, Anne; Thachuk, Chris
2012-01-01
Given a string $w$ over a finite alphabet $\\Sigma$ and an integer $K$, can $w$ be partitioned into strings of length at most $K$, such that there are no \\emph{collisions}? We refer to this question as the \\emph{string partition} problem and show it is \\NP-complete for various definitions of collision and for a number of interesting restrictions including $|\\Sigma|=2$. This establishes the hardness of an important problem in contemporary synthetic biology, namely, oligo design for gene synthesis.
A microscopic view on contact angle selection
Snoeijer, Jacco H.; Andreotti, Bruno
2008-01-01
We discuss the equilibrium condition for a liquid that partially wets a solid on the level of intermolecular forces. Using a mean field continuum description, we generalize the capillary pressure from variation of the free energy and show at what length scale the equilibrium contact angle is selected. After recovering Young's law for homogeneous substrates, it is shown how hysteresis of the contact angle can be incorporated in a self-consistent fashion. In all cases the liquid-vapor interface...
On some relations between advancing, receding and Young's contact angles.
Chibowski, Emil
2007-05-31
Problems of experimental determination and theoretical verification of equilibrium contact angles are discussed basing on the literature data. A relationship between the advancing and receding contact angles versus the equilibrium contact angle is described and then verified using the literature contact angles determined on paraffin wax and polypropylene. Using the proposed relationship and experimentally determined equilibrium contact angles, obtained by plotting the advancing and receding contact angles versus the contact angle hysteresis or by applying vibration of the system liquid drop/solid surface, it is found that the same value of the surface free energy for paraffin wax is calculated from the contact angles of water and ethylene glycol. However, in the case of polypropylene some inconsistency appears between the equilibrium contact angles of the probe liquid used and the calculated surface free energy. More experimental data of the equilibrium contact angle are needed to verify further the relationship.
Assimilate Partitioning and Plant Development
Yong-Ling Ruan; John W.Patrick; Hans Weber
2010-01-01
@@ It has been a pleasure to organize this special issue of Molecular Plant on 'Assimilate Partitioning and Plant Development'. Assimilate, a collective term describing organic carbon (C) and nitrogen (N), is of paramount importance for plant development and realization of crop productivity.
Gershgorin domains for partitioned matrices
Sluis, A. van der
1979-01-01
Inclusion domains for the eigenvalues of a partitioned matrix are specified in terms of perturbations of its diagonal blocks. The size of such perturbations is measured using the Kantorovitch-Robert-Deutsch vectorial norms. The inclusion domains obtained thereby are compared with inclusion domains o
Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...
Optimized Local Trigonometric Bases with Nonuniform Partitions
Qiao Fang LIAN; Yong Ge WANG; Dun Yan YAN
2006-01-01
The authors provide optimized local trigonometric bases with nonuniform partitions which efficiently compress trigonometric functions. Numerical examples demonstrate that in many cases the proposed bases provide better compression than the optimized bases with uniform partitions obtained by Matviyenko.
Partitioning of selected antioxidants in mayonnaise
Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.
1999-01-01
This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by...
On free fermions and plane partitions
Foda, O; Zuparic, M
2008-01-01
We use free fermion methods to re-derive a result of Okounkov and Reshetikhin relating charged fermions to random plane partitions, and to extend it to relate neutral fermions to strict plane partitions.
Methodology for optimally sized centrifugal partition chromatography columns.
Chollet, Sébastien; Marchal, Luc; Jérémy Meucci; Renault, Jean-Hugues; Legrand, Jack; Foucault, Alain
2015-04-01
Centrifugal Partition Chromatography (CPC) is a separation process based on the partitioning of solutes between two partially miscible liquid phases. There is no solid support for the stationary phase. The centrifugal acceleration is responsible for both stationary phase retention and mobile phase dispersion. CPC is thus a process based on liquid-liquid mass transfer. The separation efficiency is mainly influenced by the hydrodynamics of the phases in each cell of the column. Thanks to a visualization system, called "Visual CPC", it was observed that the mobile phase can flow through the stationary phase as a sheet, or a spray. Hydrodynamics, which directly governs the instrument efficiency, is directly affected during scale changes, and non-linear phenomena prevent the successful achievement of mastered geometrical scale changes. In this work, a methodology for CPC column sizing is proposed, based on the characterization of the efficiency of advanced cell shapes, taking into account the hydrodynamics. Knowledge about relationship between stationary phase volume, cell efficiency and separation resolution in CPC allowed calculating the optimum cell number for laboratory and industrial scale CPC application. The methodology is highlighted with results on five different geometries from 25 to 5000 mL, for two applications: the separation of alkylbenzene by partitioning with heptane/methanol/water biphasic system; and the separation of peptides by partitioning with n-butanol/acetic acid/water (4/1/5) biphasic system. With this approach, it is possible to predict the optimal CPC column length leading to highest productivity.
CROWDSOURCING BIG TRACE DATA FILTERING: A PARTITION-AND-FILTER MODEL
X. Yang
2016-06-01
Full Text Available GPS traces collected via crowdsourcing way are low-cost and informative and being as a kind of new big data source for urban geographic information extraction. However, the precision of crowdsourcing traces in urban area is very low because of low-end GPS data devices and urban canyons with tall buildings, thus making it difficult to mine high-precision geographic information such as lane-level road information. In this paper, we propose an efficient partition-and-filter model to filter trajectories, which includes trajectory partitioning and trajectory filtering. For the partition part, the partition with position and angle constrain algorithm is used to partition a trajectory into a set of sub-trajectories based on distance and angle constrains. Then, the trajectory filtering with expected accuracy method is used to filter the sub-trajectories according to the similarity between GPS tracking points and GPS baselines constructed by random sample consensus algorithm. Experimental results demonstrate that the proposed partition-and-filtering model can effectively filter the high quality GPS data from various crowdsourcing trace data sets with the expected accuracy.
Effects of Sequence Partitioning on Compression Rate
Alagoz, B Baykant
2010-01-01
In the paper, a theoretical work is done for investigating effects of splitting data sequence into packs of data set. We proved that a partitioning of data sequence is possible to find such that the entropy rate at each subsequence is lower than entropy rate of the source. Effects of sequence partitioning on overall compression rate are argued on the bases of partitioning statistics, and then, an optimization problem for an optimal partition is defined to improve overall compression rate of a sequence.
丁矿; 朱宏武; 张建华; 朱君尧; 罗璇
2013-01-01
Internal flow law of right-angle bend pipe is analyzed base on the CFD method. Calculation results show that flow separation occurs at the 90° corner and in downstream horizontal pipeline and obvious secondary circulation in the downstream horizontal pipeline. Erosion model provided by the Erosion and Corrosion Joint Research Center of Tulsa University (E/CRC) is introduced on the basis of flow field calculation to conduct the research on erosive wear of the right-angle bend pipe, in which spatial distribution characteristics of solid particles as well as maximum erosion rate and overall quality loss of upstream and downstream pipe walls are analyzed to show good consistency between calculation results and experimental data. Spatial distribution characteristics of solid particles depend on fluid flow characteristics and the most serious wear occurs at the bent pipe corner and inside wall surface of downstream pipeline. Flow rate, particle concentration and particle diameter have a significant effect on the maximum erosion rate, of which the flow rate follows an exponential growth relationship so that flow rates of upstream and downstream pipe walls respectively reach the index of 2.5 and 2.3.%基于流体力学(CFD)方法,分析了直角弯管的内部流动规律,计算结果表明:直角弯管在90°转角和下游水平管路中存在流动分离现象,同时在下游水平管路中形成明显的二次环流.在流场计算的基础上,引入TulSa大学冲蚀与腐蚀联合研究中心(E/CRC)提供的冲蚀模型,对直角弯管的冲蚀磨损问题进行研究,分析了固体颗粒的空间分布特征和上下游管壁的最大冲蚀率以及总体质量损失,计算结果与实验数据具有良好的一致性.固体颗粒的空间分布特征依赖于流体流动特性,磨损最严重的位置发生在弯管转角处和下游管路的内侧壁面.流速、颗粒浓度和颗粒直径对最大冲蚀率有明显影响,其中,流速与最大冲蚀率呈指数
Drop Size Dependence of the Contact Angle of Nanodroplets
GUO Hong-Kai; FANG Hai-Ping
2005-01-01
@@ The contact angle of nanosized non-polarized argon sessile droplets on a solid substrate is studied by using molecular dynamics simulations.It is found that the drop size dependence of the contact angle is sensitive to the interaction between the liquid molecules and solid molecules.The contact angle decreases with the decreasing drop size for larger interaction between the liquid molecules and the solid substrate, and vice versa.This observation is consistent with most of the previous theoretical and experimental results.
Solving set partitioning problems using lagrangian relaxation
van Krieken, M.G.C.
2006-01-01
This thesis focuses on the set partitioning problem. Given a collection of subsets of a certain root set and costs associated to these subsets, the set partitioning problem is the problem of finding a minimum cost partition of the root set. Many real-life problems, such as vehicle routing and crew s
Contact angle hysteresis on superhydrophobic stripes.
Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I
2014-08-21
We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.
Ontology Partitioning: Clustering Based Approach
Soraya Setti Ahmed
2015-05-01
Full Text Available The semantic web goal is to share and integrate data across different domains and organizations. The knowledge representations of semantic data are made possible by ontology. As the usage of semantic web increases, construction of the semantic web ontologies is also increased. Moreover, due to the monolithic nature of the ontology various semantic web operations like query answering, data sharing, data matching, data reuse and data integration become more complicated as the size of ontology increases. Partitioning the ontology is the key solution to handle this scalability issue. In this work, we propose a revision and an enhancement of K-means clustering algorithm based on a new semantic similarity measure for partitioning given ontology into high quality modules. The results show that our approach produces meaningful clusters than the traditional algorithm of K-means.
Adiabatic partition effect on natural convection heat transfer inside a square cavity
Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.
2017-01-01
. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic...
朱志强; 汪洋; 刘秋生
2012-01-01
本文利用微重力落塔实验研究了Bond数改变时，PTFE和铝板表面上正滴和倒滴接触角的动态变化。实验发现液滴接触角与Bond数的大小有关，当Bond数趋于0时，还与其放置状态有关。本文采用VOF方法对Bond数变化引起的液滴形状及内部流动变化进行二维数值模拟，结果显示液滴内部的流动控制着液滴的外形和接触角。%The behaviors of liquid drops in microgravity have been experimentally performed in Beijing 3.6 s Drop Tower. Contact angle dynamic behaviors of sessile and pendant liquid drops on PTFE and Aluminum were measured and analyzed for varying Bond number. It was found that Bond number had direct influence on the drop contact angle. And the drops with different status （sessile or pendant） also exhibited dissimilar contact angle behaviors when Bond number closed to zero. For comparison, the VOF methodology was introduced to analyze numerically the influence of Bond number on the shapes and inner bulk flow fields of liquid drops. It indicated that the bulk flow could influence the shape and contact angle of drops evidently.
Discretized configurations and partial partitions
Abrams, Aaron; Hower, Valerie
2010-01-01
We show that the discretized configuration space of $k$ points in the $n$-simplex is homotopy equivalent to a wedge of spheres of dimension $n-k+1$. This space is homeomorphic to the order complex of the poset of ordered partial partitions of $\\{1,\\...,n+1\\}$ with exactly $k$ parts. We also compute the Euler characteristic in two different ways, thereby obtaining a topological proof of a combinatorial recurrence satisfied by the Stirling numbers of the second kind.
On higher spin partition functions
Beccaria, M
2015-01-01
We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the "physical" ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z=1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z=1 is also true in the conformal higher spin theory (with higher-derivative d^{2s} kinetic terms) expanded near flat or conformally flat S^4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat space. This non...
Pressure dependence of the contact angle.
Wu, Jiyu; Farouk, T; Ward, C A
2007-06-07
When a liquid and its vapor contact a smooth, homogeneous surface, Gibbsian thermodynamics indicates that the contact angle depends on the pressure at the three-phase line of an isothermal system. When a recently proposed adsorption isotherm for a solid-vapor interface is combined with the equilibrium conditions and the system is assumed to be in a cylinder where the liquid-vapor interface can be approximated as spherical, the contact-angle-pressure relation can be made explicit. It indicates that a range of contact angles can be observed on a smooth homogeneous surface by changing the pressure at the three-phase line, but it also indicates that the adsorption at the solid-liquid interface is negative, and leads to the prediction that the contact angle increases with pressure. The predicted dependence of the contact angle on pressure is investigated experimentally in a system that has an independent mechanism for determining when thermodynamic equilibrium is reached. The predictions are in agreement with the measurements. The results provide a possible explanation for contact angle hysteresis.
Contact angle and contact angle hysteresis measurements using the capillary bridge technique.
Restagno, Frédéric; Poulard, Christophe; Cohen, Céline; Vagharchakian, Laurianne; Léger, Liliane
2009-09-15
A new experimental technique is proposed to easily measure both advancing and receding contact angles of a liquid on a solid surface, with unprecedented accuracy. The technique is based on the analysis of the evolution of a capillary bridge formed between a liquid bath and a solid surface (which needs to be spherical) when the distance between the surface and the liquid bath is slowly varied. The feasibility of the technique is demonstrated using a low-energy perfluorinated surface with two different test liquids (water and hexadecane). A detailed description of both experimental procedures and computational modeling are given, allowing one to determine contact angle values. It is shown that the origin of the high accuracy of this technique relies on the fact that the contact angles are automatically averaged over the whole periphery of the contact. This method appears to be particularly adapted to the characterization of surfaces with very low contact angle hysteresis.
Element Partitioning Constraints on Formation and Composition of the Earth's Core
Li, J.; Agee, C. B.; Fei, Y.
1998-01-01
Element partitioning study provides a number of constraints on the formation and composition of the core. First, partitioning of siderophile elements between the core and mantle should explain the "excess" siderophile elements in the mantle. Second, partitioning of light element(s) between the core and mantle should supply the core with the right amount of light element(s) to account for the density deficit in the core. Third, partitioning of light element(s) between the inner and outer core should be consistent with the observed difference in density deficits (relative to pure Fe) between these two reservoirs. In this study, high-pressure and high-temperature experiments have been conducted to investigate the pressure, temperature, and composition effects on partitioning of siderophile elements Ni and Co between core-forming Fe alloy and mantle silicate melt and minerals, partitioning of light elements S, O, and Si between core-forming Fe alloy and mantle silicate melt and minerals, and partitioning of light elements S and C between solid and liquid Fe. The implications of these results for mechanism of core formation and the composition of the core are discussed.
Investigation of drop dynamic contact angle on copper surface
Orlova, Evgenija; Feoktistov, Dmitriy; Kuznetsov, Geniy
2015-01-01
This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.
Investigation of drop dynamic contact angle on copper surface
Orlova Evgenija
2015-01-01
Full Text Available This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.
2-D DOA Estimation via Matrix Partition and Stacking Technique
Ping Wei
2009-01-01
Full Text Available A novel approach is proposed for the efficient estimation of the two-dimensional (2-D direction-of-arrival (DOA of signals impinging on two orthogonal uniform linear arrays (ULAs. By partitioning the cross-correlation matrix (CCM between two ULAs data into a great deal of submatrices and making use of the submatrices and the symmetric subarrays, an extended correlation matrix is constructed, and then uses the modified ESPRIT approach to extract out the so-called Kronecker Steering Vectors (KSVs of which each is the Kronecker product of the elevation and azimuth angle with a one-to-one relationship. Upon that the proposed method yields the estimate of the 2-D DOA efficiently without requiring the additionally computational burden to remove the pair-matching problem. Furthermore, the main idea of the matrix partition and stacking is to much-enhanced subspace estimate. So based on the use of the concept, the proposed method's performance is better than the existing similar approaches. Meanwhile, unlike the traditional subspace methods, it is shown that the proposed can resolve the same uncorrelated sources as the number of subarray sensor through a delicate partition-and-stacking process. Simulation results demonstrate that the proposed method is superior to the existing techniques in both DOA estimation and the detection capability of sources.
Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.
2014-01-01
Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
Intrinsic energy partition in fission
Mirea M.
2013-03-01
Full Text Available The intrinsic energy partition between two complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus.
Investigation of drop dynamic contact angle on copper surface
Orlova Evgenija; Feoktistov Dmitriy; Kuznetsov Geniy
2015-01-01
This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It...
Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.; Smirnova, I. [Institute of Thermal Separation Processes, Hamburg University of Technology, Eissendorfer Str. 38, 21073 Hamburg (Germany); Zuniga, A. Chaides; Keil, F. J. [Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eissendorfer Str. 38, 21073 Hamburg (Germany)
2014-07-28
Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.
On the partition dimension of unicyclic graphs
Rodriguez-Velazquez, Juan A; Fernau, Henning
2011-01-01
Given an ordered partition $\\Pi =\\{P_1,P_2, ...,P_t\\}$ of the vertex set $V$ of a connected graph $G=(V,E)$, the \\emph{partition representation} of a vertex $v\\in V$ with respect to the partition $\\Pi$ is the vector $r(v|\\Pi)=(d(v,P_1),d(v,P_2),...,d(v,P_t))$, where $d(v,P_i)$ represents the distance between the vertex $v$ and the set $P_i$. A partition $\\Pi$ of $V$ is a \\emph{resolving partition} if different vertices of $G$ have different partition representations, i.e., for every pair of vertices $u,v\\in V$, $r(u|\\Pi)\
On the partition dimension of trees
Rodriguez-Velazquez, Juan A; Lemanska, Magdalena
2011-01-01
Given an ordered partition $\\Pi =\\{P_1,P_2, ...,P_t\\}$ of the vertex set $V$ of a connected graph $G=(V,E)$, the \\emph{partition representation} of a vertex $v\\in V$ with respect to the partition $\\Pi$ is the vector $r(v|\\Pi)=(d(v,P_1),d(v,P_2),...,d(v,P_t))$, where $d(v,P_i)$ represents the distance between the vertex $v$ and the set $P_i$. A partition $\\Pi$ of $V$ is a \\emph{resolving partition} of $G$ if different vertices of $G$ have different partition representations, i.e., for every pair of vertices $u,v\\in V$, $r(u|\\Pi)\
On in-situ visualization for strongly coupled partitioned fluid-structure interaction
Fernandes, O.; Blom, D.S.; Frey, S.; Van Zuijlen, A.H.; Bijl, H.; Ertl, T.
2015-01-01
We present an integrated in-situ visualization approach for partitioned multi-physics simulation of fluid-structure interaction. The simulation itself is treated as a black box and only the information at the fluid-structure interface is considered, and communicated between the fluid and solid solve
Hardware/software partitioning in Verilog.
2002-01-01
We propose in this paper an algebraic approach to hardware/software partitioning in Verilog HDL. We explore a collection of algebraic laws for Verilog programs, from which we design a set of syntax-based algebraic rules to conduct hardware/software partitioning. The co-specification language and the target hardware and software description languages are specific subsets of Verilog, which brings forth our successful verification for the correctness of the partitioning process by algebra of Ver...
Data Partitioning View of Mining Big Data
Zhang, Shichao
2016-01-01
There are two main approximations of mining big data in memory. One is to partition a big dataset to several subsets, so as to mine each subset in memory. By this way, global patterns can be obtained by synthesizing all local patterns discovered from these subsets. Another is the statistical sampling method. This indicates that data partitioning should be an important strategy for mining big data. This paper recalls our work on mining big data with a data partitioning and shows some interesti...
Evolution of Task Partitioning in Swarm Robotics
Ferrante, Eliseo,; Duenez-Guzman, E.; Turgut, A. E.; Wenseleers, Tom
2013-01-01
International audience; Task-partitioning refers to the process whereby a task is divided into two or more sub-tasks. Through task partitioning both efficiency and effectiveness can be improved provided the right environmental conditions. We synthesize self-organized task partitioning behaviors for a swarm of mobile robots using artificial evolution. Through validation experiments, we show that the synthesized behaviors exploits behavioral specialization despite being based on homogeneous ind...
[Observation and Analysis of Ground Daylight Spectra of China's Different Light Climate Partitions].
Liang, Shu-ying; Yang, Chun-yu
2015-12-01
The territory of China is vast, so the daylight climates of different regions are not the same. In order to expand theutilization scope and improve the utilization efficiency of solar energy and daylight resources, this article observed and analyzed the ground daylight spectra of China's different light climate partitions. Using a portable spectrum scanner, this article did a tracking observation of ground direct daylight spectra in the period of 380-780 nm visible spectrum of different solar elevation angles during one day in seven representative cities of china's different light climate partitions. The seven representative cities included Kunming, Xining, Beijing, Shenzhen, Nanjing, Nanchang and Chongqing. According to the observation results, this article analyzed the daylight spectrum changing law, compared the daylight spectrum curves of different light climate partitions cities, and summarized the influence factors of daylight spectral radiation intensity. The Analysis of the ground direct daylight spectra showed that the daylight spectral radiation intensity of different solar elevation angles during one day of china's different light climate partitions cities was different, but the distribution and trend of daylight power spectra were basically the same which generally was first increased and then decreased. The maximum peak of spectral power distribution curve appeared at about 475 nm, and there were a steep rise between 380-475 nm and a smooth decline between 475-700 nm while repeatedly big ups and downs appearing after 700 nm. The distribution and trend of daylight power spectra of china's different light climate partitions cities were basically the same, and there was no obvious difference between the daylight spectral power distribution curves and the different light climate partitions. The daylight spectral radiation intensity was closely related to the solar elevation angle and solar surface condition.
Combinatorial set theory partition relations for cardinals
Erdös, P; Hajnal, A; Rado, P
2011-01-01
This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel''skii''s famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of
Partitioning and diffusion of PBDEs through an HDPE geomembrane.
Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison
2016-09-01
Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spherical Parameterization Balancing Angle and Area Distortions.
Nadeem, Saad; Su, Zhengyu; Zeng, Wei; Kaufman, Arie; Gu, Xianfeng
2017-06-01
This work presents a novel framework for spherical mesh parameterization. An efficient angle-preserving spherical parameterization algorithm is introduced, which is based on dynamic Yamabe flow and the conformal welding method with solid theoretic foundation. An area-preserving spherical parameterization is also discussed, which is based on discrete optimal mass transport theory. Furthermore, a spherical parameterization algorithm, which is based on the polar decomposition method, balancing angle distortion and area distortion is presented. The algorithms are tested on 3D geometric data and the experiments demonstrate the efficiency and efficacy of the proposed methods.
Podzharenko, Volodymyr A.; Kulakov, Pavlo I.
2001-06-01
The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.
Angle of Arrival Detection with Fifth Order Phase Operators
Khmou, Youssef
2015-01-01
In this paper, a fifth order propagator operators are proposed for estimating the Angles Of Arrival (AOA) of narrowband electromagnetic waves impinging on antenna array when its number of sensors is larger than the number of radiating sources. The array response matrix is partitioned into five linearly dependent phases to construct the noise projector using five different propagators from non diagonal blocks of the spectral matrice of the received data; hence, five different estimators are proposed to estimate the angles of the sources. The simulation results proved the performance of the proposed estimators in the presence of white noise comparatively to high resolution eigen based spectra.
Strain Partitioning and the Geometry of Oblique Plate Convergence
Guzman-Speziale, M.
2004-05-01
Strain partitioning occurs at convergent margins where oblique subduction takes place, a fact that has been known for a number of years. The geometry of plate subduction controls strain-partitioning mode in the forearc region. Deformation in the forearc depends on the direction of relative plate convergence, earthquake slip vectors, and trench-normal direction. Two basic angles are derived from these vectors: obliquity of plate convergence, the angle of plate motion direction and trench normal, and slip partitioning which is the angle between the earthquake slip vector and trench normal. Traditionally, oblique convergence models consider the trench (convergent margin) a straight line on a flat Earth. This is correct for small-scale (in the order of a few kilometers) models. However, earthquakes along convergent margins often have fault lengths of tens and even hundreds (for magnitude 7 or greater) of kilometers. On the other hand, the direction normal to the trench is usually calculated averaging contiguous points along the deepest part of the digitized bathymetry, yielding the local trend of the trench. The direction normal to the trench thus calculated varies greatly along a specific trench. In this work we propose an alternate treatment of the geometry of the trench. On a spherical Earth, trench segments form arcs of small circles. Usually, a trench of interest will contain a few (three-five) such segments, which can be fitted (in a least-squares sense) with small circles with a known center of curvature (or pole) on the surface of the Earth. Also known are the initial and final points. Instead of the standard direction normal to the trench, we use the average azimuth from the segment of small circle to its corresponding pole. We use this direction instead of trench normal and calculate obliquity of plate convergence. We test our model along the western Sunda arc, from the eastern Himalayan sintaxis to Sumatra. Five contiguos small circles were fitted to the
Farley, Gary L.
1990-01-01
Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
Li, Qing; Luo, K. H.; Kang, Q. J.; Chen, Q.
2014-11-01
In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρL/ρV=500 . The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994), 10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θ static contact angles close to 180∘. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ >90∘ as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.
HPAM: Hirshfeld partitioned atomic multipoles
Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.
2012-02-01
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio
Can dynamic contact angle be measured using molecular modeling?
Malani, Ateeque; Raghavanpillai, Anilkumar; Wysong, Ernest B; Rutledge, Gregory C
2012-11-02
A method is presented for determining the dynamic contact angle at the three-phase contact between a solid, a liquid, and a vapor under an applied force, using molecular simulation. The method is demonstrated using a Lennard-Jones fluid in contact with a cylindrical shell of the fcc Lennard-Jones solid. Advancing and receding contact angles and the contact angle hysteresis are reported for the first time by this approach. The increase in force required to wet fully an array of solid cylinders (robustness) with decreasing separation distance between cylinders is evaluated. The dynamic contact angle is characterized by partial slipping of the three phase contact line when a force is applied.
Crossings and nestings in colored set partitions
Marberg, Eric
2012-01-01
Several years ago, Chen, Deng, Du, Stanley, and Yan introduced the notion of $k$-crossings and $k$-nestings for set partitions, and proved that the sizes of the largest $k$-crossings and $k$-nestings in the partitions of an $n$-set possess a symmetric joint distribution. The present work extends these results to $r$-colored set partitions, by which we mean set partitions whose arcs are labeled by an $r$-element set. A $k$-crossing or $k$-nesting in this context is a sequence or arcs, all with the same color, which form a $k$-crossing or $k$-nesting in the usual sense. To prove our extension, we produce a bijection from $r$-colored set partitions to certain sequences of $r$-partite partitions, which in the uncolored case specializes to a novel description of the map from set partitions to vacillating tableaux given by Chen et al. Among other applications, we explain how our construction implies recent results of Chen and Guo on colored matchings, and also an analogous symmetric joint distribution of crossings ...
Compactified webs and domain wall partition functions
Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)
2017-04-15
In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)
Graph Partitioning Models for Parallel Computing
Hendrickson, B.; Kolda, T.G.
1999-03-02
Calculations can naturally be described as graphs in which vertices represent computation and edges reflect data dependencies. By partitioning the vertices of a graph, the calculation can be divided among processors of a parallel computer. However, the standard methodology for graph partitioning minimizes the wrong metric and lacks expressibility. We survey several recently proposed alternatives and discuss their relative merits.
Partition functions for supersymmetric black holes
Manschot, J.
2008-01-01
This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a
[On the partition of acupuncture academic schools].
Yang, Pengyan; Luo, Xi; Xia, Youbing
2016-05-01
Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.
The vapor-particle partitioning of n-alkanes
Doskey, P.V.
1994-04-01
A mixed-phase partitioning model has been proposed to predict the distribution of n-alkanes between the vapor and particle phases in the atmosphere. n-Alkanes having terrestrial plant wax and petroleum origins are assumed to be associated with atmospheric particles as microcrystalline solids and subcooled liquids, respectively. The fraction of n-alkanes on atmospheric particles having plant wax and petroleum origins is estimated with carbon preference indices. Hypothetical terrestrial plant wax and petroleum mixtures are used to estimate the mole fractions of the n-alkanes in each phase and the molecular weights of the phases. Solid and subcooled liquid phase n-alkane vapor pressures are used in the model to predict the fraction of n-alkanes associated with particles in the atmosphere. Trends in the prediction of vapor-particle partitioning using these assumptions agree well with field observations. However, the fraction of particle phase n-alkanes predicted by the model was significantly different from the field observations.
Data Partitioning Technique for Improved Video Prioritization
Ismail Amin Ali
2017-07-01
Full Text Available A compressed video bitstream can be partitioned according to the coding priority of the data, allowing prioritized wireless communication or selective dropping in a congested channel. Known as data partitioning in the H.264/Advanced Video Coding (AVC codec, this paper introduces a further sub-partition of one of the H.264/AVC codec’s three data-partitions. Results show a 5 dB improvement in Peak Signal-to-Noise Ratio (PSNR through this innovation. In particular, the data partition containing intra-coded residuals is sub-divided into data from: those macroblocks (MBs naturally intra-coded, and those MBs forcibly inserted for non-periodic intra-refresh. Interactive user-to-user video streaming can benefit, as then HTTP adaptive streaming is inappropriate and the High Efficiency Video Coding (HEVC codec is too energy demanding.
Lam, C N C; Wu, R; Li, D; Hair, M L; Neumann, A W
2002-02-25
Two types of experiments were used to study the behavior of both advancing and receding contact angles, namely the dynamic one-cycle contact angle (DOCA) and the dynamic cycling contact angle (DCCA) experiments. For the preliminary study, DOCA measurements of different liquids on different solids were performed using an automated axisymmetric drop shape analysis-profile (ADSA-P). From these experimental results, four patterns of receding contact angle were observed: (1) time-dependent receding contact angle; (2) constant receding contact angle; (3) 'stick/slip'; (4) no receding contact angle. For the purpose of illustration, results from four different solid surfaces are shown. These solids are: FC-732-coated surface; poly(methyl methacrylate/n-butyl methacrylate) [P(MMA/nBMA)]; poly(lactic acid) (DL-PLA); and poly(lactic/glycolic acid) 50/50 (DL-PLGA 50/50). Since most of the surfaces in our studies exhibit time dependence in the receding contact angle, a more extended study was conducted using only FC-732-coated surfaces to better understand the possible causes of decreasing receding contact angle and contact angle hysteresis. Contact angle measurements of 21 liquids from two homologous series (i.e. n-alkanes and 1-alcohols) and octamethylcyclotetrasiloxane (OCMTS) on FC-732-coated surfaces were performed. It is apparent that the contact angle hysteresis decreases with the chain length of the liquid. It was found that the receding contact angle equals the advancing angle when the alkane molecules are infinitely large. These results strongly suggest that the chain length and size of the liquid molecule could contribute to contact angle hysteresis phenomena. Furthermore, DCCA measurements of six liquids from the two homologous series on FC-732-coated surfaces were performed. With these experimental results, one can construe that the time dependence of contact angle hysteresis on relatively smooth and homogeneous surfaces is mainly caused by liquid retention
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
Li, Q; Kang, Q J; Chen, Q
2014-01-01
In this paper, we aim to investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model, the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions: the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper, are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles, however, is unable to reproduce static contact angles close to 180 degrees. Meanwhile, it is found that the proposed modif...
Revelli, Anne-Laure; Mutelet, Fabrice; Jaubert, Jean-Noël
2009-06-05
Partition coefficients of organic compounds in four ionic liquids: 1-ethanol-3-methylimidazolium tetrafluoroborate, 1-ethanol-3-methylimidazolium hexafluorophosphate, 1,3-dimethylimidazolium dimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate were measured using inverse gas chromatography from 303.3 to 332.55K. The influence of gas-liquid and gas-solid interfacial adsorption of different solutes on ionic liquids was also studied. Most of the polar solutes were retained largely by partition while light hydrocarbons were retained predominantly by interfacial adsorption on the ionic liquids studied in this work. The solvation characteristics of the ionic liquids were evaluated using the Abraham solvation parameter model.
Blind Source Separation in Farsi Language by Using Hermitian Angle in Convolutive Enviroment
Atefeh Soltani
2013-04-01
Full Text Available This paper presents a T-F masking method for convolutive blind source separation based on hermitian angle concept. The hermitian angle is calculated between T-F domain mixture vector and reference vector. Two different reference vectors are assumed for calculating two different hermitian angles, and then these angles are clustered with k-means or FCM method to estimate unmixing masks. The well-known permutation problem is solved based on k-means clustering of estimated masks which are partitioned to small groups. The experimental results show an improvement in performance when using two different reference vectors compared to only one.
Kim, Ho Kyung; Cho, Min Kook; Kim, Seong Sik [Pusan National University, Busan (Korea, Republic of)
2007-07-01
In computed tomography (CT), many situations are restricted to obtain enough number of projections or views to avoid artifacts such as streaking and geometrical distortion in the reconstructed images. Speed of motion of an object to be imaged can limit the number of views. Cardiovascular imaging is a representative example. Size of an object can also limit the complete traverse motion or geometrical complexity can obscure to be imaged at certain range of angles. These situations are frequently met in industrial nondestructive testing and evaluation. Dental CT also suffers from similar situation because cervical spine causes less x-ray penetration from some directions such that the available information is not sufficient for standard reconstruction algorithms. The limited angle tomography is now greatly paid attention as a new genre in medical and industrial imaging, popularly known as digital tomosynthesis. In this study, we introduce a modified filtered backprojection method in limited angle tomography and demonstrate its application for the dental imaging.
Maeda, Kei-ichi; Uzawa, Kunihito
2016-12-01
We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.
Hennig, A; Eichhorn, K-J; Staudinger, U; Sahre, K; Rogalli, M; Stamm, M; Neumann, A W; Grundke, K
2004-08-03
The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.
Reinforcement learning with partitioning function system
李伟; 叶庆泰; 朱昌明
2004-01-01
The size of state-space is the limiting factor in applying reinforcement learning algorithms to practical cases. A reinforcement learning system with partitioning function (RLWPF) is established, in which statespace is partitioned into several regions. Inside the performance principle of RLWPF is based on a Semi-Markov decision process and has general significance. It can be applied to any reinforcement learning with a large statespace. In RLWPF, the partitioning module dispatches agents into different regions in order to decrease the state-space of each agent. This article proves the convergence of the SARSA algorithm for a Semi-Markov decision process, ensuring the convergence of RLWPF by analyzing the equivalence of two value functions in two Semi-Markov decision processes before and after partitioning. This article can show that the optimal policy learned by RLWPF is consistent with prior domain knowledge. An elevator group system is devised to decrease the average waiting time of passengers. Four agents control four elevator cars respectively. Based on RLWPF, a partitioning module is developed through defining a uniform round trip time as the partitioning criteria, making the wait time of most passengers more or less identical then elevator cars should only answer hall calls in their own region. Compared with ordinary elevator systems and reinforcement learning systems without partitioning module, the performance results show the advantage of RLWPF.
DYNAMIC TASK PARTITIONING MODEL IN PARALLEL COMPUTING
Javed Ali
2012-04-01
Full Text Available Parallel computing systems compose task partitioning strategies in a true multiprocessing manner. Such systems share the algorithm and processing unit as computing resources which leads to highly inter process communications capabilities. The main part of the proposed algorithm is resource management unit which performs task partitioning and co-scheduling .In this paper, we present a technique for integrated task partitioning and co-scheduling on the privately owned network. We focus on real-time and non preemptive systems. A large variety of experiments have been conducted on the proposed algorithm using synthetic and real tasks. Goal of computation model is to provide a realistic representation of the costs of programming The results show the benefit of the task partitioning. The main characteristics of our method are optimal scheduling and strong link between partitioning, scheduling and communication. Some important models for task partitioning are also discussed in the paper. We target the algorithm for task partitioning which improve the inter process communication between the tasks and use the recourses of the system in the efficient manner. The proposed algorithm contributes the inter-process communication cost minimization amongst the executing processes.
Partial domain wall partition functions
Foda, O
2012-01-01
We consider six-vertex model configurations on a rectangular lattice with n (N) horizontal (vertical) lines, and "partial domain wall boundary conditions" defined as 1. all 2n arrows on the left and right boundaries point inwards, 2. n_u (n_l) arrows on the upper (lower) boundary, such that n_u + n_l = N - n, also point inwards, 3. all remaining n+N arrows on the upper and lower boundaries point outwards, and 4. all spin configurations on the upper and lower boundaries are summed over. To generate (n-by-N) "partial domain wall configurations", one can start from A. (N-by-N) configurations with domain wall boundary conditions and delete n_u (n_l) upper (lower) horizontal lines, or B. (2n-by-N) configurations that represent the scalar product of an n-magnon Bethe eigenstate and an n-magnon generic state on an N-site spin-1/2 chain, and delete the n lines that represent the Bethe eigenstate. The corresponding "partial domain wall partition function" is computed in construction {A} ({B}) as an N-by-N (n-by-n) det...
Energy partitioning schemes: a dilemma.
Mayer, I
2007-01-01
Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components.
An Algebraic Hardware/Software Partitioning Algorithm
秦胜潮; 何积丰; 裘宗燕; 张乃孝
2002-01-01
Hardware and software co-design is a design technique which delivers computer systems comprising hardware and software components. A critical phase of the co-design process is to decompose a program into hardware and software. This paper proposes an algebraic partitioning algorithm whose correctness is verified in program algebra. The authors introduce a program analysis phase before program partitioning and develop a collection of syntax-based splitting rules. The former provides the information for moving operations from software to hardware and reducing the interaction between components, and the latter supports a compositional approach to program partitioning.
PARTITION PROPERTY OF DOMAIN DECOMPOSITION WITHOUT ELLIPTICITY
Mo Mu; Yun-qing Huang
2001-01-01
Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for problems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an h-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented.
Jucys-Murphy elements for partition algebras
Enyang, John
2010-01-01
An inductive formula is given for a family of elements which are shown to play a role in the partition algebras which is analogous to the part played by classical Jucys-Murphy elements in the symmetric group. Using Schur-Weyl duality it is shown that the aforementioned inductive definition is equivalent to the combinatorial definition given by Halverson and Ram for Jucys-Murphy elements of partition algebras. As a consequence of the inductive formula for Jucys-Murphy elements, a new presentation for partition algebras in terms of certain involutions is also derived.
Acoustic reﬂection from the boundary of anisotropic thermoviscoelastic solid with ﬂuid
M D Sharma
2009-12-01
Vertical slownesses of waves at a boundary of an anisotropic thermoviscoelastic medium are calculated as roots of a polynomial equation of degree eight. Out of the corresponding eight waves, the four, which travel towards the boundary are identiﬁed as upgoing waves. Remaining four waves travel away from the boundary and are termed as downgoing waves. Reﬂection and refraction of plane harmonic acoustic waves are studied at a plane boundary between anisotropic thermoviscoelastic solid and a non-viscous ﬂuid. At this ﬂuid-solid interface, an incident acoustic wave through the ﬂuid reﬂects back as an attenuated acoustic wave and refracts as four attenuating waves into the anisotropic base. Slowness vectors of all the waves in two media differ only in vertical components. Complex values of vertical slowness deﬁne inhomogeneous refracted waves with a ﬁxed direction of attenuation, i.e. perpendicular to the interface. Energy partition is calculated at the interface to ﬁnd energy shares of reﬂected and refracted waves. A part of incident energy dissipates due to interaction among the attenuated refracted waves. Numerical examples are considered to study the variations in energy shares with the direction of incident wave. For each incidence, the conservation of incident energy is veriﬁed in the presence of interaction energy. Energy partition at the interface seems to be changing very slightly with the azimuthal variations of the incident direction. Effects of anisotropy, elastic relaxation and thermal parameters on the variations in energy partition are discussed. The acoustic wave reﬂected from isothermal interface is much signiﬁcant for incidence around some critical directions, which are analogous to the critical angles in a non-dissipative medium. The changes in thermal relaxation times and uniform temperature of the thermoviscoelastic medium do not show any signiﬁcant effect on the reﬂected energy.
Determination of the Contact Angle Based on the Casimir Effect
Mazuruk, Konstantin; Volz, Martin P.
2015-01-01
On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.
A robust polynomial fitting approach for contact angle measurements.
Atefi, Ehsan; Mann, J Adin; Tavana, Hossein
2013-05-14
Polynomial fitting to drop profile offers an alternative to well-established drop shape techniques for contact angle measurements from sessile drops without a need for liquid physical properties. Here, we evaluate the accuracy of contact angles resulting from fitting polynomials of various orders to drop profiles in a Cartesian coordinate system, over a wide range of contact angles. We develop a differentiator mask to automatically find a range of required number of pixels from a drop profile over which a stable contact angle is obtained. The polynomial order that results in the longest stable regime and returns the lowest standard error and the highest correlation coefficient is selected to determine drop contact angles. We find that, unlike previous reports, a single polynomial order cannot be used to accurately estimate a wide range of contact angles and that a larger order polynomial is needed for drops with larger contact angles. Our method returns contact angles with an accuracy of contact angles in a wide range with a fourth-order polynomial. We show that this approach returns dynamic contact angles with less than 0.7° error as compared to ADSA-P, for the solid-liquid systems tested. This new approach is a powerful alternative to drop shape techniques for estimating contact angles of drops regardless of drop symmetry and without a need for liquid properties.
Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona
2012-01-01
: Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...
Habib, Hesham A; Hoffmann, Anke; Höppe, Henning A; Steinfeld, Gunther; Janiak, Christoph
2009-03-02
Hydrothermal reactions of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) with copper(II), zinc(II), and cadmium(II) salts have yielded the dinuclear complexes [Zn2Cl4(mu2-btre)2] (1) and [Zn2Br4(mu2-btre)2] (2), the one-dimensional coordination polymer infinity1[Zn(NCS)2(2-btre)] (3), the two-dimensional networks infinity2[Cu2(mu2-Cl)2(mu4-btre)] (4), infinity2[Cu2(mu2-Br)2(mu4-btre)] (5), and infinity2{[Cd6(mu3-OH)2(mu3-SO4)4(mu4-btre)3(H2O)6](SO4).6H2O} (6), and the three-dimensional frameworks infinity3{[Cu(mu4-btre)]ClO4.0.25H2O} (7), 3{[Zn(mu4-btre)(mu2-btre)](ClO4)2} (8), infinity3{[Cd(mu4-btre)(mu2-btre)](ClO4)2} (9), and infinity3[Cu2(mu2-CN)2(mu4-btre)] (10, 2-fold 3D interpenetrated framework). The copper-containing products 4, 5, 7, and 10 contain the metal in the +1 oxidation state, from a simultaneous redox and self-assembly reaction of the Cu(II) starting materials. The cyanide-containing framework 10 has captured the CN- ions from the oxidative btre decomposition. The perchlorate frameworks 7, 8, or 9 react in an aqueous NH4+PF6- solution with formation of the related PF6--containing frameworks. The differences in the metal-btre bridging mode (mu2-kappaN1:N1', mu2-kappaN1:N2 or mu4-kappaN1:N2:N1':N2') and the btre ligand symmetry can be correlated with different signal patterns in the 13C cross polarization magic angle spinning (CPMAS) NMR spectra. Compounds 2, 4, 5 and 7 to 10 exhibit fluorescence at 403-481 nm upon excitation at 270-373 nm which is not seen in the free btre ligand.
On the elliptic $\\mathfrak{gl}_2$ solid-on-solid model: functional relations and determinants
Galleas, W
2016-01-01
In this work we study an elliptic solid-on-solid model with domain-wall boundaries having the elliptic quantum group $\\mathcal{E}_{p, \\gamma}[\\widehat{\\mathfrak{gl}_2}]$ as its underlying symmetry algebra. We elaborate on results previously presented by the author and extend our analysis to include continuous families of single determinantal representations for the model's partition function. Interestingly, our families of representations are parameterized by two continuous complex variables which can be arbitrarily chosen without affecting the partition function.
Controls on continental strain partitioning above an oblique subduction zone, Northern Andes
Schütt, Jorina M.; Whipp, David M., Jr.
2016-04-01
Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a
Indoor Place Categorization based on Adaptive Partitioning of Texture Histograms
Sven Eberhardt
2014-12-01
Full Text Available How can we localize ourselves within a building solely using visual information, i.e., when no data about prior location or movement are available? Here, we define place categorization as a set of three distinct image classification tasks for view matching, location matching, and room matching. We present a novel image descriptor built on texture statistics and dynamic image partitioning that can be used to solve all tested place classification tasks. We benchmark the descriptor by assessing performance of regularization on our own dataset as well as the established Indoor Environment under Changing conditionS dataset, which varies lighting condition, location, and viewing angle on photos taken within an office building. We show improvement on both the datasets against a number of baseline algorithms.
Reducing variance in batch partitioning measurements
Mariner, Paul E.
2010-08-11
The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.
OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS
National Aeronautics and Space Administration — OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS BRADLEY W. JACKSON*, JEFFREY D. SCARGLE, AND CHRIS CUSANZA, DAVID BARNES, DENNIS KANYGIN, RUSSELL SARMIENTO, SOWMYA...
Connections between groundwater flow and transpiration partitioning
Maxwell, Reed M.; Condon, Laura E.
2016-07-01
Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.
Spatially Partitioned Embedded Runge--Kutta Methods
Ketcheson, David I.
2013-10-30
We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.
Generating Milton Babbitt's all-partition arrays
Bemman, Brian; Meredith, David
2016-01-01
by this algorithm to generate the specific all-partition arrays used in three of Babbitt’s works. Finally, we evaluate the algorithm and the heuristics in terms of how well they predict the sequences of integer partitions used in two of Babbitt’s works. We also explore the effect of the heuristics...... on the performance of the algorithm when it is used in an attempt to generate a novel array....
Perturbative partition function for squashed S^5
Imamura, Yosuke
2012-01-01
We compute the index of 6d N=(1,0) theories on S^5xR containing vector and hypermultiplets. We only consider the perturbative sector without instantons. By compactifying R to S^1 with a twisted boundary condition and taking the small radius limit, we derive the perturbative partition function on a squashed S^5. The 1-loop partition function is represented in a simple form with the triple sine function.
Congruences involving F-partition functions
James Sellers
1994-01-01
Full Text Available The primary goal of this note is to prove the congruence ϕ3(3n+2≡0(mod3, where ϕ3(n denotes the number of F-partitions of n with at most 3 repetitions. Secondarily, we conjecture a new family of congruences involving cϕ2(n, the number of F-partitions of n with 2 colors.
Actinide and fission product partitioning and transmutation
NONE
1997-07-01
The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)
Rainfall partitioning by desert shrubs in arid regions
无
2009-01-01
We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning and its ecohydrological effects. The percent-ages of total rainfall accounted for by throughfall, stemflow, and interception ranged from 78.85±2.78 percent to 86.29±5.07 per-cent, from 5.50±3.73 percent to 8.47±4.19 percent, and from 7.54±2.36 percent to 15.95±4.70 percent, respectively, for the four shrubs in our study (Haloxylon ammodendron, Elaeagnus angustifolia, Tamarix ramosissima, and Nitraria sphaerocarpa). Rain-fall was significantly linearly correlated with throughfall, stemflow, and interception (P < 0.0001). The throughfall, stemflow, and interception percentages were logarithmically related to total rainfall (P < 0.01), but were quadratically related to the maximum 1-hour rainfall intensity (P < 0.01). The throughfall and stemflow percentages increased significantly with increasing values of the rainfall characteristics, whereas the interception percentage generally decreased (except for average wind speed, air temperature, and canopy evaporation). Regression analysis suggested that the stemflow percentage increased significantly with increasing crown length, number of branches, and branch angle (R2 = 0.92, P < 0.001). The interception percentage increased significantly with increasing LAI (leaf area index) and crown length, but decreased with increasing branch angle (R2 = 0.96, P < 0.001). The mean funnelling percentages for the four shrubs ranged from 30.27±4.86 percent to 164.37±6.41 percent of the bulk precipitation. Much of the precipitation was funnelled toward the basal area of the stem, confirming that shrub stemflow conserved in deep soil layers may be an available moisture source to support plant survival and growth under arid conditions.
A Gray path on binary partitions
Colthurst, Thomas
2009-01-01
A binary partition of a positive integer $n$ is a partition of $n$ in which each part has size a power of two. In this note we first construct a Gray sequence on the set of binary partitions of $n$. This is an ordering of the set of binary partitions of each $n$ (or of all $n$) such that adjacent partitions differ by one of a small set of elementary transformations; here the allowed transformatios are replacing $2^k+2^k$ by $2^{k+1}$ or vice versa (or addition of a new +1). Next we give a purely local condition for finding the successor of any partition in this sequence; the rule is so simple that successive transitions can be performed in constant time. Finally we show how to compute directly the bijection between $k$ and the $k$th term in the sequence. This answers a question posed by Donald Knuth in section 7.2.1 of The Art of Computer Programming.
Zheng, J.; Wang, B. S.; Chen, W. Q.; Han, X. Y.; Li, C. F.; Zhang, J. Z.; Yu, K. P.
2017-02-01
It is known that contact lines keep relatively still on solids until static contact angles exceed an interval of hysteresis of static contact angle (HSCA), and contact angles keep changing as contact lines relatively slide on the solid. Here, the effects of HSCA and boundary slip were first distinguished on the micro-curvature force (MCF) on the seta. Hence, the total MCF is partitioned into static and dynamic MCFs correspondingly. The static MCF was found proportional to the HSCA and related with the asymmetry of the micro-meniscus near the seta. The dynamic MCF, exerting on the relatively sliding contact line, is aroused by the boundary slip. Based on the Blake-Haynes mechanism, the dynamic MCF was proved important for water walking insects with legs slower than the minimum wave speed 23 cm\\cdot s^{-1}. As insects brush the water by laterally swinging legs backwards, setae on the front side of the leg are pulled and the ones on the back side are pushed to cooperatively propel bodies forward. If they pierce the water surface by vertically swinging legs downwards, setae on the upside of the legs are pulled, and the ones on the downside are pushed to cooperatively obtain a jumping force. Based on the dependency between the slip length and shear rate, the dynamic MCF was found correlated with the leg speed U, as F˜ C1U+C2 U^{2+ɛ}, where C1 and C2 are determined by the dimple depth. Discrete points on this curve could give fitted relations as F˜ Ub (Suter et al., J. Exp. Biol. 200, 2523-2538, 1997). Finally, the axial torque on the inclined and partially submerged seta was found determined by the surface tension, contact angle, HSCA, seta width, and tilt angle. The torque direction coincides with the orientation of the spiral grooves of the seta, which encourages us to surmise it is a mechanical incentive for the formation of the spiral morphology of the setae of water striders.
Contact angle hysteresis explained.
Gao, Lichao; McCarthy, Thomas J
2006-07-04
A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.
Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.
2013-01-01
measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....
Certificate Revocation Using Fine Grained Certificate Space Partitioning
Goyal, Vipul
A new certificate revocation system is presented. The basic idea is to divide the certificate space into several partitions, the number of partitions being dependent on the PKI environment. Each partition contains the status of a set of certificates. A partition may either expire or be renewed at the end of a time slot. This is done efficiently using hash chains.
3d and 5d gauge theory partition functions as q-deformed CFT correlators
Nieri, Fabrizio; Passerini, Filippo
2015-01-01
3d N=2 partition functions on the squashed three-sphere and on the twisted product S2xS1 have been shown to factorize into sums of squares of solid tori partition functions, the so-called holomorphic blocks. The same set of holomorphic blocks realizes squashed three-sphere and S2xS1 partition functions but the two cases involve different inner products, the S-pairing and the id-pairing respectively. We define a class of q-deformed CFT correlators where conformal blocks are controlled by a deformation of Virasoro symmetry and are paired by S-pairing and id-pairing respectively. Applying the bootstrap approach to a class of degenerate correlators we are able to derive three-point functions. We show that degenerate correlators can be mapped to 3d partition functions while the crossing symmetry of CFT correlators corresponds to the flop symmetry of 3d gauge theories. We explore how non-degenerate q-deformed correlators are related to 5d partition functions. We argue that id-pairing correlators are associated to t...
Static contact angle in lattice Boltzmann models of immiscible fluids.
Latva-Kokko, M; Rothman, Daniel H
2005-10-01
We study numerically the capillary rise between two horizontal plates and in a rectangular tube, using a lattice Boltzmann (LB) method. We derive an equation for the static fluid-solid contact angle as a function of the wetting tendency of the walls and test its validity. We show that the generalized Laplace law with two independent radii of curvature is followed in capillary rise in rectangular tubes. Our method removes the history dependence of the fluid-solid contact angle that had been present in earlier LB schemes.
Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle
Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.
2006-01-01
We present a mesoscopic model, based on the Boltzmann equation, for the interaction between a solid wall and a nonideal fluid. We present an analytic derivation of the contact angle in terms of the surface tension between the liquid-gas, the liquid-solid, and the gas-solid phases. We study the depen
Methodology for high accuracy contact angle measurement.
Kalantarian, A; David, R; Neumann, A W
2009-12-15
A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.
Relationship between the Angle of Repose and Angle of Internal ...
Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression ... such a granular material is sharp, making a steep .... study. Therefore, grains had to be condi- tioned to the respective moisture contents by adding ...
Determination of the Contact Angle Based on the Casimir Effect
Mazuruk, K.; Volz, M. P.
2015-01-01
In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.
A biologically motivated partitioning of mortality.
Carnes, B. A.; Olshansky, S. J.; Center for Mechanistic Biology and Biotechnology; Univ. of Chicago
1997-01-01
For over a century, actuaries and biologists working independently of each other have presented arguments for why total mortality needs to be partitioned into biologically meaningful subcomponents. These mortality partitions tended to overlook genetic diseases that are inherited because the partitions were motivated by a paradigm focused on aging. In this article, we combine and extend the concepts from these disciplines to develop a conceptual partitioning of total mortality into extrinsic and intrinsic causes of death. An extrinsic death is either caused or initiated by something that originates outside the body of an individual, while an intrinsic death is either caused or initiated by processes that originate within the body. It is argued that extrinsic mortality has been a driving force in determining why we die when we do from intrinsic causes of death. This biologically motivated partitioning of mortality provides a useful perspective for researchers interested in comparative mortality analyses, the consequences of population aging, limits to human life expectancy, the progress made by the biomedical sciences against lethal diseases, and demographic models that predict the life expectancy of future populations.
Computational prediction of solubilizers' effect on partitioning.
Hoest, Jan; Christensen, Inge T; Jørgensen, Flemming S; Hovgaard, Lars; Frokjaer, Sven
2007-02-01
A computational model for the prediction of solubilizers' effect on drug partitioning has been developed. Membrane/water partitioning was evaluated by means of immobilized artificial membrane (IAM) chromatography. Four solubilizers were used to alter the partitioning in the IAM column. Two types of molecular descriptors were calculated: 2D descriptors using the MOE software and 3D descriptors using the Volsurf software. Structure-property relationships between each of the two types of descriptors and partitioning were established using partial least squares, projection to latent structures (PLS) statistics. Statistically significant relationships between the molecular descriptors and the IAM data were identified. Based on the 2D descriptors structure-property relationships R(2)Y=0. 99 and Q(2)=0.82-0.83 were obtained for some of the solubilizers. The most important descriptor was related to logP. For the Volsurf 3D descriptors models with R(2)Y=0.53-0.64 and Q(2)=0.40-0.54 were obtained using five descriptors. The present study showed that it is possible to predict partitioning of substances in an artificial phospholipid membrane, with or without the use of solubilizers.
PARTITIONING A GRAPH INTO MONOPOLY SETS
AHMED MOHAMMED NAJI
2017-06-01
Full Text Available In a graph G = (V, E, a subset M of V (G is said to be a monopoly set of G if every vertex v ∈ V - M has, at least, d(v/ 2 neighbors in M. The monopoly size of G, denoted by mo(G, is the minimum cardinality of a monopoly set. In this paper, we study the problem of partitioning V (G into monopoly sets. An M-partition of a graph G is the partition of V (G into k disjoint monopoly sets. The monatic number of G, denoted by μ(G, is the maximum number of sets in M-partition of G. It is shown that 2 ≤ μ(G ≤ 3 for every graph G without isolated vertices. The properties of each monopoly partite set of G are presented. Moreover, the properties of all graphs G having μ(G = 3, are presented. It is shown that every graph G having μ(G = 3 is Eulerian and have χ (G ≤ 3. Finally, it is shown that for every integer k which is different from {1, 2, 4}, there exists a graph G of order n = k having μ(G = 3.
Screening of pesticides for environmental partitioning tendency.
Gramatica, Paola; Di Guardo, Antonio
2002-06-01
The partitioning tendency of chemicals, in this study pesticides in particular, into different environmental compartments depends mainly on the concurrent relevance of the physico-chemical properties of the chemical itself. To rank the pesticides according to their distribution tendencies in the different environmental compartments we propose a multivariate approach: the combination, by principal component analysis, of those physico-chemical properties like organic carbon partition coefficient (Koc), n-octanol/water partition coefficient (Kow), water solubility (Sw), vapour pressure and Henry's law constant (H) that are more relevant to the determination of environmental partitioning. The resultant macrovariables, the PC1 and PC2 scores here named leaching index (LIN) and volatality index (VIN), are proposed as preliminary environmental partitioning indexes in different media. These two indexes are modeled by theoretical molecular descriptors with satisfactory predictive power. Such an approach allows a rapid pre-determination and screening of the environmental distribution of pesticides starting only from the molecular structure of the pesticide, without any a priori knowledge of the physico-chemical properties.
Primary cerebello-pontine angle malignant melanoma : a case report.
Desai K
2001-04-01
Full Text Available A rare case of primary malignant melanoma in the cerebello-pontine angle, in a 17 year old girl is presented. The patient presented with one month history of headache, diplopia, facial asymmetry and ataxia. The computerised tomography (CT scan and magnetic resonance imaging (MRI revealed a large cerebello-pontine angle mass with features suggestive of a melanoma. The typical black coloured, solid and vascular melanoma was excised completely. Cerebello-pontine angle melanoma are extremely rare tumours with dismal long term outcome in majority of these cases.
Acyl-CoA metabolism and partitioning
Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A
2014-01-01
expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing...... metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute...... to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis....
Partitioning a macroscopic system into independent subsystems
Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten
2017-08-01
We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.
Combinatorics and complexity of partition functions
Barvinok, Alexander
2016-01-01
Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .
Partition functions and graphs: A combinatorial approach
Solomon, A I; Duchamp, G; Horzela, A; Penson, K A; Solomon, Allan I.; Blasiak, Pawel; Duchamp, Gerard; Horzela, Andrzej; Penson, Karol A.
2004-01-01
Although symmetry methods and analysis are a necessary ingredient in every physicist's toolkit, rather less use has been made of combinatorial methods. One exception is in the realm of Statistical Physics, where the calculation of the partition function, for example, is essentially a combinatorial problem. In this talk we shall show that one approach is via the normal ordering of the second quantized operators appearing in the partition function. This in turn leads to a combinatorial graphical description, giving essentially Feynman-type graphs associated with the theory. We illustrate this methodology by the explicit calculation of two model examples, the free boson gas and a superfluid boson model. We show how the calculation of partition functions can be facilitated by knowledge of the combinatorics of the boson normal ordering problem; this naturally gives rise to the Bell numbers of combinatorics. The associated graphical representation of these numbers gives a perturbation expansion in terms of a sequen...
Parallel Graph Partitioning for Complex Networks
Meyerhenke, Henning; Schulz, Christian
2014-01-01
Processing large complex networks like social networks or web graphs has recently attracted considerable interest. In order to do this in parallel, we need to partition them into pieces of about equal size. Unfortunately, previous parallel graph partitioners originally developed for more regular mesh-like networks do not work well for these networks. This paper addresses this problem by parallelizing and adapting the label propagation technique originally developed for graph clustering. By introducing size constraints, label propagation becomes applicable for both the coarsening and the refinement phase of multilevel graph partitioning. We obtain very high quality by applying a highly parallel evolutionary algorithm to the coarsened graph. The resulting system is both more scalable and achieves higher quality than state-of-the-art systems like ParMetis or PT-Scotch. For large complex networks the performance differences are very big. For example, our algorithm can partition a web graph with 3.3 billion edges ...
Partitioning of selected antioxidants in mayonnaise
Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.
1999-01-01
This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting.
Li, Qing; Luo, K H; Kang, Q J; Chen, Q
2014-11-01
In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρ_{L}/ρ_{V}=500. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θstatic contact angles close to 180^{∘}. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ>90^{∘} as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.
Angle-deviation optical profilometer
Chen-Tai Tan; Yuan-Sheng Chan; Zhen-Chin Lin; Ming-Hung Chiu
2011-01-01
@@ We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the reflectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The reflectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the reflectivity profile and obtain the 3D surface profile directly.%We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the refiectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The refiectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the refiectivity profile and obtain the 3D surface profile directly.
Program Partitioning using Dynamic Trust Models
Søndergaard, Dan; Probst, Christian W.; Jensen, Christian D.;
2006-01-01
-based scenarios. Language-based technologies have been suggested to support developers of those applications---the \\$\\backslash\\$emph{Decentralized Label Model} and \\$\\backslash\\$emph{Secure Program Partitioning} allow to annotate programs with security specifications, and to partition the annotated program...... across a set of hosts, obeying both the annotations and the trust relation between the principals. The resulting applications guarantee \\$\\backslash\\$emph{by construction} that safety and confidentiality of both data and computations are ensured. In this work, we develop a generalised version...
Partitioning and transmutation. Annual Report 1997
Enarsson, Aa.; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry
1997-12-01
The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.
Advanced Coarsening Schemes for Graph Partitioning
Safro, Ilya; Schulz, Christian
2012-01-01
The graph partitioning problem is widely used and studied in many practical and theoretical applications. The multilevel strategies represent today one of the most effective and efficient generic frameworks for solving this problem on large-scale graphs. Most of the attention in designing the multilevel partitioning frameworks has been on the refinement phase. In this work we focus on the coarsening phase, which is responsible for creating structurally similar to the original but smaller graphs. We compare different matching- and AMG-based coarsening schemes, experiment with the algebraic distance between nodes, and demonstrate computational results on several classes of graphs that emphasize the running time and quality advantages of different coarsenings.
Cochlear implant in incomplete partition type I.
Berrettini, S; Forli, F; De Vito, A; Bruschini, L; Quaranta, N
2013-02-01
In this investigation, we report on 4 patients affected by incomplete partition type I submitted to cochlear implant at our institutions. Preoperative, surgical, mapping and follow-up issues as well as results in cases with this complex malformation are described. The cases reported in the present study confirm that cochlear implantation in patients with incomplete partition type I may be challenging for cochlear implant teams. The results are variable, but in many cases satisfactory, and are mainly related to the surgical placement of the electrode and residual neural nerve fibres. Moreover, in some cases the association of cochlear nerve abnormalities and other disabilities may significantly affect results.
Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite
Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.
2013-12-01
During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate
Magic angle spinning NMR of paramagnetic proteins.
Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido
2013-09-17
Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.
Heterodyne Interferometer Angle Metrology
Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud
2010-01-01
A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.
Surface nanobubbles: formation and universality of the contact angle
Weijs, J H; Lohse, D
2011-01-01
We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for sufficiently low gas solubility in the liquid, i.e., for large relative gas concentration. For strong enough gas-solid attraction, the surface nanobubble is sitting on a gas layer, which forms in between the liquid and the solid. This gas layer is the reason for the universality of the contact angle, which we calculate from the microscopic parameters. Under the present equilibrium conditions the nanobubbles dissolve within less of a microsecond, consistent with the view that the experimentally found nanobubbles are stabilized by a nonequilibrium mechanism.
The Influence of Dynamic Contact Angle on Wetting Dynamics
Rame, Enrique; Garoff, Steven
2005-01-01
When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.
A "Conveyor Belt" Model for the Dynamic Contact Angle
Della Volpe, C.; Siboni, S.
2011-01-01
The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily…
Marsh, H. E., Jr.; Hutchison, J. J.
1972-01-01
The basic principles underlying propulsion by rocket motor are examined together with the configuration of a solid propellant motor. Solid propellants and their preparation are discussed, giving attention to homogeneous propellants, composite propellants, energetic considerations in choosing a solid propellant, the processing of composite propellants, and some examples of new developments. The performance of solid propellants is investigated, taking into account characteristics velocity, the specific impulse, and performance calculations. Aspects of propellant development considered include nonperformance requirements for solid propellants, the approach to development, propellant mechanical properties, and future trends.
Topological String Partition Function on Generalised Conifolds
Gasparim, Elizabeth; Suzuki, Bruno; Torres-Gomez, Alexander
2016-01-01
We show that the partition function on a generalised conifold $C_{m,n}$ with ${m+n \\choose m}$ crepant resolutions can be equivalently computed on the compound du Val singularity $A_{m+n-1}\\times \\mathbb C$ with a unique crepant resolution.
Protium, an infrastructure for partitioned applications
Mullender, Sape J.; Young, C.; Szymanski, T.; Reppy, J.; Presotto, D.; Pike, R.; Narlikar, G.
Remote access feels different from local access. The major issues are consistency (machines vary in GUIs, applications, and devices) and responsiveness (the user must wait for network and server delays). Protium attacks these by partitioning programs into local viewers that connect to remote
Fair Partitions of Polygons: An Elementary Introduction
R Nandakumar; N Ramana Rao
2012-08-01
We introduce the question: Given a positive integer , can any 2D convex polygonal region be partitioned into convex pieces such that all pieces have the same area and the same perimeter? The answer to this question is easily `yes’ for =2. We give an elementary proof that the answer is `yes’ for =4 and generalize it to higher powers of 2.
A Discrete Dynamical Model of Signed Partitions
G. Chiaselotti
2013-01-01
Full Text Available We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed integer partitions whose main properties are actually not known. This model is related to the study of some extremal combinatorial sum problems.
Countering oversegmentation in partitioning-based connectivities
Ouzounis, Georgios K.; Wilkinson, Michael H.F.
2005-01-01
A new theoretical development is presented for handling the over-segmentation problem in partitioning-based connected openings. The definition we propose treats singletons generated with the earlier method, as elements of a larger connected component. Unlike the existing formalism, this new method a
Plasmid and chromosome partitioning: surprises from phylogeny
Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus
2000-01-01
Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chr...
Mapping Pesticide Partition Coefficients By Electromagnetic Induction
A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...
Scheduling Driven Partitioning of Heterogeneous Embedded Systems
Pop, Paul; Eles, Petru; Peng, Zebo
1998-01-01
In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared b...
Subsets of configurations and canonical partition functions
Bloch, J.; Bruckmann, F.; Kieburg, M.;
2013-01-01
We explain the physical nature of the subset solution to the sign problem in chiral random matrix theory: the subset sum over configurations is shown to project out the canonical determinant with zero quark charge from a given configuration. As the grand canonical chiral random matrix partition...
Hydrologic transport and partitioning of phosphorus fractions
Berretta, C.; Sansalone, J.
2011-06-01
SummaryPhosphorus (P) in rainfall-runoff partitions between dissolved and particulate matter (PM) bound phases. This study investigates the transport and partitioning of P to PM fractions in runoff from a landscaped and biogenically-loaded carpark in Gainesville, FL (GNV). Additionally, partitioning and concentration results are compared to a similarly-sized concrete-paved source area of a similar rainfall depth frequency distribution in Baton Rouge, LA (BTR), where in contrast vehicular traffic represents the main source of pollutants. Results illustrate that concentrations of P fractions (dissolved, suspended, settleable and sediment) for GNV are one to two orders of magnitude higher than BTR. Despite these differences the dissolved fraction ( f d) and partitioning coefficient ( K d) distributions are similar, illustrating that P is predominantly bound to PM fractions. Examining PM size fractions, specific capacity for P (PSC) indicates that the P concentration order is suspended > settleable > sediment for GNV, similarly to BTR. For GNV the dominant PM mass fraction is sediment (>75 μm), while the mass of P is distributed predominantly between sediment and suspended (<25 μm) fractions since these PM mass fractions dominated the settleable one. With respect to transport of PM and P fractions the predominance of events for both areas is mass-limited first-flush, although each fraction illustrated unique washoff parameters. However, while transport is predominantly mass-limited, the transport of each PM and P fraction is influenced by separate hydrologic parameters.
Actinide and fission product partitioning and transmutation
NONE
1995-07-01
The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)
Partitioning of selected antioxidants in mayonnaise.
Jacobsen, C; Schwarz, K; Stöckmann, H; Meyer, A S; Adler-Nissen, J
1999-09-01
This study examined partitioning of alpha-, beta-, and gamma-tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase" and the "precipitate" (7-34% and 2-7%, respectively). This indicated entrapment of antioxidants at the oil-water interface in mayonnaise. The results signify that antioxidants partitioning into different phases of real food emulsions may vary widely.
Protium, an Infrastructure for Partitioned Applications
Mullender, S.J.; Young, C.; Szymanski, T.; Reppy, J.; Presotto, D.; Pike, R.; Narlikar, G.
2001-01-01
Remote access feels different from local access. The major issues are consistency (machines vary in GUIs, applications, and devices) and responsiveness (the user must wait for network and server delays). Protium attacks these by partitioning programs into local viewers that connect to remote service
Domain wall partition functions and KP
Foda, O; Zuparic, M
2009-01-01
We observe that the partition function of the six vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP tau function and express it as an expectation value of charged free fermions (up to an overall normalization).
Discrepancy of LS-sequences of partitions
Carbone, Ingrid
2010-01-01
In this paper we give a precise estimate of the discrepancy of a class of uniformly distributed sequences of partitions. Among them we found a large class having low discrepancy (which means of order 1/N. One of them is the Kakutani-Fibonacci sequence.
Polynomial Structure of Topological String Partition Functions
Zhou, Jie
2015-01-01
We review the polynomial structure of the topological string partition functions as solutions to the holomorphic anomaly equations. We also explain the connection between the ring of propagators defined from special K\\"ahler geometry and the ring of almost-holomorphic modular forms defined on modular curves.
Hardware Index to Set Partition Converter
2013-01-01
Boolean matching under permutation by efficient computation of canonical form. IEICE Trans. Fundamentals (12), 3134–3140 (2004) 6. Beeler, M., Gosper...Wesley ISBN: 0-321-58050-8 9. Kawano, S., Nakano, S.: Constant time generation of set partitions. IEICE Trans. Fundamentals E88-A(4), 930–934 (2005) 10
Integral complete r-partite graphs
Wang, Ligong; Li, Xueliang; Hoede, C.
2004-01-01
A graph is called integral if all the eigenvalues of its adjacency matrix are integers. In this paper, we give a useful sufficient and necessary condition for complete r-partite graphs to be integral, from which we can construct infinite many new classes of such integral graphs. It is proved that
Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
Yeh, Kuan-Yu; Chen, Li-Jen; Chang, Jeng-Yang
2008-01-01
A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.
Measuring static and dynamic contact angles using a liquid needle
Sanedrin, Raymond; Jin, Ming; Frese, Daniel; Scheithauer, Carsten; Willers, Thomas
2016-11-01
The optical determination of static and advancing contact angle is made on drops applied or extended, respectively, onto a substrate through the use of thin solid needles. Although this method has been used extensively, this method of dosing can be time consuming, cumbersome and if not meticulously performed can lead to erroneous contact angle results. Herein, we present an alternative way of applying drops onto substrates using a small liquid jet, which is produced by a liquid pressure dosing system acting as a "liquid needle." A comparative static contact angle study on 14 different surfaces with two different liquids were performed utilizing two different ways of dosing: the conventional solid and a novel liquid needle based technique. We found, for all but one sample, that the obtained results were highly comparable. Observed differences can be explained by the characteristics of either way of dosing. In addition, we used the liquid pressure based dosing system for optical advancing contact angle measurement on two different samples. The liquid needle based method facilitates the expansion of a drop from 0.1 to 22 μL within less than 1.2 seconds, which provided constant contact angle versus drop base diameter curves. The obtained results were highly comparable with dynamic Wilhelmy contact angle measurements.
Open software tools for eddy covariance flux partitioning
Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...
An ETL optimization framework using partitioning and parallelization
Iftikhar, Nadeem
2015-01-01
presents an optimization framework using partitioning and parallelization. The framework first partitions an ETL dataflow into multiple execution trees according to the characteristics of ETL constructs, then within an execution tree pipelined parallelism and shared cache are used to optimize...
The importance of applying an appropriate data partitioning
Dimitrov, Gancho; The ATLAS collaboration
2015-01-01
In this presentation are described specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the ATLAS Nightly Build System to achieve uniform data segmentation. However the most challenging was to segment the data of the new ATLAS Distributed Data Management system, which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge wi...
Xu, Lei; Lv, Jun; Ling, Liefeng; Wang, Peng; Song, Ping; Su, Ruirui; Zhu, Guoping
2011-12-15
Nucleic acids were found to partition into the phenol phase during phenol extraction in the presence of guanidinium at certain concentrations under acidic conditions. The guanidinium-concentration-dependent nucleic acid partitioning patterns were analogous to those of the nucleic acid adsorption/partitioning onto silica mediated by guanidinium, which implied that phenol and silica interact with nucleic acids through similar mechanisms. A competition effect was observed in which the nucleic acids that had partitioned into the phenol phase or onto the silica solid phase could be recovered to the aqueous phases by potassium in a molecular weight-salt concentration-dependent manner (the higher molecular weight nucleic acids needed higher concentrations of potassium to be recovered, and vice versa). Methods were developed based on these findings to isolate total RNA from Escherichia coli. By controlling the concentrations of guanidinium and potassium salts used before phenol extraction or silica adsorption, we can selectively recover total RNA but not the high molecular weight genomic DNA in the aqueous phases. Genomic DNA-free total RNA obtained by our methods is suitable for RT-PCR or other purposes. The methods can also be adapted to isolate small RNAs or RNA in certain molecular weight ranges by changing the salt concentrations used.
Mathe, Zoltan; Charpentier, Philippe
2014-06-01
The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used.
Generalization of the Euler Angles
Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis
2002-01-01
It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.
Using Reward/Utility Based Impact Scores in Partitioning
2014-05-01
ing approach called Reward/Utility-Based Impact ( RUBI ). RUBI nds an e ective partitioning of agents while requir- ing no prior domain knowledge...provides better performance by discovering a non-trivial agent partitioning, and leads to faster simulations. We test RUBI in the Air Tra c Flow Management...partitioning with RUBI in the ATFMP, there is a 37% increase in per- formance, with a 510x speed up per simulation step over non-partitioning approaches
Modelling spiral grain angle variation in New Zealand-grown radiata pine
Moore, John R; Cown, Dave J; McKinley, Russell B
2015-01-01
Spiral grain angle (SGA) is a wood property that has a strong influence on end-product quality, particularly for solid timber, and most commercial log and timber grading rules restrict the amount of visible surface sloping grain...
GPU Acceleration of Graph Matching, Clustering, and Partitioning
Fagginger Auer, B.O.|info:eu-repo/dai/nl/326659072
2013-01-01
We consider sequential algorithms for hypergraph partitioning and GPU (i.e., fine-grained shared-memory parallel) algorithms for graph partitioning and clustering. Our investigation into sequential hypergraph partitioning is concerned with the efficient construction of high-quality matchings for hyp
GPU Acceleration of Graph Matching, Clustering, and Partitioning
Fagginger Auer, B.O.
2013-01-01
We consider sequential algorithms for hypergraph partitioning and GPU (i.e., fine-grained shared-memory parallel) algorithms for graph partitioning and clustering. Our investigation into sequential hypergraph partitioning is concerned with the efficient construction of high-quality matchings for hyp
Bounds for the Eventual Positivity of Difference Functions of Partitions
Woodford, Roger
2007-01-01
In this paper we specialize work done by Bateman and Erdos concerning difference functions of partition functions. In particular, we are concerned with partitions into fixed powers of the primes. We show that any difference function of these partition functions is eventually increasing, and derive explicit bounds for when it will attain strictly positive values. From these bounds an asymptotic result is derived.
Small angle neutron scattering
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe
2016-01-01
as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic...... larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...
Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.
2004-01-01
Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.
Forces between Hydrophobic Solids in Concentrated Aqueous Salt Solution
Mastropietro, Dean J; Ducker, William A.
2012-01-01
Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108 degrees. Thus, in 1 M salt solution, it is unnecessar...
Sliney, Harold E.
1993-01-01
The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.
Deposition at glancing angle, surface roughness, and protein adsorption: Monte Carlo simulations.
Zhdanov, Vladimir P; Rechendorff, Kristian; Hovgaard, Mads B; Besenbacher, Flemming
2008-06-19
To generate rough surfaces in Monte Carlo simulations, we use the 2 + 1 solid-on-solid model of deposition with rapid transient diffusion of newly arrived atoms supplied at glancing angle. The surfaces generated are employed to scrutinize the effect of surface roughness on adsorption of globular and anisotropic rodlike proteins. The obtained results are compared with the available experimental data for Ta deposition at glancing angle and for the bovine serum albumin and fibrinogen uptake on the corresponding Ta films.
Angelo, Joseph A
2011-01-01
Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S
The Benefits of Adaptive Partitioning for Parallel AMR Applications
Steensland, Johan [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Advanced Software Research and Development
2008-07-01
Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the
High-resolution NMR of anisotropic samples with spinning away from the magic angle
Sakellariou, Dimitris; Meriles, Carlos A.; Martin, Rachel W.; Pines, Alexander
2003-03-31
High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might be extremely demanding because of the power requirements or an inconvenient sample size or geometry. Here we present a methodology based on switched angle spinning between two angles, none of which is the magic angle, which provide both isotropic and anisotropic information. Using this method, named Projected Magic Angle Spinning, we were able to obtain resolved isotropic chemical shifts in spinning samples where the broadening is mostly inhomogeneous.
Partitioning and transmutation. Annual Report 1999
Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry
2000-05-01
The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed.
Analysis of fractals with combined partition
Dedovich, T. G.; Tokarev, M. V.
2016-03-01
The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.
Partitioning Complete Graphs by Heterochromatic Trees
Ze-min JIN; Xue-liang LI
2012-01-01
A heterochromatic tree is an edge-colored tree in which any two edges have different colors.The heterochroratic tree partition number of an r-edge-colored graph G,denoted by tr(G),is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors,the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees.In this paper we determine the heterochromatic tree partition number of r-edge-colored complete graphs.We also find at most tr(Kn) vertex-disjoint heterochromatic trees to cover all the vertices in polynomial time for a given r-edge-coloring of Kn.
Supersymmetric partition functions on Riemann surfaces
Benini, Francesco
2016-01-01
We present a compact formula for the supersymmetric partition function of 2d N=(2,2), 3d N=2 and 4d N=1 gauge theories on $\\Sigma_g \\times T^n$ with partial topological twist on $\\Sigma_g$, where $\\Sigma_g$ is a Riemann surface of arbitrary genus and $T^n$ is a torus with n=0,1,2, respectively. In 2d we also include certain local operator insertions, and in 3d we include Wilson line operator insertions along $S^1$. For genus g=1, the formula computes the Witten index. We present a few simple Abelian and non-Abelian examples, including new tests of non-perturbative dualities. We also show that the large N partition function of ABJM theory on $\\Sigma_g \\times S^1$ reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS4 whose horizon has $\\Sigma_g$ topology.
Partition-DFT on the Water Dimer
Gómez, Sara; Restrepo, Albeiro; Wasserman, Adam
2016-01-01
As is well known, the ground-state symmetry group of the water dimer switches from its equilibrium $C_{s}$-character to $C_{2h}$-character as the distance between the two oxygen atoms of the dimer decreases below $R_{\\rm O-O}\\sim 2.5$ \\AA{}. For a range of $R_{\\rm O-O}$ between 1 and 5 \\AA{}, and for both symmetries, we apply Partition Density Functional Theory (PDFT) to find the unique monomer densities that sum to the correct dimer densities while minimizing the sum of the monomer energies. We calculate the work involved in deforming the isolated monomer densities and find that it is slightly larger for the $C_s$ geometry for all $R_{\\rm O-O}$. We discuss how the PDFT densities and the corresponding partition potentials support the orbital-interaction picture of hydrogen-bond formation.
Spectral partitioning of random regular blockmodels
Barucca, Paolo
2016-01-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of random graphs with regular block structure is introduced, for which analytical results can be obtained. In particular, the spectral density of such random regular blockmodels is computed exactly for a modular, bipartite and core-periphery structure. McKay's law for random regular graphs is found analytically to apply also for regular modular and bipartite structures when blocks are homogeneous. In core-periphery structures, where blocks are intrinsically heterogeneous, a new law is found to apply for the spectral density. Exact solution to the inference problem is provided for the models discussed. All analytical results show perfect agreement with numerical experiments. Final discussion summarizes results and outlines the relevance of the results for the solution of graph partitioning problems in other graph en...
Non-parametric partitioning of SAR images
Delyon, G.; Galland, F.; Réfrégier, Ph.
2006-09-01
We describe and analyse a generalization of a parametric segmentation technique adapted to Gamma distributed SAR images to a simple non parametric noise model. The partition is obtained by minimizing the stochastic complexity of a quantized version on Q levels of the SAR image and lead to a criterion without parameters to be tuned by the user. We analyse the reliability of the proposed approach on synthetic images. The quality of the obtained partition will be studied for different possible strategies. In particular, one will discuss the reliability of the proposed optimization procedure. Finally, we will precisely study the performance of the proposed approach in comparison with the statistical parametric technique adapted to Gamma noise. These studies will be led by analyzing the number of misclassified pixels, the standard Hausdorff distance and the number of estimated regions.
An exact algorithm for graph partitioning
Hager, William; Zhang, Hongchao
2009-01-01
An exact algorithm is presented for solving edge weighted graph partitioning problems. The algorithm is based on a branch and bound method applied to a continuous quadratic programming formulation of the problem. Lower bounds are obtained by decomposing the objective function into convex and concave parts and replacing the concave part by an affine underestimate. It is shown that the best affine underestimate can be expressed in terms of the center and the radius of the smallest sphere containing the feasible set. The concave term is obtained either by a constant diagonal shift associated with the smallest eigenvalue of the objective function Hessian, or by a diagonal shift obtained by solving a semidefinite programming problem. Numerical results show that the proposed algorithm is competitive with state-of-the-art graph partitioning codes.
Hypergraph Partitioning through Vertex Separators on Graphs
Kayaaslan, Enver; Catalyurek, Umit V; Aykanat, Cevdet
2011-01-01
The modeling flexibility provided by hypergraphs has drawn a lot of interest from the combinatorial scientific community, leading to novel models and algorithms, their applications, and development of associated tools. Hypergraphs are now a standard tool in combinatorial scientific computing. The modeling flexibility of hypergraphs however, comes at a cost: algorithms on hypergraphs are inherently more complicated than those on graphs, which sometimes translate to nontrivial increases in processing times. Neither the modeling flexibility of hypergraphs, nor the runtime efficiency of graph algorithms can be overlooked. Therefore, the new research thrust should be how to cleverly trade-off between the two. This work addresses one method for this trade-off by solving the hypergraph partitioning problem by finding vertex separators on graphs. Specifically, we investigate how to solve the hypergraph partitioning problem by seeking a vertex separator on its net intersection graph (NIG), where each net of the hyperg...
Nested partitions method, theory and applications
Shi, Leyuan
2009-01-01
There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...
On the Potts Model Partition Function in an External Field
McDonald, Leslie M.; Moffatt, Iain
2012-03-01
We study the partition function of the Potts model in an external (magnetic) field, and its connections with the zero-field Potts model partition function. Using a deletion-contraction formulation for the partition function Z for this model, we show that it can be expanded in terms of the zero-field partition function. We also show that Z can be written as a sum over the spanning trees, and the spanning forests, of a graph G. Our results extend to Z the well-known spanning tree expansion for the zero-field partition function that arises though its connections with the Tutte polynomial.
A Contraction-based Ratio-cut Partitioning Algorithm
Youssef Saab
2002-01-01
Full Text Available Partitioning is a fundamental problem in the design of VLSI circuits. In recent years, ratio-cut partitioning has received attention due to its tendency to partition circuits into their natural clusters. Node contraction has also been shown to enhance the performance of iterative partitioning algorithms. This paper describes a new simple ratio-cut partitioning algorithm using node contraction. This new algorithm combines iterative improvement with progressive cluster formation. Under suitably mild assumptions, the new algorithm runs in linear time. It is also shown that the new algorithm compares favorably with previous approaches.
Partitioning coefficients between olivine and silicate melts
Bédard, J. H.
2005-08-01
Variation of Nernst partition coefficients ( D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO 2, H 2O, MgO and MgO/MgO + FeO total. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO 2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE-Sc-Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta-Hf-Zr-Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.
Partition of polycyclic aromatic hydrocarbons on organobentonites
无
2001-01-01
A series of organobentonites synthesized by exchanging organiccation such as dodecyltri-methylammonium (DTMA),benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene,anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on Foundation item: the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd)between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene,naphthalene, acenaphthene were 2.621x105, 2.106x105, 2.247x104,5.085x104, respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between lgKoc and 1gkow, 1gKoc and 1gS for PAHs in the system of water
Recursive formulae for the multiplicative partition function
Jun Kyo Kim
1999-01-01
Full Text Available For a positive integer n, let f(n be the number of essentially different ways of writing n as a product of factors greater than 1, where two factorizations of a positive integer are said to be essentially the same if they differ only in the order of the factors. This paper gives a recursive formula for the multiplicative partition function f(n.
SCORE SETS IN ORIENTED 3-PARTITE GRAPHS
无
2007-01-01
Let D(U, V, W) be an oriented 3-partite graph with |U|=p, |V|=q and |W|= r. For any vertex x in D(U, V, W), let d+x and d-x be the outdegree and indegree of x respectively. Define aui (or simply ai) = q + r + d+ui - d-ui, bvj(or simply bj) = p + r + d+vj - d-vj and Cwk (or simply ck) = p + q + d+wk - d-wk as the scores of ui in U, vj in V and wk in Wrespectively. The set A of distinct scores of the vertices of D(U, V, W) is called its score set. In this paper, we prove that if a1 is a non-negative integer, ai(2≤i≤n - 1) are even positive integers and an is any positive integer, then for n≥3, there exists an oriented 3-partite graph with the score set A = {a1,2∑i=1 ai,…,n∑i=1 ai}, except when A = {0,2,3}. Some more results for score sets in oriented 3-partite graphs are obtained.
Fuyia Chen; Wanqib Jie [State Key Lab. of Solidification Processing, Northwestern Polytechnical Univ., Xian (China)
2005-07-01
Interface morphology and solute partition during directional solidification process of Al-1.5Cu-3.0Zn alloy were investigated at temperature gradient of 80 K/cm and growth rate between 0.1 and 7.1 {mu}m/s. The solid-liquid interface was quenched during directional solidification and the micromorphology at the longitudinal section was examined by optic microscopy and SEM. The cellular growth interface and dendritic growth interface were observed and characterized. The distribution of Cu and Zn was measured by EDS, the equilibrium solute partition coefficients for Cu and Zn in Al-1.5Cu-3.0Zn alloy were obtained to be 0.31 and 0.58. The activity model and concentration model, developed by present authors, were used to calculate the equilibrium solute partition coefficients in Al-1.5Cu-3Zn alloy. The model-calculated results were compared with experimental data. (orig.)
Li, F.; Mugele, Frieder
2008-01-01
Contact angle hysteresis caused by random pinning forces is a major obstacle in moving small quantities of liquid on solid surfaces. Here, we demonstrate that the contact angle hysteresis for sessile drops in electrowetting almost disappears with increasing alternating voltage, whereas for direct vo
Andersen, Nis Korsgaard; Taboryski, Rafael J.
2017-01-01
Contact angle measurements are a fast and simple way to measure surface properties and is therefore widely used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common praxis contact angle measurements are done with sessile drops on a horizontal surface ...
Semiclassical partition function for strings dual to Wilson loops with small cusps in ABJM
Aguilera-Damia, Jeremías; Correa, Diego H.; Silva, Guillermo A.
2015-03-01
We compute the 1-loop partition function for strings in , whose worldsheets end along a line with small cusp angles in the boundary of AdS. We obtain these 1-loop results in terms of the vacuum energy for on-shell modes. Our results verify the proposal by Lewkowycz and Maldacena in arXiv:1312.5682 for the exact Bremsstrahlung function up to the next to leading order in the strong coupling expansion. The agreement is observed for cusps distorting either the 1/2 BPS or the 1/6 BPS Wilson line.
Semiclassical partition function for strings dual to Wilson loops with small cusps in ABJM
Aguilera-Damia, Jeremias; Silva, Guillermo A
2014-01-01
We compute the 1-loop partition function for strings in $AdS_4\\times\\mathbb{CP}^3$, whose worldsheets end along a line with small cusp angles in the boundary of AdS. We obtain these 1-loop results in terms of the vacuum energy for on-shell modes. Our results verify the proposal by Lewkowycz and Maldacena in arXiv:1312.5682 for the exact Bremsstrahlung function up to the next to leading order in the strong coupling expansion. The agreement is observed for cusps distorting either the 1/2 BPS or the 1/6 BPS Wilson line.
Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp
2016-06-07
Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.
Gritti, Fabrice; Höltzel, Alexandra; Tallarek, Ulrich; Guiochon, Georges
2015-01-09
We propose an original model of effective diffusion along packed beds of mesoporous particles for HILIC developed by combining Torquatos model for heterogeneous beds (external eluent+particles), Landauers model for porous particles (solid skeleton+internal eluent), and the time-averaged model for the internal eluent (bulk phase+diffuse water (W) layer+rigid W layer). The new model allows to determine the analyte concentration in rigid and diffuse W layer from the experimentally determined retention factor and intra-particle diffusivity and thus to distinguish the retentive contributions from adsorption and partitioning. We apply the model to investigate the separation of toluene (TO, as a non-retained compound), nortriptyline (NT), cytosine (CYT), and niacin (NA) on an organic ethyl/inorganic silica hybrid adsorbent. Elution conditions are varied through the choice of a third solvent (W, ethanol, tetrahydrofuran (THF), acetonitrile (ACN), or n-hexane) in a mobile phase (MP) of ACN/aqueous acetate buffer (pH 5)/third solvent (90/5/5, v/v/v). Whereas NA and CYT retention factors increase monotonously from W to n-hexane as third solvent, NT retention reaches its maximum with polar aprotic third solvents. The involved equilibrium constants for adsorption and partitioning, however, do not follow the same trends as the overall retention factors. NT retention is dominated by partitioning and NA retention by adsorption, while CYT retention is controlled by adsorption rather than partitioning. Our results reveal that the relative importance of adsorption and partitioning mechanisms depends in a complex way from analyte properties and experimental parameters and cannot be predicted generally. Copyright © 2014 Elsevier B.V. All rights reserved.
Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia
2013-06-14
This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns.
Modeling liquid bridge between surfaces with contact angle hysteresis.
Chen, H; Amirfazli, A; Tang, T
2013-03-12
This paper presents the behaviors of a liquid bridge when being compressed and stretched in a quasi-static fashion between two solid surfaces that have contact angle hysteresis (CAH). A theoretical model is developed to obtain the profiles of the liquid bridge given a specific separation between the surfaces. Different from previous models, both contact lines in the upper and lower surfaces were allowed to move when the contact angles reach their advancing or receding values. When the contact angles are between their advancing and receding values, the contact lines are pinned while the contact angles adjust to accommodate the changes in separation. Effects of CAH on both asymmetric and symmetric liquid bridges were analyzed. The model was shown to be able to correctly predict the behavior of the liquid bridge during a quasi-static compression/stretching loading cycle in experiments. Because of CAH, the liquid bridge can have two different profiles at the same separation during one loading and unloading cycle, and more profiles can be obtained during multiple cycles. The maximum adhesion force generated by the liquid bridge is found to be influenced by the CAH of surfaces. CAH also leads to energy cost during a loading cycle of the liquid bridge. In addition, the minimum separation between the two solid surfaces is shown to affect how the contact radii and angles change on the two surfaces as the liquid bridge is stretched.
Impact of Solvents Treatment on the Wettability of Froth Solids
Yang, Fan
The purpose of this study is to investigate the impact of solvent addition to bitumen froth on the wettability of froth solids. The wettability of solids determines the transportation/partitioning of the solids between phases, which in turn affects the solids and water rejection in a Clark hot water extraction process (CHWE). The impact of solvents treatment on the wettability of froth solids was studied using both a model system and a real bitumen froth system. The vulnerabilities of four kinds of model minerals to hydrocarbon contamination/wettability alteration in different solvents were compared and discussed by considering solvent composition and mineral types. The wettability of solids extracted from the industrial froth using different solvents was also compared. The XRD analysis on these solids confirmed the partitioning behavior of solids observed in model solids system. The results from this study indicate that the composition of paraffinic/aromatic solvent in an industrial froth treatment process could be tailor-optimized to achieve a better solids/water rejection.
Effect of contact angle hysteresis on moving liquid film integrity.
Simon, F. F.; Hsu, Y. Y.
1972-01-01
A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.
Mathe, Z
2013-01-01
The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as rang...
XIA Xinghui; MENG Lihong; HU Lijuan
2007-01-01
Experiments have been carried out to study the sorption of Benzo(a)pyrene(Bap)on sediment particles from the Yellow River using a batch equilibration technique,Effects of particle size on the adsorption and partition of Bap were investigated with the particle content Of 3 g/L.Several significant results were obtained from the stttdy.(1)Isotherms of Bap could be fired with the dual adsorption-partition model under different particle sizes,and the measured value of the adsorption and partition was in agreement with the theoretical value of the dual adsorption-partition model.(2)When the particle diameter was d≥0.025 mm,the adsorption was predominant in the sorption of Bap,which accounted for 68.7%-82.4% of the sorption.For the particles with the size Of 0.007 mm≤d＜0.025 mm,the adsorption was predominant when the equilibrium concentration of Bap was 0-8.87μg/L in the water phase;and the partition was predominant when the equilibrium concentratioh of Bap was higher than 8.87μg/L in the water phase.When the particle diameter was d＜0.007 mm,the partition was predominant.(3)On the point of particle size,the contribution of adsorption to sorption followed the order:"d≥0.025 mm"＞"0.007 mm ≤d<0.025 mm"＞"d＜0.007 mm".(4)The partition coefficients of Bap in solids with different particle sizes were Iinearly correlated with the organic content,and the Koc of Bap was about 1.26×105(L/kg).
A brief history of partitions of numbers, partition functions and their modern applications
Debnath, Lokenath
2016-04-01
'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.
Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge
2017-03-01
We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.
Glaister, P.
1997-09-01
Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).
Understanding disease processes by partitioned dynamic Bayesian networks.
Bueno, Marcos L P; Hommersom, Arjen; Lucas, Peter J F; Lappenschaar, Martijn; Janzing, Joost G E
2016-06-01
For many clinical problems in patients the underlying pathophysiological process changes in the course of time as a result of medical interventions. In model building for such problems, the typical scarcity of data in a clinical setting has been often compensated by utilizing time homogeneous models, such as dynamic Bayesian networks. As a consequence, the specificities of the underlying process are lost in the obtained models. In the current work, we propose the new concept of partitioned dynamic Bayesian networks to capture distribution regime changes, i.e. time non-homogeneity, benefiting from an intuitive and compact representation with the solid theoretical foundation of Bayesian network models. In order to balance specificity and simplicity in real-world scenarios, we propose a heuristic algorithm to search and learn these non-homogeneous models taking into account a preference for less complex models. An extensive set of experiments were ran, in which simulating experiments show that the heuristic algorithm was capable of constructing well-suited solutions, in terms of goodness of fit and statistical distance to the original distributions, in consonance with the underlying processes that generated data, whether it was homogeneous or non-homogeneous. Finally, a study case on psychotic depression was conducted using non-homogeneous models learned by the heuristic, leading to insightful answers for clinically relevant questions concerning the dynamics of this mental disorder.
Oriented angles in affine space
Włodzimierz Waliszewski
2004-05-01
Full Text Available The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.
Knowledge base rule partitioning design for CLIPS
Mainardi, Joseph D.; Szatkowski, G. P.
1990-01-01
This describes a knowledge base (KB) partitioning approach to solve the problem of real-time performance using the CLIPS AI shell when containing large numbers of rules and facts. This work is funded under the joint USAF/NASA Advanced Launch System (ALS) Program as applied research in expert systems to perform vehicle checkout for real-time controller and diagnostic monitoring tasks. The Expert System advanced development project (ADP-2302) main objective is to provide robust systems responding to new data frames of 0.1 to 1.0 second intervals. The intelligent system control must be performed within the specified real-time window, in order to meet the demands of the given application. Partitioning the KB reduces the complexity of the inferencing Rete net at any given time. This reduced complexity improves performance but without undo impacts during load and unload cycles. The second objective is to produce highly reliable intelligent systems. This requires simple and automated approaches to the KB verification & validation task. Partitioning the KB reduces rule interaction complexity overall. Reduced interaction simplifies the V&V testing necessary by focusing attention only on individual areas of interest. Many systems require a robustness that involves a large number of rules, most of which are mutually exclusive under different phases or conditions. The ideal solution is to control the knowledge base by loading rules that directly apply for that condition, while stripping out all rules and facts that are not used during that cycle. The practical approach is to cluster rules and facts into associated 'blocks'. A simple approach has been designed to control the addition and deletion of 'blocks' of rules and facts, while allowing real-time operations to run freely. Timing tests for real-time performance for specific machines under R/T operating systems have not been completed but are planned as part of the analysis process to validate the design.
Zero-sum partition theorems for graphs
Y. Caro
1994-01-01
Full Text Available Let q=pn be a power of an odd prime p. We show that the vertices of every graph G can be partitioned into t(q classes V(G=⋃t=1t(qVi such that the number of edges in any induced subgraph 〈Vi〉 is divisible by q, where t(q≤32(q−1−(2(q−1−1124+98, and if q=2n, then t(q=2q−1.
Surface defects and instanton partition functions
Gaiotto, Davide; Kim, Hee-Cheol
2016-10-01
We study the superconformal index of five-dimensional SCFTs and the sphere partition function of four-dimensional gauge theories with eight supercharges in the presence of co-dimension two half-BPS defects. We derive a prescription which is valid for defects which can be given a "vortex construction", i.e. can be defined by RG flow from vortex configurations in a larger theory. We test the prescription against known results and expected dualities. We employ our prescription to develop a general computational strategy for defects defined by coupling the bulk degrees of freedom to a Gauged Linear Sigma Model living in co-dimension two.
Contact angle and local wetting at contact line.
Li, Ri; Shan, Yanguang
2012-11-06
This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.
2014-03-27
partition and further minimize the number of UAVs required. 76 4.3.4 Logistics. Shipping UAVs into an area of operations is a supply chain management...transfer rate of 12,800 MB/s. The processor of the computer is a 3.9 GHz quad-core desktop Intel R© chip, and the hard drive is a Samsung R© solid-state
Contact angle hysteresis on textured surfaces with nanowire clusters.
Liao, Ying-Chih; Chiang, Cheng-Kun; Lu, Yen-Wen
2013-04-01
Nanowire arrays with various agglomeration patterns were synthesized by adjusting the solvent evaporation rates. Nanowires with 200 nm diameter and 2-25 microm in length were fabricated from an anodic aluminum oxide (AAO) porous template. Various drying treatments were applied to develop nanostructured surfaces with topological differences. Due to surface tension forces, copper nanowires after thermal and evaporative drying treatments agglomerated into clusters, while supercritical drying technique provided excellent bundled-free and vertically-standing nanowire arrays. Although all dried surfaces exhibited hydrophobic nature, the contact angle hysteresis, or the difference between advancing and receding angles, was found to be larger on those surfaces with bundled nanowire clusters. To explain the difference, the wetted solid fraction on each surface was calculated using the Cassie-Baxter model to show that the hysteresis was contributed by liquid/solid contact area on the textured surfaces.
Zielinska, K.
2014-01-01
Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid
Zielinska, K.
2014-01-01
Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid phas
Modular properties of full 5D SYM partition function
Qiu, Jian; Winding, Jacob; Zabzine, Maxim
2015-01-01
We study properties of the full partition function for the $U(1)$ 5D $\\mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,\\mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.
Modular properties of full 5D SYM partition function
Qiu, Jian; Tizzano, Luigi; Winding, Jacob; Zabzine, Maxim
2016-03-01
We study properties of the full partition function for the U(1) 5D N = {2}^{ast } gauge theory with adjoint hypermultiplet of mass M . This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function G 2 C associated with a certain moment map cone C. The answer exhibits a curious SL(4 , ℤ) modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5d supersymmetric partition function with the insert ion of defects of various co-dimensions.
Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution
徐铜文; 杨伟华; 何柄林
2001-01-01
Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to hulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated with in chosen parameters. It is revealed that ion partition is not related solely withthe respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoreticalcal culations were compared with the experimental data and a good agreement was observed.
Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution
无
2001-01-01
Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with mono valence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to bulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated within chosen parameters. It is revealed that ion partition is not related solely with the respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoretical calculations were compared with the experimental data and a good agreement was observed.
Vertical partitioning of relational OLTP databases using integer programming
Amossen, Rasmus Resen
2010-01-01
A way to optimize performance of relational row store databases is to reduce the row widths by vertically partition- ing tables into table fractions in order to minimize the number of irrelevant columns/attributes read by each transaction. This pa- per considers vertical partitioning algorithms...... for relational row- store OLTP databases with an H-store-like architecture, meaning that we would like to maximize the number of single-sited transactions. We present a model for the vertical partitioning problem that, given a schema together with a vertical partitioning and a workload, estimates the costs...... (bytes read/written by storage layer access methods and bytes transferred between sites) of evaluating the workload on the given partitioning. The cost model allows for arbitrarily prioritizing load balancing of sites vs. total cost minimization. We show that finding a minimum-cost vertical partitioning...
CLASSIFICATION OF COMPLETE 5-PARTITE GRAPHS AND CHROMATICITY OF 5-PARTITE GRAPHSWITH 5n VERTICES
ZhaoHaixing; LiuRuying; ZhangShenggui
2004-01-01
For a graph G,P(G,λ)denotes the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent,denoted by G-H,if P(G,λ)=p(H,λ). Let[G]= {H|H-G}. If [G]={G},then G is said to be chromatically unique. For a complete 5-partite graph G with 5n vertices, define θ(G)=(a(G,6)-2n+1-2n-1+5)/2n-2,where a(G,6) denotes the number of 6-independent partitions of G. In this paper, the authors show that θ(G)≥0 and determine all graphs with θ(G)= 0, 1, 2, 5/2, 7/2, 4, 17/4. By using these results the chromaticity of 5-partite graphs of the form G-S with θ(G)=0,1,2,5/2,7/2,4,17/4 is investigated,where S is a set of edges of G. Many new chromatically unique 5-partite graphs are obtained.
The Semiotic and Conceptual Genesis of Angle
Tanguay, Denis; Venant, Fabienne
2016-01-01
In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…
Partition function of nearest neighbour Ising models: Some new insights
G Nandhini; M V Sangaranarayanan
2009-09-01
The partition function for one-dimensional nearest neighbour Ising models is estimated by summing all the energy terms in the Hamiltonian for N sites. The algebraic expression for the partition function is then employed to deduce the eigenvalues of the basic 2 × 2 matrix and the corresponding Hermitian Toeplitz matrix is derived using the Discrete Fourier Transform. A new recurrence relation pertaining to the partition function for two-dimensional Ising models in zero magnetic field is also proposed.
Partitioning and lipophilicity in quantitative structure-activity relationships.
Dearden, J. C.
1985-01-01
The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-ac...
THE ALGORITHMS OF AN INTEGER PARTITIONING WITH ITS APPLICATIONS
曹立明; 周强
1994-01-01
In the light of the ideals of Artificial Intelligence(AI) , three algorithms of an integer partitioning have been given in this paper:generate and test algorithm ,and two heuristic algorithms about forward partition and backward partition. PROLOG has been used to describe algorithms, it is reasonable, direct and simple. In the sight of describing algorithms ,it is a new and valid try. At last, some intresting applications of the algorithms mentioned in the paper have been presented.
Differential Evolution and Particle Swarm Optimization for Partitional Clustering
Krink, Thiemo; Paterlini, Sandra
2006-01-01
Many partitional clustering algorithms based on genetic algorithms (GA) have been proposed to tackle the problem of finding the optimal partition of a data set. Very few studies considered alternative stochastic search heuristics other than GAs or simulated annealing. Two promising algorithms...... to implement and requires hardly any parameter tuning compared to substantial tuning for GAs and PSOs. Our study shows that DE rather than GAs should receive primary attention in partitional clustering algorithms....
Method for chemical amplification based on fluid partitioning in an immiscible liquid
Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.
2017-02-28
A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.
Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid
Anderson, Brian L [Lodi, CA; Colston, Bill W [San Ramon, CA; Elkin, Christopher J [San Ramon, CA
2012-05-08
A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.
Contact angle hysteresis on randomly rough surfaces: a computational study.
David, Robert; Neumann, A Wilhelm
2013-04-09
Wetting is important in many applications, and the solid surfaces being wet invariably feature some amount of surface roughness. A free energy-based computational simulation is used to study the effect of roughness on wetting and especially contact angle hysteresis. On randomly rough, self-affine surfaces, it is found that hysteresis depends primarily on the value of the Wenzel roughness parameter r, increasing in proportion with r - 1. Micrometer-level roughness causes hysteresis of a few degrees.
Contact Angle Measurements Using a Simplified Experimental Setup
Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric
2010-01-01
A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…
Partitioning kinetic energy during freewheeling wheelchair maneuvers.
Medola, Fausto O; Dao, Phuc V; Caspall, Jayme J; Sprigle, Stephen
2014-03-01
This paper describes a systematic method to partition the kinetic energy (KE) of a free-wheeling wheelchair. An ultralightweight rigid frame wheelchair was instrumented with two axle-mounted encoders and data acquisition equipment to accurately measure the velocity of the drive wheels. A mathematical model was created combining physical specifications and geometry of the wheelchair and its components. Two able-bodied subjects propelled the wheelchair over four courses that involved straight and turning maneuvers at differing speeds. The KE of the wheelchair was divided into three components: translational, rotational, and turning energy. This technique was sensitive to the changing contributions of the three energy components across maneuvers. Translational energy represented the major component of total KE in all maneuvers except a zero radius turn in which turning energy was dominant. Both translational and rotational energies are directly related to wheelchair speed. Partitioning KE offers a useful means of investigating the dynamics of a moving wheelchair. The described technique permits analysis of KE imparted to the wheelchair during maneuvers involving changes in speed and direction, which are most representative of mobility in everyday life. This technique can be used to study the effort required to maneuver different types and configurations of wheelchairs.
Approximation Algorithms for Submodular Multiway Partition
Chekuri, Chandra
2011-01-01
We study algorithms for the Submodular Multiway Partition problem (SubMP). An instance of SubMP consists of a finite ground set $V$, a subset of $k$ elements $S = \\{s_1,s_2,...,s_k\\}$ called terminals, and a non-negative submodular set function $f:2^V\\rightarrow \\mathbb{R}_+$ on $V$ provided as a value oracle. The goal is to partition $V$ into $k$ sets $A_1,...,A_k$ such that for $1 \\le i \\le k$, $s_i \\in A_i$ and $\\sum_{i=1}^k f(A_i)$ is minimized. SubMP generalizes some well-known problems such as the Multiway Cut problem in graphs and hypergraphs, and the Node-weighed Multiway Cut problem in graphs. SubMP for arbitrarysubmodular functions (instead of just symmetric functions) was considered by Zhao, Nagamochi and Ibaraki \\cite{ZhaoNI05}. Previous algorithms were based on greedy splitting and divide and conquer strategies. In very recent work \\cite{ChekuriE11} we proposed a convex-programming relaxation for SubMP based on the Lov\\'asz-extension of a submodular function and showed its applicability for some ...
Gait Partitioning Methods: A Systematic Review
Juri Taborri
2016-01-01
Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.
Ferrous iron partitioning in the lower mantle
Muir, Joshua M. R.; Brodholt, John P.
2016-08-01
We used density functional theory (DFT) to examine the partitioning of ferrous iron between periclase and bridgmanite under lower mantle conditions. To study the effects of the three major variables - pressure, temperature and concentration - these have been varied from 0 to 150 GPa, from 1000 to 4000 K and from 0 to 100% total iron content. We find that increasing temperature increases KD, increasing iron concentration decreases KD, while pressure can both increase and decrease KD. We find that KD decreases slowly from about 0.32 to 0.06 with depth under lower mantle conditions. We also find that KD increases sharply to 0.15 in the very lowermost mantle due to the strong temperature increases near the CMB. Spin transitions have a large effect on the activity of ferropericlase which causes KD to vary with pressure in a peak-like fashion. Despite the apparently large changes in KD through the mantle, this actually results in relatively small changes in total iron content in the two phases, with XFefp ranging from about 0.20 to 0.35, before decreasing again to about 0.28 at the CMB, and XFebd has a pretty constant value of about 0.04-0.07 throughout the lower mantle. For the very high Fe concentrations suggested for ULVZs, Fe partitions very strongly into ferropericlase.
Strictly nonnegative tensors and nonnegative tensor partition
HU ShengLong; HUANG ZhengHai; QI LiQun
2014-01-01
We introduce a new class of nonnegative tensors—strictly nonnegative tensors.A weakly irreducible nonnegative tensor is a strictly nonnegative tensor but not vice versa.We show that the spectral radius of a strictly nonnegative tensor is always positive.We give some necessary and su？cient conditions for the six wellconditional classes of nonnegative tensors,introduced in the literature,and a full relationship picture about strictly nonnegative tensors with these six classes of nonnegative tensors.We then establish global R-linear convergence of a power method for finding the spectral radius of a nonnegative tensor under the condition of weak irreducibility.We show that for a nonnegative tensor T,there always exists a partition of the index set such that every tensor induced by the partition is weakly irreducible;and the spectral radius of T can be obtained from those spectral radii of the induced tensors.In this way,we develop a convergent algorithm for finding the spectral radius of a general nonnegative tensor without any additional assumption.Some preliminary numerical results show the feasibility and effectiveness of the algorithm.
Inversion of hematocrit partition at microfluidic bifurcations.
Shen, Zaiyi; Coupier, Gwennou; Kaoui, Badr; Polack, Benoît; Harting, Jens; Misbah, Chaouqi; Podgorski, Thomas
2016-05-01
Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit (ϕ0) partition depends strongly on RBC deformability, as long as ϕ0<20% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough ϕ0, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical properties. These parameters can lead to unexpected behaviors with consequences on the microcirculatory function and oxygen delivery in healthy and pathological conditions.
Gait Partitioning Methods: A Systematic Review
Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo
2016-01-01
In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449
Inversion of hematocrit partition at microfluidic bifurcations
Shen, Zaiyi; Kaoui, Badr; Polack, Benoît; Harting, Jens; Misbah, Chaouqi; Podgorski, Thomas
2016-01-01
Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit ($\\phi_0$) partition depends strongly on RBC deformability, as long as $\\phi_0 <20$% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough $\\phi_0$, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical p...
New parallel SOR method by domain partitioning
Xie, Dexuan [Courant Inst. of Mathematical Sciences New York Univ., NY (United States)
1996-12-31
In this paper, we propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning together with an interprocessor data-communication technique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR and the SOR using the row-wise ordering have the same convergence rate. However, in general, the ordering used in PSOR may not be {open_quote}consistently ordered{close_quotes}. So, there is a need to analyze the convergence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method can have the same asymptotic rate of convergence as the corresponding sequential SOR method for a wide class of linear systems in which the matrix is {open_quotes}consistently ordered{close_quotes}. Finally, we demonstrate the parallel performance of the PSOR method on four different message passing multiprocessors (a KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point Red-Black and four-color SOR methods.
Investigations into children's acquisition of the partitive structure
Helen Stickney
2008-02-01
Full Text Available Recent literature suggests that children’s acquisition of DP is a process of gradual feature acquisition (Roeper 2006. This study looks at the acquisition of DP’s barrier feature from the perspective of the acquisition of the syntax of the English partitive construction. This study explores the contrast between the partitive and the pseudopartitive. An adjective preceding the partitive cannot modify the lower noun, but it can in an equivalent pseudopartitive construction. This study shows that children aged 3-5 do not make this distinction, suggesting that children don’t recognize partitive-internal DP as a barrier to adjectival modification.
Aspects of system modelling in Hardware/Software partitioning
Knudsen, Peter Voigt; Madsen, Jan
1996-01-01
This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...... the importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...
S^3/Z_n partition function and dualities
Imamura, Yosuke
2012-01-01
We investigate S^3/Z_n partition function of N = 2 supersymmetric gauge theories. A gauge theory on the orbifold has degenerate vacua specified by the holonomy. The partition function is obtained by summing up the contributions of saddle points with different holonomies. An appropriate choice of the phase of each contribution is essential to obtain the partition function. We determine the relative phases in the holonomy sum in a few examples by using duality to non-gauge theories. In the case of odd n the phase factors can be absorbed by modifying a single function appearing in the partition function.
Deep eutectic solvents in countercurrent and centrifugal partition chromatography.
Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana
2016-02-19
Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system.
Molecular partitioning based on the kinetic energy density
Noorizadeh, Siamak
2016-05-01
Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.
Water contact angles and hysteresis of polyamide surfaces.
Extrand, C W
2002-04-01
The wetting behavior of a series of aliphatic polyamides (PAs) has been examined. PAs with varying amide content and polyethylene (PE) were molded against glass to produce surfaces with similar roughness. After cleaning, chemical composition of the surfaces was verified with X-ray photoelectron spectroscopy. Advancing and receding contact angles were measured from small sessile water drops. Contact angles decreased with amide content while hysteresis increased. Hysteresis arose primarily from molecular interactions between the contact liquid and the solid substrates, rather than moisture absorption, variations in crystallinity, surface deformation, roughness, reorientation of amide groups, or surface contamination. Free energies of hysteresis were calculated from contact angles. For PE, which is composed entirely of nonpolar methylene groups, free energies were equivalent to the strength of dispersive van der Waals bonds. For PAs, free energies corresponded to fractional contributions from the dispersive methylene groups and polar amide groups.
Constraints on Contact Angles for Multiple Phases in Thermodynamic Equilibrium.
Blunt, Martin J.
2001-07-01
For three or more fluid phases in thermodynamic equilibrium and in contact with a solid surface, the Young equation can be used to find relations between the contact angles for different pairs of fluids. For an n-fluid-phase system, n(n-1)/2 contact angles can be defined, but there are (n-1)(n-2)/2 constraints between them, leaving only n-1 independent values of the contact angle. These constraints are very powerful in limiting and determining possible types of wetting behavior. The consequences are discussed for three- and four-phase flow. They have important applications for the understanding of gas injection processes in petroleum reservoirs. Copyright 2001 Academic Press.
Partition coefficient of cadmium between organic soils and bean and oat plants
Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.; Zayed, J. [Univ. de Montreal, Quebec (Canada)
1995-12-31
Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated with bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.
INS as a probe of inter-monomer angles in polymers
Eijck, L V; Grozema, F C; Schepper, I M D; Kearley, G J
2002-01-01
The angle between monomers in conjugated polymers plays an important role in their conductivity. The vibrational spectrum is sensitive to this angle and can be used to probe the distribution of angles in poorly crystalline systems. We show that the INS spectrum is correctly calculated for bithiophene and shows the molecule to be planar in the solid - in agreement with crystallographic measurements. Poor agreement between observed and calculated spectra in the 700-cm sup - sup 1 region may be due to dynamic coupling, but this does not detract from the angle-sensitivity of the spectra. (orig.)
Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)
2015-04-15
Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the
Angle resolved photoemission in semiconductors
Petroff, Y.
1983-02-01
Bases of angular resolved photoemission: determination of the electronic band structure of solids (bulk), measurements of life-time and mean free path, determination of surfaces states (valence and core) and their relationship with surface reconstruction are described.
Frequency scaling for angle gathers
Zuberi, M. A H
2014-01-01
Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.
Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system
Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)
2015-07-15
A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.
Angle independent velocity spectrum determination
2014-01-01
An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....
Scaling of misorientation angle distributions
Hughes, D.A.; Chrzan, D.C.; Liu, Q.
1998-01-01
The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributions...... for the small to large strain regimes for aluminum, 304L stainless steel, nickel, and copper (taken from the literature )appear to be identical. Hence the distributions may be "universal." These results have significant implications for the development of dislocation based deformation models. [S0031...
Systematic variations in divergence angle
Okabe, Takuya
2012-01-01
Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance.
Hydrogen partitioning in pure cast aluminum as determined by dynamic evolution rate measurements
Outlaw, R. A.; Peterson, D. T.; Schmidt, F. A.
1981-01-01
Hydrogen in pure aluminum can be found in two different states. One is related to a presence in gas-filled pores, while the other state involves the formation of a solid solution between hydrogen and aluminum. The considered investigation is concerned with the distribution of the hydrogen between various states. A dynamic technique is employed to measure the evolution of hydrogen from commercially available samples of polycrystalline pure aluminum under ultrahigh vacuum conditions. The obtained data are compared with the results of a statistical analysis concerning the porosity in the cast aluminum. It was found that more than 99 pct of the hydrogen in the aluminum is located in large pores. Less than 1 pct of the hydrogen is partitioned between the solid solution and the small pores.
Pepper injury and partitioning response to ozone
Bennett, J.P.; Oshima, R.J.; Lippert, L.F.
1977-08-01
Pepper plants (Capsicum annuum L.) grown in containers and exposed intermittently to 0.12 or 0.20 ppm ozone (O/sub 3/) while they grew to final yield, increased in plant height and total number of leaves in spite of the formation of chlorotic leaves. On an absolute basis, root, stem and leaf dry weights were not significantly affected by O/sub 3/, but fruit dry matter fell by as much as 54%. However, on a relative basis, dry matter partitioning to fruit was not constant and a significant alteration of the expected dry matter distribution was observed in the O/sub 3/ treatment. O/sub 3/ also significantly accentuated the inverse relationship between crown fruit and leaf production. A conceptual model for whole plant response to O/sub 3/ was developed.
Advanced Aqueous Separation Systems for Actinide Partitioning
Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale
2012-03-21
One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.
Exometabolite niche partitioning among sympatric soil bacteria
Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.
2015-01-01
Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity. PMID:26392107
Generalization of the partitioning of shannon diversity.
Eric Marcon
Full Text Available Traditional measures of diversity, namely the number of species as well as Simpson's and Shannon's indices, are particular cases of Tsallis entropy. Entropy decomposition, i.e. decomposing gamma entropy into alpha and beta components, has been previously derived in the literature. We propose a generalization of the additive decomposition of Shannon entropy applied to Tsallis entropy. We obtain a self-contained definition of beta entropy as the information gain brought by the knowledge of each community composition. We propose a correction of the estimation bias allowing to estimate alpha, beta and gamma entropy from the data and eventually convert them into true diversity. We advocate additive decomposition in complement of multiplicative partitioning to allow robust estimation of biodiversity.
Discrete and Continuous Models for Partitioning Problems
Lellmann, Jan
2013-04-11
Recently, variational relaxation techniques for approximating solutions of partitioning problems on continuous image domains have received considerable attention, since they introduce significantly less artifacts than established graph cut-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider in depth the consequences of a recent theoretical result concerning the optimality of solutions obtained using a particular relaxation method. Since the employed regularizer is quite tight, the considered relaxation generally involves a large computational cost. We propose a method to significantly reduce these costs in a fully automatic way for a large class of metrics including tree metrics, thus generalizing a method recently proposed by Strekalovskiy and Cremers (IEEE conference on computer vision and pattern recognition, pp. 1905-1911, 2011). © 2013 Springer Science+Business Media New York.
Recursive Partitioning Method on Competing Risk Outcomes
Xu, Wei; Che, Jiahua; Kong, Qin
2016-01-01
In some cancer clinical studies, researchers have interests to explore the risk factors associated with competing risk outcomes such as recurrence-free survival. We develop a novel recursive partitioning framework on competing risk data for both prognostic and predictive model constructions. We define specific splitting rules, pruning algorithm, and final tree selection algorithm for the competing risk tree models. This methodology is quite flexible that it can corporate both semiparametric method using Cox proportional hazards model and parametric competing risk model. Both prognostic and predictive tree models are developed to adjust for potential confounding factors. Extensive simulations show that our methods have well-controlled type I error and robust power performance. Finally, we apply both Cox proportional hazards model and flexible parametric model for prognostic tree development on a retrospective clinical study on oropharyngeal cancer patients. PMID:27486300
Partitioned quantum cellular automata are intrinsically universal
Arrighi, Pablo
2010-01-01
There have been several non-axiomatic approaches taken to define Quantum Cellular Automata (QCA). Partitioned QCA (PQCA) are the most canonical of these non-axiomatic definitions. In this work we show that any QCA can be put into the form of a PQCA. Our construction reconciles all the non-axiomatic definitions of QCA, showing that they can all simulate one another, and hence that they are all equivalent to the axiomatic definition. This is achieved by defining generalised n-dimensional intrinsic simulation, which brings the computer science based concepts of simulation and universality closer to theoretical physics. The result is not only an important simplification of the QCA model, it also plays a key role in the identification of a minimal n-dimensional intrinsically universal QCA.
Smoothed analysis of partitioning algorithms for Euclidean functionals
Bläser, Markus; Manthey, Bodo; Rao, B.V. Raghavendra
2013-01-01
Euclidean optimization problems such as TSP and minimum-length matching admit fast partitioning algorithms that compute near-optimal solutions on typical instances. In order to explain this performance, we develop a general framework for the application of smoothed analysis to partitioning algorithm
Smoothed analysis of partitioning algorithms for Euclidean functionals
Bläser, Markus; Manthey, Bodo; Rao, B.V. Raghavendra; Dehne, F.; Iacono, J.; Sack, J.-R.
2011-01-01
Euclidean optimization problems such as TSP and minimum-length matching admit fast partitioning algorithms that compute near-optimal solutions on typical instances. We develop a general framework for the application of smoothed analysis to partitioning algorithms for Euclidean optimization problems.
Dynamic State Space Partitioning for External Memory Model Checking
Evangelista, Sami; Kristensen, Lars Michael
2009-01-01
We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...