WorldWideScience

Sample records for solid amalgam electrode

  1. Reference Electrodes Based on Solid Amalgams

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2004-01-01

    Roč. 16, č. 3 (2004), s. 238-241 ISSN 1040-0397 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : solid amalgam * reference electrode * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.038, year: 2004

  2. Analytical Applications of Solid and Paste Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.

    2009-01-01

    Roč. 39, č. 3 (2009), s. 189-203 ISSN 1040-8347 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * voltammetry * paste amalgam electrodes * reference amalgam electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.621, year: 2009

  3. Detecting DNA damage with a silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Kuchaříková, Kateřina; Novotný, Ladislav; Josypčuk, Bohdan; Fojta, Miroslav

    2004-01-01

    Roč. 16, č. 5 (2004), s. 410-414 ISSN 1040-0397 R&D Projects: GA AV ČR IAA4004108; GA AV ČR IBS5004355 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA damage * silver solid amalgam electrode * HMDE Subject RIV: BO - Biophysics Impact factor: 2.038, year: 2004

  4. Determination of Iodates using Silver Solid Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 14, 15/16 (2002), s. 1138-1142 ISSN 1040-0397 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : silver solid amalgam electrodes * voltammetry * table salt Subject RIV: CG - Electrochemistry Impact factor: 1.783, year: 2002

  5. Voltammetric Determination of Nitrophenols at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Fischer, J.; Vaňourková, L.; Daňhel, A.; Vyskočil, V.; Čížek, K.; Barek, J.; Pecková, K.; Josypčuk, Bohdan; Navrátil, Tomáš

    2007-01-01

    Roč. 2, - (2007), s. 226-134 ISSN 1452-3981 R&D Projects: GA MŠk(CZ) LC06063; GA ČR GA203/07/1195; GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * voltammetry * nitrophenols * growth stimulators * solid phase extraction (SPE) Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Voltammetric Determination of Azidothymidine Using Silver Solid Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Pecková, K.; Navrátil, Tomáš; Josypčuk, Bohdan; Moreira, J. C.; Leandro, K. Ch.; Barek, J.

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1750-1757 ISSN 1040-0397 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : azidothymidine * Zidovudine * Silver solid amalgam electrode * Differential pulse voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  7. Silver Solid Amalgam Electrodes as Sensors for Chemical Carcinogens

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Fischer, J.; Navrátil, Tomáš; Pecková, K.; Josypčuk, Bohdan

    2006-01-01

    Roč. 6, č. 4 (2006), s. 445-452 ISSN 1424-8220 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/03/0182 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * voltammetry * carcirogens * 3-nitrofluoranthene * Ostazine Orange Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.373, year: 2006

  8. Determination of 5-nitroindazole using silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Hrdlička, V.; Navrátil, Tomáš; Vyskočil, V.; Barek, J.

    2015-01-01

    Roč. 146, č. 5 (2015), s. 761-769 ISSN 0026-9247 R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : 5-nitroindazole * hanging mercury drop electrode * silver sold amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.131, year: 2015

  9. Solid Amalgam Composite Electrode as a New Sensor for the Determination of Biologically Active Compounds

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Navrátil, Tomáš; Lukina, A.; Pecková, K.; Barek, J.

    2007-01-01

    Roč. 52, č. 6 (2007), s. 897-910 ISSN 0009-2223 R&D Projects: GA ČR GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid composite electrode * solid amalgam electrodes * solid amalgam composite electrode * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 0.529, year: 2007

  10. Voltammetric determination of leucovorin using silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Šelešovská, R.; Bandžuchová, L.; Navrátil, Tomáš; Chýlková, J.

    2012-01-01

    Roč. 60, JAN 2012 (2012), s. 375-383 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400806; GA ČR GAP206/11/1638 Institutional research plan: CEZ:AV0Z40400503 Keywords : leucovorin * voltammetry * amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 3.777, year: 2012

  11. Voltammetric Determination of Nitronaphthalenes at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Pecková, K.; Barek, J.; Navrátil, Tomáš; Josypčuk, Bohdan; Zima, J.

    2009-01-01

    Roč. 42, č. 15 (2009), s. 2339-2363 ISSN 0003-2719 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : cyclic voltammetry * differential pulse voltammetry * elimination voltammetry with linear scan * silver amalgam electrode Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.317, year: 2009

  12. Silver Solid Amalgam Electrode as a Tool for Monitoring the Electrochemical Reduction of Hydroxocobalamin

    Czech Academy of Sciences Publication Activity Database

    Bandžuchová, L.; Šelešovská, R.; Navrátil, Tomáš; Chýlková, J.

    2013-01-01

    Roč. 25, č. 1 (2013), s. 213-222 ISSN 1040-0397 R&D Projects: GA ČR GAP206/11/1638; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : cobalamin * hanging mercury drop electrode * silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 2.502, year: 2013

  13. Voltametric Determination of Adenine, Guanine and DNA Using Liquid Mercury Free Polished Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Fadrná, Renata; Josypčuk, Bohdan; Fojta, Miroslav; Navrátil, Tomáš; Novotný, Ladislav

    2004-01-01

    Roč. 37, č. 3 (2004), s. 399-413 ISSN 0003-2719 R&D Projects: GA AV ČR KSK4040110 Grant - others:GIT(AR) 101/02/U111/CZ Keywords : voltammetry * DNA * polished silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.165, year: 2004

  14. Application of silver solid amalgam electrode for determination of formamidine amitraz

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Hrdlička, V.; Navrátil, Tomáš; Harvila, M.; Zima, J.; Barek, J.

    2016-01-01

    Roč. 147, č. 1 (2016), s. 181-189 ISSN 0026-9247 R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : amitraz * pesticide * silver solid amalgam electrode Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.282, year: 2016

  15. Voltammetric determination of sodium anthraquinone-2-sulfonate using silver solid amalgam electrodes

    Czech Academy of Sciences Publication Activity Database

    Skalová, Štěpánka; Navrátil, Tomáš; Barek, J.; Vyskočil, V.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 577-583 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : Anthraquinone * Drugs * Silver solid amalgam electrode * Voltammetry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.282, year: 2016

  16. Application of Copper Solid Amalgam Electrode for Determination of Fungicide Tebuconazole

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Navrátil, Tomáš; Jaklová Dytrtová, Jana; Chýlková, J.

    2013-01-01

    Roč. 8, č. 1 (2013), s. 1-16 ISSN 1452-3981 R&D Projects: GA ČR GAP206/11/1638; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : tebuconazole * fungicide * copper solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  17. Cathodic Stripping Voltammetry of Cysteine Using Silver and Copper Solid Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 56, č. 5 (2002), s. 971-976 ISSN 0039-9140 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : silver or copper solid amalgam electrode * cysteine * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.054, year: 2002

  18. The Use of the Silver Solid Amalgam Electrode for Voltammetric Determination of 9-Nitroanthracene

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Nováková, Kateřina; Barek, J.; Vyskočil, V.; Chýlková, J.

    2016-01-01

    Roč. 49, č. 1 (2016), s. 37-48 ISSN 0003-2719 R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : 9-Nitroanthracene * Silver solid amalgam electrode * Voltammetry Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2016

  19. Sensitive voltammetric method for determination of herbicide triasulfuron using silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Bandžuchová, L.; Šelešovská, R.; Navrátil, Tomáš; Chýlková, J.

    2013-01-01

    Roč. 113, DEC 2013 (2013), s. 1-8 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP208/12/1645 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/30.0021 Institutional support: RVO:61388955 Keywords : Triasulfuron * Hanging mercury drop electrode * Mercury meniscus modified silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  20. Liquid-Mercury Free Silver Solid Amalgam Electrode - Tool for Electroanalysis of Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Šelešovská-Fadrná, R.; Navrátil, Tomáš; Vlček, Milan

    2007-01-01

    Roč. 52, č. 6 (2007), s. 911-929 ISSN 0009-2223 R&D Projects: GA ČR GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : ascorbic acid * solid silver amalgam electrodes * cysteine * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 0.529, year: 2007

  1. Voltammetric Determination of 4-Nitrophenol and 5-Nitrobenzimidazole Using Different Types of Silver Solid Amalgam Electrodes - A Comparative Study

    Czech Academy of Sciences Publication Activity Database

    Deýlová, D.; Josypčuk, Bohdan; Vyskočil, V.; Barek, J.

    2011-01-01

    Roč. 23, č. 7 (2011), s. 1548-1555 ISSN 1040-0397 R&D Projects: GA MŠk(CZ) LC06063; GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * polished silver solid amalgam electrode * Mercury meniscus modified silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 2.872, year: 2011

  2. Preparation and Properties of Mercury Film Electrodes on Solid Amalgam Surface

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Barek, J.

    2010-01-01

    Roč. 22, 17-18 (2010), s. 1967-1973 ISSN 1040-0397. [International Conference on Modern Electroanalytical Methods. Prague, 09.12.2009-14.12.2009] R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : voltammetry * solid and paste amalgam * Mercury film electrode Subject RIV: CG - Electrochemistry Impact factor: 2.721, year: 2010

  3. Voltammetric determination of the herbicide Bifenox in drinking and river water using a silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Cabalková, D.; Fischer, J.; Navrátil, Tomáš; Pecková, K.; Josypčuk, Bohdan

    2011-01-01

    Roč. 9, č. 1 (2011), s. 83-86 ISSN 1610-3653 R&D Projects: GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : differential pulse voltammetry * silver solid amalgam electrode * solid phase extraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.881, year: 2011

  4. Construction and Application of Flow Enzymatic Biosensor Based of Silver Solid Amalgam Electrode for Determination of Sarcosine

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Barek, J.; Josypčuk, Bohdan

    2015-01-01

    Roč. 27, č. 11 (2015), s. 2559-2566 ISSN 1040-0397 R&D Projects: GA ČR GBP206/12/G151; GA ČR GAP206/11/1638 Institutional support: RVO:61388955 Keywords : biosensors * sarcosine * silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 2.471, year: 2015

  5. Voltammetric Determination of N,N-Dimethyl-4-amine-carboxyazobenzene at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Dodova, E.; Navrátil, Tomáš; Josypčuk, Bohdan; Novotný, Ladislav; Zima, J.

    2003-01-01

    Roč. 15, č. 22 (2003), s. 1778-1781 ISSN 1040-0397 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : N,N-dimethyl-4-amino-carboxyazobenzene * differential pulse voltammetry * silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.811, year: 2003

  6. Use of polished and mercury film-modified silver solid amalgam electrodes in electrochemical analysis of DNA

    Czech Academy of Sciences Publication Activity Database

    Fadrná, Renata; Cahová, Kateřina; Havran, Luděk; Josypčuk, Bohdan; Fojta, Miroslav

    2005-01-01

    Roč. 17, 5-6 (2005), s. 452-459 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/04/1325; GA AV ČR KJB4004302 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : DNA electrochemistry * solid amalgam electrodes * mercury film electrodes * DNA damage Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.189, year: 2005

  7. Application of thin film mercury electrodes and solid amalgam electrodes in electrochemical analysis of the nucleic acids components: detection of the two-dimensional phase transients of adenosine

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Vetterl, Vladimír

    2004-01-01

    Roč. 63, 1-2 (2004), s. 37-41 ISSN 1567-5394 R&D Projects: GA AV ČR KJB4004305; GA AV ČR IBS5004107 Institutional research plan: CEZ:AV0Z5004920 Keywords : mercury film electrodes * solid amalgam electrodes * roughness Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  8. A novel paste electrode based on a silver solid amalgam and an organic pasting liquid

    Czech Academy of Sciences Publication Activity Database

    Daňhel, A.; Josypčuk, Bohdan; Vyskočil, V.; Zima, J.; Barek, J.

    2011-01-01

    Roč. 656, 1-2 (2011), s. 218-222 ISSN 1572-6657 R&D Projects: GA MŠk(CZ) LC06063; GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * paste electrode * silver amalgam Subject RIV: CG - Electrochemistry Impact factor: 2.905, year: 2011

  9. Voltammetric monitoring of electrochemical reduction of riboflavin using silver solid amalgam electrodes

    Czech Academy of Sciences Publication Activity Database

    Bandžuchová, L.; Šelešovská, R.; Navrátil, Tomáš; Chýlková, J.; Novotný, L.

    2012-01-01

    Roč. 75, July 2012 (2012), s. 316-324 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400806; GA ČR GAP208/12/1645; GA ČR GAP206/11/1638 Institutional support: RVO:61388955 Keywords : riboflavin * determination * amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 3.777, year: 2012

  10. Voltammetric Determination of Genotoxic Nitro Derivatives of Fluorene and 9-Fluorenone Using a Mercury Meniscus Modified Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, V.; Navrátil, Tomáš; Polášková, P.; Barek, J.

    2010-01-01

    Roč. 22, 17-18 (2010), s. 2034-2042 ISSN 1040-0397. [International Conference on Modern Electroanalytical Methods. Prague, 09.12.2009-14.12.2009] R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * Silver solid amalgam electrode * drinking water Subject RIV: CG - Electrochemistry Impact factor: 2.721, year: 2010

  11. Verification of Applicability of Mercury Meniscus Modified Silver Solid Amalgam Electrode for Determination of Heavy Metals in Plant matrices

    Czech Academy of Sciences Publication Activity Database

    Čížková, P.; Navrátil, Tomáš; Šestáková, Ivana; Josypčuk, Bohdan

    2007-01-01

    Roč. 19, 2-3 (2007), s. 161-171 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * biological materials * solid amalgam electrode * atomic absorption spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.949, year: 2007

  12. Voltammetric determination of trace amounts of 2-methyl-4,6-dinitrophenol at a silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Fischer, J.; Barek, J.; Josypčuk, Bohdan; Navrátil, Tomáš

    2006-01-01

    Roč. 18, č. 2 (2006), s. 127-130 ISSN 1040-0397 R&D Projects: GA ČR GA203/03/0182; GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2-methyl-4,6-dinitrophenol * differential pulse voltammetry * silver solid amalgam electrode Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  13. Voltammetric behavior of osmium-labeled DNA at mercury meniscus-modified solid amalgam electrodes. Detecting DNA hybridization

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Havran, Luděk; Heyrovský, Michael; Paleček, Emil

    2006-01-01

    Roč. 18, č. 2 (2006), s. 186-194 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA AV ČR IAA4004402; GA AV ČR KJB4004302; GA AV ČR IBS5004355 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid amalgam electrodes * DNA-osmium complex * hybridization * catalytic hydrogen evolution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  14. The use of copper solid amalgam electrodes for determination of the pesticide thiram

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Navrátil, Tomáš; Jaklová Dytrtová, Jana; Chýlková, J.

    2013-01-01

    Roč. 17, č. 6 (2013), s. 1517-1528 ISSN 1432-8488 R&D Projects: GA ČR(CZ) GAP208/12/1645; GA ČR GP13-21409P Institutional support: RVO:61388955 ; RVO:61388963 Keywords : Tetramethylthiuram disulfide * amalgam * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.234, year: 2013

  15. Crystallic silver amalgam--a novel electrode material.

    Science.gov (United States)

    Danhel, Ales; Mansfeldova, Vera; Janda, Pavel; Vyskocil, Vlastimil; Barek, Jiri

    2011-09-21

    A crystallic silver amalgam was found to be a suitable working electrode material for voltammetric determination of electrochemically reducible organic nitro-compounds. Optimum conditions for crystal growth were found, the crystal surface was investigated by atomic force microscopy in tapping mode and single crystals were used for the preparation of quasi-cylindrical single crystal silver amalgam electrode (CAgAE). An electrochemical behavior of this alternative electrode material was investigated in aqueous media by direct current voltammetry, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) using 4-nitrophenol as a model compound. Applicable potential windows of the CAgAE were found comparable with those obtained at a hanging mercury drop electrode, providing high hydrogen overpotential, and polished silver solid amalgam electrode. Thanks to the smooth single crystal electrode surface, the effect of the passivation is not too pronounced, direct DPV determination of 100 μmol l(-1) of 4-nitrophenol at CAgAEs in 0.2 mol l(-1) acetate buffer pH 4.8 provides a RSD around 1.5% (n = 15). DPV calibration curves of 4-nitrophenol are linear in the whole concentration range 1-100 μmol l(-1) with a limit of quantification of 1.5 μmol l(-1). The attempt to increase sensitivity by application of AdSV was not successful. The mechanism of 4-nitrophenol reduction at CAgAE was investigated by CV.

  16. The Use of Silver Solid Amalgam Electrodes for Voltammetric and Amperometric Determination of Nitrated Polyaromatic Compounds Used as Markers of Incomplete Combustion

    Directory of Open Access Journals (Sweden)

    Oksana Yosypchuk

    2012-01-01

    Full Text Available Genotoxic nitrated polycyclic aromatic hydrocarbons (NPAHs are formed during incomplete combustion processes by reaction of polycyclic aromatic hydrocarbons (PAHs with atmospheric nitrogen oxides. 1-Nitropyrene, 2-nitrofluorene, and 3-nitrofluoranthene as the dominating substances are used as markers of NPAHs formation by these processes. In the presented study, voltammetric properties and quantification of these compounds and of 5-nitroquinoline (as a representative of environmentally important genotoxic heterocyclic compounds have been investigated using a mercury meniscus modified silver solid amalgam electrode (m-AgSAE, which represent a nontoxic alternative to traditional mercury electrodes. Linear calibration curves over three orders of magnitude and limits of determination mostly in the 10−7 mol L−1 concentration range were obtained using direct current and differential pulse voltammetry. Further, satisfactory HPLC separation of studied analytes in fifteen minutes was achieved using 0.01 mol L−1 phosphate buffer, pH 7.0 : methanol (15 : 85, v/v mobile phase, and C18 reversed stationary phase. Limits of detection of around 1 · 10−5 mol L−1 were achieved using amperometric detection at m-AgSAE in wall-jet arrangement for all studied analytes. Practical applicability of this technique was demonstrated on the determination of 1-nitropyrene, 2-nitrofluorene, 3-nitrofluoranthene, and 5-nitroquinoline in drinking water after their preliminary separation and preconcentration using solid phase extraction with the limits of detection around 1 · 10−6 mol L−1.

  17. Comparison Study of Voltammetric Behavior of Muscle Relaxant Dantrolene Sodium on Silver Solid Amalgam and Bismuth Film Electrodes

    Czech Academy of Sciences Publication Activity Database

    Šelešovská, R.; Martinková, P.; Štěpánková, M.; Navrátil, Tomáš; Chýlková, J.

    2017-01-01

    Roč. 2017, č. 2017 (2017), č. článku 3627428. ISSN 2090-8865 R&D Projects: GA ČR GA17-03868S Institutional support: RVO:61388955 Keywords : performance liquid-chromatography * differential-pulse polarography * anodic-stripping voltammetry * screen-printed electrodes * organic-compounds Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.801, year: 2016

  18. Comparison Study of Voltammetric Behavior of Muscle Relaxant Dantrolene Sodium on Silver Solid Amalgam and Bismuth Film Electrodes

    Czech Academy of Sciences Publication Activity Database

    Šelešovská, R.; Martinková, P.; Štěpánková, M.; Navrátil, Tomáš; Chýlková, J.

    2017-01-01

    Roč. 2017, č. 2017 (2017), č. článku 3627428. ISSN 2090-8865 R&D Projects: GA ČR GA17-03868S Institutional support: RVO:61388955 Keywords : performance liquid - chromatography * differential-pulse polarography * anodic-stripping voltammetry * screen-printed electrodes * organic-compounds Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.801, year: 2016

  19. Crystallic silver amalgam – a novel electrode material

    Czech Academy of Sciences Publication Activity Database

    Daňhel, A.; Mansfeldová, Věra; Janda, Pavel; Vyskočil, V.; Barek, J.

    2011-01-01

    Roč. 136, č. 118 (2011), s. 36563662 ISSN 0003-2654 Institutional research plan: CEZ:AV0Z40400503 Keywords : crystallic silver amalgam * electrode materials * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 4.230, year: 2011

  20. Working electrodes from amalgam paste for electrochemical measurements

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Šestáková, Ivana

    2008-01-01

    Roč. 20, č. 4 (2008), s. 426-433 ISSN 1040-0397 R&D Projects: GA ČR GA203/07/1195; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * paste amalgam * silver amalgam * paste electrode Subject RIV: CG - Electrochemistry Impact factor: 2.901, year: 2008

  1. Determination of trace arsenic on hanging copper amalgam drop electrode.

    Science.gov (United States)

    Piech, Robert; Baś, Bogusław; Niewiara, Ewa; Kubiak, Władysław W

    2007-04-30

    Hanging copper amalgam drop electrode has been applied for trace determination of arsenic by cathodic stripping analysis. Detection limit for As(III) as low as 0.33nM (0.02mug/L) at deposition time (240s) could be obtained. For seven successive determinations of As(III) at concentration of 5nM relative standard deviation was 2.5% (n=7). Interferences from selected metals and surfactant substances were examined. Absence of copper ions in sample solution causes easier optimization and makes method less vulnerable on contamination. The developed method was validated by analysis of certified reference materials (CRMs) and applied to arsenic determinations in natural water samples.

  2. A Novel Voltammetric Method for the Determination of Maleic Acid Using Silver Amalgam Paste Electrode

    Czech Academy of Sciences Publication Activity Database

    Niaz, A.; Fischer, J.; Barek, J.; Josypčuk, Bohdan; Sirajuddin, C.; Bhanger, M. I.

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1719-1722 ISSN 1040-0397 R&D Projects: GA MŠk(CZ) LC06035; GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * maleic acid * silver amalgam paste electrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  3. Voltammetric Determination of 4-Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode

    Czech Academy of Sciences Publication Activity Database

    Niaz, A.; Fischer, J.; Barek, J.; Josypčuk, Bohdan; Sirajuddin, C.; Bhanger, M. I.

    2009-01-01

    Roč. 21, č. 16 (2009), s. 1786-1791 ISSN 1040-0397 R&D Projects: GA MŠk(CZ) LC06035; GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * drinking water * silver amalgam paste electrode * 4-nitrophenol Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  4. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.; Josypčuk, Oksana

    2013-01-01

    Roč. 778, MAY 2013 (2013), s. 24-30 ISSN 0003-2670 R&D Projects: GA ČR GAP206/11/1638 Institutional support: RVO:61388955 Keywords : flow analysis * amperometry * silver solid amalgam Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.517, year: 2013

  5. Combined Voltammetric-Potentiometric Sensor with the Silver Solid Amalgam Link for Electroanalytical Measurements

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 14, č. 24 (2002), s. 1739-1741 ISSN 1040-0397 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : combined voltammetric-potentiometric sensors * solid amalgam Subject RIV: CG - Electrochemistry Impact factor: 1.783, year: 2002

  6. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Josypčuk, Bohdan, E-mail: josypcuk@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Barek, Jiří [Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic); Josypčuk, Oksana [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic)

    2013-05-17

    Graphical abstract: -- Highlights: •Flow amperometric enzymatic biosensor was constructed. •The biosensor is based on a reactor of a novel material – porous silver solid amalgam. •Tubular amalgam detector was used for determination of decrease of O{sub 2} concentration. •Covalent bonds amalgam−thiol−enzyme contributed to the sensor long-term stability. •LOD of glucose was 0.01 mmol L{sup −1} with RSD = 1.3% (n = 11). -- Abstract: A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L{sup −1} with detection limit of 0.01 mmol L{sup −1}. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days)

  7. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  8. Dental Amalgam

    Science.gov (United States)

    ... Products and Medical Procedures Dental Devices Dental Amalgam Dental Amalgam Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Dental amalgam is a dental filling material which is ...

  9. Fast and sensitive metronidazole determination by means of voltammetry on renewable amalgam silver based electrode without the preconcentration step

    Directory of Open Access Journals (Sweden)

    Piech Robert

    2017-01-01

    Full Text Available Application of cyclic renewable amalgam silver-based electrode (Hg(AgFE for sensitive metronidazole detection by the differential pulse voltammetry (DPV is described. The unique properties of the Hg(AgFE such as the relative large surface area and its fast and very simple renewal were fully utilized for sensitive measurements. Compared with the classical hanging mercury drop electrode (HMDE, the renewable Hg(AgFE significantly increases the reduction peak current of metronidazole because of its large surface area. The effects of various factors for the metronidazole determination such as: pulse height and width, step potential, surface area of the working electrode, and basic electrolyte composition are optimized. The obtained calibration graph is linear from 0.1 (17 μg L-1 to 2 μM (342 μg L-1 with correlation coefficient 0.999. For the Hg(AgFE with the surface area of 10.1 mm2 the limit of detection (LOD is 20 nM (3.4 μg L-1. The repeatability of the method at a concentration of the analyte of 0.5 μM (5.6 μg L−1, expressed as relative standard deviation (RSD is 2.1 % (n = 7. The proposed method was successfully applied and confirmed by studying recovery of metronidazole from spiked samples.

  10. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  11. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  12. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  13. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  14. Voltammetric behavior and determination of the macrolide antibiotics azithromycin, clarithromycin and roxithromycin at a renewable silver – amalgam film electrode

    International Nuclear Information System (INIS)

    Vajdle, Olga; Guzsvány, Valéria; Škorić, Dušan; Csanádi, János; Petković, Miloš; Avramov-Ivić, Milka; Kónya, Zoltán; Petrović, Slobodan

    2017-01-01

    Highlights: • Voltammetric characterization of AZI, CLA and ROX at Hg(Ag)FE was performed. • AZI, CLA and ROX were determined via optimized SWV and SW-AdSV procedures. • Protonated forms of AZI, CLA and ROX favored their adsorption on Hg(Ag)FE. • 1 H NMR chemical shift dependence of N-methyl proton signals from pH. • Optimized SW-AdSV procedure was applied to determine ROX in Runac ® tablet. - Abstract: The renewable silver-amalgam film electrode (Hg(Ag)FE) was applied for voltammetric characterization and determination of semi-synthetic macrolide antibiotics azithromycin (AZI), clarithromycin (CLA) and roxithromycin (ROX) in the Britton-Robinson buffer as supporting electrolyte ranging the pH from 4.0 to 11.9. All three macrolides showed reduction signals in fairly negative potential range. During direct cathodic square wave voltammetric (SWV) investigations conducted over the potential range from −0.75 V to −2.00 V vs SCE, either one or two reduction peaks were obtained in the potential range from −1.5 to −1.9 V. The shapes and intensities of the signals depend on the applied pH values in wider pH ranges. For analytical purposes concerning the development of direct cathodic SWV and adsorptive stripping SWV (SW-AdSV) methods the neutral and slightly alkaline media were suitable as pH 7.2, pH 7.4 and pH 7.0 for AZI, CLA and ROX, respectively. Based on the cyclic voltammograms recorded at these pH values, adsorption-controlled electrode kinetics process can be proposed for all three macrolides. Furthermore, the water suppressed 1 H NMR measurements in the pH range between 6.0 and 10.5 indicated that the macrolide molecules at the optimal analytical conditions are predominantly in protonated form via their tertiary amino groups which supported in all three cases their adsorption on the appropriately polarized Hg(Ag)FE electrode. The optimized direct cathodic SWV methods showed good linearity in concentration ranges 4.81–23.3 μg mL −1 , 1.96

  15. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming

    2011-01-01

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV...

  16. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  17. About Dental Amalgam Fillings

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  18. Conditioning of spent mercury by amalgamation

    International Nuclear Information System (INIS)

    Yim, S. P.; Shon, J. S.; An, B. G.; Lee, H. J.; Lee, J. W.; Ji, C. G.; Kim, S. H.; Yoon, J. H.; Yang, M. S.

    2002-01-01

    Solidification by amalgamation was performed to immobilize and stabilize the liquid spent mercury. First, the appropriate metal and alloy which can convert liquid mercury into a solid form of amalgam were selected through initial tests. The amalgam form, formulated in optimum composition, was characterized and subjected to performance tests including compressive strength, water immersion, leachability and initial vaporization rate to evaluate mechanical integrity, durability and leaching properties. Finally, bench scale amalgamation trial was conducted with about 1 kg of spent mercury to verify the feasibility of amalgamation method

  19. Electrochemical behavior of folic acid on mercury meniscus modified silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Bandžuchová, L.; Šelešovská, R.; Navrátil, Tomáš; Chýlková, J.

    2011-01-01

    Roč. 56, č. 5 (2011), s. 2411-2419 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : folic acid * vitamin s * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 3.832, year: 2011

  20. Voltammetric Behavior of Methotrexate Using Mercury Meniscus Modified Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Šelešovská, R.; Bandžuchová, L.; Navrátil, Tomáš

    2011-01-01

    Roč. 23, č. 1 (2011), s. 177-178 ISSN 1040-0397 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : methotrexate * voltammetry * determination Subject RIV: CG - Electrochemistry Impact factor: 2.872, year: 2011

  1. Amalgam Electrode-Based Electrochemical Detector for On-Site Direct Determination of Cadmium(II and Lead(II from Soils

    Directory of Open Access Journals (Sweden)

    Lukas Nejdl

    2017-08-01

    Full Text Available Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II and Pb(II in environmental samples (soils and wastewaters by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm and a portable computer. The limit of detection (LOD was calculated for the geometric surface of the working electrode 15 mm2 that can be varied as required for analysis. The LODs were 80 ng·mL−1 for Cd(II and 50 ng·mL−1 for Pb(II, relative standard deviation, RSD ≤ 8% (n = 3. The area of interest (Dolni Rozinka, Czech Republic was selected because there is a deposit of uranium ore and extreme anthropogenic activity. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II and Pb(II in this area were below the global average. The obtained values were verified (correlated by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample with direct analysis of turbid samples (soil leach in a 2 M HNO3 environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment.

  2. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...

  3. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  4. Conditioning of renewable silver amalgam film electrode for the characterization of clothianidin and its determination in selected samples by adsorptive square-wave voltammetry.

    Science.gov (United States)

    Brycht, Mariola; Skrzypek, Sławomira; Guzsvány, Valéria; Berenji, Janoš

    2013-12-15

    A new square-wave adsorptive stripping voltammetric (SWAdSV) method was developed for the determination of the neonicotinoid insecticide clothianidin (Clo), based on its reduction at a renewable silver amalgam film electrode (Hg(Ag)FE). The key point of the procedure is the pretreatment of the Hg(Ag)FE by applying the appropriate conditioning potential (-1.70 V vs. Ag/AgCl reference electrode). Under the optimized voltammetric conditions, such pretreatment resulted in the peak for the Clo reduction in Britton-Robinson buffer pH 9.0 at about -0.60 V, which was used for the analytical purpose. The developed SWAdSV procedure made it possible to determine Clo in the concentration range of 6.0×10(-7)-7.0×10(-6) mol L(-1) (LOD=1.8×10(-7) mol L(-1), LOQ=6.0×10(-7) mol L(-1)) and 7.0×10(-6)-4.0×10(-5) mol L(-1) (LOD=1.3×10(-6) mol L(-1), LOQ=4.2×10(-6) mol L(-1)). The repeatability, precision, and the recovery of the method were determined. The effect of common interfering pesticides was also investigated. Standard addition method was successfully applied and validated for the determination of Clo in spiked Warta River water, corn seeds samples, and in corn seeds samples treated with the commercial formulation PONCHO 600 FS. © 2013 Elsevier B.V. All rights reserved.

  5. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    the equivalent capacity, $C^{1/\\alpha}$, plotted against the contact area during an experimental period of 2 weeks. The contact area is calculated from the electrolyte resistance as $A=1/(4\\pi(\\sigma R_{YSZ})^2)$. After the electrode has been allowed to touch the electrolyte an increasing capacity proportional......$C in air. The different perturbations are indicated on the graph by numbers. 1-2\\hfill\\parbox[t]{7.3cm}{Thermal cycle at equilibrium. Determination of activation energies.} 3-4\\hfill\\parbox[t]{7.3cm}{ Potential step to -0.150\\,V for 5 hours. Activation.} 5-6\\hfill\\parbox[t]{7.3cm}{ Potential staircase 0...... $\\rightarrow$ -0.150 $\\rightarrow$ 0.050$\\rightarrow$ -0.150 0V. Potential dependence of parameters.} 6-7\\hfill\\parbox[t]{7.3cm}{ Potential step to 0.050\\,V for 4 hours. Activation.} 8-9\\hfill\\parbox[t]{7.3cm}{ As 5-6.} 9-10\\hfill\\parbox[t]{7.3cm}{Thermal cycle at -0.150\\,V. Activation energies.} 11-12\\hfill...

  6. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  7. The environmental effects of dental amalgam.

    Science.gov (United States)

    Chin, G; Chong, J; Kluczewska, A; Lau, A; Gorjy, S; Tennant, M

    2000-12-01

    Dental amalgam is one of the most commonly used materials in restorative dentistry. However, one of its major components, mercury, is of particular concern due to its potential adverse effects on humans and the environment. In this review, the environmental impact of dental amalgam will be discussed, with particular reference to the effects attributed to its mercury component. Mercury commonly occurs in nature as sulfides and in a number of minerals. Globally, between 20,000-30,000 tons of mercury are discharged into the environment each year as a result of human activities. According to a recent German report, approximately 46 per cent of the freshly triturated amalgam is inserted as new amalgam restorations and the rest is waste. Depending on the presence of an amalgam separating unit, some of the generated amalgam-contaminated sludge is discharged into the sewage system. Lost or extracted teeth with amalgam fillings and amalgam-contaminated waste, such as trituration capsules and cotton rolls are discharged with the solid waste and, in most instances, are incinerated. Use of disinfectants containing oxidizing substances in dental aspirator kits may contribute to remobilization of mercury and its subsequent release into the environment. Nevertheless, dental mercury contamination is only a small proportion of terrestrial mercury (3-4 per cent), which is quite insignificant compared with industrial pollution and combustion of fossil fuels by vehicles. The environmental impact of dental mercury is mainly due to the poor management of dental amalgam waste. Proper collection of mercury-contaminated solid waste prevents the release of mercury vapour during combustion. In addition, the use of amalgam separating devices reduces the amount of amalgam-contaminated water released from dental clinics.

  8. All-solid-state potassium-selective electrode using graphene as the solid contact

    DEFF Research Database (Denmark)

    Li, Fenghua; Ye, Junjin; Zhou, Min

    2012-01-01

    Graphene sheets are used for the first time to fabricate a new type of solid-contact ion-selective electrode (SC-ISE) as the intermediate layer between an ionophore-doped solvent polymeric membrane and a glassy carbon electrode. The new transducing layer was characterized by transmission electron...

  9. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  10. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  11. Modified cermet fuel electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  12. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    forming the active surfaces on a porous backbone with embedded electronic current collector material, yielding one of the highest performances reported for an electrode that operates either on fuel or oxidant. The second is a nano-Ce0.9Gd0.1O2-δ thin film prepared by spin-coating, which provides......In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...

  13. Voltammetric behavior of erythromycin ethylsuccinate at a renewable silver-amalgam film electrode and its determination in urine and in a pharmaceutical preparation

    International Nuclear Information System (INIS)

    Vajdle, Olga; Guzsvány, Valéria; Škorić, Dušan; Anojčić, Jasmina; Jovanov, Pavle; Avramov-Ivić, Milka; Csanádi, János; Kónya, Zoltán

    2016-01-01

    Highlights: • Voltammetric characterization of erythromycin ethylsuccinate (EES) on Hg(Ag)FE. • Trace level determination of EES by electroreduction based SWV and SW-AdSV methods. • Protonation of the tertiary amino group supports the adsorption of EES on Hg(Ag)FE. • 1 H NMR confirms chemical shifting of tertiary amine methyl proton signals with pH. • Comparative HPLC-DAD measurements were performed for the validation of the methods. - Abstract: Erythromycin, a macrolide antibiotic, has similar antimicrobial spectrum to penicillin and it is widely used, especially in the treatment of patients who are allergic to penicillin. In this work, the application of a renewable silver-amalgam film electrode (Hg(Ag)FE) for the characterization and determination of erythromycin ethylsuccinate (EES), a widely used esterified form of this antibiotic, by means of cyclic voltammetry (CV) and square wave voltammetry (SWV) is presented. In the aqueous Britton-Robinson buffer (pH 5.0–9.0) that served as the supporting electrolyte, one reduction peak of EES was observed in the investigated potential range between −0.75 V and −1.80 V vs SCE, with peak potential maxima ranging from −1.59 V to −1.70 V, which strongly depended on the applied pH, as did the peak shape. For the analytical purposes the pH of 7.0 was selected, since in this electrolyte the EES peak was well-shaped and separated from the background current of the supporting electrolyte in both cases; in the direct cathodic SWV and in the case of square wave adsorptive stripping voltammetry (SW-AdSV). It was established, by the E p -pH correlation, that protons strongly influenced the electrochemical reduction of EES. The CVs recorded between 0.025–0.50 V s −1 at pH 7.0 confirmed that the electrode reaction is adsorption-controlled. Based on the series of 1 H NMR measurements it is proved that the tertiary amino group of EES is mainly in its protonated form at pH 7.0 which may lead, at appropriate

  14. Polarization behavior of lithium electrode in polymetric solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoshiharu (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Morita, Masayuki (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Tsutsumi, Hiromori (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan))

    1993-04-15

    Complexes of novel polymer matrices and lithium salts have been prepared as polymeric solid electrolytes for lithium batteries. Poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO-PMMA) and poly(methylsiloxane) (PMS) were used as the matrices. The conductance behavior of the complexes and the basic polarization characteristics of the lithium electrode in the polymeric electrolytes were studied. As high conductivities as 10[sup -3] S cm[sup -1] were obtained at room temperature for the PMMA-based electrolytes containing some liquid plasticizer. Limiting current densities of 3 to 5 mA cm[sup -2] were observed for the anodic and cathodic polarization of the lithium electrode. The transport number of Li[sup +] was approximately unity in 'single-ion type' PMS-based electrolyte, in which the polarization curve of the lithium electrode showed no current hysteresis. (orig.)

  15. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  16. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  17. Anodic stripping voltammetry using graphite composite solid electrode

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Barek, J.; Kopanica, Miloslav

    2009-01-01

    Roč. 74, 11-12 (2009), s. 1807-1826 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400400806; GA ČR GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : Graphite composite solid electrode * voltammetry * metals Subject RIV: CG - Electrochemistry Impact factor: 0.856, year: 2009

  18. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  19. Carbon Powder Based Films on Traditional Solid Electrodes as an Alternative to Disposable Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.; Fojta, Miroslav

    2006-01-01

    Roč. 18, č. 11 (2006), s. 1126-1130 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/03/0182; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid electrodes * ink film * disposable sensor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  20. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  1. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude

    The solid oxide fuel cell (SOFC) converts hydrogen, carbon monoxide and hydrocarbon fuels (directly) into electricity with very high efficiencies and has demonstrated almost comparable performance when operated in reverse mode as a solid oxide electrolysis cell (SOEC). In this case electrical (and...... thermal) energy is stored as chemical energy of reaction products. To this end, the cells are fed with steam (H2O electrolysis), carbon dioxide (CO2 electrolysis) or a mixture of both (H2O/CO2 co-electrolysis) and of course electrical (ΔG) and thermal (TΔS) energies for the splitting of reactant compounds...... of the solid oxide cell (SOC) and independent of polarization mode (fuel cell mode or electrolysis mode), the current flowing through the cell is limited by processes such as adsorption and desorption of reactants or products, diffusion through the porous electrodes, activation or charge transfer...

  2. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  3. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S

    1997-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  4. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  5. Potentiometric titration of molybdenum (6) with a cathode-polarized solid electrode

    International Nuclear Information System (INIS)

    Boeva, L.V.; Kimstach, V.A.; Bagdasarov, K.N.

    1980-01-01

    The possibility has been studied of using solid electrodes for potentiometric precipitation titration of molybdenum (6). A cathode-polarized electrode, electrochemically covered with a molybdenum blue layer, can be used as indicator electrode. The best results were obtained during deposition of molybdenum blue on a tungsten electrode. The mechanism of electrode work during titration has been investigated. A procedure has been developed of titration of molybdenum (6) in acid solutions using hydroxylamine N-aryl derivatives as titrants

  6. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    Science.gov (United States)

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  7. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  8. A nonadhesive solid-gel electrode for a non-invasive brain–machine interface

    Directory of Open Access Journals (Sweden)

    Shigeru eToyama

    2012-07-01

    Full Text Available A non-invasive brain–machine interface (BMI or brain-computer interface (BCI is a technology for helping individuals with disabilities and utilizes neurophysiological signals from the brain to control external machines or computers without requiring surgery. However, when applying EEG methodology, users must place EEG electrodes on the scalp each time, and the development of easy-to-use electrodes for clinical use is required. In this study, we developed a conductive nonadhesive solid-gel electrode for practical non-invasive BMIs. We performed basic material testing, including examining the volume resistivity, viscoelasticity, and moisture-retention properties of the solid gel. Then, we compared the performance of the solid gel, a conventional paste, and an in-house metal pin-based electrode using impedance measurements and P300-BMI testing. The solid gel was observed to be conductive (volume resistivity 13.2 Ωcm and soft (complex modulus 105.4 kPa, and it remained wet for a prolonged period (>10 hours in a dry environment. Impedance measurements revealed that the impedance of the solid-gel-based and conventional paste-based electrodes was superior to that of the pin-based electrode. The EEG measurement suggested that the signals obtained with the solid-gel electrode were comparable to those with the conventional paste-based electrode. Moreover, the P300-BMI study suggested that systems using the solid-gel or pin-based electrodes were effective. One of the advantages of the solid gel is that it does not require cleaning after use, whereas the conventional paste adheres to the hair, which requires washing. Furthermore, the solid-gel electrode was not painful compared with a metal-pin electrode. Taken together, the results suggest that the solid-gel electrode worked well for practical BMIs and could be useful for bedridden patients such as those with amyotrophic lateral sclerosis.

  9. Carbon paste electrode in a solid-contact minicavity

    International Nuclear Information System (INIS)

    Ferreira, Antonio Ap. Pupim; Ribeiro, Sidney Jose Lima; Fugivara, Cecilio Sadao; Caiut, Jose Mauricio Almeida; Sargentelli, Vagner; Benedetti, Assis Vicente

    2011-01-01

    This work describes the preparation of carbon paste electrode (EPC) in a solid-contact minicavity and its evaluation when containing carbon paste without and with SiO 2 (Eu 3+ 2%) and SiO 2 (Eu 3+ 2%)-lysine sub-micrometrics particles. For this study cyclic voltammetry and electrochemical impedance measurements were performed at pH 7.4 in 0.1 mol L -1 PBS containing Fe(CN) 6 -3 / -4 redox species. The impedance results were interpreted based on a charge-transfer reaction involving Fe(CN) 6 -3 / -4 species and/or oxygen at higher frequencies and, diffusion of the electroactive species and carbon paste characteristics at lower frequencies. EPC-minicavity is suitable for electroanalysis using modified carbon paste. (author)

  10. Development and Validation of a Prototype Vacuum Sensing Unit for the DD2011 Chairside Amalgam Separators

    Science.gov (United States)

    2015-10-30

    amalgam separators , such as the DD2011, remove amalgam waste particulates by filtration and are attached to the vacuum system of dental chairs for...based upon the principle that solid particulate amalgam waste and dental debris accumulate and block the movement of water through the filtration...AMALGAM SEPARATORS JAY SHARTZER, B.S., SOPHIA JOHNSON, PH.D., AND AMBER NAGY, PH.D. CRANIOFACIAL HEALTH AND RESTORATIVE MEDICINE BIOMATERIALS AND

  11. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  13. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

    NARCIS (Netherlands)

    Yu, C.; Ganapathy, S.; van Eck, Ernst R H; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M.

    2017-01-01

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte

  14. Determination of the Resistance of Cone-Shaped Solid Electrodes

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Hendriksen, Peter Vang; Koch, Søren

    2017-01-01

    during processing can be avoided. Newman's formula for current constriction in the electrolyte is then used to deduce the active contact area based on the ohmic resistance of the cell, and from this the surface specific electro-catalytic activity. However, for electrode materials with low electrical......A cone-shaped electrode pressed into an electrolyte can with advantage be utilized to characterize the electro-catalytic properties of the electrode, because it is less dependent on the electrode microstructure than e.g. thin porous composite electrodes, and reactions with the electrolyte occurring...... conductivity (like Ce1-xPrxO2-δ), the resistance of the cell is significantly influenced by the ohmic resistance of the cone electrode, wherefore it must be included. In this work the ohmic resistance of a cone is modelled analytically based on simplified geometries. The two analytical models only differ...

  15. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode

    Directory of Open Access Journals (Sweden)

    Aysenur Birinci

    2016-07-01

    Full Text Available A new solid contact copper selective electrode with a poly (vinyl chloride (PVC membrane consisting of o-xylylenebis(N,N-diisobutyldithiocarbamate as ionophore has been prepared. The main novelties of constructed ion selective electrode concept are the enhanced robustness, cheapness, and fastness due to the use of solid contacts. The electrode exhibits a rapid (< 10 seconds and near-Nernstian response to Cu2+ activity from 10−1 to 10−6 mol/L at the pH range of 4.0–6.0. No serious interference from common ions was found. The electrode characterizes by high potential stability, reproducibility, and full repeatability. The electrode was used as an indicator electrode in potentiometric titration of Cu(II ions with EDTA and for the direct assay of tea infusion samples by means of the calibration graph technique. The results compared favorably with those obtained by the atomic absorption spectroscopy (AAS.

  16. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’ as, Eman H.

    2015-01-01

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures

  17. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  18. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  19. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz Morales, J. C.

    2008-08-01

    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  20. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Solak, Murat [Duezce University, Kaynasli Vocational School, Environmental Protection and Control Department, 81900 Duezce (Turkey); Kilic, Mehmet, E-mail: kavi@mmf.sdu.edu.tr [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey); Hueseyin, Yazici; Sencan, Aziz [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey)

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m{sup 2}, and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m{sup 2}, respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  1. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    International Nuclear Information System (INIS)

    Solak, Murat; Kilic, Mehmet; Hueseyin, Yazici; Sencan, Aziz

    2009-01-01

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m 2 , and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m 2 , respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  2. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    Science.gov (United States)

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  3. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition

    Science.gov (United States)

    Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki

    2018-05-01

    Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.

  4. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  5. Separation of lanthanum from samarium on solid aluminum electrode in LiCl-KCl eutectic melts

    International Nuclear Information System (INIS)

    De-Bin Ji; Mi-Lin Zhang; Xing Li; Xiao-Yan Jing; Wei Han; Yong-De Yan; Yun Xue; Zhi-Jian Zhang; Harbin Engineering University, Harbin

    2015-01-01

    This paper presents an electrochemical study on the separation of lanthanum from samarium on aluminum electrode at 773 K. The results from different electrochemical methods showed that Sm(III) and La(III) formed Al-Sm and Al-La intermetallic compounds on an aluminum electrode at electrode potential around -1.67 and -1.46 V, respectively. The electrochemical separation of lanthanum was carried out in LiCl-KCl-LaCl 3 -SmCl 3 melts on solid aluminum electrodes at 773 K by potentiostatic electrolysis at -1.45 V for 40 h and the separation efficiency was 99.1 %. (author)

  6. Estimated quantity of mercury in amalgam waste water residue released by dentists into the sewerage system in Ontario, Canada.

    Science.gov (United States)

    Adegbembo, Albert O; Watson, Philip A

    2004-12-01

    To estimate the quantity of dental amalgam that Ontario dentists release into waste water. Information from a self-administered postal survey of Ontario dentists was combined with the results of other experiments on the weight of amalgam restorations and the quantity of amalgam waste that bypasses solids separators in dental offices. Algorithms were developed to compute the quantity of amalgam waste leaving dental offices when dentists used or did not use ISO 11143 amalgam particle separators. A total of 878 (44.0%) of 1,994 sampled dentists responded to the survey. It was estimated that Ontario dentists removed 1,880.32 kg of amalgam (940.16 kg of mercury) during 2002, of which 1,128.19 kg of amalgam (564.10 kg of mercury) would have been released into waste water in Ontario if no dentists had been using a separator. Approximately 22% of the dentists reported using amalgam particle separators. On the basis of current use of amalgam separators, it was estimated that 861.78 kg of amalgam (430.89 kg of mercury or 170.72 mg per dentist daily) was released in 2002. The use of amalgam separators by all dentists could reduce the quantity of amalgam (and mercury) entering waste water to an estimated 12.41 kg (6.21 kg of mercury, or 2.46 mg per dentist per day). Amalgam particles separators can dramatically reduce amalgam and mercury loading in waste water released from dental offices.

  7. A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors

    International Nuclear Information System (INIS)

    Staiti, P.; Lufrano, F.

    2007-01-01

    The electrochemical behaviour of electrodes and of complete solid-state supercapacitors has been studied by cyclic voltammetry (CV) and galvanostatic charge/discharge (CD) measurements using two independent electrochemical equipments. The first one controlled the execution of the test and recorded the voltage and current values of the complete supercapacitor while the other one recorded the potential changes of the single electrodes. In this work, two different types of capacitors were studied: (a) a symmetric supercapacitor using carbon electrodes, and (b) a hybrid (asymmetric) supercapacitor with ruthenium oxide/carbon in the positive electrode and carbon in the negative electrode. The studies evidenced that in the symmetric capacitors the positive electrode controlled the capacitive performance and an optimal mass ratio from 1.2:1 to 1.3:1 between the positive and the negative electrodes was found in the investigated conditions. For the hybrid supercapacitor it was observed that the ruthenium-based positive electrode influenced the capacitive performance of carbon-based negative electrode and that an accurate balance of carbon loading in the negative electrode was necessary

  8. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  9. Study of lithium glassy solid electrolyte/electrode interface by ...

    Indian Academy of Sciences (India)

    Unknown

    Institut de Chimie de la Matière Condensée de Bordeaux – C.N.R.S. et Ecole Nationale Supérieure de Chimie et de ... chemically very stable with the different types of electrodes studied here. ... tigated to improve the battery performance.

  10. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  11. Amalgams and χ-Boundedness

    DEFF Research Database (Denmark)

    Penev, Irena

    2017-01-01

    , clique-cutsets, and amalgams together preserve χ-boundedness. More precisely, we show that if G and G∗ are hereditary classes of graphs such that G is χ-bounded, and such that every graph in G∗ either belongs to G or admits a proper homogeneous set, a clique-cutset, or an amalgam, then the class G∗ is χ...

  12. [The future of dental amalgam

    NARCIS (Netherlands)

    Opdam, N.J.M.

    2005-01-01

    This paper is a comment on 'The enigma of dental amalgam' by Carl Leinfelder published in 2004 in the Journal of Esthetic and Restorative Dentistry. In that paper a warning is stated against a too abrupt change from amalgam towards resin composite, because this will bring a lot of clinical problems

  13. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  14. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  15. "Imaging" LEIS of micro-patterned solid oxide fuel cell electrodes

    Science.gov (United States)

    Druce, John; Simrick, Neil; Ishihara, Tatsumi; Kilner, John

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  16. “Imaging” LEIS of micro-patterned solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, John, E-mail: john.druce@i2cner.kyushu-u.ac.jp [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Simrick, Neil [Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Ishihara, Tatsumi [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Kilner, John [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Department of Materials, Imperial College London, London SW7 2BP (United Kingdom)

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  17. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...... infiltrated with Sr0.99Fe0.75Mo0.25O3-δ (SFM), the electronic conductivity wasenhanced. However, polarization resistance of the cells increased,suggesting that the infiltrated material is less electro-catalyticallyactive and was partly blocking the CGO surface reaction sites. Theactivity could be regained...... by infiltrating nano-sized CGO orNiCGO on top of SFM, while still sustaining the high electronicconductivity. Ohmic resistance of the electrodes was thuspractically eliminated and performance comparable to, or betterthan, state-of-the-art fuel electrodes was achieved. The Nicontaining cells were damaged by carbon...

  18. Local Structure and Ionic Conduction at Interfaces of Electrode and Solid Electrolytes

    OpenAIRE

    Yamada, Hirotsohi; Oga, Yusuke; Saruwatari, Isamu; Moriguchi, Isamu

    2012-01-01

    All solid state batteries are attracting interests as next generation energy storage devices. However, little is known on interfaces between active materials and solid electrolytes, which may affect performance of the devices. In this study, interfacial phenomena between electrodes and solid electrolytes of all solid state batteries were investigated by using nano-composites of Li 2SiO 3-TiO 2, Li 2SiO 3-LiTiO 2, and Li 2SiO 3-FePO 4. Studies on ionic conductivity of these composites revealed...

  19. Impedance Spectra of Activating/Passivating Solid Oxide Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Sun, Xiufu; Koch, Søren

    2014-01-01

    The aim of this paper is to show that the inductive arcs seen in electrochemical impedance spectra of solid oxide cells (SOCs) are real electrochemical features that in several cases can be qualitatively explained by passivation/activation processes. Several degradation processes of Solid Oxide...... Fuel Cells (SOFC) and Electrolyser Cells (SOEC) exist. Not all of them are irreversible, especially not over short periods. A reversible degradation is termed “passivation” and the reverse is then “activation”. These processes may exhibit themselves in the Electrochemical Impedance Spectra (EIS...

  20. Non-traditional Electrode Materials in Environmental Analysis of Biologically Active Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Fischer, J.; Navrátil, Tomáš; Pecková, K.; Josypčuk, Bohdan; Zima, J.

    2007-01-01

    Roč. 19, 19-20 (2007), s. 2003-2014 ISSN 1040-0397 R&D Projects: GA ČR GA203/07/1195 Grant - others:GA MŠk(CZ) LC06035; GA ČR GP203/07/P261 Program:LC Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * carbon paste electrodes * voltammetry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.949, year: 2007

  1. A miniaturized electrode system for voltammetric determination of electrochemically reducible environmental pollutants

    Czech Academy of Sciences Publication Activity Database

    Hájková, A.; Vyskočil, V.; Josypčuk, Bohdan; Barek, J.

    2016-01-01

    Roč. 227, MAY 2016 (2016), s. 263-270 ISSN 0925-4005 R&D Projects: GA ČR GBP206/12/G151; GA ČR GAP206/11/1638 Institutional support: RVO:61388955 Keywords : Miniaturized electrode system * Silver solid amalgam electrode * 2-Aminofluoren-9-one Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.401, year: 2016

  2. Phenomenological theory of current-producing processes at the solid oxide electrolyte/gas electrode interface: steady-state polarization of fuel-cell electrodes

    International Nuclear Information System (INIS)

    Murygin, I.V.; Chebotin, V.N.

    1979-01-01

    The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface

  3. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral; Florio, Daniel Zanetti de

    2017-01-01

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  4. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  5. Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration

    Science.gov (United States)

    Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter; Graves, Christopher

    2018-02-01

    The solid oxide cell (SOC) could play a vital role in energy storage when the share of intermittent electricity production is high. However, large-scale commercialization of the technology is still hindered by the limited lifetime. Here, we address this issue by examining the potential for repairing various failure and degradation mechanisms occurring in the fuel electrode, thereby extending the potential lifetime of a SOC system. We successfully infiltrated the nickel and yttria-stabilized zirconia cermet electrode in commercial cells with Gd-doped ceria after operation. By this method we fully reactivated the fuel electrode after simulated reactant starvation and after carbon formation. Furthermore, by infiltrating after 900 h of operation, the degradation of the fuel electrode was reduced by a factor of two over the course of 2300 h. Lastly, the scalability of the concept is demonstrated by reactivating an 8-cell stack based on a commercial design.

  6. Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes

    International Nuclear Information System (INIS)

    Abbaspour, Ali; Luo Jingli; Nandakumar, K.

    2010-01-01

    A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.

  7. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  8. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    Science.gov (United States)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  9. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  10. Cold vapor-solid phase microextraction using amalgamation in different Pd-based substrates combined with direct thermal desorption in a modified absorption cell for the determination of Hg by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Romero, Vanesa; Costas-Mora, Isabel; Lavilla, Isela; Bendicho, Carlos

    2011-01-01

    In this work, different Pd-based substrates (i.e. Pd wire, Pd-coated stainless steel wire and Pd-coated SiO 2 ) are tried for microextraction of Hg prior to its release into a modified quartz T-cell so as to develop a cost-effective, sensitive and easy-to-handle coupling between solid-phase microextraction (SPME) and atomic absorption spectrometry. The new design allows a direct sample injection from the SPME device into a quartz T-cell thus avoiding analyte dilution. Mercury amalgamation onto a Pd wire provided the best performance in respect to sensitivity and fiber lifetime, but Pd wires could not be implemented in the SPME device due to their poor mechanical characteristics. On the contrary, Pd-coated SiO 2 fibers could be easily adapted to the typical sampling device used for SPME. Narrow time-dependent absorption signal profiles that could be integrated within 25 s were obtained. The detection limit was 90 pg mL -1 of Hg, and the repeatability expressed as relative standard deviation was 4.3%.

  11. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1989-01-01

    An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  12. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne

    2015-01-01

    of the pathways through which they can be reached. New methods for performing TPB specific pathway analysis on 3D image data are introduced, analyzing the pathway properties of each TPB site in the electrode structure. The methods seek to provide additional information beyond whether the TPB sites are percolating......The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...

  13. Development of a new all solid contact Cs"+ ion selective electrode

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Abha Naveen Kumar; Sharma, M.K.

    2017-01-01

    Studies were carried out to develop all solid contact cesium ion selective electrode with 25,27-bis(1-octyloxy)calix[4]arene-crown-6 as an ionophore. Polyaniline (PANI), deposited on Pt electrode by electrochemical method, was used as a transducer. Three different types of electrodes were made with variation in thickness of PANI film and gold nanoparticles doped PANI as transducers. The best response was observed with ISE having Au nanoparticles doped PANI as a transducer. The optimised ISE gave Nernstian response in the range 10"-"7 to 10"-"2 M with the slope of 55.0 ± 0.6 mV/decade of Cs"+. The response of ISE for Cs"+ is fairly constant above the pH 4. The developed ISE was successfully employed to determine Cs"+ in simulated high level nuclear waste solutions and CsCl spiked tap water samples. (author)

  14. Modeling of solid oxide fuel cells with particle size and porosity grading in anode electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Flesner, R.; Kim, G.Y.; Chandra, A. [Department of Mechanical Engineering, Iowa State University, Ames, Iowa (United States)

    2012-02-15

    Solid oxide fuel cells (SOFCs) have the potential to meet the critical energy needs of our modern civilization and minimize the adverse environmental impacts from excessive energy consumption. They are highly efficient, clean, and can run on variety of fuel gases. However, little investigative focus has been put on optimal power output based on electrode microstructure. In this work, a complete electrode polarization model of SOFCs has been developed and utilized to analyze the performance of functionally graded anode with different particle size and porosity profiles. The model helps to understand the implications of varying the electrode microstructure from the polarization standpoint. The work identified conditions when grading can improve the cell performance and showed that grading is not always beneficial or necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. A solid-contact pH-selective electrode based on tridodecylamine as hydrogen neutral ionophore

    Science.gov (United States)

    Zhang, Jianxin; Guo, Yixuan; Li, Shangjin; Xu, Hui

    2016-10-01

    The solid-state pH electrode has the potential possibility to be used in many extreme situations with satisfactory accuracy and low cost. But its performance is affected by the solid electrolyte, preparation process, and the structure of the sensitive membrane, etc. In this work, the relationships between these factors and the characteristic of the prepared electrode were verified by controlling the preparation conditions with a variety of electrochemical methods. Firstly, the solid electrolyte poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) was electrochemically deposited on the screen-printed carbon electrode (SPCE) substrate by a potentiostatic method in an aqueous solution containing 0.01 M 3,4-ethylenedioxythiophene (EDOT) and 0.1 M polystyrene sulfonic (PSS) acid as the supporting electrolyte. The PEDOT films were then characterized by cyclic voltammetry (CV) in the 0.1 M NaNO3 aqueous solution in order to obtain the optimized polymerization potential and charges where the PEDOT film would have a higher redox capacitance. Finally, the pH electrode was prepared by coating the SPCE/PEDOT(PSS) with a plasticized polyvinyl chloride (PVC) membrane containing tridodecylamine as hydrogen ionophore manually, and experiments were carried out to study the effect of the usage of PVC per square millimeter on the response time and stability of the electrode to optimize the PVC film thickness. The potentiometric response of the pH electrode was studied in the buffer solutions with pH ranging from 5.00 to 10.81 by the open-circuit potential (OCP) method. Experimental results show that the sensitivity of the electrode is  -55.7  ±  0.5 mV pH-1 (r 2  >  0.9980) at room temperature (24  ±  1 °C) with pH ranging from 2.00-10.50, approximating to the theoretical nernstian slope (-59.16 mV pH-1),and the response time was less than 10 s. Moreover, it has low impedance, high accuracy and potential stability as well as some

  16. A solid-contact pH-selective electrode based on tridodecylamine as hydrogen neutral ionophore

    International Nuclear Information System (INIS)

    Zhang, Jianxin; Guo, Yixuan; Li, Shangjin; Xu, Hui

    2016-01-01

    The solid-state pH electrode has the potential possibility to be used in many extreme situations with satisfactory accuracy and low cost. But its performance is affected by the solid electrolyte, preparation process, and the structure of the sensitive membrane, etc. In this work, the relationships between these factors and the characteristic of the prepared electrode were verified by controlling the preparation conditions with a variety of electrochemical methods. Firstly, the solid electrolyte poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) was electrochemically deposited on the screen-printed carbon electrode (SPCE) substrate by a potentiostatic method in an aqueous solution containing 0.01 M 3,4-ethylenedioxythiophene (EDOT) and 0.1 M polystyrene sulfonic (PSS) acid as the supporting electrolyte. The PEDOT films were then characterized by cyclic voltammetry (CV) in the 0.1 M NaNO3 aqueous solution in order to obtain the optimized polymerization potential and charges where the PEDOT film would have a higher redox capacitance. Finally, the pH electrode was prepared by coating the SPCE/PEDOT(PSS) with a plasticized polyvinyl chloride (PVC) membrane containing tridodecylamine as hydrogen ionophore manually, and experiments were carried out to study the effect of the usage of PVC per square millimeter on the response time and stability of the electrode to optimize the PVC film thickness. The potentiometric response of the pH electrode was studied in the buffer solutions with pH ranging from 5.00 to 10.81 by the open-circuit potential (OCP) method. Experimental results show that the sensitivity of the electrode is  −55.7  ±  0.5 mV pH −1 ( r 2   >  0.9980) at room temperature (24  ±  1 °C) with pH ranging from 2.00–10.50, approximating to the theoretical nernstian slope (−59.16 mV pH −1 ),and the response time was less than 10 s. Moreover, it has low impedance, high accuracy and potential stability

  17. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  18. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  19. New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes.

    Science.gov (United States)

    Vanamo, Ulriika; Hupa, Elisa; Yrjänä, Ville; Bobacka, Johan

    2016-04-19

    A novel approach to signal transduction concerning solid-contact ion-selective electrodes (SC-ISE) with a conducting polymer (CP) as the solid contact is investigated. The method presented here is based on constant potential coulometry, where the potential of the SC-ISE vs the reference electrode is kept constant using a potentiostat. The change in the potential at the interface between the ion-selective membrane (ISM) and the sample solution, due to the change in the activity of the primary ion, is compensated with a corresponding but opposite change in the potential of the CP solid contact. This enforced change in the potential of the solid contact results in a transient reducing/oxidizing current flow through the SC-ISE. By measuring and integrating the current needed to transfer the CP to a new state of equilibrium, the total cumulated charge that is linearly proportional to the change of the logarithm of the primary ion activity is obtained. In this work, different thicknesses of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) were used as solid contact. Also, coated wire electrodes (CWEs) were included in the study to show the general validity of the new approach. The ISM employed was selective for K(+) ions, and the selectivity of the membrane under implementation of the presented transduction mechanism was confirmed by measurements performed with a constant background concentration of Na(+) ions. A unique feature of this signal readout principle is that it allows amplification of the analytical signal by increasing the capacitance (film thickness) of the solid contact of the SC-ISE.

  20. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  1. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.

    Science.gov (United States)

    Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun

    2013-09-25

    High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    Dautremont-Smith, W.C.; Beni, G.; Schiavone, L.M.; Shay, J.L.

    1979-01-01

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  3. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  4. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Gómez-Marín, Ana M.; Hernández-Ortíz, Juan P.

    2014-01-01

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  6. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’as, Eman H.

    2015-09-30

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures. Lack of controllability and reproducibility of this technique in the conventional way is still considered as an inadequacy for industrialization since it is performed manually. Therefore, inkjet-printing technology was proposed as an adequate approach to perform scalable and controllable impregnation for SOC air electrodes, which in turn leads to low operating temperatures. Composite LSM-ionic conductive air electrodes of weight ratio 1:2 were fabricated by inkjet impregnation of lanthanum strontium manganite (La0.8Sr0.2MnO3) precursor nitrates onto a porous ionic conductive backbone structure. First, porous yttria stabilized zirconia (8YSZ) substrates prepared by tape casting were used to study the influence of the printing parameters on the lateral dispersion and penetration of LSM ink inside the pores. XRD analysis confirmed the formation of LSM phase after calcination at 800°C for 2 h, while SEM revealed the formation of LSM nanostructures. It has been found by optical microscope observations that the spacing between the drops and the substrate temperature have a significant role in controlling the printing process. Next, the optimized printing parameters were applied in the inkjet impregnation of the LSM ink into porous YSZ electrodes that were spin coated on both sides of dense YSZ layers. LSM-YSZ composite air electrodes achieved an area specific resistance (ASR) of around 0.29 Ω.cm2 at 700°C. The performance of LSM-YSZ composite electrodes was influenced by the microstructure and the thickness, and by the electrode/electrolyte interface characteristics. As a result, the enhancement in LSM-YSZ composite electrode performance was observed due to the better percolation in LSM, YSZ and oxygen diffusion. Finally

  7. Energy Harvesting, Electrode Processes and the Partitioning and Speciation of Solid Phase Iron and Sulfur in Marine Sediments

    National Research Council Canada - National Science Library

    Reimers, Clare

    2003-01-01

    .... Sediment, pore water and electrode surface analyses indicated that electricity product ion is coupled to the oxidation of dissolved and solid-phase forms of reduced sulfur supplied from the sediments...

  8. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  9. 21 CFR 872.3070 - Dental amalgam, mercury, and amalgam alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental amalgam, mercury, and amalgam alloy. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3070 Dental amalgam, mercury... elemental mercury, supplied as a liquid in bulk, sachet, or predosed capsule form, and amalgam alloy...

  10. Comprehension of amalgamation for future digital society

    International Nuclear Information System (INIS)

    Lee, Byeong Uk

    2010-08-01

    This book deals with understanding of amalgamation for future digital society, which describes outline of amalgamation, ubiquitous environment, cognitive science I such as psychology and neurology, cognitive science II like philosophy, linguistics and anthropology, an automatic machine, evolution theory and amalgamation, brain science and consciousness, mind and software and creativity and art. Each chapter has introduction, composition, related science, function and models.

  11. Penetration of amalgam constituents into dentine

    NARCIS (Netherlands)

    Scholtanus, Johannes D.; Ozcan, Mutlu; Huysmans, Marie-Charlotte D. N. J. M.

    Objectives: Amalgam restorations are replaced by adhesively placed composite resin restorations at an increasing rate. After the removal of amalgam dentine often shows marked dark discoloration that is attributed to the penetration of corrosion products from overlying amalgams. it is questioned

  12. Penetration of amalgam constituents into dentine.

    NARCIS (Netherlands)

    Scholtanus, J.D.; Ozcan, M.; Huysmans, M.C.D.N.J.M.

    2009-01-01

    OBJECTIVES: Amalgam restorations are replaced by adhesively placed composite resin restorations at an increasing rate. After the removal of amalgam dentine often shows marked dark discoloration that is attributed to the penetration of corrosion products from overlying amalgams. It is questioned

  13. Comprehension of amalgamation for future digital society

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Uk

    2010-08-15

    This book deals with understanding of amalgamation for future digital society, which describes outline of amalgamation, ubiquitous environment, cognitive science I such as psychology and neurology, cognitive science II like philosophy, linguistics and anthropology, an automatic machine, evolution theory and amalgamation, brain science and consciousness, mind and software and creativity and art. Each chapter has introduction, composition, related science, function and models.

  14. New, Efficient, and Reliable Air Electrode Material for Proton-Conducting Reversible Solid Oxide Cells.

    Science.gov (United States)

    Huan, Daoming; Shi, Nai; Zhang, Lu; Tan, Wenzhou; Xie, Yun; Wang, Wanhua; Xia, Changrong; Peng, Ranran; Lu, Yalin

    2018-01-17

    Driven by the demand to minimize fluctuation in common renewable energies, reversible solid oxide cells (RSOCs) have drawn increasing attention for they can operate either as fuel cells to produce electricity or as electrolysis cells to store electricity. Unfortunately, development of proton-conducting RSOCs (P-RSOCs) faces a major challenge of poor reliability because of the high content of steam involved in air electrode reactions, which could seriously decay the lifetime of air electrode materials. In this work, a very stable and efficient air electrode, SrEu 2 Fe 1.8 Co 0.2 O 7-δ (SEFC) with layer structure, is designed and deployed in P-RSOCs. X-ray diffraction analysis and High-angle annular dark-filed scanning transmission electron microscopy images of SEFC reveal that Sr atoms occupy the center of perovskite slabs, whereas Eu atoms arrange orderly in the rock-salt layer. Such a special structure of SEFC largely depresses its Lewis basicity and therefore its reactivity with steam. Applying the SEFC air electrode, our button switches smoothly between both fuel cell and electrolysis cell (EC) modes with no obvious degradation over a 135 h long-term test under wet H 2 (∼3% H 2 O) and 10% H 2 O-air atmospheres. A record of over 230 h is achieved in the long-term stability test in the EC mode, doubling the longest test that had been previously reported. Besides good stability, SEFC demonstrates great catalytic activity toward air electrode reactions when compared with traditional La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ air electrodes. This research highlights the potential of stable and efficient P-RSOCs as an important part in a sustainable new energy power system.

  15. Optimization of BSCF-SDC composite air electrode for intermediate temperature solid oxide electrolyzer cell

    International Nuclear Information System (INIS)

    Heidari, Dorna; Javadpour, Sirus; Chan, Siew Hwa

    2017-01-01

    Highlights: • Effect of BSCF-SDC composite air electrode on SOEC electrochemical performance. • Effects on performance of BSCF-SDC air electrode, fuel humidity and temperature. • Desired IT-SOEC performance by compositing the BSCF air electrode with SDC. - Abstract: Solid oxide electrolyzer cells (SOECs) are devises which recently have attracted lots of attention due to their advantages. Their high operating temperature leads to mechanical compatibility issues such as thermal expansion mismatch between layers of material in the cell. The aim of this study is to mitigate the issue of thermal expansion mismatch between Ba_0_._5Sr_0_._5Co_0_._8Fe_0_._2O_3_−_δ (BSCF) and samaria doped ceria, Sm_0_._2Ce_0_._8O_1_._9 (SDC), enhance the triple-phase boundaries and improve the adhesion of the electrode to the electrolytes, hence improve the cell performance. To make BSCF more thermo-mechanically compatible with the SDC electrolyte, the formation of a composite electrode by introducing SDC as the compositing material is proposed. In this study, 10 wt.%, 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% of commercial SDC powder was mixed with BSCF powder, prepared by sol-gel method, to make the composite air electrode. After successfully synthesizing the BSCF-SDC/YSZ-SDC/Ni-YSZ electrolyzer cell, the electrochemical performance was tested for the intermediate-temperature SOEC (IT-SOEC), over the temperature range of 650–800 °C. The microstructure of each sample was studied by field emission electron microscopy (FESEM, JEOL, JSM 6340F) for possible pin holes. The result of this study proves that the sample with 20% SDC-80% BSCF shows the highest performance among the investigated cells.

  16. Stability and Performance of Oxygen Electrodes for Reversible Solid Oxide Cells

    Science.gov (United States)

    Railsback, Justin Gary

    Worldwide, governments are beginning to take action to reduce anthropogenic CO2 emissions in order to mitigate the extent of global climate change. The largest fraction of global CO2 emission comes from electrical power generation, which is rapidly being converted to wind and solar installations. The intermittent nature of renewable resources requires that large scale energy storage be implemented to ensure grid stability. Pumped hydro storage is currently the only technology available for large scale energy storage; however, pumped hydro remains geographically confined and susceptible to seasonal fluctuations and offers limited discharge hours. Recent system level models predict that reversible solid oxide cells may be a competitive solution, but two key advancements are required to realize the technology: low cell resistance (cell resistance, and when a cell is operated in electrolysis the oxygen electrode is known to degrade quickly. This work focuses on both aspects of the oxygen electrode. A Pr2NiO4 based electrode is developed that has improved phase stability and good polarization resistance ( 0.1 O•cm2 at 650 °C). The electrode is prepared by wet chemical impregnation (infiltration) of Pr2NiO4 precursors into a La0.9Sr 0.1Ga0.8Mg0.2O3 scaffold. Electrochemical data for a number cells is presented and the number of infiltrations is optimized. Preliminary life tests and x-ray data are presented. Pressurization of the oxygen electrode is predicted to decrease its polarization resistance and pressurization of the reversible solid oxide cell system is desirable to achieve high round-trip efficiency. The electrochemical performance of mixed electronic-ionic conducting electrodes has not been reported above 1 atm. Four candidate electrodes are examined under pressurization up to 10 atm: Pr2NiO4 infiltrated La0.9Sr0.1 Ga0.8Mg0.2O3, Sm0.5Sr 0.5CoO3 infiltrated Ce0.9Gd0.1O 2, single phase La0.6Sr0.4Co0.2Fe 0.8O3, and single phase Nd2NiO4. The role of the ion

  17. The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.; Vohs, John M.

    2014-03-26

    Solid oxide fuel cells (SOFC) and electrolyzers (SOE) offer an attractive means for converting between electrical and chemical energy. Because they operate at high temperatures and are usually based on electrolytes that are oxygen-ion conducting ceramics, such as yttria-stabilized zirconia (YSZ), they are equally capable of converting between CO and CO2 as between H2 and H2O. When operated in the SOFC mode, they are able to operate on hydrocarbon fuels so long as there are no materials within the anode that can catalyze carbon formation. Compared to other types of electrolyzers, SOE can exhibit the highest efficiencies because the theoretical Nernst potential is lower at high temperatures and because the electrode overpotentials in SOE tend to be much lower. Finally, pure H2 can be produced without an external electrical source by electrolysis of steam at one electrode and oxidation of any fuel at the other electrode through a process known as Natural-Gas Assisted Steam Electrolysis. This final report describes results from studies of novel electrodes for SOE and SOFC prepared by infiltration methods.

  18. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    Science.gov (United States)

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  19. Ex-situ tracking solid oxide cell electrode microstructural evolution in a redox cycle by high resolution ptychographic nanotomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Esposito, Vincenzo

    2017-01-01

    , the nickel and pore networks undergo major reorganization and the formation of internal voids is observed in the nickel-oxide particles after the oxidation. These observations are discussed in terms of reaction kinetics, electrode mechanical stress and the consequences of redox cycling on electrode...... towards this aim by visualizing a complete redox cycle in a solid oxide cell (SOC) electrode. The experiment demonstrates synchrotron-based ptychography as a method of imaging SOC electrodes, providing an unprecedented combination of 3D image quality and spatial resolution among non-destructive imaging...

  20. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  1. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.; Irvine, J. T. S.; Traversa, Enrico; Boulfrad, S.

    2013-01-01

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  2. All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes

    Science.gov (United States)

    Li, Jiantong; Mishukova, Viktoriia; Östling, Mikael

    2016-09-01

    The all-solid-state graphene-based in-plane micro-supercapacitors are fabricated simply through reliable inkjet printing of pristine graphene in interdigitated structure on silicon wafers to serve as both electrodes and current collectors, and a following drop casting of polymer electrolytes (polyvinyl alcohol/H3PO4). Benefiting from the printing processing, an attractive porous electrode microstructure with a large number of vertically orientated graphene flakes is observed. The devices exhibit commendable areal capacitance over 0.1 mF/cm2 and a long cycle life of over 1000 times. The simple and scalable fabrication technique for efficient micro-supercapacitors is promising for on-chip energy storage applications in emerging electronics.

  3. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation...... enhanced the electrocatalytic activity and electronic conductivity. The polarization resistances of the best molybdates were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited...... higher performance for cathodic (electrolysis) polarization than for anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  4. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.

    2013-10-07

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  5. The use of mercury meniscus modified silver solid amalgam electrode in voltammetric analysis of genotoxic nitro derivatives of fluorene and 9-fluorenone

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, V.; Polášková, P.; Navrátil, Tomáš; Barek, J.

    2009-01-01

    Roč. 103, S (2009), s280 ISSN 0009-2770. [Modern Electroanalytical Methods 2009. 09.12.2009-13.12.2009, Prague] R&D Projects: GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * voltammetry * aromatic hydrocarbons Subject RIV: CG - Electrochemistry

  6. Electrochemical behaviour of 2,4-dinitrophenylhydrazi(o)ne as multi-redox centre DNA label at mercury meniscus modified silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Daňhel, Aleš; Raindlová, Veronika; Havran, Luděk; Pivoňková, Hana; Hocek, Michal; Fojta, Miroslav

    2014-01-01

    Roč. 126, SI (2014), s. 122-131 ISSN 0013-4686 R&D Projects: GA MŠk(CZ) EE2.3.30.0019; GA ČR(CZ) GBP206/12/G151 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 ; RVO:61388963 Keywords : DNA * Redox labeling * 2,4-Dinitrophenylhydrazine Subject RIV: BO - Biophysics; CC - Organic Chemistry (UOCHB-X) Impact factor: 4.504, year: 2014

  7. A novel method for the preparation of uranium metal, oxide and carbide via electrolytic amalgamation

    International Nuclear Information System (INIS)

    Wang, L.C.; Lee, H.C.; Lee, T.S.; Lai, W.C.; Chang, C.T.

    1978-01-01

    A solid uranium amalgam was prepared electrolytically using a two-compartment cell separated with an ion exchange membrane for the purpose of regulating pH value within a narrowly restricted region of 2 to 3. The mercury cathode was kept at -1.8V vs SCE during electrolysis. The thereby obtained amalgam containing as high as 1.9gm U/ml Hg is easily converted into uranium metal by heating in vacuo above 1300 0 C. Uranium dioxide and uranium monocarbide could be easily obtained at relatively low temperature by reacting the amalgam with water vapor and methane. (author)

  8. Enzymatic logic calculation systems based on solid-state electrochemiluminescence and molecularly imprinted polymer film electrodes.

    Science.gov (United States)

    Lian, Wenjing; Liang, Jiying; Shen, Li; Jin, Yue; Liu, Hongyun

    2018-02-15

    The molecularly imprinted polymer (MIP) films were electropolymerized on the surface of Au electrodes with luminol and pyrrole (PY) as the two monomers and ampicillin (AM) as the template molecule. The electrochemiluminescence (ECL) intensity peak of polyluminol (PL) of the AM-free MIP films at 0.7V vs Ag/AgCl could be greatly enhanced by AM rebinding. In addition, the ECL signals of the MIP films could also be enhanced by the addition of glucose oxidase (GOD)/glucose and/or ferrocenedicarboxylic acid (Fc(COOH) 2 ) in the testing solution. Moreover, Fc(COOH) 2 exhibited cyclic voltammetric (CV) response at the AM-free MIP film electrodes. Based on these results, a binary 3-input/6-output biomolecular logic gate system was established with AM, GOD and Fc(COOH) 2 as inputs and the ECL responses at different levels and CV signal as outputs. Some functional non-Boolean logic devices such as an encoder, a decoder and a demultiplexer were also constructed on the same platform. Particularly, on the basis of the same system, a ternary AND logic gate was established. The present work combined MIP film electrodes, the solid-state ECL, and the enzymatic reaction together, and various types of biomolecular logic circuits and devices were developed, which opened a novel avenue to construct more complicated bio-logic gate systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Graphite electrode DC arc furnace system for treatment of environmentally undesirable solid waste

    International Nuclear Information System (INIS)

    Titus, C.H.

    1993-01-01

    A gas tight DC arc furnace system using graphite electrodes is ideally suited for destruction of organic materials, compaction of metallic materials, and vitrification of inorganic waste materials. A graphite electrode DC arc furnace system which was developed by Electro-Pyrolysis, Inc. has been used to demonstrate that iron basalt soil containing various surrogate nonradioactive materials found on Department of Energy's Atomic Energy Sites and hospital waste can be reduced to a compact, vitrified, solid material which is environmentally acceptable and will pass TCLP leachate tests. A second graphite electrode DC arc furnace system is presently under construction and will be in operation at MIT during the second quarter of 1993. This furnace system is designed for demonstration of waste treatment and stabilization at a rate of 500 pounds per hour and will also be used for development and performance evaluation of diagnostic techniques and equipment for measuring and understanding internal furnace temperature profiles, gas entrained particulate composition, and particulate size distribution in various locations in the furnace during operation

  10. An all-solid-state screen-printed carbon paste reference electrode based on poly(3,4-ethylenedioxythiophene) as solid contact transducer

    International Nuclear Information System (INIS)

    Xu, Hui; Pan, Yiwen; Chen, Ying; Ye, Ying; Wang, You; Li, Guang

    2012-01-01

    The paper presents the design of an all-solid-state portable reference electrode based on a screen-printed carbon paste electrode suitable for rapid human serum testing. The electrode was covered by electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) as an internal solid contact layer and polyvinyl chloride (PVC) membrane containing lipophilic anion and cation additives. The electrochemical properties of PEDOT(PSS) and PEDOT(PSS)/PVC film on a carbon paste electrode were studied by electrochemical impedance spectroscopy and cyclic voltammetry methods. The reference electrode exhibited good potential stability (for H + , Na + , K + , Ca 2+ , Cl − and CO 2− 3 /HCO − 3 ), good reproducibility and long-term stability. The structure is applied as reference electrodes in human serum pH analysis with pH ion selective planar electrodes, forming a serum pH sensor. The response time of such a pH sensor was 15 s and the sensitivity was −52.2 ± 1.0 mV per decade. Other properties, such as repeatability, reproducibility and stability, were also evaluated. Clinical trials were carried out and compared with the results obtained from the routine hospital electrolyte analyzer, which demonstrated that their analytical performance was closely matched. (paper)

  11. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  12. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    Science.gov (United States)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  13. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.

    2011-06-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.

  14. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Tomczuk, Z.; Ackerman, J.P.; Wolson, R.D.; Miller, W.E.

    1992-01-01

    A unique pyrochemical process developed for the separation of metallic nuclear fuel from fission products by electrotransport through molten LiCl-KCl eutectic salt to solid and liquid metal cathodes. The process allow for recovery and reuse of essentially all of the actinides in spent fuel from the integral fast reactor (IFR) and disposal of wastes in satisfactory forms. Electrotransport is used to minimize reagent consumption and, consequently, waste volume. In particular, electrotransport to solid cathodes is used for recovery of an essentially pure uranium product in the presence of other actinides; removal of pure uranium is used to adjust the electrolyte composition in preparation for recovery of a plutonium-rich mixture with uranium in liquid cadmium cathodes. This paper presents experiments that delineate the behavior of key actinide and rare-earth elements during electrotransport to a solid electrode over a useful range of PuCl 3 /UCl 3 ratios in the electrolyte, a thermodynamic basis for that behavior, and a comparison of the observed behavior with that calculated from a thermodynamic model. This work clearly established that recovery of nearly pure uranium can be a key step in the overall pyrochemical-fuel-processing strategy for the IFR

  15. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  16. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  17. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    International Nuclear Information System (INIS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 0 C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. (topical review)

  18. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.

    Science.gov (United States)

    Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng

    2016-10-05

    The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.

  19. Computational analysis on the electrode geometric parameters for the reversible solid oxide cells

    International Nuclear Information System (INIS)

    Lee, Seoung-Ju; Jung, Chi-Young; Yi, Sung-Chul

    2017-01-01

    Increasing global energy demands have been accelerating the research and development of reversible electrochemical systems that can realize an efficient use of the intermittent renewable energy resources. This paper thus describes a numerical investigation of reversible solid oxide cells (RSOCs), for their high energy efficiency delivered from the high operating temperatures ranging from 600 to 1000 °C. Unlike the previous studies, a model-based strategy is applied for the simultaneous integration of different operating modes (namely, fuel cell and electrolysis cell modes) to enable more realistic predictions on the trade-off behavior of the effects of electrode design parameters on the cell performance. This approach was taken to investigate the effects of various geometric designs and operating parameters (electrode backing layer thickness; interconnector rib size; fuel gas composition) on the current-potential characteristic and the round-trip efficiency. The cell performance was significantly affected by the rib size, particularly when the backing layer was thin, because of the uneven distribution of the reactant species. Overall, this study provides insights into key geometric design parameters that dominate the performance of dual-mode RSOCs.

  20. BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION

    OpenAIRE

    Tamekkante, Mohammed; Bouba, El Mehdi

    2017-01-01

    In this paper, we characterize the bi-Amalgamations of small weakglobal dimension. The new results compare to previous works carried on varioussettings of duplications and amalgamations, and capitalize on recent resultson bi-amalgamations

  1. Properties of amalgams made from lathe-cut, high Cu amalgam alloys.

    Science.gov (United States)

    Espevik, S

    1980-01-01

    Two alloys for dental amalgams made from lathe-cut powder with high Cu content have been developed. The alloys have been characterized with respect to physical properties and microstructure. The strongest amalgam exhibited minimal dimensional changes during setting and had low flow and creep values. It had the highest Cu content of the two amalgams investigated and no gamma 2 phase. The epsilon and eta' phases may dispersion-strenthen the amalgam which in compressive strength was comparable to the strongest amalgams available. A new mechanism for gamma 2 disappearance is suggested where Cu replaces Hg directly in the gamma 2 phase thus forming the eta' phase.

  2. Amalgam Contact Hypersensitivity Lesion: An Unusual Presentation ...

    African Journals Online (AJOL)

    Contact allergic reactions due to hypersensitivity to dental materials in professionals and ... Keywords: Amalgam, Amalgam contact hypersensitivity lesion, Lichenoid reaction, Oral mucosa ... was associated with mild burning sensation. The patient did ... OLLD in which oral and/or skin lesions appear in temporal association ...

  3. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device.

    Science.gov (United States)

    Liljegren, Gustav; Pettersson, Jean; Markides, Karin E; Nyholm, Leif

    2002-05-01

    A method for the extraction, transfer and desorption of anions and cations under controlled potential conditions employing a new integrated three-electrode device is described. The device, containing working, reference and counter electrodes, was prepared from tubes that could be moved vertically with respect to each other. In this way, a small amount of solvent, held by capillary force, remained between the electrodes when the device was lifted out of a solution after an extraction. This design allowed the potential control to be maintained at all times. With the new integrated device, it was possible to perform potential controlled desorption into vials containing as little as 200 microl of solution. The required ion exchange capacity was obtained by electrodeposition of a polypyrrole coating on the surface of the glassy carbon working electrode. Solid-phase microextractions of several cations or anions were performed simultaneously under potentiostatic control by doping the polypyrrole coating with different anions such as perchlorate and p-toluenesulfonate. The efficiency of the extractions, which could be altered by varying the potential of the working electrode, could be increased by 150 to 200% compared to extractions using normal solid-phase microextraction conditions under open circuit conditions. A constant potential of +1.0 V and -0.5 V with respect to the silver pseudo reference electrode, was found to be well-suited for the extraction of samples containing ppm concentrations of anions (chloride, nitrite, bromide, nitrate, sulfate and phosphate) and cations (cadmium, cobalt and zinc), respectively.

  4. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.; Gaynor, Whitney; Ding, I-Kang; Rim, Seung-Bum; Peumans, Peter; McGehee, Michael D.

    2011-01-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag

  5. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.

    Science.gov (United States)

    Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong

    2017-08-23

    Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

  6. A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell

    Science.gov (United States)

    Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon

    2017-03-01

    The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.

  7. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  8. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  9. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Stevens, P [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique

    1993-12-31

    A new method of preparation of Electrode/Membrane/Electrode (EME) assemblies for Proton Exchange Membrane Fuel Cells (PEMFC) has been developed. The electrodes are deposited directly onto a Nafion electrolyte membrane from a mixture of platinized carbon, Nafion solution, and PTFE by using a spray technique. By this technique, porous electrodes are obtained with an optimized gas/electrolyte/catalyst interface, and electrode/membrane interface.

  10. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators

    Science.gov (United States)

    Knapp, Marius; Hoffmann, René; Lebedev, Vadim; Cimalla, Volker; Ambacher, Oliver

    2018-03-01

    Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator’s quality factor Q and a resonance frequency close to an ‘unloaded’ resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.

  11. Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries

    Science.gov (United States)

    Tsukasaki, Hirofumi; Otoyama, Misae; Mori, Yota; Mori, Shigeo; Morimoto, Hideyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2017-11-01

    Sulfide-based all-solid-state batteries using a non-flammable inorganic solid electrolyte are promising candidates as a next-generation power source owing to their safety and excellent charge-discharge cycle characteristics. In this study, we thus focus on the positive electrode and investigated structural stabilities of the interface between the positive electrode active material LiNi1/3Mn1/3Co1/3O2 (NMC) and the 75Li2S·25P2S5 (LPS) glass electrolyte after charge-discharge cycles via transmission electron microscopy (TEM). To evaluate the thermal stability of the fabricated all-solid-state cell, in-situ TEM observations for the positive electrode during heating are conducted. As a result, structural and morphological changes are detected in the LPS glasses. Thus, exothermal reaction present in the NMC-LPS composite positive electrode after the initial charging is attributable to the crystallization of LPS glasses. On the basis of a comparison with crystallization behavior in single LPS glasses, the origin of exothermal reaction in the NMC-LPS composites is discussed.

  12. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  13. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    Science.gov (United States)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  14. Extensive amalgam tattoo on the alveolar-gingival mucosa.

    Science.gov (United States)

    Galletta, Vivian C; Artico, Gabriela; Dal Vechio, Aluana M C; Lemos, Celso A; Migliari, Dante A

    2011-01-01

    Amalgam tattoos are common exogenous pigmented lesions of the oral mucosa occurring mainly by inadvertent placement of amalgam particles into soft tissues. The diagnosis of amalgam tattoo is simple, usually based on clinical findings associated with presence or history of amalgam fillings removal. Intraoral X-rays may be helpful in detecting amalgam-related radiopacity. In cases where amalgam tattoo cannot be differentiated from other causes of oral pigmentation, a biopsy should be performed. This article deals with an extensive amalgam tattoo lesion which required a biopsy for a definitive diagnosis.

  15. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  16. Marginal microfiltration in amalgam restorations. Review

    OpenAIRE

    Lahoud Salem, Víctor

    2014-01-01

    The present articule is review references from phenomenon of microfiltration in restorations with amalgam and yours consecuents in changes of color in the interface tooth-restorations, margin deterioted , sensitivity dentinarea postoperate, caries secondary and pulp inflamation. Besides naming the mechanicals for to reduce microfiltration, and yours effects for use of sealers dentinaries representation for the varnish cavitys and adhesive systens Conclusive indicate wath the amalgam is the ma...

  17. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin

    2013-01-01

    -diffusion barrier sandwiched between the YSZ electrolyte and an LSCF:CGO oxygen electrode. Impedance Spectroscopy was used during the tests to diagnose the change in electrochemical response of the different components of the SOECs. The results showed a significantly lower degradation rate for the cell with an LSCF......Two Solid Oxide Electrolysis Cells (SOECs) with different oxygen electrodes have been tested in galvanostatic tests carried out at −1.5 Acm−2 and 800 °C converting 60% of a 50:50% mixture of H2O and CO2 (co-electrolysis). One of the cells had an LSM:YSZ oxygen electrode. The other had an CGO inter...

  18. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan Jian; Zhang Jian; Su Yuchang; Zhang Xigui; Xia Baojia

    2010-01-01

    In this paper, we describe how the mechanism of formation of a protective film [the solid electrolyte interphase (or interface) (SEI)] on a graphite electrode for Li-ion batteries was investigated from the novel perspective of precipitation of the final decomposition products that arise from the reduction of a nonaqueous electrolyte solution in contact with the graphite electrode. Within the framework of this new perspective, we can elegantly account for the compositional and structural differences between the basal-plane and edge-plane SEIs and for the origins of the multi-layer structure and the parabolic growth law of the SEIs on both the edge-plane and basal-plane surfaces of the graphite electrode.

  19. Development of solid state reference electrodes and pH sensors for monitoring nuclear reactor cooling water systems

    International Nuclear Information System (INIS)

    Hettiarachchi, S.; Makela, K.; Macdonald, D.D.

    1991-01-01

    The growing interest in the electrochemical and corrosion behavior of structural alloys in high temperature aqueous systems has stimulated research in the design and testing of reliable reference electrodes and pH sensors for use in such environments. External reference electrodes have been successfully used in the recent years in high temperature aqueous environments, although their long-term stability is questionable. On the other hand, more reliable pH sensors have been developed by various workers for high temperature applications, the major drawback being their sensitivity to dissolved hydrogen, oxygen and other redox species. This paper describes the development of both solid-state reference electrodes and yttria-stabilized zirconia (YSZ) pH sensors for application in high temperature aqueous systems. (author)

  20. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan

    2017-01-01

    is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration...... outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate......Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters...

  1. All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for Determination of Donepezil Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Khamees, Nesreen; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad; Aziz, Azza

    2017-09-01

    All-solid-state, polyvinyl chloride (PVC) membrane, and carbon paste potentiometric ion-selective electrodes (ISEs) were proposed for the determination of donepezil hydrochloride (DON) in the drug substance and a pharmaceutical formulation. The potentiometric response toward DON was based on the existence of donepezil-tetraphenyl borate (DON-TPB) in a PVC membrane or a carbon paste in the presence of dioctylphthalate. In contrast, the solid-state electrode was prepared by direct incorporation of DON-TPB into a commercial nail varnish without external additives. The electrodes exhibited Nernstian slopes of 55.0, 57.0, and 53.0 mV/decade over the concentration ranges of 1 × 10-5 to 1 × 10-3, 1 × 10-4 to 10-2, and 1 × 10-4 to 5 × 10-3 for the solid-state, PVC membrane, and carbon paste electrodes, respectively. The response of the electrodes is independent of pH in the range of 2-≤8. The electrodes showed good selectivity for DON with respect to a number of inorganic cations and amino acids. The electrodes were used for the determination of DON in pure solution and in pharmaceutical tablets with high accuracy (±2%) and precision (RSD ≤2%). The solid-state electrode is simple, economical, and rapid when compared to the PVC membrane and carbon paste electrodes.

  2. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  3. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  4. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  5. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  6. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S

    2016-05-10

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  7. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  8. Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz-Morales, J. C.

    2007-08-01

    Full Text Available A commonly used interconnector material has been tested as electrode for a new concept of Solid Oxide Fuel Cell, where the same material could be used, simultaneously, as interconnector, anode and cathode. We have found that a typical substituted chromite, such as La0.7Ca0.3CrO3-δ (LCC can be considered a good candidate for such configuration, due to its high electronic conductivity in both reducing and oxidising conditions, and moderate catalytic properties for oxygen reduction and hydrogen oxidation. The symmetrical design renders performances of 100 mWcm-2 at 950ºC, using O2 and H2 as oxidant and fuel respectively. Performances exceeding 300 mWcm-2 can be predicted for a 100μm-thick YSZ electrolyte.

    Un material comúnmente utilizado como interconector ha sido probado como electrodo para un nuevo concepto de Pila de Combustible de Óxidos Sólido, en el cual el mismo material se utiliza, simultáneamente, como interconector, ánodo y cátodo. Hemos encontrado que una cromita típica como La0.7Ca0.3CrO3-δ (LCC puede ser considerada una buena candidata para dicha configuración, debido a sus altas conductividades eléctricas tanto en condiciones reductoras como oxidantes y una aceptable actividad catalítica para la reducción del oxígeno y la oxidación del hidrógeno. El diseño simétrico permite obtener rendimientos del orden de 100mWcm-2 a 950ºC, utilizando O2 e H2 como oxidante y combustible, respectivamente. Rendimientos que superan los 300mWcm-2 pueden predecirse para pilas con electrolitos de YSZ de 100 μm de grosor.

  9. Study of complex amalgams containing alkali metals by method of broken thermometric titration

    International Nuclear Information System (INIS)

    Filippova, L.M.; Zebreva, A.I.; Espenbetov, A.A.

    1977-01-01

    Complex potassium-cadmium and sodium-cadmium amalgams containing different amounts of the alkali metal nad cadmium have been studied by thermometric titration with mercury. The experiments have been carried out in argon atmosphere at 25 deg C. As evidenced by the titration of sodium-cadmium amalgams, in the range of concentrations studied (Csub(Na)=0.71-2.95, Csub(Cd)=4.38-6.45 g-at/lHg) no solid phase is formed in them. Potassium-cadmium amalgams where the metals content is no higher than their individual solubility in mercury, display, when being mercury-titrated, negative heat effects due to solid phase formation. An estimation is made of the solid phase composition, its solubility in mercury and the heat of dissolution. The solid phase appearing in complex K-Cd amalgams is likely to contain K and Cd in a ratio 1:1 its conventional solubility product is 5.4 g-at/l Hg, and the heat of dissolution in mercury at 25 deg is -21 +-4 kJ/g-at

  10. Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Hjelm, Johan; Blennow Tullmar, Peter

    2018-01-01

    for repairing various failure and degradation mechanisms occurring in the fuel electrode, thereby extending the potential lifetime of a SOC system. We successfully infiltrated the nickel and yttria-stabilized zirconia cermet electrode in commercial cells with Gd-doped ceria after operation. By this method we...

  11. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Goh, J.K.; Tan, W.T.

    2008-01-01

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M -1 . The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  12. Comparative Study of PVC-Free All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for the Determination of Dapoxetine Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Aziz, Azza; Khamees, Nesrin; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad

    2016-11-01

    The potentiometric response characteristics and analytical applications of a poly(vinyl chloride) (PVC)-free all-solid-state ion-selective electrode for dapoxetine hydrochloride (DAP) are examined. The Nernstian response of the electrode was evaluated by comparison with PVC-based liquid membrane and carbon paste electrodes. The PVC-free electrode is prepared by direct incorporation of dapoxetine-tetraphenyl borate (DAP-TPB) as a sensing element into a commercial nail varnish containing cellulose acetate propionate. The composite was applied onto a 3 mm diameter graphite disk electrode. The electrode exhibited a Nernstian slope of 56.0 mV/decade in the concentration range of 1 × 10-4 to 1 × 10-2 mol/L with an LOD of 2 × 10-5 mol/L. The electrode is independent of pH in the range of 2 to 6 and showed good selectivity for DAP with respect to a large number of inorganic cations and amino acids. Comparable Nernstian slope, sensitivity, pH range, and selectivity pattern were obtained with a PVC membrane and a carbon paste incorporating DAP-TPB as a sensing element and dioctylphthalate as a solvent mediator. The electrodes were used for the determination of DAP in pure solution and in tablets without extraction with high accuracy and precision (RSD ≤ 2%). The nail varnish solid-state electrode is simple, economical, and rapid when compared with PVC membrane and carbon paste electrodes.

  13. Taguchi optimization: Case study of gold recovery from amalgamation tailing by using froth flotation method

    Science.gov (United States)

    Sudibyo, Aji, B. B.; Sumardi, S.; Mufakir, F. R.; Junaidi, A.; Nurjaman, F.; Karna, Aziza, Aulia

    2017-01-01

    Gold amalgamation process was widely used to treat gold ore. This process produces the tailing or amalgamation solid waste, which still contains gold at 8-9 ppm. Froth flotation is one of the promising methods to beneficiate gold from this tailing. However, this process requires optimal conditions which depends on the type of raw material. In this study, Taguchi method was used to optimize the optimum conditions of the froth flotation process. The Taguchi optimization shows that the gold recovery was strongly influenced by the particle size which is the best particle size at 150 mesh followed by the Potassium amyl xanthate concentration, pH and pine oil concentration at 1133.98, 4535.92 and 68.04 gr/ton amalgamation tailing, respectively.

  14. Dental amalgam and mercury vapor release.

    Science.gov (United States)

    Osborne, J W

    1992-09-01

    Dental diseases are among the most common ailments, and dentists in the United States spend over 50% of their time in dental practice rebuilding carious, malformed, and traumatically injured teeth. It is logical, therefore, that the majority of the dental school curriculum is devoted to the diagnosis, prevention, and treatment of teeth with anomalies. Dentists have several choices of materials they can use to accomplish the task of rebuilding teeth. Besides amalgam, they have ceramic materials, resin composites, base-metal and noble casting alloys, and glass-ionomer cements to use to restore the posterior dentition. Each of these restorative materials has advantages and disadvantages, and the clinical judgment as to when a particular material should be used is given a high priority in dental education. Amalgam is the most widely used of these restorative materials, with 92% of dentists listing it as the material of choice in the posterior of the mouth (Clinical Research Associates, 1990). Dentists have been placing amalgams for over 150 years in the US. They placed 150 million last year, which represents over 75 tons of amalgam alloy. The reasons that dentists use this restorative material so frequently are its durability, ease of manipulation, and low cost. Numerous clinical studies have been conducted on the serviceability of amalgam. Most of these have been on the old, low-copper alloys, and results indicate that they last from 8 to 15 years (Bailit et al., 1979; Osborne et al., 1980; Qvist et al., 1986). In the past 20 years, vast improvements have been made in amalgams with the development of the high-copper systems.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Operando X-ray investigation of solid oxide fuel cell model electrodes

    International Nuclear Information System (INIS)

    Volkov, Sergey Aleksandrovic

    2017-04-01

    A detailed study of three solid oxide fuel cells (SOFCs) related model systems is presented in this work with the aim of the better understanding of the structural changes in cell components associated with their operation. The first model system is an La_0_._6Sr_0_._4CoO_3_-_d (LSC) on yttria-stabilized zirconia (YSZ). Changes in the YSZ(100) single crystal surface structure buried under the squared LSC microelectrode were studied at a synchrotron under operational conditions. High flux photon beam at the synchrotron allowed access to the LSC/YSZ interface. Structural information from the substrate surface at an atomic scale was acquired. Element-specific anomalous XRD data allowed to distinguish between Y and Zr scattering contributions. For the first time, it was shown that the Y cation concentration at the electrode/electrolyte interface strongly depends on the sample environment and the applied potential. The second model system is a Pt/YSZ. Buried YSZ(111) surface and dense Pt film morphology changes under operational conditions were addressed. High-energy X-rays were necessary to collect surface-sensitive information from the interface due to highly absorbing Pt film. The main conclusion is - under conditions applied, the YSZ single crystal surface remains stable at an atomic level. A nagging topic of the Pt ''phase oxide'' formation at the Pt/YSZ interface during anodic polarization was also raised. Although XRD data did not show a clear evidence of PtO_x presence at the interface, energy-dispersive X-ray analysis of the film cross-cut profile after the synchrotron experiment revealed distinct oxygen signal from delaminated parts of the film. Last but not least, the structure of a ZrO_2 ultrathin film grown on a Pt_3Zr(0001) single crystal was studied in ultra-high vacuum for the first time be means of SXRD. This model system is aiming to improve understanding of the electrolyte materials based on ZrO_2 (e.g. YSZ) at an atomic level. The results obtained

  16. Operando X-ray investigation of solid oxide fuel cell model electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Sergey Aleksandrovic

    2017-04-15

    A detailed study of three solid oxide fuel cells (SOFCs) related model systems is presented in this work with the aim of the better understanding of the structural changes in cell components associated with their operation. The first model system is an La{sub 0.6}Sr{sub 0.4}CoO{sub 3-d} (LSC) on yttria-stabilized zirconia (YSZ). Changes in the YSZ(100) single crystal surface structure buried under the squared LSC microelectrode were studied at a synchrotron under operational conditions. High flux photon beam at the synchrotron allowed access to the LSC/YSZ interface. Structural information from the substrate surface at an atomic scale was acquired. Element-specific anomalous XRD data allowed to distinguish between Y and Zr scattering contributions. For the first time, it was shown that the Y cation concentration at the electrode/electrolyte interface strongly depends on the sample environment and the applied potential. The second model system is a Pt/YSZ. Buried YSZ(111) surface and dense Pt film morphology changes under operational conditions were addressed. High-energy X-rays were necessary to collect surface-sensitive information from the interface due to highly absorbing Pt film. The main conclusion is - under conditions applied, the YSZ single crystal surface remains stable at an atomic level. A nagging topic of the Pt ''phase oxide'' formation at the Pt/YSZ interface during anodic polarization was also raised. Although XRD data did not show a clear evidence of PtO{sub x} presence at the interface, energy-dispersive X-ray analysis of the film cross-cut profile after the synchrotron experiment revealed distinct oxygen signal from delaminated parts of the film. Last but not least, the structure of a ZrO{sub 2} ultrathin film grown on a Pt{sub 3}Zr(0001) single crystal was studied in ultra-high vacuum for the first time be means of SXRD. This model system is aiming to improve understanding of the electrolyte materials based on ZrO{sub 2} (e

  17. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    Science.gov (United States)

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  18. Solid oxide electrode kinetics in light of in situ surface studies

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2014-01-01

    The combination of in situ and in particular in operando characterization methods such as electrochemical impedance spectroscopy (EIS) on both technical and model electrode are well known ways to gain some practical insight in electrode reaction kinetics. Yet, is has become clear that in spite...... of the strengths it is not sufficient to reveal much details of the electrode mechanisms mainly because it provide average values only. Therefore it has to be combined with surface science methods in order to reveal the interface structure and composition. Ex situ methods have been very useful over the latest....... Furthermore, it seems that detailed mathematical modeling using new tools like COMSOL is necessary for the synthesis of the large amount of data for a well-characterized electrode into one physical meaningful picture. A brief review of literature an own data will be presented with a practical example of SOFC...

  19. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  20. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    Czech Academy of Sciences Publication Activity Database

    Sharma, V.K.; Jelen, František; Trnková, L.

    2015-01-01

    Roč. 15, č. 1 (2015), s. 1564-1600 ISSN 1424-8220 Institutional support: RVO:68081707 Keywords : purine derivatives * electrochemistry of purines * carbon electrode Subject RIV: BO - Biophysics Impact factor: 2.033, year: 2015

  1. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    Directory of Open Access Journals (Sweden)

    Vimal Kumar Sharma

    2015-01-01

    Full Text Available Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications.

  2. Electrode of solid state polymer electrolyte type electrochemical cell; Kobunshi kotai denkaisitsugata denki kagaku seru yo denkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Yamanashi, (Japan); Inoue, M [Tanaka Kikinzoku Kogyo, Tokyo (Japan)

    1996-04-12

    The solid state polymer electrolyte type electrochemical cell (PEMFC) has such problem that the gas diffusion from the resin surface to the catalyst surface is prevented when the coating thickness of cation exchange resin on the catalyst particle and the number of micropores which conduct the gas flow in the catalyst layer are reduced. Resultingly, a sufficiently large current cannot be taken out of the cell. This invention solves the problem. The catalyst layer of electrode of PEMFC consists of a mixture of the conductive catalyst carrier coated with cation exchange resin and the conductive carrier coated with fluorinated hydrocarbon polymer. Adding the water repellent material to the electrode in this way improves the air-passing porosity. As for the cation exchange resin, perfluorocarbon sulfonate or perfluorocarbon carboxylate can be used. For the fluorinated hydrocarbon polymer, fluorinated polyethylene is preferably used. 4 figs., 2 tabs.

  3. A novel temperature-gradient Na±β-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode

    DEFF Research Database (Denmark)

    Rao, N.; Bleek, C.M. Van den; Schoonman, J.

    1992-01-01

    An electrochemical SOx ps sensor with a tubular Na+-beta"-alumina solid electrolyte has been fabricated and tested under non-isothermal conditions. The temperature difference between the reference and working electrode of the sensor cell is about 100-degrees-C, which causes a serious deviation...... of the experimental EMF response from the value as calculated using the Nernst equation for an isothermal system. The experimental results are Consistent with the theoretical prediction for a non-isothermal system. The response time is usually less then 10 min. SEM and EDX have been employed to investigate the sensor...... material before and after use, confirming the formation of a glassy phase of Na2SO4 by an electrochemical reaction at the interface of the platinum electrodes and Na+-beta"-alumina. According to this new theoretical derivation, the sensor design could be simplified by applying the same SO2 ps at the two...

  4. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    International Nuclear Information System (INIS)

    Vasilyak, L. M.; Vasiliev, A. I.; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-01-01

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  5. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Vasiliev, A. I., E-mail: vasiliev@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu. [Joint Stock Company NPO LIT (Russian Federation); Kudryavtsev, N. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  6. Bi-amalgamations subject to the arithmetical property

    OpenAIRE

    Kabbaj, S.; Mahdou, N.; Moutui, M. A. S.

    2016-01-01

    This paper establishes necessary and sufficient conditions for a bi-amalgamation to inherit the arithmetical property, with applications on the weak global dimension and transfer of the semihereditary property. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations. All results are backed with new and illustrative examples arising as bi-amalgamations.

  7. In situ57Fe Moessbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Ariyoshi, Kingo; Ohzuku, Tsutomu

    2002-01-01

    A novel in situ electrochemical cell for 57 Fe Moessbauer measurements was developed in order to clarify the mechanisms of solid-state redox reactions in lithium insertion materials containing iron. Our in situ Moessbauer technique was successfully applied to the determination as to which transition metal ion was a redox center in the insertion electrodes, such as LiFe 0.5 Mn 1.5 O 4 , LiFeTiO 4 , or LiFe 0.25 Ni 0.75 O 2 , for the lithium-ion batteries.

  8. Amalgam Contact Hypersensitivity Lesion: An Unusual Presentation ...

    African Journals Online (AJOL)

    of electromagnetic fields (e.g. Wi‑Fi, mobile phones and mobile base stations) in intensifying the release of mercury from dental amalgam restorations. Over the past years, our laboratory has focused on studying the health effects of exposure to some common and/or occupational sources of electromagnetic fields such as ...

  9. Boundedness of positive operators on weighted amalgams

    Directory of Open Access Journals (Sweden)

    Aguilar Cañestro María Isabel

    2011-01-01

    Full Text Available Abstract In this article, we characterize the pairs (u, v of positive measurable functions such that T maps the weighted amalgam in (Lp (u, ℓ q for all , where T belongs to a class of positive operators which includes Hardy operators, maximal operators, and fractional integrals. 2000 Mathematics Subject Classification 26D10, 26D15 (42B35

  10. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  11. Properties of thiolate monolayers formed on different amalgam electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Mareček, Vladimír

    2011-01-01

    Roč. 653, 1-2 (2011), s. 7-13 ISSN 1572-6657 R&D Projects: GA AV ČR IAA400400806; GA ČR GAP206/11/1638; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : thiolate monolayer * reductive desorption * charge effect Subject RIV: CG - Electrochemistry Impact factor: 2.905, year: 2011

  12. Carbon Deposition during CO2 Electrolysis in Ni-Based Solid-Oxide-Cell Electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Graves, Christopher R.; Blennow, P.

    2015-01-01

    . Electrochemical impedance spectroscopy in both H2/H2O and CO/CO2 revealed an increase in resistance of the fuel electrode after each CO2 electrolysis current-voltage curve, indicating possible carbon deposition. The difference in partial oxygen pressure between inlet and outlet was analyzed to verify carbon...... in detail. In an attempt to mitigate the degradation due to carbon deposition, the Ni-YSZ electrode was infiltrated with a gadolinium doped ceria (CGO) solution. Initial results indicate that the coking tolerance was not enhanced, but it is still unclear whether infiltrated cells degrade less. However......, infiltrated cells display a significant performance enhancement before coking, especially under electrolysis current. The investigation thus indicated carbon formation in the Ni containing fuel electrode before the thermodynamically calculated threshold for average measurements of the cell was reached...

  13. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    Science.gov (United States)

    Gao, Y.; Zhou, Y. S.; Xiong, W.; Jiang, L. J.; Mahjouri-samani, M.; Thirugnanam, P.; Huang, X.; Wang, M. M.; Jiang, L.; Lu, Y. F.

    2013-07-01

    In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ˜67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  14. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2013-07-01

    Full Text Available In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ∼67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  15. Correspondence between Experiment and Theory of Bulk Electrocrystallisation at Solid Electrodes in Aqueous Electrolyte

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2009-01-01

    A model of electrodeposition and electrodissolution at electrode surfaces in aqueous solution is presented. The description is based on the assumption that redox reaction of water is the more important process controlling the electrode kinetics. Chronoamperometric measurements and experiments...... of cyclic voltammetry indicate that the current fundamentally is proportional to inverse time. It was proposed that redox-active species different from water never touch the surface but they predominantly interact with surface-active hydrogen or oxygen formed at the surface by redox processes of water...

  16. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  17. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  18. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; R. C. O' Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  19. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    Science.gov (United States)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher

    2018-01-01

    Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.

  20. Solid contact potassium selective electrodes for biomedical applications – a review

    NARCIS (Netherlands)

    van de Velde, Lennart; d'Angremont, E.; Olthuis, Wouter

    2016-01-01

    Ion-selective electrodes (ISE) are used in several biomedical applications, including laboratory sensing of potassium concentration in blood and urine samples. For on-site determination of potassium concentration and usage in other applications such as determination of extracellular potassium

  1. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  2. Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode

    International Nuclear Information System (INIS)

    Jian, Xuan; Yang, Hui-min; Li, Jia-gang; Zhang, Er-hui; Cao, Le-le; Liang, Zhen-hai

    2017-01-01

    Highlights: • Porous nanostructure carbon quantum dots/polypyrrole composite film was successfully synthesized by direct electrochemical method. • A flexible all-solid-state supercapacitor device was fabricated using the carbon quantum dots/polypyrrole composite electrode. • The flexible supercapacitor exhibits high specific capacitance, excellent reliability and long cycling life. - Abstract: Recently, carbon quantum dots (CQDs) as a new zero-dimensional carbon nanomaterial have become a focus in electrochemical energy storage. In this paper, flexible all-solid-state supercapacitors (ASSSs) were electrochemically synthesized by on-step co-deposition of appropriate amounts of pyrrole monomer and CQDs in aqueous solution. The different electrodeposition time plays an important role in controlling morphologies of stainless steel wire meshes (SSWM)-supported CQDs/PPy composite film. The morphologies and compositions of the obtained CQDs/PPy composite electrodes were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Furthermore, a novel flexible ASSS device was fabricated using CQDs/PPy composite as the electrode and separated by polyvinyl alcohol/LiCl gel electrolyte. Benefiting from superior electrochemical properties of CQDs and PPy, the as-prepared CQDs/PPy composite ASSSs exhibit outstanding electrochemical performance with the areal capacitance 315 mF cm −2 (corresponding to specific capacitance of 308 F g −1 ) at a current density of 0.2 mA cm −2 and long cycle life with 85.7% capacitance retention after 2 000 cycles.

  3. A Review on Dental Amalgam Corrosion and Its Consequences

    Directory of Open Access Journals (Sweden)

    M Fathi

    2004-02-01

    Full Text Available Dental amalgam is still the most useful restorative material for posterior teeth and has been successfully used for over a century. Dental amalgam has been widely used as a direct filling material due to its favorable mechanical properties as well as low cost and easy placement. However, the mercury it contains raises concerns about its biological toxicity and environmental hazard. Although in use for more than 150 years, dental amalgam has always been suspected more or less vigorously due to its alleged health hazard. Amalgam restorations often tarnish and corrode in oral environment. Corrosion of dental amalgam can cause galvanic action. Ion release as a result of corrosion is most important. Humans are exposed to mercury and other main dental metals via vapor or corrosion products in swallowed saliva and also direct absorption into blood from oral mucosa. During recent decades the use of dental amalgam has been discussed with respect to potential toxic effects of mercury components. In this article, the mechanisms of dental amalgam corrosion are described and results of researches are reviewed. It finally covers the corrosion of amalgams since this is the means by which metals, including mercury, can be released within oral cavity. Keywords: Dental amalgam, Amalgam corrosion, Biocompatibility, Mercury release, Amalgam restoration

  4. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    Science.gov (United States)

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  5. Semi-solid electrode cell having a porous current collector and methods of manufacture

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki

    2017-11-21

    An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.

  6. Polarization characteristics of composite electrodes in electrochemical cells with solid electrolytes based on CeO2 and LaGaO3

    International Nuclear Information System (INIS)

    Yaroslavtsev, I. Yu.; Kuzin, B. L.; Bronin, D. I.; Bogdanovich, N. M.

    2005-01-01

    For two types of electrochemical cells with oxygen-conducting solid electrolytes based on lanthanum gallate (LSGM) and cerium oxide (SDC) studied are the temperature dependences of the polarization conductivity of air electrodes prepared from lanthanum strontium manganite (LSM) and composites LSM-LSGM, LSM-SDC, and LSM-SSZ (SSZ is zirconium dioxide-based electrolyte). Effect of praseodymium oxide, added into these electrodes as a modifier, on their electrochemical properties is examined. Electrochemical systems with an LSM/LSGM interface exhibit low electrochemical activity toward the oxygen reaction, because during the formation of electrodes, LSM interacts with LSGM to form a poorly conducting product [ru

  7. [Creep of amalgam fillings under clasp rests].

    Science.gov (United States)

    Borchers, L; Jung, T; West, M

    1989-10-01

    A clinically realistic experiment was set up to obtain information on the amount of vertical settling of clasp rests in amalgam restorations under functional loading. Mesioocclusal cavities were prepared in 16 lower molar specimens cast in brass. The cavities were filled with amalgam and provided with a mesial rest seat. A constant load of 100 N was applied via a simplified (experimental) saddle to a cobalt-chromium E-clasp cast to the saddle. The duration of the load corresponded to 160 days of clinical function. The chronological course of vertical displacement was analyzed mathematically. According to this result the process can be divided into three components: settling immediately upon load initiation (mean value 96 microns, transition creep (mean value 25 microns) and creep ata constant rate (mean value 15 microns). The mean overall vertical displacement of the rests was 136 microns, the maximum value 287 microns. These findings suggest that vertical settling of a clasp rest into its seat in an amalgam restoration may eventually result in significant changes in occlusion and may almost completely exhaust gingival resilience.

  8. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    Science.gov (United States)

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Micro-PIXE study of metal loss from dental amalgam

    Science.gov (United States)

    Meesat, Ridthee; Sudprasert, Wanwisa; Guibert, Edouard; Wang, Liping; Chappuis, Thibault; Whitlow, Harry J.

    2017-08-01

    Mercury amalgams have been a topic of controversy ever since their introduction over 150 years ago as a dental material. An interesting question is if metals are released from the amalgam into the enamel and dentine tissue. To elucidate this PIXE mapping was used to investigate metal redistribution in an extracted molar tooth with a ∼30 year old high-Cu content amalgam filling. The tooth was sectioned and polished, and elemental mapping carried out on the amalgam/enamel, bulk amalgam and the wear surface of the amalgam. As expected, the amalgam was multiphase amalgam comprising of Cu-rich and Ag-rich grains with non-uniform distribution of Hg. The amalgam/dentine interface was clearly defined with amalgam elements on one side and C and P from hydroxyapatite on the other side with evidence of only slight interface corrosion. The peaks for Cu Hg and Zn were isolated from interfering signals with concentrations in the enamel tissue, observed to be at, or below the method detection limit. The proximity in energy of the Sn L α and Ca K α , peaks and the background on the Hg M α gave signal overlap which increased the MDL for these elements. Remarkably, a course grain texture in the amalgam was observed just below the biting surface of the amalgam which might be associated with tribochemical processes from mastication. This coupled with the clear absence of the amalgam metals from tooth tissue, even in close proximity to the interface, suggests that for this sample, release of Hg occurred via erosion or dissolution in saliva.

  10. Carbon paste electrode in a solid-contact minicavity; Eletrodo de pasta de carbono em minicavidade de contato solido

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Antonio Ap. Pupim; Ribeiro, Sidney Jose Lima; Fugivara, Cecilio Sadao; Caiut, Jose Mauricio Almeida; Sargentelli, Vagner; Benedetti, Assis Vicente [UNESP - Universidade Estadual Paulista, Instituto de Quimica, Araraquara SP (Brazil)

    2011-07-01

    This work describes the preparation of carbon paste electrode (EPC) in a solid-contact minicavity and its evaluation when containing carbon paste without and with SiO{sub 2}(Eu{sup 3+} 2%) and SiO{sub 2}(Eu{sup 3+} 2%)-lysine sub-micrometrics particles. For this study cyclic voltammetry and electrochemical impedance measurements were performed at pH 7.4 in 0.1 mol L{sup -1} PBS containing Fe(CN){sub 6}{sup -3}/{sup -4} redox species. The impedance results were interpreted based on a charge-transfer reaction involving Fe(CN){sub 6}{sup -3}/{sup -4} species and/or oxygen at higher frequencies and, diffusion of the electroactive species and carbon paste characteristics at lower frequencies. EPC-minicavity is suitable for electroanalysis using modified carbon paste. (author)

  11. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    International Nuclear Information System (INIS)

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-01-01

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 (Omega) load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs

  12. Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers

    International Nuclear Information System (INIS)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Xin; Liu, Yichun

    2015-01-01

    Highlights: • Three-dimensional PAN@PANI nanofiberous networks as freestanding electrodes. • The novel architecture exhibits high specific capacitance of 577 F/g. • Influence of acid doping and mass loading of PANI on electrochemical properties. • Capacitor: an energy density of 12.6 Wh/kg at the power density of 2.3 kW/kg. • Excellent cycling stability: 98% capacitance retention after 1000 cycles - Abstract: Three-dimensional porous polyacrylonitrile/polyaniline core-shell (PAN@PANI) nanofibers are fabricated by electrospinning technique combining in situ chemical polymerization of aniline monomers. The obtained PAN@PANI nanofibers possess unique continuous and homogeneous core-shell nanostructures and high mass loading of PANI (∼60 wt%) as active materials, which have greatly improved the electrochemical performance with a specific capacitance up to 577 F/g at a scan rate of 5 mV/s. Moreover, the porous networks of randomly arrayed PAN@PANI nanofibers provide binder-free and freestanding electrodes for flexible solid-state supercapacitors. The obtained devices based on PAN@PANI networks present excellent electrochemical properties with an energy density of 12.6 Wh/kg at a power density of 2.3 kW/kg and good cycling stability with retaining more than 98% of the initial capacitance after 1000 charge/discharge cycles, showing the possibility for practical applications in flexible electronics

  13. Formation of nanotubes in poly (vinylidene fluoride): Application as solid polymer electrolyte in DSC fabricated using carbon counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Muthuraaman, B. [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India); Maruthamuthu, P., E-mail: pmaruthu@yahoo.com [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India)

    2011-09-01

    Highlights: > Incorporation of a {pi}-electron donor compound as dopant in poly(vinylidene fluoride) along with redox couple (I{sup -}/I{sub 3}{sup -}) which forms brush like nanotubes. > Investigations about the use of conducting carbon coated FTO as a durable counter electrode and its effects in DSC. > High charge separation and the channelized flow of electrons in the nanotubes in electrolyte favors stable performance. - Abstract: In the present work, we report the incorporation of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) in poly(vinylidene fluoride) (PVDF) along with the redox couple (I{sup -}/I{sub 3}{sup -}). When ABTS, a {pi}-electron donor, is used to dope PVDF, the polymer composite forms brush-like nanotubes and has been successfully used as a solid polymer electrolyte in dye-sensitized solar cells. Under the given conditions, the electrolyte composition forms nanotubes while it is doped with ABTS, a {pi}-electron donor. With this new electrolyte, a dye-sensitized solar cell was fabricated using N3 dye adsorbed over TiO{sub 2} nanoparticles as the photoanode and conducting carbon cement coated FTO as counter electrode.

  14. Electrodes for solid oxide fuel cells based on infiltration of Co-based materials

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Bonanos, Nikolaos

    2012-01-01

    The electrochemical performance of cathodes produced by infiltration of nitrates corresponding to the nominal compositions Co3O4, LaCoO3, and La0.6Sr0.4Co1.05O3−δ into porous backbones of Ce0.9Gd0.1O1.95 has been studied. Characterization by electrochemical impedance spectroscopy at 600◦C in air...... revealed that the lowest electrode polarization (Rp) value is obtained for La0.6Sr0.4Co1.05O3−δ (0.062cm2), followed by LaCoO3 (0.079cm2), andCo3O4-infiltrated cathodes (0.27cm2). The surprisingly good performance of LaCoO3- and Co3O4-infiltrated cathodes demonstrate the peculiarities encountered...

  15. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  16. Investigation of a Spinel-forming Cu-Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unit

    DEFF Research Database (Denmark)

    Zielke, Philipp; Wulff, Anders Christian; Sun, Xiufu

    2017-01-01

    A critical issue in state-of-the-art solid oxide cell stacks is the contacting of the oxygen electrode. The commonly used ceramic contact layers are applied in a green state and cannot be sintered properly, due to compliance limitations arising from other stack components like sealing glasses...

  17. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.

    Science.gov (United States)

    Mohan, S Venkata; Chandrasekhar, K

    2011-07-01

    Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Oxygen Reduction Kinetics of La2-xSrxNiO 4+delta Electrodes for Solid Oxide Fuel Cells

    Science.gov (United States)

    Guan, Bo

    In the development of intermediate temperature solid oxide fuel cell (IT-SOFC), mixed ionic-electronic conductors (MIEC) have drawn big interests due to their both ionic and electronic species transport which can enlarge the 3-dimension of the cathode network. This thesis presents an investigation of MIEC of Ruddlesden-popper (RP) phases like K2NiF4 type La2NiO4+delta (LNO)-based oxides which have interesting transport, catalytic properties and suitable thermal expansion coefficients. The motivation of this present work is to further understand the fundamental of the effect of Sr doing on the oxygen reduction reaction (ORR) kinetics of LNO cathode. Porous symmetrical cells of La2-xSrxNiO4+delta (0≤x≤0.4) were fabricated and characterized by electrochemical impedance spectroscopy (EIS) in different PO2 from temperature range of 600˜800°C. The spectra were analyzed based on the impedance model introduced by Adler et al. The rate determining steps (RDS) for ORR were proposed and the responsible reasons were discussed. The overall polarization resistances of doped samples increase with Sr level. Surface oxygen exchange and bulk ionic diffusion co-control the ORR kinetics. With high Sr content (x=0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed. However for porous symmetrical cells it is hard to associate the resistance from EIS directly to each ORR elementary processes because of the difficulty in describing the microstructure of the porous electrode. The dense electrode configuration was adopted in this thesis. By using the dense electrode, the surface area, the thickness of electrode, the interface between electrode and electrolyte and lastly the 3PB are theoretically well-defined. Through this method, there is a good chance to distinguish the contribution of surface exchange from other processes. Dense and thin electrode layers in thickness of ˜40 mum are fabricated by using a novel spray modified pressing method. Negligible

  19. A Safe Protocol for Amalgam Removal

    Directory of Open Access Journals (Sweden)

    Dana G. Colson

    2012-01-01

    Full Text Available Today's environment has different impacts on our body than previous generations. Heavy metals are a growing concern in medicine. Doctors and individuals request the removal of their amalgam (silver mercury restorations due to the high mercury content. A safe protocol to replace the silver mercury filling will ensure that there is minimal if any absorption of materials while being removed. Strong alternative white composite and lab-processed materials are available today to create a healthy and functioning mouth. Preparation of the patient prior to the procedure and after treatment is vital to establish the excretion of the mercury from the body.

  20. Morphology Control of the Electrode for Solid Oxide Fuel Cells by Using Nanoparticles

    International Nuclear Information System (INIS)

    Fukui, Takehisa; Ohara, Satoshi; Naito, Makio; Nogi, Kiyoshi

    2001-01-01

    LSM(La(Sr)MnO 3 )/YSZ(Y 2 O 3 stabilized ZrO 2 ) composite cathode for Solid Oxide Fuel Cells (SOFCs) was fabricated by using the composite particle consisting of well-dispersed nano-size grains of LSM and YSZ. The composite cathode had a porous structure as well as uniformly dispersed fine LSM and YSZ grains. Such unique morphology of the composite cathode led high electrochemical activity at 800 deg. C. It suggests that the intermediate temperature (less than 800 o C) operation of SOFCs will be achieved by using composite particles

  1. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC)

    Science.gov (United States)

    Rabuni, Mohamad Fairus; Li, Tao; Punmeechao, Puvich; Li, Kang

    2018-04-01

    Herein, a micro-structured electrode design has been developed via a modified phase-inversion method. A thin electrolyte integrated with a highly porous anode scaffold has been fabricated in a single-step process and developed into a complete fuel cell for direct methane (CH4) utilisation. A continuous and well-dispersed layer of copper-ceria (Cu-CeO2) was incorporated inside the micro-channels of the anode scaffold. A complete cell was investigated for direct CH4 utilisation. The well-organised micro-channels and nano-structured Cu-CeO2 anode contributed to an increase in electrochemical reaction sites that promoted charge-transfer as well as facilitating gaseous fuel distribution, resulting in outstanding performances. Excellent electrochemical performances have been achieved in both hydrogen (H2) and CH4 operation. The power density of 0.16 Wcm-2 at 750 °C with dry CH4 as fuel is one of the highest ever reported values for similar anode materials.

  2. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    International Nuclear Information System (INIS)

    Liang, Junsheng; Su, Shijie; Fang, Xu; Wang, Dazhi; Xu, Shuangchao

    2016-01-01

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H_2SO_4) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m"2·g"−"1. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g"−"1, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg"−"1. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g"−"1 at a current density of 4 A·g"−"1, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g"−"1. And the specific capacitance of the electrode can retain 89% after 1500 charge/discharge cycles.

  3. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Junsheng; Su, Shijie; Fang, Xu [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Wang, Dazhi, E-mail: d.wang@dlut.edu.cn [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China); Xu, Shuangchao [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2016-09-15

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H{sub 2}SO{sub 4}) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m{sup 2}·g{sup −1}. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g{sup −1}, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg{sup −1}. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g{sup −1} at a current density of 4 A·g{sup −1}, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g{sup −1}. And the specific capacitance of the electrode can retain 89

  4. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    International Nuclear Information System (INIS)

    Navasa, M; Andersson, M; Yuan, J; Sundén, B

    2012-01-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  5. Amalgam stained dentin: a proper substrate for bonding resin composite?

    NARCIS (Netherlands)

    Scholtanus, J.D.

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and

  6. Neurotoxicity of dental amalgam is mediated by zinc.

    Science.gov (United States)

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  7. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose

    2015-01-01

    stabilised zirconia (YSZ) backbone air electrode and Ni/YSZ cermet fuel electrode. The SOC was tested at electrolysis conditions under high current (up to -1 A/cm2). The porous YSZ electrodes was infiltrated with gadolinium-doped ceria oxide (CGO), to act as a barrier layer between the catalyst...

  8. Does Magnetic Resonance Imaging Affect the Microleakage of Amalgam Restorations?

    International Nuclear Information System (INIS)

    Akgun, Ozlem Marti; Polat, Gunseli Guven; Turan Illca, Ahmet; Yildirim, Ceren; Demir, Pervin; Basak, Feridun

    2014-01-01

    The effect of MRI on microleakage of amalgam restorations is an important health issue that should be considered. If MRI application causes increase of microleakage, amalgam fillings should be reassessed after MRI and replaced if necessary. The aim of this study is to compare the effect of magnetic resonance imaging (MRI) on microleakage of class II bonded amalgam versus classical amalgam restorations. Class II cavities (3 mm width × 1.5 mm depth) with gingival margins ending 1 mm below the cementoenamel junction (CEJ) were prepared in 40 permanent molar teeth. The teeth were randomly divided into four groups. Cavities in the first and second groups were restored with dentin adhesive and amalgam (bonded amalgam), and those in the third and fourth groups with amalgam only. MRI was performed with the teeth specimens from the first and third groups. All specimens were then thermocycled at 5° to 55° C with a 30-second dwell time for 1000 cycles. The samples were then immersed in 0.5% methylene blue dye for 24 hours and sectioned longitudinally. Dye penetration at the occlusal and gingival margins was quantified by 15× stereomicroscopy. IBM SPSS Statistics ver. 21.0 (IBM Corp., Released 2012., IBM SPSS Statistics for Windows, Armonk, NY: IBM Corp.) and MS-Excel 2007 programs were used for statistical analyses and calculations. “nparLD” module was used for F2-LD-F1 design analysis at R program. P<0.05 was considered statistically significant. In teeth with amalgam filling, there were no significant differences of occlusal and gingival surface microleakage after MRI exposure. Occlusal and gingival surface microleakages were also similar with and without MRI in teeth with bonded amalgam filling. The results of this study suggest that MRI does not increase microleakage of amalgam restorations

  9. Biologic assessment of copper-containing amalgams.

    Science.gov (United States)

    Mjor, I A; Eriksen, H M; Haugen, E; Skogedal, O

    1977-12-01

    In order to reduce creep and avoid marginal fractures in amalgam restorations, new alloys containing higher proportions of copper have been introduced. Fillings of these materials were placed in cavities prepared in the deciduous teeth of monkeys or placed in polyethylene tubes and implanted subcutaneously in rats. Conventional silver/tin alloys and zinc oxide eugenol cement were used as reference materials. Despite limitations due to the varying depths of cavities and the small number of animals involved it was concluded that the high copper alloys caused more severe pulp damage than the other materials studied. In the implantation studies many of the high copper specimens were exfoliated before the end of the experimental period. It is concluded that in deep cavities these materials require the use of a non-toxic base or lining material although as they are commonly used in young children's teeth the placement of linings and the isolation of the cavity pose problems.

  10. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.

    Science.gov (United States)

    Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei

    2012-12-01

    We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.

  11. Flexible Fe2O3 and V2O5 nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Jiang, He; Niu, Hao; Yang, Xue; Sun, Zhiqin; Li, Fuzhi; Wang, Qian; Qu, Fengyu

    2018-04-16

    Flexible highly porous Fe2O3 and V2O5 nanofibers are synthesized by a facile electrospinning method followed by calcination treatment and directly used as binder-free electrodes for high-performance supercapacitors. These Fe2O3 and V2O5 nanofibers interconnect with each other and construct three-dimensional hierarchical porous films with high specific surface area. Benefiting from the unique structural features, the intriguing binder-free Fe2O3 and V2O5 porous nanofiber electrodes possess high specific capacitance of 255 F g-1 and 256 F g-1 at 2 mV s-1 in 1 M Na2SO4 electrolyte, respectively. An all-solid-state asymmetric supercapacitor is fabricated using Fe2O3 and V2O5 nanofibers as negative and positive electrodes, respectively, and the all-solid-state asymmetric supercapacitor can be operated up to 1.8 V attributed to the wide and opposite potential window of both electrodes. The assembled all-solid-state asymmetric supercapacitor achieves a high energy density up to 32.2 Wh kg-1 at an average power density of 128.7 W kg-1 as well as excellent cycling stability and power capability. The effective and facile synthesis method and superior electrochemical performance provided in this work make electrospun Fe2O3 and V2O5 nanofibers promising electrode materials for high performance asymmetric supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and structural studies on cerium substituted La0.4Ca0.6MnO3 as solid oxide fuel cell electrode material

    Science.gov (United States)

    Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar

    2018-04-01

    For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.

  13. A solid-contact Pb2+-selective electrode using poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) as ion-to-electron transducer

    International Nuclear Information System (INIS)

    Yu Shunyang; Li Fuhai; Yin Tanji; Liu Yongming; Pan, Dawei; Qin Wei

    2011-01-01

    Highlights: → All reagents used for the electrodes preparation were commercially available. → The lower detection limit of the proposed electrode reached subnanomolar levels. → No water film was observed with conventional commercially available PVC ion-sensing membranes. → This research provides an excellent strategy for fabrication of robust polymeric ion sensors. - Abstract: In this work, a novel all-solid-state polymeric membrane Pb 2+ -selective electrode was developed by using for the first time poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade -1 and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.

  14. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2001-02-01

    The electroactivity of surfactant-templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion-electron charge-transport behavior for these materials, compared to the sintered-densified non-porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes. (orig.)

  15. All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOx Nanospike and Graphene Electrodes.

    Science.gov (United States)

    Yang, Jie; Li, Guizhu; Pan, Zhenghui; Liu, Meinan; Hou, Yuan; Xu, Yijun; Deng, Hong; Sheng, Leimei; Zhao, Xinluo; Qiu, Yongcai; Zhang, Yuegang

    2015-10-14

    Three-dimensional (3D) nanostructures enable high-energy storage devices. Here we report a 3D manganese oxide nanospike (NSP) array electrode fabricated by anodization and subsequent electrodeposition. All-solid-state asymmetric supercapacitors were assembled with the 3D Al@Ni@MnOx NSP as the positive electrode, chemically converted graphene (CCG) as the negative electrode, and Na2SO4/poly(vinyl alcohol) (PVA) as the polymer gel electrolyte. Taking advantage of the different potential windows of Al@Ni@MnOx NSP and CCG electrodes, the asymmetric supercapacitor showed an ideal capacitive behavior with a cell voltage up to 1.8 V, capable of lighting up a red LED indicator (nominal voltage of 1.8 V). The device could deliver an energy density of 23.02 W h kg(-1) at a current density of 1 A g(-1). It could also preserve 96.3% of its initial capacitance at a current density of 2 A g(-1) after 10000 charging/discharging cycles. The remarkable performance is attributed to the unique 3D NSP array structure that could play an important role in increasing the effective electrode surface area, facilitating electrolyte permeation, and shortening the electron pathway in the active materials.

  16. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  17. Liquid electrode plasma-optical emission spectrometry combined with solid-phase preconcentration for on-site analysis of lead.

    Science.gov (United States)

    Barua, Suman; Rahman, Ismail M M; Alam, Iftakharul; Miyaguchi, Maho; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2017-08-15

    A relatively rapid and precise method is presented for the determination of lead in aqueous matrix. The method consists of analyte quantitation using the liquid electrode plasma-optical emission spectrometry (LEP-OES) coupled with selective separation/preconcentration by solid-phase extraction (SPE). The impact of operating variables on the retention of lead in SPEs such as pH, flow rate of the sample solution; type, volume, flow rate of the eluent; and matrix effects were investigated. Selective SPE-separation/preconcentration minimized the interfering effect due to manganese in solution and limitations in lead-detection in low-concentration samples by LEP-OES. The LEP-OES operating parameters such as the electrical conductivity of sample solution; applied voltage; on-time, off-time, pulse count for applied voltage; number of measurements; and matrix effects have also been optimized to obtain a distinct peak for the lead at λ max =405.8nm. The limit of detection (3σ) and the limit of quantification (10σ) for lead determination using the technique were found as 1.9 and 6.5ng mL -1 , respectively. The precision, as relative standard deviation, was lower than 5% at 0.1μg mL -1 Pb, and the preconcentration factor was found to be 187. The proposed method was applied to the analysis of lead contents in the natural aqueous matrix (recovery rate:>95%). The method accuracy was verified using certified reference material of wastewaters: SPS-WW1 and ERM-CA713. The results from LEP-OES were in good agreement with inductively coupled plasma optical emission spectrometry measurements of the same samples. The application of the method is rapid (≤5min, without preconcentration) with a reliable detection limit at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  19. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  20. The Thickness of Amalgamations and Cartesian Product of Graphs

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2017-08-01

    Full Text Available The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is a measurement of the closeness to the planarity of a graph, and it also has important applications to VLSI design, but it has been known for only few graphs. We obtain the thickness of vertex-amalgamation and bar-amalgamation of graphs, the lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-amalgamation of graphs, respectively. We also study the thickness of Cartesian product of graphs, and by using operations on graphs, we derive the thickness of the Cartesian product Kn □ Pm for most values of m and n.

  1. Amalgam shear bond strength to dentin using different bonding agents.

    Science.gov (United States)

    Vargas, M A; Denehy, G E; Ratananakin, T

    1994-01-01

    This study evaluated the shear bond strength of amalgam to dentin using five different bonding agents: Amalgambond Plus, Optibond, Imperva Dual, All-Bond 2, and Clearfil Liner Bond. Flat dentin surfaces obtained by grinding the occlusal portion of 50 human third molars were used for this study. To contain the amalgam on the tooth surface, cylindrical plastic molds were placed on the dentin and secured with sticky wax. The bonding agents were then applied according to the manufacturers' instructions or light activated and Tytin amalgam was condensed into the plastic molds. The samples were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. Analysis by one-way ANOVA indicated significant difference between the five groups (P < 0.05). The bond strength of amalgam to dentin was significantly higher with Amalgambond Plus using the High-Performance Additive than with the other four bonding agents.

  2. Effects of amalgam corrosion products on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, P R; Cogen, R B; Taubman, S B [Departments of Periodontics and Pathology, University of Connecticut Health Center, Farmington, Connecticut, U.S.A.

    1976-01-01

    Using three independent criteria, we have found that 10/sup -4/,10/sup -6/M concentrations of ions presumably liberated from the corrosion of dental amalgam produce injurious effects on either human gingival fibroblasts or HeLa cells when the cells are grown in culture. Release of /sup 51/Cr and uptake of trypan blue dye were seen with 10/sup -5/M Hg/sup + +/ and Ag/sup +/. Inhibition of amino acid incorporation into protein-like material was seen with eluates of amalgam and with ionic solutions of most metals comprising dental amalgam. Stannous ion showed little if any cytotoxic potential. These results suggest that corrosion products of amalgam are capable of causing cellular injury or destruction.

  3. Improving the strength of amalgams by including steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Calvin T. [Hendrix College, Conway, AR 72032 (United States); Van Hoose, James R. [Siemens, Orlando, FL 32826 (United States); McGill, Preston B. [Marshall Space Flight Center, EM20, Huntsville, AL 35812 (United States); Grugel, Richard N., E-mail: richard.n.grugel@nasa.gov [Marshall Space Flight Center, EM30, Huntsville, AL 35812 (United States)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer A room temperature liquid Ga-In alloy was successfully substituted for mercury. Black-Right-Pointing-Pointer Physically sound amalgams with included steel fibers can be made. Black-Right-Pointing-Pointer A small volume fraction inclusion of fibers increased strength by {approx}20%. - Abstract: Mercury amalgams, due to their material properties, are widely and successfully used in dental practice. They are, however, also well recognized as having poor tensile strength. With the possibility of expanding amalgam applications it is demonstrated that tensile strength can be increased some 20% by including a small amount of steel fibers. Furthermore, it is shown that mercury can be replaced with a room temperature liquid gallium-indium alloy. Processing, microstructures, and mechanical test results of these novel amalgams are presented and discussed in view of means to further improve their properties.

  4. Mercury (Hg) burden in children: The impact of dental amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, Iman, E-mail: iman@kfshrc.edu.sa [Biological and Medical Research Department, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211 (Saudi Arabia); Al-Sedairi, Al anoud [Department of Zoology, College of Science, King Saud University, PO Box: 24452, Riyadh 11495 (Saudi Arabia)

    2011-07-15

    The risks and benefits of using mercury (Hg) in dental amalgam have long been debated. This study was designed to estimate Hg body burden and its association with dental amalgam fillings in 182 children (ages: 5-15 years) living in Taif City. Hg was measured in urine (UHg), hair (HHg) and toenails (NHg) by the Atomic Absorption Spectrophotometer with Vapor Generator Accessory system. Urinary Hg levels were calculated as both micrograms per gram creatinine ({mu}g/g creatinine) and micrograms per liter ({mu}g/L). We found that children with amalgam fillings (N = 106) had significantly higher UHg-C levels than children without (N = 76), with means of 3.763 {mu}g/g creatinine versus 3.457 {mu}g/g creatinine, respectively (P = 0.019). The results were similar for UHg (P = 0.01). A similar pattern was also seen for HHg, with means of 0.614 {mu}g/g (N = 97) for children with amalgam versus 0.242 {mu}g/g (N = 74) for those without amalgam fillings (P = 0). Although the mean NHg was higher in children without amalgam (0.222 {mu}g/g, N = 61) versus those with (0.163 {mu}g/g, N = 101), the relationship was not significant (P = 0.069). After adjusting for many confounders, the multiple logistic regression model revealed that the levels of UHg-C and HHg were 2.047 and 5.396 times higher, respectively, in children with dental amalgam compared to those without (P < 0.01). In contrast, a significant inverse relationship was seen between NHg levels and dental amalgam fillings (P = 0.003). Despite the controversy surrounding the health impact of dental amalgam, this study showed some evidence that amalgam-associated Hg exposure might be related with symptoms of oral health, such as aphthous ulcer, white patches, and a burning-mouth sensation. Further studies are needed to reproduce these findings. The present study showed that significant numbers of children with or without amalgam had Hg levels exceeding the acceptable reference limits. The detrimental neurobehavioral and

  5. Mercury (Hg) burden in children: The impact of dental amalgam

    International Nuclear Information System (INIS)

    Al-Saleh, Iman; Al-Sedairi, Al anoud

    2011-01-01

    The risks and benefits of using mercury (Hg) in dental amalgam have long been debated. This study was designed to estimate Hg body burden and its association with dental amalgam fillings in 182 children (ages: 5-15 years) living in Taif City. Hg was measured in urine (UHg), hair (HHg) and toenails (NHg) by the Atomic Absorption Spectrophotometer with Vapor Generator Accessory system. Urinary Hg levels were calculated as both micrograms per gram creatinine (μg/g creatinine) and micrograms per liter (μg/L). We found that children with amalgam fillings (N = 106) had significantly higher UHg-C levels than children without (N = 76), with means of 3.763 μg/g creatinine versus 3.457 μg/g creatinine, respectively (P = 0.019). The results were similar for UHg (P = 0.01). A similar pattern was also seen for HHg, with means of 0.614 μg/g (N = 97) for children with amalgam versus 0.242 μg/g (N = 74) for those without amalgam fillings (P = 0). Although the mean NHg was higher in children without amalgam (0.222 μg/g, N = 61) versus those with (0.163 μg/g, N = 101), the relationship was not significant (P = 0.069). After adjusting for many confounders, the multiple logistic regression model revealed that the levels of UHg-C and HHg were 2.047 and 5.396 times higher, respectively, in children with dental amalgam compared to those without (P < 0.01). In contrast, a significant inverse relationship was seen between NHg levels and dental amalgam fillings (P = 0.003). Despite the controversy surrounding the health impact of dental amalgam, this study showed some evidence that amalgam-associated Hg exposure might be related with symptoms of oral health, such as aphthous ulcer, white patches, and a burning-mouth sensation. Further studies are needed to reproduce these findings. The present study showed that significant numbers of children with or without amalgam had Hg levels exceeding the acceptable reference limits. The detrimental neurobehavioral and/or nephrotoxic effects of

  6. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  7. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte

    International Nuclear Information System (INIS)

    Peng, Shengjie; Li, Linlin; Tan, Huiteng; Srinivasan, Madhavi; Mhaisalkar, Subodh G.; Ramakrishna, Seeram; Yan, Qingyu

    2013-01-01

    Composite films of platinum and polyaniline (Pt/PANI) with different Pt loadings are prepared by chemical reduction and then a spin-coating process on fluorine-doped tin oxide (FTO) substrates. The obtained Pt/PANI transparent counter electrodes are applied in quasi-solid dye-sensitized solar cells (QDSCs) from front and rear light illuminations, using electrospun poly(vinylidenefluoride-co-hexafluoropropylene)/TiO 2 (PVDF-HFP/TiO 2 ) as the electrolyte. The analytical results show that the 1.8-nm sized Pt nanoparticles are distributed uniformly in the Pt/PANI film when the Pt loading is 1.5 μg cm −2 . Electrocatalytic activity of the Pt/PANI electrode with 1.5 μg cm −2 Pt loading for the I 3 − /I − redox reaction is higher than the conventional sputtered Pt electrode. Furthermore, the mean optical transmittance of the Pt/PANI electrodes is above 60% in the wavelength of 400–800 nm. The optimal QDSC composed of Pt/PANI with 1.5 μg cm −2 Pt loading exhibits power conversion efficiencies of 6.34% and 3.85%, when measured using an AM1.5G solar simulator at 100 mW cm −2 under front and rear light illuminations. The efficiencies are both higher than those of the QDSCs employing the conventional sputtered Pt counter electrode with 8.3 μg cm −2 Pt loading. Moreover, the QDSC exhibits superior long-term stability. These promising results make the potential application of Pt/PANI films as cost-effective, transparent counter electrodes

  8. All-solid-state lithium batteries – The Mg2FeH6-electrode LiBH4-electrolyte system

    DEFF Research Database (Denmark)

    Huen, Priscilla; Ravnsbæk, Dorthe B.

    2018-01-01

    The complex hydride Mg2FeH6 is investigated as conversion type anode in a solid-state all-hydride Li-battery employing LiBH4 as solid-state electrolyte. In the solid-state battery, Mg2FeH6 exhibits improvements in the capacity retention and initial Coulombic efficiency of > 3 and > 2.5 times......, respectively, compared to the conventional liquid-electrolyte battery. Through investigations of the conversion reactions of Mg2FeH6, formation of MgH2 as intermediate in the conversion to Mg is discovered the first time. In addition, the effect of mixing procedure for the electrode-electrolyte composite...... on the battery performance is discussed....

  9. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  10. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  11. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  12. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes

    Science.gov (United States)

    He, Xin; Yang, Wenyao; Mao, Xiling; Xu, Lu; Zhou, Yujiu; Chen, Yan; Zhao, Yuetao; Yang, Yajie; Xu, Jianhua

    2018-02-01

    Flexible supercapacitors that maintain electrochemical performance under deformation have attracted much attention for the potential application in the flexible electronics market. A compressible and flexible free-standing electrodes sponge and all-solid-state symmetric supercapacitors based on as-prepared electrodes are presented. The carbon nanotubes (CNTs) framework is synthesized by chemical vapor deposition (CVD) method, and then composited with poly (3,4-ethylenedioxythiophene) PEDOT by the electrodeposition. This CNTs/PEDOT sponge electrode shows highest mass-specific capacitance of 147 Fg-1 at 0.5 A g-1, tuned by the PEDOT mass loading, and exhibits good cyclic stability with the evidence that more than 95% of capacitance is remained after 3000 cycles. Furthermore, the symmetric supercapacitor shows the highest energy density of 12.6 Wh kg-1 under the power density of 1 kW kg-1 and highest power density of 10.2 kW kg-1 with energy density of 8 Wh kg-1, which exhibits both high energy density and power density. The electrochemical performance of composite electrode also indicates that the operate voltage of device could be extend to 1.4 V by the n-doping and p-doping process in different potential of PEDOT component. This flexible supercapacitor maintains stable electrochemical performance working on different bending condition, which shows promising prospect for wearable energy storage applications.

  13. Study on the use of solid electrodes for potentiometric titrations in non-aqueous solvents-I

    International Nuclear Information System (INIS)

    Fatibello Filho, O.; Carvalho, W.M. de; Capelato, M.D.; Bulhoes, L.O.S.; Almeida Neves, E.F. de

    1984-01-01

    Fatty acids and ethanolamines were titrated potentiometrically with tetrabutylammnonium hydroxide in methyl isobutyl ketone-isopropyl alcohol and with perchloric acid in ethanol, respectively. A study of utilization of Sb, Sn, W, PbO 2 , Ti and 316L stainless steel oxides - Ag/AgBr/Bu 4 NBr (x M)/solvent electrode systems have been investigated in comparison with the glass - Ag/AgBr/Bu 4 NBr (x M)/solvent system. The best performance was obtained using W, Sb, PbO 2 and Ti electrodes have yielded a larger potential shift than glass electrode for acid-base titration. (C.L.B.) [pt

  14. Amalgam bonding: visualization and clinical implications of adhesive displacement during amalgam condensation.

    Science.gov (United States)

    Tyler, D W; Thurmeier, J

    2001-01-01

    Resin adhesive was visualized in this in vitro study of amalgam bonding using methylene blue dye incorporated into the resin or by scanning electron microscopy. Class II amalgam cavities were prepared in extracted teeth previously stored in buffered formalin. The preparations were then restored following manufacturers' instructions, but included methylene blue dissolved in ethanol into the adhesive resin mixture. This procedure had little effect on the setting time of the resin. Following condensation and carving, excess resin was incorporated into the body of the restorations as well as onto all adjacent coronal surfaces with significant occlusal and proximal accumulations. Resin also accumulated in significant amounts on the gingival floor of the proximal box and at line angles and retentive grooves within the preparation. In conclusion, radiological studies demonstrated that artifacts produced by resin accumulation at the gingival floor of the box could be mistaken for an open margin or recurrent caries. Other potential clinical consequences of resin residue on tooth surfaces are discussed, including the problem of interproximal ledges and occlusal discrepancies. The incorporation of a radiopaque material in the resin systems should be a universal requirement.

  15. A dose-effect analysis of children's exposure to dental amalgam and neuropsychological function: the New England Children's Amalgam Trial.

    Science.gov (United States)

    Bellinger, David C; Trachtenberg, Felicia; Daniel, David; Zhang, Annie; Tavares, Mary A; McKinlay, Sonja

    2007-09-01

    The New England Children's Amalgam Trial (NECAT) was a five-year randomized trial of 534 6- to 10-year-old children that compared the neuropsychological outcomes of those whose caries were restored using dental amalgam with the outcomes of those those whose caries were restored using mercury-free resin-based composite. The primary intention-to-treat analyses did not reveal significant differences between the treatment groups on the primary or secondary outcomes of the administered psychological tests: Full-Scale IQ score on the Wechsler Intelligence Scale for Children-Third Edition, General Memory Index of the Wide Range Assessment of Memory and Learning, and Visual-Motor Composite of the Wide Range Assessment of Visual Motor Abilities. To determine whether treatment group assignment, a dichotomous measure of exposure, was sufficiently sensitive to detect associations between mercury exposure and these outcomes, the authors conducted analyses to evaluate the associations between the primary and secondary outcomes and two continuously distributed indexes of potential exposure, surface-years of amalgam and urinary mercury excretion. Neither index of mercury exposure was significantly associated with any of the three outcomes. The authors found no evidence that exposure to mercury from dental amalgam was associated with any adverse neuropsychological effects over the five-year period after placement of amalgam restorations. Analyses of the outcomes of the NECAT study indicate that use of dental amalgam was not associated with an increase in children's risk of experiencing neuropsychological dysfunction.

  16. NiCo_2O_4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    International Nuclear Information System (INIS)

    Wang, Ruiqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Highlights: • NiCo_2O_4 nanostructures are prepared via a simple hydrothermal method. • Outer shell of TiN is then grown through conformal atomic layer deposition. • Electrodes exhibit significantly enhanced rate capability with TiN coating. • Solid-state polymer electrolyte is employed to improve cycling stability. • Full devices show a stack power density of 58.205 mW cm"−"3 at 0.061 mWh cm"−"3. - Abstract: Ternary transition metal oxides such as NiCo_2O_4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo_2O_4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo_2O_4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo_2O_4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo_2O_4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm"−"3 at a stack energy density of 0.061 mWh cm"−"3. To the best of our knowledge, these values are the highest of any NiCo_2O_4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo_2O_4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm"−"2. These results illustrate the promise of ALD-assisted hybrid NiCo_2O_4@TiN electrodes within sustainable and integrated energy storage applications.

  17. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  18. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

  19. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    Science.gov (United States)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  20. Synthesis and characterization of a Sr0.95Y0.05TiO3-δ-based hydrogen electrode for reversible solid oxide cells

    KAUST Repository

    Ling, Yihan

    2015-01-01

    Reversible solid oxide cells (RSOCs) can generate electricity as solid oxide fuel cells (SOFC) facing a shortage of electricity and can also store the electricity as solid oxide electrolysis cells (SOEC) at the time of excessive electricity. The composite Sr0.95Y0.05TiO3-δ-Sm0.2Ce0.8O1.9 (SYT-SDC) as the hydrogen electrode provides a promising alternative for a conventional Ni/YSZ. The possible charge compensation mechanism of SYT is described as Sr0.95Y0.05Ti0.95-2δ 4+Ti2δ+0.05 3+O3-δ. The Ti3+ is approximately 11.73% in the reduced SYT by XRD Rietveld refinement, electron paramagnetic resonance (EPR) and thermogravimetry (TG) analysis. Voltage-current curves and impedance spectra are measured as a function of applied voltages to characterize the cells. The bulk resistance (Ro) and the electrode polarization resistance (Rp) at open circuit voltages (OCV) at 750 °C are 9.06 Ω cm2 and 10.57 Ω cm2, respectively. The Ro values have a small amount of changes with small slopes both in the SOFC (-0.29 Ω cm2 V-1) and SOEC mode (0.5 Ω cm2 V-1), whereas the Rp values decrease all the time with the increasing voltages at both the SOFC (-2.59 Ω cm2 V-1) and SOEC mode (-9.65 Ω cm2 V-1), indicating that the electrical conductivity and electro-catalytic property of the SYT-based hydrogen electrode can be improved under the SOEC mode. This journal is

  1. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  2. A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel in ethanol fuel

    International Nuclear Information System (INIS)

    Takeuchi, Regina M.; Santos, Andre L.; Padilha, Pedro M.; Stradiotto, Nelson R.

    2007-01-01

    A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni 2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni 2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni 2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG) 2 complex, whose electrochemical reduction provides the analytical signal. All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10 -9 to 1.0 x 10 -6 mol L -1 with detection limit of 2.0 x 10 -9 mol L -1 . Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 μmol L -1 Ni 2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni 2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni 2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step

  3. Improved orthodontic bonding to silver amalgam. Part 2. Lathe-cut, admixed, and spherical amalgams with different intermediate resins.

    Science.gov (United States)

    Büyükyilmaz, T; Zachrisson, B U

    1998-08-01

    Flat rectangular tabs (n = 270) prepared from spherical (Tytin), admixed (Dispersalloy) or lathe-cut amalgam (ANA 2000) were subjected to aluminum oxide sandblasting with either 50-mu or 90-mu abrasive powder. Mandibular incisor edgewise brackets were bonded to these tabs. An intermediate resin was used, either All-Bond 2 Primers A + B or a 4-META product--Amalgambond Plus (AP) or Reliance Metal Primer (RMP)--followed by Concise. All specimens were stored in water at 37 degrees C for 24 hours and thermocycled 1000 times from 5 degrees C to 55 degrees C and back before tensile bond strength testing. The bond strength of Concise to etched enamel of extracted, caries-free premolars was used as a control. Bond failure sites were classified using a modified adhesive remnant index (ARI) system. Results were expressed as mean bond strength with SD, and as a function relating the probability of bond failure to stress by means of Weibull analysis. Mean tensile bond strength in the experimental groups ranged from 2.9 to 11.0 MPa--significantly weaker than the control sample (16.0 MPa). Bond failure invariably occurred at the amalgam/adhesive interface. The strongest bonds were created to the spherical and lathe-cut amalgams (range 6.8 to 11.0 MPa). Bonds to the spherical amalgam were probably more reliable. The intermediate application of the 4-META resins AP and RMP generally created significantly stronger bonds to all three basic types of amalgam products than the bonds obtained with the All-Bond 2 primers. The effect of abrasive-particle size on bond strength to different amalgam surfaces was not usually significant (p > 0.05). The implications of these findings are discussed in relationship to clinical experience bonding orthodontic attachments to large amalgam restorations in posterior teeth.

  4. Designing a miniaturised heated stage for in situ optical measurements of solid oxide fuel cell electrode surfaces, and probing the oxidation of solid oxide fuel cell anodes using in situ Raman spectroscopy

    KAUST Repository

    Brightman, E.; Maher, R.; Offer, G. J.; Duboviks, V.; Heck, C.; Cohen, L. F.; Brandon, N. P.

    2012-01-01

    A novel miniaturised heated stage for in operando optical measurements on solid oxide fuel cell electrode surfaces is described. The design combines the advantages of previously reported designs, namely, (i) fully controllable dual atmosphere operation enabling fuel cell pellets to be tested in operando with either electrode in any atmosphere being the focus of study, and (ii) combined electrochemical measurements with optical spectroscopy measurements with the potential for highly detailed study of electrochemical processes; with the following advances, (iii) integrated fitting for mounting on a mapping stage enabling 2-D spatial characterisation of the surface, (iv) a compact profile that is externally cooled, enabling operation on an existing microscope without the need for specialized lenses, (v) the ability to cool very rapidly, from 600 °C to 300 °C in less than 5 min without damaging the experimental apparatus, and (vi) the ability to accommodate a range of pellet sizes and thicknesses. © 2012 American Institute of Physics.

  5. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    Science.gov (United States)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  6. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    Science.gov (United States)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating

  7. Novel Amalgams for In-Space Fabrication of Replacement Parts

    Science.gov (United States)

    Cochran, Calvin T.; Van Hoose, James R.; Grugel, R. N.

    2012-01-01

    Being able to fabricate replacement parts during extended space flight missions precludes the weight, storage volume, and speculation necessary to accommodate spares. Amalgams, widely used in dentistry, are potential candidates for fabricating parts in microgravity environments as they are moldable, do not require energy for melting, and do not pose fluid handling problems. Unfortunately, amalgams have poor tensile strength and the room temperature liquid component is mercury. To possibly resolve these issues a gallium-indium alloy was substituted for mercury and small steel fibers were mixed in with the commercial alloy powder. Subsequent microscopic examination of the novel amalgam revealed complete bonding of the components, and mechanical testing of comparable samples showed those containing steel fibers to have a significant improvement in strength. Experimental procedures, microstructures, and test results are presented and discussed in view of further improving properties.

  8. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  9. Longevity of dental amalgam in comparison to composite materials

    Directory of Open Access Journals (Sweden)

    Windisch, Friederike

    2008-11-01

    Full Text Available Health political background: Caries is one of the most prevalent diseases worldwide. For (direct restaurations of carious lesions, tooth-coloured composite materials are increasingly used. The compulsory health insurance pays for composite fillings in front teeth; in posterior teeth, patients have to bear the extra cost. Scientific background: Amalgam is an alloy of mercury and other metals and has been used in dentistry for more than one hundred and fifty years. Composites consist of a resin matrix and chemically bonded fillers. They have been used for about fifty years in front teeth. Amalgam has a long longevity; the further development of composites has also shown improvements regarding their longevity. Research questions: This HTA-report aims to evaluate the longevity (failure rate, median survival time (MST, median age of direct amalgam fillings in comparison to direct composite fillings in permanent teeth from a medical and economical perspective and discusses the ethical, legal and social aspects of using these filling materials. Methods: The systematic literature search yielded a total of 1,149 abstracts. After a two-step selection process based on defined criteria 25 publications remained to be assessed. Results: The medical studies report a longer longevity for amalgam fillings than for composite fillings. However, the results of these studies show a large heterogeneity. No publication on the costs or the cost-effectiveness of amalgam and composite fillings exists for Germany. The economic analyses (NL, SWE, GB report higher costs for composite fillings when longevity is assumed equal (for an observation period of five years or longer for amalgam compared to composite fillings. These higher costs are due to the higher complexity of placing composite fillings. Discussion: Due to different study designs and insufficient documentation of study details, a comparison of different studies on longevity of direct amalgam and composite

  10. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    Science.gov (United States)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  11. Flexible Asymmetric Solid-State Supercapacitors by Highly Efficient 3D Nanostructured α-MnO2 and h-CuS Electrodes.

    Science.gov (United States)

    Patil, Amar M; Lokhande, Abhishek C; Shinde, Pragati A; Lokhande, Chandrakant D

    2018-05-16

    A simplistic and economical chemical way has been used to prepare highly efficient nanostructured, manganese oxide (α-MnO 2 ) and hexagonal copper sulfide (h-CuS) electrodes directly on cheap and flexible stainless steel sheets. Flexible solid-state α-MnO 2 /flexible stainless steel (FSS)/polyvinyl alcohol (PVA)-LiClO 4 /h-CuS/FSS asymmetric supercapacitor (ASC) devices have been fabricated using PVA-LiClO 4 gel electrolyte. Highly active surface areas of α-MnO 2 (75 m 2 g -1 ) and h-CuS (83 m 2 g -1 ) electrodes contribute to more electrochemical reactions at the electrode and electrolyte interface. The ASC device has a prolonged working potential of +1.8 V and accomplishes a capacitance of 109.12 F g -1 at 5 mV s -1 , energy density of 18.9 Wh kg -1 , and long-term electrochemical cycling with a capacity retention of 93.3% after 5000 cycles. Additionally, ASC devices were successful in glowing seven white-light-emitting diodes for more than 7 min after 30 s of charging. Outstandingly, real practical demonstration suggests "ready-to-sell" products for industries.

  12. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    Science.gov (United States)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  13. A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor.

    Science.gov (United States)

    Kim, Tae Yong; Hong, Sung A; Yang, Sung

    2015-03-17

    In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63- as calculated from the cathodic peaks of the SSRE was 6.48 × 10-6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.

  14. Carbon fiber brush electrode as a novel substrate for atmospheric solids analysis probe (ASAP) mass spectrometry: Electrochemical oxidation of brominated phenols.

    Science.gov (United States)

    Skopalová, Jana; Barták, Petr; Bednář, Petr; Tomková, Hana; Ingr, Tomáš; Lorencová, Iveta; Kučerová, Pavla; Papoušek, Roman; Borovcová, Lucie; Lemr, Karel

    2018-01-25

    A carbon fiber brush electrode (CFBE) was newly designed and used as a substrate for both controlled potential electrolysis and atmospheric solids analysis probe (ASAP) mass spectrometry. Electropolymerized and strongly adsorbed products of electrolysis were directly desorbed and ionized from the electrode surface. Electrochemical properties of the electrode investigated by cyclic voltammetry revealed large electroactive surface area (23 ± 3 cm 2 ) at 1.3 cm long array of carbon fibers with diameter 6-9 μm. Some products of electrochemical oxidation of pentabromophenol and 2,4,6-tribromophenol formed a compact layer on the carbon fibers and were analyzed using ASAP. Eleven new oligomeric products were identified including quinones and biphenoquinones. These compounds were not observed previously in electrolyzed solutions by liquid or gas chromatography/mass spectrometry. The thickness around 58 nm and 45 nm of the oxidation products layers deposited on carbon fibers during electrolysis of pentabromophenol and 2,4,6-tribromophenol, respectively, was estimated from atomic force microscopy analysis and confirmed by scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Direct Simulation of Transport Properties from Three-Dimensional (3D) Reconstructed Solid-Oxide Fuel-Cell (SOFC) Electrode Microstructures

    International Nuclear Information System (INIS)

    Gunda, Naga Siva Kumar; Mitra, Sushanta K

    2012-01-01

    A well-known approach to develop a high efficiency solid-oxide fuel-cell (SOFC) consists of extracting the microstructure and transport properties such as volume fractions, internal surface area, geometric connectivity, effective gas diffusivity, effective electronic conductivity and geometric tortuosities from three-dimensional (3D) microstructure of the SOFC electrodes; thereafter, performing the SOFC efficiency calculations using previously mentioned quantities. In the present work, dual-beam focused ion beam - scanning electron microscopy (FIB-SEM) is applied on one of the SOFC cathodes, a lanthanum strontium manganite (LSM) electrode, to estimate the aforementioned properties. A framework for calculating transport properties is presented in this work. 3D microstructures of LSM electrode are reconstructed from a series of two-dimensional (2D) cross-sectional FIB-SEM images. Volume percentages of connected, isolated and dead-ends networks of pore and LSM phases are estimated. Different networks of pore and LSM phases are discretized with tetrahedral elements. Finally, the finite element method (FEM) is applied to calculate effective gas diffusivity and electronic conductivity of pore and LSM phases, respectively. Geometric tortuosities are estimated from the porosity and effective transport properties. The results obtained using FEM are compared with the finite volume method (FVM) results obtained by Gunda et al. [J. Power Sources, 196(7), 35929(2011)] and other numerical results obtained on randomly generated porous medium. Effect of consideration of dead-ends and isolated-ends networks on calculation of effective transport properties is studied.

  16. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

    Science.gov (United States)

    Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.

    2017-08-01

    Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.

  17. Galvanic high temperature cell with solid negative electrode and an electrolyte melt. Galvanische Hochtemperaturzelle mit fester negativer Elektrode und einem Schmelzelektrolyten

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W; Borger, W

    1987-01-08

    The purpose of the invention is to make an electrolyte melt available for high temperature cells (e.g. LiFeS cells), which guarantees ion transport and also acts as a separator. The invention starts from the fact that binary melts of the LiCl/KCl type are only liquid (i.e. without solid components) at a certain temperature at certain concentrations. With suitable mixing conditions, which apart from a eutectic composition, are mainly on the side of one of the two components, one can ensure that this component is present in the solid phase. In this way, a solid framework of LiCl, for example, is formed between the electrode plates in situ as a separator, in the pores of which the excess melt (e.g. LiCl/KCl) can carry out ion conduction. The volumetric ratio of the electrolyte melt in which liquid and solid phases are present at the working temperature of the cell should preferably be in the range of 2:1 to 1:2.

  18. Microleakage of bonded amalgam restorations using different adhesive agents with dye under vacuum: An in vitro study

    Directory of Open Access Journals (Sweden)

    Abhishek Parolia

    2011-01-01

    Clinical Significance: Bonded amalgam restorations prevent over-preparation and reduce the tooth flexure. GIC type I under amalgam provides chemical bonding in between amalgam and tooth structure and thus reduces the microleakage.

  19. Radial multipliers on amalgamated free products of II-factors

    DEFF Research Database (Denmark)

    Möller, Sören

    2014-01-01

    Let ℳi be a family of II1-factors, containing a common II1-subfactor 풩, such that [ℳi : 풩] ∈ ℕ0 for all i. Furthermore, let ϕ: ℕ0 → ℂ. We show that if a Hankel matrix related to ϕ is trace-class, then there exists a unique completely bounded map Mϕ on the amalgamated free product of the ℳi...... with amalgamation over 풩, which acts as a radial multiplier. Hereby, we extend a result of Haagerup and the author for radial multipliers on reduced free products of unital C*- and von Neumann algebras....

  20. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  1. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    OpenAIRE

    Chun Huang; Jin Zhang; Neil P. Young; Henry J. Snaith; Patrick S. Grant

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that u...

  2. Drop amalgam voltammetric study of lead complexation by natural ...

    African Journals Online (AJOL)

    A study of inorganic complexation of lead using drop amalgam voltammetry is described. The study has been carried out in simulated salt lake water and at ionic strength of 7.35 M, the predetermined ionic strength of Lake Katwe. The complexation of lead with the simple ligands (Cl-, CO32-) created anodic waves and the ...

  3. Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS.

    Science.gov (United States)

    Bello, Liciane Toledo; da Ana, Patricia Aparecida; Santos, Dário; Krug, Francisco José; Zezell, Denise Maria; Vieira, Nilson Dias; Samad, Ricardo Elgul

    2017-04-01

    In this work the diffusion of mercury and other elements from amalgam tooth restorations through the surrounding dental tissue (dentin) was evaluated using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). To achieve this, seven deciduous and eight permanent extracted human molar teeth with occlusal amalgam restorations were half-sectioned and analyzed using pulses from a femtosecond laser. The measurements were performed from the amalgam restoration along the amalgam/dentin interface to the apical direction. It was possible to observe the presence of metallic elements (silver, mercury, copper and tin) emission lines, as well as dental constituent ones, providing fingerprints of each material and comparable data for checking the consistence of the results. It was also shown that the elements penetration depth values in each tooth are usually similar and consistent, for both deciduous and permanent teeth, indicating that all the metals diffuse into the dentin by the same mechanism. We propose that this diffusion mechanism is mainly through liquid dragging inside the dentin tubules. The mercury diffused further in permanent teeth than in deciduous teeth, probably due to the longer diffusion times due to the age of the restorations. It was possible to conclude that the proposed femtosecond-LIBS system can detect the presence of metals in the dental tissue, among the tooth constituent elements, and map the distribution of endogenous and exogenous chemical elements, with a spatial resolution that can be brought under 100 µm.

  4. Staining of dentin from amalgam corrosion is induced by demineralization

    NARCIS (Netherlands)

    Scholtanus, J.D.; van der Hoorn, W.; Özcan, M.; Huysmans, M.C.D.N.J.M.; Roeters, J.F.M.; Kleverlaan, C.J.; Feilzer, A.J.

    2013-01-01

    PURPOSE: To evaluate the effect of artificial demineralization upon color change of dentin in contact with dental amalgam. METHODS: Sound human molars (n = 34) were embedded in resin and coronal enamel was removed. Dentin was exposed to artificial caries gel (pH 5.5) at 37 degrees C for 12 weeks (n

  5. Staining of dentin from amalgam corrosion is induced by demineralization

    NARCIS (Netherlands)

    Scholtanus, Johannes D.; van der Hoorn, Wietske; Huysmans, Marie-Charlotte D. N. J. M.; Roeters, Joost F. M.; Kleverlaan, Cornelis J.; Feilzer, Albert J.; Ozcan, Mutlu

    Purpose: To evaluate the effect of artificial demineralization upon color change of dentin in contact with dental amalgam. Methods: Sound human molars (n= 34) were embedded in resin and coronal enamel was removed. Dentin was exposed to artificial caries gel (pH 5.5) at 37 degrees C for 12 weeks (n=

  6. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  7. Are institutional combinations, mergers or amalgamation the answer ...

    African Journals Online (AJOL)

    Many higher and further education institutions in South Africa are struggling to survive in a context of financial stringency, declining student enrolments and increasing competition. For some of these institutions merging or amalgamation with other institutions in the near future is becoming a strong likelihood. The perceptions ...

  8. The problem of motivating teaching staff in a complex amalgamation.

    Science.gov (United States)

    Kenrick, M A

    1993-09-01

    This paper addresses some of the problems brought about by the merger of a number of schools of nursing into a new complex amalgamation. A very real concern in the new colleges of nursing and midwifery in the United Kingdom is the effect of amalgamation on management systems and staff morale. The main focus of this paper is the motivation of staff during this time of change. There is currently a lack of security amongst staff and in many instances the personal job satisfaction of nurse teachers and managers of nurse education has been reduced, which has made the task of motivating staff difficult. Hence, two major theories of motivation and the implications of these theories for managers of nurse education are discussed. The criteria used for the selection of managers within the new colleges, leadership styles and organizational structures are reviewed. The amalgamations have brought about affiliation with higher-education institutions. Some problems associated with these mergers and the effects on the motivation of staff both within the higher-education institutions and the nursing colleges are outlined. Strategies for overcoming some of the problems are proposed including job enlargement, job enrichment, potential achievement rewards and the use of individual performance reviews which may be useful for assessing the ability of all staff, including managers, in the new amalgamations.

  9. The Fiscal Imperative in the Amalgamation of 1914 | Lawal ...

    African Journals Online (AJOL)

    Many historians that have written about Nigeria have shown a great deal of interest in the factors, which accounted for the amalgamation of 1914 by which Nigeria was established as a single political entity. The various works, which have been published, have treated exhaustively the administrative and political factors.1 ...

  10. Surface modification for bonding between amalgam and orthodontic brackets.

    Science.gov (United States)

    Wongsamut, Wittawat; Satrawaha, Sirichom; Wayakanon, Kornchanok

    2017-01-01

    Testing of methods to enhance the shear bond strength (SBS) between orthodontic metal brackets and amalgam by sandblasting and different primers. Three hundred samples of amalgam restorations (KerrAlloy ® ) were prepared in self-cured acrylic blocks, polished, and divided into two groups: nonsandblasted and sandblasted. Each group was divided into five subgroups with different primers used in surface treatment methods, with a control group of bonded brackets on human mandibular incisors. Following the surface treatments, mandibular incisor brackets (Unitek ® ) were bonded on the amalgam with adhesive resin (Transbond XT ® ). The SBS of the samples was tested. The adhesive remnant index (ARI) and failure modes were then determined under a stereo-microscope. Two-way analysis of variance, Chi-square, and Kruskal-Wallis tests were performed to calculate the correlations between and among the SBS and ARI values, the failure modes, and surface roughness results. There were statistically significant differences of SBS among the different adhesive primers and sandblasting methods ( P 0.05). Using adhesive primers with sandblasting together effectively enhances the SBS between orthodontic metal brackets and amalgam. The two primers with the ingredient methacryloxydecyl dihydrogen phosphate (MDP) monomer, Alloy Primer ® and Assure Plus ® , were the most effective. Including sandblasting in the treatment is essential to achieve the bonding strength required.

  11. Coordinating a Large, Amalgamated REU Program with Multiple Funding Sources

    Science.gov (United States)

    Fiorini, Eugene; Myers, Kellen; Naqvi, Yusra

    2017-01-01

    In this paper, we discuss the challenges of organizing a large REU program amalgamated from multiple funding sources, including diverse participants, mentors, and research projects. We detail the program's structure, activities, and recruitment, and we hope to demonstrate that the organization of this REU is not only beneficial to its…

  12. 75 FR 33169 - Dental Devices: Classification of Dental Amalgam, Reclassification of Dental Mercury, Designation...

    Science.gov (United States)

    2010-06-11

    .... FDA-2008-N-0163] (formerly Docket No. 2001N-0067) RIN 0910-AG21 Dental Devices: Classification of Dental Amalgam, Reclassification of Dental Mercury, Designation of Special Controls for Dental Amalgam... the Federal Register of August 4, 2009 (74 FR 38686) which classified dental amalgam as a class II...

  13. Potential of Brass to Remove Inorganic Hg(II) from Aqueous Solution through Amalgamation.

    Science.gov (United States)

    Wenke, Axel; Bollen, Anne; Richard, Jan-Helge; Biester, Harald

    2016-06-01

    Brass shavings (CuZn45) were tested for their efficiency to remove Hg(II) from contaminated groundwater through amalgamation. The study was focused on long-term retention efficiency, the understanding of the amalgamation process and kinetics, and influences of filter surface alteration. Column tests were performed with brass filters (thickness 3 to 9 cm) flushed with 1000 μg/L Hg solution for 8 hours under different flow rates (300 to 600 mL/h). Brass filters consistently removed >98% of Hg from solution independent of filter thickness and flow rate. In a long-term experiment (filter thickness 2 cm), Hg retention decreased from 96 to 92% within 2000 hours. Batch and column experiments for studying kinetics of Hg removal indicate ~100% Hg removal from solution within only 2 hours. Solid-phase mercury thermo-desorption analysis revealed that Hg(0) diffusion into the brass surface controls kinetics of mercury retention. Brass surface alteration could be observed, but did not influence Hg retention.

  14. Infiltration of Spiro-MeOTAD hole transporting material into nanotubular TiO{sub 2} electrode for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmych, Oleksandr, E-mail: alexkuzmych@gmail.com [Faculty of Chemistry, Laboratory of Electrochemistry, University of Warsaw, 02-093 Warsaw (Poland); Johansson, Erik M.J.; Nonomura, Kazuteru [Department of Physical and Analytical Chemistry, Uppsala University, Box 259, 751 05 Uppsala (Sweden); Nyberg, Tomas [The Angstrom Laboratory, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Skompska, Magdalena [Faculty of Chemistry, Laboratory of Electrochemistry, University of Warsaw, 02-093 Warsaw (Poland); Hagfeldt, Anders [Department of Physical and Analytical Chemistry, Uppsala University, Box 259, 751 05 Uppsala (Sweden)

    2014-09-15

    Highlights: • We report infiltration of Spiro-MeOTAD into pores of TiO{sub 2} nanotube (TNT) arrays. • Surface amount of D35 is diffusion limited for TiO{sub 2} mesoporous film but not for TNTs. • Performance of liquid and solid-state solar cells based on TNTs is compared. - Abstract: TiO{sub 2} nanotubes grown by anodic oxidation of Ti thin film deposited on conducting transparent fluoride-doped tin oxide (FTO) substrate were used as a unique geometrically organized template to study the infiltration of Spiro-MeOTAD hole transporting material (HTM) inside straight pores. The TiO{sub 2} nanotube (TNT) array electrode was compared with a mesoporous one in terms of loading with an organic dye of high extinction coefficient. It was shown that it is possible to build a working solid state dye sensitized solar cell device with such a combination of materials and its performance was compared with a device in which the solid state HTM was replaced by a liquid state electrolyte.

  15. Lysine, Arginine, and Histidine Residues in Peptide-Catalyzed Hydrogen Evolution at Mercury Electrodes

    Czech Academy of Sciences Publication Activity Database

    Dorčák, Vlastimil; Vargová, Veronika; Ostatná, Veronika; Paleček, Emil

    2015-01-01

    Roč. 27, č. 4 (2015), s. 910-916 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA15-15479S; GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : AMALGAM ELECTRODES * STRIPPING CHRONOPOTENTIOMETRY * CARBON ELECTRODES Subject RIV: BO - Biophysics Impact factor: 2.471, year: 2015

  16. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor

    Directory of Open Access Journals (Sweden)

    Tae Yong Kim

    2015-03-01

    Full Text Available In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE that was coated with a protective layer of graphene oxide (GO. This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN63− as calculated from the cathodic peaks of the SSRE was 6.48 × 10−6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.

  17. Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode

    DEFF Research Database (Denmark)

    Joon, Narender Kumar; He, Ning; Wagner, Michal

    2017-01-01

    In this work, the influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb2+-selective electrode (Pb2+-ISE) was studied. The effects of bovine serum albumin (BSA) adsorption at the surface of the ion-selective membrane combined...... ions studied (Cu2+, Cd2+). Conditioning of the Pb2+-ISE in 0.01 mol dm–3 PBS resulted in a super-Nernstian response which was related to fixation/extraction of Pb2+ in the ion-selective membrane via precipitation of Pb3(PO4)2 by PO43– anions present in PBS. By conditioning of the Pb2+-ISE in 0.01 mol...

  18. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    Science.gov (United States)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  19. High performance electrodes for reduced temperature solide oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 1. Ni-SDC cermet anode

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T. [Japan Fine Ceramics Center, Nagoya (Japan); Yoshida, H.; Inagaki, T. [The Kansai Electroc Power Co. Inc., Hyogo (Japan); Miura, K. [Kanden Kakou Co. Ltd., Hyogo (Japan)

    2000-03-01

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800 C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm{sup 2}. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode. (orig.)

  20. Evaluation of strontium substituted lanthanum manganite-based solid oxide fuel cell cathodes using cone-shaped electrodes and electrochemical impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Kent Kammer Hansen

    2018-05-01

    Full Text Available Five La1-xSrxMnO3+d-based perovskites (x = 0, 0.05, 0.15, 0.25 and 0.50 were synthesized and investigated by powder XRD, dilatometry and electrochemical impedance spectroscopy measurements and cone-shaped electrode techniques. The thermal expansion coefficient increased with increasing strontium content. It was shown that the total polarization resistance was the lowest for the intermediate compound, La0.95Sr0.05MnO3+d. Two arcs were found in the impedance spectra. These arcs were attributed to two one-electron processes. The results indicate that either Mn(III is the catalytically active species or that the redox capacity is important for the activity of the compounds towards the reduction of oxygen in a solid oxide fuel cell. At higher temperatures, the oxide ionic conductivity may also play a role.

  1. In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite

    Science.gov (United States)

    Lin, Yingxi; Zhang, Haiyan; Deng, Wentao; Zhang, Danfeng; Li, Na; Wu, Qibai; He, Chunhua

    2018-04-01

    For the development of wearable electronic devices, it is crucial to develop energy storage components combining high-capacity and flexibility. Herein, an all-solid-state supercapacitor is prepared through an in-situ "growth and wrapping" method. The electrode contains polyaniline deposited on a carbon woven fabric and wrapped with a graphene-based envelop. The hybrid electrode exhibits excellent mechanical and electrochemical performance. The optimized few layer graphene wrapping layer provides for a conductive network, which effectively enhances the cycling stability as 88.9% of the starting capacitance is maintained after 5000 charge/discharge cycles. Furthermore, the assembled device delivers a high areal capacity (of 790 F cm-2) at the current density of 1 A cm-2, a high areal energy (28.21 uWh cm-2) at the power densities of 0.12 mW cm-2 and shows no significant decrease in the performance with a bending angle of 180°. This unique flexible supercapacitor thus exhibits great potential for wearable electronics.

  2. Maternal-fetal distribution of mercury ( sup 203 Hg) released from dental amalgam fillings

    Energy Technology Data Exchange (ETDEWEB)

    Vimy, M.J.; Takahashi, Y.; Lorscheider, F.L. (Univ. of Calgary, Alberta (Canada))

    1990-04-01

    In humans, the continuous release of Hg vapor from dental amalgam tooth restorations is markedly increased for prolonged periods after chewing. The present study establishes a time-course distribution for amalgam Hg in body tissues of adult and fetal sheep. Under general anesthesia, five pregnant ewes had twelve occlusal amalgam fillings containing radioactive 203Hg placed in teeth at 112 days gestation. Blood, amniotic fluid, feces, and urine specimens were collected at 1- to 3-day intervals for 16 days. From days 16-140 after amalgam placement (16-41 days for fetal lambs), tissue specimens were analyzed for radioactivity, and total Hg concentrations were calculated. Results demonstrate that Hg from dental amalgam will appear in maternal and fetal blood and amniotic fluid within 2 days after placement of amalgam tooth restorations. Excretion of some of this Hg will also commence within 2 days. All tissues examined displayed Hg accumulation. Highest concentrations of Hg from amalgam in the adult occurred in kidney and liver, whereas in the fetus the highest amalgam Hg concentrations appeared in liver and pituitary gland. The placenta progressively concentrated Hg as gestation advanced to term, and milk concentration of amalgam Hg postpartum provides a potential source of Hg exposure to the newborn. It is concluded that accumulation of amalgam Hg progresses in maternal and fetal tissues to a steady state with advancing gestation and is maintained. Dental amalgam usage as a tooth restorative material in pregnant women and children should be reconsidered.

  3. Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings

    International Nuclear Information System (INIS)

    Vimy, M.J.; Takahashi, Y.; Lorscheider, F.L.

    1990-01-01

    In humans, the continuous release of Hg vapor from dental amalgam tooth restorations is markedly increased for prolonged periods after chewing. The present study establishes a time-course distribution for amalgam Hg in body tissues of adult and fetal sheep. Under general anesthesia, five pregnant ewes had twelve occlusal amalgam fillings containing radioactive 203Hg placed in teeth at 112 days gestation. Blood, amniotic fluid, feces, and urine specimens were collected at 1- to 3-day intervals for 16 days. From days 16-140 after amalgam placement (16-41 days for fetal lambs), tissue specimens were analyzed for radioactivity, and total Hg concentrations were calculated. Results demonstrate that Hg from dental amalgam will appear in maternal and fetal blood and amniotic fluid within 2 days after placement of amalgam tooth restorations. Excretion of some of this Hg will also commence within 2 days. All tissues examined displayed Hg accumulation. Highest concentrations of Hg from amalgam in the adult occurred in kidney and liver, whereas in the fetus the highest amalgam Hg concentrations appeared in liver and pituitary gland. The placenta progressively concentrated Hg as gestation advanced to term, and milk concentration of amalgam Hg postpartum provides a potential source of Hg exposure to the newborn. It is concluded that accumulation of amalgam Hg progresses in maternal and fetal tissues to a steady state with advancing gestation and is maintained. Dental amalgam usage as a tooth restorative material in pregnant women and children should be reconsidered

  4. Pengaruh Penambahan Paladium Terhadap Perilaku Thermal Amalgam Tembaga Tinggi Tipe Lathe Cut

    Directory of Open Access Journals (Sweden)

    Ellyza Herda

    2015-09-01

    Full Text Available Effects of additing 1 percent (w/o palladium (Pd on the thermal behavior of a lathe cut type high copper amalgam (13 w/o copper were studied. The identical alloys, with and without 1% Pd were fabricated. X-ray diffraction studies of the amalgams revealed the elimination of the γ2-phase by Pd addition DSC thermogram of non-Pd containing amalgam indicated the existence of two γ1-phaseone with the transition temperature (endothermic peak at 88◦C and the other at 109◦C. The thermogram data of the Pd containing amalgam showed an endothermic peak at 110.7◦C. The transition temperature of the n phase of the palladium containing amalgam is 4.9◦C lower than the transition temperature of the n phase of the non Pd containing amalgam. This result indicates that the n phase of the Pd containing amalgam includes more of Tin (Sn than the non-Pd containing amalgam. The thermogravimetri diagram showed that the phase decomposition occurred at about 390◦C for the non-Pd containing amalgam and at about 410◦C for the Pd containing amalgam. It is concluded that the addition of 1% Pd into a lathe cut type of high copper amalgam (13% could eliminate the formation of γ2 phase as well as an unstable γ1 phase, promoting strong mercury bonding to Silver.

  5. Polyoxometalates@Metal-Organic Frameworks Derived Porous MoO3@CuO as Electrodes for Symmetric All-Solid-State Supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yidong; Lin, Baoping; Wang, Junchuan; Han, Pei; Xu, Tong; Sun, Ying; Zhang, Xueqin; Yang, Hong

    2016-01-01

    Highlights: • Porous MoO 3 @CuO was obtained from POMs@MOFs template. • A good charge capacity of 86.3 mAh g −1 was achieved in 1 M LiOH electrolyte. • The MoO 3 @CuO electrode was assembled into an all-solid-state device. • The introduction of MoO 3 improves the charge capacity. • The MoO 3 @CuO composite has good uniformity and porosity. - Abstract: The demand of uniformity and porosity for composite supercapacitor material has triggered tremendous research efforts for the development of doping method. Herein, we report an effective strategy for homogeneous and polyporous MoO 3 @CuO composite by heating a POMs@MOFs template (POMs = polyoxometalates, MOFs = Metal-organic frameworks), in which the Mo-POMs are incorporated into Cu-MOFs as secondary building units. The excellent doping of MoO 3 to CuO leads to an obvious improvement in specific discharge capacity (from 15.4 mAh g −1 for CuO to 86.3 mAh g −1 for MoO 3 @CuO). The layered structure of MoO 3 plays a key role in providing facilitated ion transport and electron diffusion pathways for the composite material. This electrode demonstrates excellent electrochemical performance with a specific discharge capacity of 86.3 mAh g −1 at 1 A g −1 in 1 M LiOH. When this porous MoO 3 @CuO electrode is assembled into a symmetric all-solid-state device with PVA-LiOH gel polymer, the as-fabricated device demonstrates good performance with an energy density of 7.9 W h kg −1 , power density of 8726 W kg −1 , and excellent cycle life. This work presents a new template to improve the uniformity and porosity of composite metal oxides, which can be used for high-performance supercapacitors.

  6. Production of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells; Producao de conjugados eletrolito-eletrodos para pilhas a combustivel de oxido solido de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, Pedro R.; Silva, Gilmar Clemente; Miranda, Paulo Emilio V. de [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais. Lab. de Hidrogenio], e-mail: vlobos@labh2.coppe.ufrj.br

    2004-07-01

    This article describes the production and characterization of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells. The single cells produced were characterized using scanning electron microscopy and X ray diffractometry, seeking the morphological characterization of the complete device and to verify the stability of the materials used with respect to the processing conditions. (author)

  7. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2015-01-01

    The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electr...

  8. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    Science.gov (United States)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  9. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes.

    Science.gov (United States)

    Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon

    2017-05-23

    A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).

  10. Electrochemical performance of all-solid-state lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes

    International Nuclear Information System (INIS)

    Kitaura, Hirokazu; Hayashi, Akitoshi; Tadanaga, Kiyoharu; Tatsumisago, Masahiro

    2010-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 was applied as a promising material to the all-solid-state lithium cells using the 80Li 2 S.19P 2 S 5 .1P 2 O 5 (mol%) solid electrolyte. The cell showed the first discharge capacity of 115 mAh g -1 at the current density of 0.064 mA cm -2 and retained the reversible capacity of 110 mAh g -1 after 10 cycles. The interfacial resistance was observed in the impedance spectrum of the all-solid-state cell charged to 4.4 V (vs. Li) and the transition metal elements were detected on the solid electrolyte in the vicinity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 by the TEM observations with EDX analyses. The electrochemical performance was improved by the coating of LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles with Li 4 Ti 5 O 12 film. The interfacial resistance was decreased and the discharge capacity was increased from 63 to 83 mAh g -1 at 1.3 mA cm -2 by the coating. The electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 was compared with that of LiCoO 2 , LiMn 2 O 4 and LiNiO 2 in the all-solid-state cells. The rate capability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 was lower than that of LiCoO 2 . However, the reversible capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 at 0.064 mA cm -2 was larger than that of LiCoO 2 , LiMn 2 O 4 and LiNiO 2 .

  11. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  12. Amalgamation of performance indicators to support NRC senior management reviews

    International Nuclear Information System (INIS)

    Wreathall, J.; Schurman, D.; Modarres, M.; Mosleh, A.; Anderson, N.; Reason, J.

    1991-01-01

    The purpose of this project is to develop a methodology for amalgamating performance indicators to provide an overall perspective on plant safety, as one input to Nuclear Regulatory Commission's (NRC) senior management reviews of plant safety. These reviews are used to adjust the level of oversight by NRC. Work completed to date includes the development of frameworks for relating indicator measures to safety, a classification scheme for performance indicators, and a mapping process to portray indicators in the frameworks

  13. A model for amalgamation in group decision making

    Science.gov (United States)

    Cutello, Vincenzo; Montero, Javier

    1992-01-01

    In this paper we present a generalization of the model proposed by Montero, by allowing non-complete fuzzy binary relations for individuals. A degree of unsatisfaction can be defined in this case, suggesting that any democratic aggregation rule should take into account not only ethical conditions or some degree of rationality in the amalgamating procedure, but also a minimum support for the set of alternatives subject to the group analysis.

  14. Radiopaque zones in the dentin beneath amalgam restorations

    International Nuclear Information System (INIS)

    You, Young Jun; Ahn, Hyung Kyu

    1978-01-01

    The purpose of the present investigation is determine how frequently radiopaque zones are seen on standard intraoral film and to research some other things about radiopaque bones. This study obtained the following results: 1. According to the standard intraoral films of the charts that were kept at the Dept. of Oral Diagnosis in Seoul National University Hospital, radiopaque zones were found in the rate of 4.1% among 1150 cases of amalgam-restored teeth that were treated at least two years ago. 2. Out of teeth that possessed radiopaque zones, 38.3% had radiolucent area between amalgam restoration and radiopaque zone. 3. Out of teeth that possessed radiopaque zones, 36.2% had cement base between amalgam restoration and radiopaque zone. 4. Out of teeth that possessed radiopaque zones, no tooth had periapical radiolucency. 5. Radiopaque zones were found more frequently in the mandibular teeth than the maxillary teeth. 6. According to the result of direct x-ray taking of 50 teeth that were treated at least 2 years ago, 6% had radiopaque zone.

  15. The Impact of Amalgamations on Services in Icelandic Municipalities

    Directory of Open Access Journals (Sweden)

    Grétar Thór Eythórsson

    2018-03-01

    Full Text Available This article deals with answering the question whether municipal amalgamations can meet the wishes at the root of the most common motives behind them: to gain cost-efficiency and more quality in the municipal services. The analysis is partly based on a survey among Icelandic local leaders in 2015 and partly on survey among citizens in 8 recently amalgamated municipalities collected with a snowball method through Facebook in the spring and summer 2013. The main results are that the impact of amalgamations on municipal services seems to depend on whether we look at the central or peripheral parts of the municipality. Both leaders and citizens seem to perceive developments of services differently depending on the position in the municipality. In the peripheries, they have significantly more negative view than in the service centres. This has to do with both their evaluation of specific services and their general evaluation of service development. However, in the general evaluation the difference is significantly larger.

  16. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.

    Science.gov (United States)

    Yoo, Seung Joon; Evanko, Brian; Wang, Xingfeng; Romelczyk, Monica; Taylor, Aidan; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D

    2017-07-26

    Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br 2 /Br 3 - . This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.

  17. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors

    Science.gov (United States)

    Liu, Mingkai; Miao, Yue-E.; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-07-01

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as ``bridges'' connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g-1) than the GNR-CNT hybrid (195 F g-1) and neat PANI (283 F g-1) at a discharge current density of 0.5 A g-1. At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  18. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  19. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Doucet, Mathieu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Data Analysis and Visualization Division; Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Vacaliuc, Bogdan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Research Accelerator Division; Baldwin, J. Kevin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Browning, James F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division

    2017-07-24

    In this work we explore how an electrolyte additive (fluorinated ethylene carbonate – FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li+). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent with the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.

  20. Stoichiometric and X-ray diffraction analysis on the γ2→eta' transformation in a dispersant phase silver amalgam

    International Nuclear Information System (INIS)

    Jensen, S.J.; Joergensen, K.D.

    1981-01-01

    Phase composition of an amalgam prepared from a two-particle alloy was determined over a 2-year period by X-ray diffraction. The γ 2 -content decreased from 3.6% to 0.3%, and eta' increased from 3.9% to 10.0%. These alterations in phase content agreed with stoichiometric calculations performed on the basis of the solid state reaction: γ 2 +Ag/Cu→eta'+γ 1 . (author)

  1. Patients’ experiences of changes in health complaints before, during, and after removal of dental amalgam

    Directory of Open Access Journals (Sweden)

    Therese T. Sjursen

    2015-06-01

    Full Text Available In this article, we explore how patients with health complaints attributed to dental amalgam experienced and gave meaning to changes in health complaints before, during, and after removal of all amalgam fillings. We conducted semistructured qualitative interviews with 12 participants from the treatment group in a Norwegian amalgam removal trial. Interviews took place within a couple months of the final follow-up 5 years after amalgam removal. Using the NVivo9 software, we conducted an explorative and reflective thematic analysis and identified the following themes: Something is not working: betrayed by the body, You are out there on your own, Not being sure of the importance of amalgam removal, The relief experienced after amalgam removal, and To accept, to give up, or to continue the search. We discuss the findings in the context of patients’ assigning meaning to illness experiences.

  2. The use of carbon black-TiO2 composite prepared using solid state method as counter electrode and E. conferta as sensitizer for dye-sensitized solar cell (DSSC) applications

    Science.gov (United States)

    Jaafar, Hidayani; Ahmad, Zainal Arifin; Ain, Mohd Fadzil

    2018-05-01

    In this paper, counter electrodes based on carbon black (CB)-TiO2 composite are proposed as a cost-effective alternative to conventional Pt counter electrodes used in dye-sensitized solar cell (DSSC) applications. CB-TiO2 composite counter electrodes with different weight percentages of CB were prepared using the solid state method and coated onto fluorine-doped tin oxide (FTO) glass using doctor blade method while Eleiodoxa conferta (E. conferta) and Nb-doped TiO2 were used as sensitizer and photoanode, respectively, with electrolyte containing I-/I-3 redox couple. The experimental results revealed that the CB-TiO2 composite influenced the photovoltaic performance by enhancing the electrocatalytic activity. As the amount of CB increased, the catalytic activity improved due to the increase in surface area which then led to low charge-transfer resistance (RCT) at the electrolyte/CB electrode interface. Due to the use of the modified photoanode together with natural dye sensitizers, the counter electrode based on 15 wt% CB-TiO2 composite was able to produce the highest energy conversion efficiency (2.5%) making it a viable alternative counter electrode.

  3. Rank gradient and p-gradient of amalgamated free products and HNN extensions

    OpenAIRE

    Pappas, Nathaniel

    2013-01-01

    We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.

  4. Clinical study of the marginal microfiltration in restorations with amalgam applying sealant cavitario

    OpenAIRE

    Lahoud Salem, Víctor; Mendoza Zapata, Janet; Vidal Goñi, Raúl

    2014-01-01

    The present study to evaluate the clinical evaluation, marginal leakage of 30 amalgams restorations with sealers cavity and 30 amalgams restorations not sealers cavity. After of 12 months observation in amalgams restorations with sealers cavity 100% success in marginal leakage and not presents of secondary caries, not to have presents clinical cases of sensitivity post-operative and pulp inflammation. El presente estudio consistió en evaluar clínicamente la microfiltración marginal en 30 r...

  5. Development of a Novel Solid-State Sensor Electrode Based on Titanium Thin Film as an Indicator Electrode in Potentiometric and Conductometric Acid-Base Titration in Aqueous Solution

    OpenAIRE

    Abu Ghalwa, Nasser

    2012-01-01

    A modified Ti/(SnO2 + Sb2O3) electrode was prepared by thermal deposition on titanium substrate and its use as indicator electrode to potentiometric and conductometric acid-base titration in aqueous solution at 298 K was developed. The E-pH curve is linear with slope of 0.0512 V/dec at 298 K. The standard potential of this electrode, E0, was determined with respect to the SCE as reference electrode. The recovery percentages for potentiometric and conductometric acid-base titration for acetic ...

  6. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    Science.gov (United States)

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3-δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ (SFCN) exhibits a conductivity of 63 Scm-1and 60 Scm-1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3-δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3-δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3-δ as the cathode achieved a power density of 423 mWcm-2 at 700 °C indicating that SFCN is a promising anode for SOFCs.

  7. Evaluation of the dental structure loss produced during maintenance and replacement of occlusal amalgam restorations

    Directory of Open Access Journals (Sweden)

    Fernanda Sardenberg

    2008-09-01

    Full Text Available The aim of this in vitro study was to evaluate four different approaches to the decision of changing or not defective amalgam restorations in first primary molar teeth concerning the loss of dental structure. Ditched amalgam restorations (n = 11 were submitted to four different treatments, as follows: Control group - polishing and finishing of the restorations were carried out; Amalgam group - the ditched amalgam restorations were replaced by new amalgam restorations; Composite resin group - the initial amalgam restorations were replaced by composite resin restorations; Flowable resin group - the ditching around the amalgam restorations was filled with flowable resin. Images of the sectioned teeth were made and the area of the cavities before and after the procedures was determined by image analysis software to assess structural loss. The data were submitted to ANOVA complemented by the Student Newman Keuls test (p < 0.05. The cavities in all the groups presented significantly greater areas after the procedures. However, the amalgam group showed more substantial dental loss. The other three groups presented no statistically significant difference in dental structure loss after the re-treatments. Thus, replacing ditched amalgam restorations by other similar restorations resulted in a significant dental structure loss while maintaining them or replacing them by resin restorations did not result in significant loss.

  8. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  9. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  10. Controllable Synthesis of Atomically Thin Type-II Weyl Semimetal WTe2 Nanosheets: An Advanced Electrode Material for All-Solid-State Flexible Supercapacitors.

    Science.gov (United States)

    Yu, Peng; Fu, Wei; Zeng, Qingsheng; Lin, Junhao; Yan, Cheng; Lai, Zhuangchai; Tang, Bijun; Suenaga, Kazu; Zhang, Hua; Liu, Zheng

    2017-09-01

    Compared with 2D S-based and Se-based transition metal dichalcogenides (TMDs), Te-based TMDs display much better electrical conductivities, which will be beneficial to enhance the capacitances in supercapacitors. However, to date, the reports about the applications of Te-based TMDs in supercapacitors are quite rare. Herein, the first supercapacitor example of the Te-based TMD is reported: the type-II Weyl semimetal 1Td WTe 2 . It is demonstrated that single crystals of 1Td WTe 2 can be exfoliated into the nanosheets with 2-7 layers by liquid-phase exfoliation, which are assembled into air-stable films and further all-solid-state flexible supercapacitors. The resulting supercapacitors deliver a mass capacitance of 221 F g -1 and a stack capacitance of 74 F cm -3 . Furthermore, they also show excellent volumetric energy and power densities of 0.01 Wh cm -3 and 83.6 W cm -3 , respectively, superior to the commercial 4V/500 µAh Li thin-film battery and the commercial 3V/300 µAh Al electrolytic capacitor, in association with outstanding mechanical flexibility and superior cycling stability (capacitance retention of ≈91% after 5500 cycles). These results indicate that the 1Td WTe 2 nanosheet is a promising flexible electrode material for high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sintering and Electrical Characterization of La and Nb Co‐doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Agersted, Karsten

    2014-01-01

    Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered...... samples showed that the average grain size increased drastically in reducing conditions with increasing La content (and associated A‐site vacancies). By incorporating 2 mol.% La, the electronic conductivity significantly improved from 80 to 135 S cm−1 at 1,000 °C, and even larger improvements were...... observed at lower temperatures. These observations demonstrate the flexibility in tailoring the microstructure and electronic transport properties by doping small amounts of La into the Nb‐doped SrTiO3 and show that Sr1–3x/2LaxTi0.9Nb0.1O3 is a potential electrode material for solid oxide cells....

  12. Exposure to mercury and silver during removal of amalgam restorations

    International Nuclear Information System (INIS)

    Brune, D.; Hensten-Pettersen, A.; Beltesbrekke, H.

    1980-01-01

    The content of particulate matter and mercury vapor in dentist breathing air during removal of amalgam restorations was assessed. Mercury and silver were quantitatively assayed by nuclerar chemical analysis, and the mercury vapor concentration was measured with a sniffer. When the water spray was not used, the short time threshold limit values for exposure to mercury and silver were exceeded about 10 times. With water spray the mercury content was reduced to a level considerably lower that the threshold limit value, whereas the silver concentration slightly exceeded the corresponding limit. (author)

  13. Exposure to mercury and silver during removal of amalgam restorations

    International Nuclear Information System (INIS)

    Brune, D.; Hensten-Pettersen, A.; Beltesbrekke, H.

    1980-01-01

    The content of particulate matter and mercury vapor in dentist breathing air during removal of amalgam restorations was assessed. Mercury and silver were quantitatively assayed by nuclear chemical analysis, and the mercury vapor concentration was measured with a sniffer. When the water spray was not used, the short time threshold limit values for exposure to mercury and silver were exceeded about 10 times. With water spray the mercury content was reduced to a level considerably lower than the threshold limit value, whereas the silver concentration slightly exceeded the corresponding limit. (author)

  14. A solid-contact Pb{sup 2+}-selective electrode using poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) as ion-to-electron transducer

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shunyang [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Li Fuhai [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Chemistry and Chemical Engineering College, Yantai University, Yantai 264005 (China); Yin Tanji [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Liu Yongming [Chemistry and Chemical Engineering College, Yantai University, Yantai 264005 (China); Pan, Dawei [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Qin Wei, E-mail: wqin@yic.ac.cn [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2011-09-30

    Highlights: {yields} All reagents used for the electrodes preparation were commercially available. {yields} The lower detection limit of the proposed electrode reached subnanomolar levels. {yields} No water film was observed with conventional commercially available PVC ion-sensing membranes. {yields} This research provides an excellent strategy for fabrication of robust polymeric ion sensors. - Abstract: In this work, a novel all-solid-state polymeric membrane Pb{sup 2+}-selective electrode was developed by using for the first time poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade{sup -1} and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.

  15. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository

    Directory of Open Access Journals (Sweden)

    Jordan Daoudi

    2017-06-01

    Full Text Available We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  16. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository.

    Science.gov (United States)

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-06-13

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  17. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  18. A variety of amalgamated allusion in Saeb’s sonnet

    Directory of Open Access Journals (Sweden)

    Siavash Haghjoo

    2014-12-01

    Full Text Available Abstract Poetic figures of speech are among the factors which their prominence in a poet’s poetry makes up his/her specific style. One of the figures of speech and poetic techniques is allusive figures of speech or amalgamated allusions. As the name entails, these are types of figures in which allusion is located at the center and amalgamates with other figures. Such amalgamation brings about a novel complicated figure of speech.  One special type of allusive figures of speech is an allusion which is occasionally amalgamated with metaphor and ambiguity, and at times in addition to metaphor and ambiguity with simile. The origin of this figure, which is recently referred to as “metaphoric ambiguous allusion, is traced back to Hakim baz in Persian literature. Although, poetry of Hafez is replete with metaphoric ambiguous allusion, it is considerably ubiquitous in Indian style in a way that its ignorance especially in Saeb’s poetry implies the denial of one of its foremost stylistic qualities. The mixed nature of this figure and the presence of several robust figures besides each other which are the basis of poetic fantasy and a fantastic presentation is created by combination of these figures. These figures invite readers into a mode of reflection and thinking and opens corridors of fantasy towards him replete with unsurpassable satisfaction. Such amalgamated figure is formed when a poet grants an allusion to a phenomenon which in reality the phenomenon owns such quality but in a different conceptualization. Supposedly, the given figure was Saeb’s major artifact which helped him to fulfill his distinct poetic quality i.e. unsurpassed power of creating vivacious contents. The present article intended to conduct a supplementary reanalysis of “metaphoric ambiguous allusion and its different varieties and examined it in Saeb’s Poetry. Metaphoric ambiguous allusion refers to a metaphor which alludes to something. The characteristics of the

  19. Dental amalgam and cognitive function in older women: findings from the Nun Study.

    Science.gov (United States)

    Saxe, S R; Snowdon, D A; Wekstein, M W; Henry, R G; Grant, F T; Donegan, S J; Wekstein, D R

    1995-11-01

    The authors determined the number and surface area of occlusal dental amalgams in a group of 129 Roman Catholic sisters who were 75 to 102 years of age. Findings from this study of women with relatively homogeneous adult lifestyles and environments suggest that existing amalgams are not associated with lower performance on eight different tests of cognitive function.

  20. Benchmarking Parameter-free AMaLGaM on Functions With and Without Noise

    NARCIS (Netherlands)

    P.A.N. Bosman (Peter); J. Grahl; D. Thierens (Dirk)

    2013-01-01

    htmlabstractWe describe a parameter-free estimation-of-distribution algorithm (EDA) called the adapted maximum-likelihood Gaussian model iterated density-estimation evolutionary algorithm (AMaLGaM-IDEA, or AMaLGaM for short) for numerical optimization. AMaLGaM is benchmarked within the 2009 black

  1. On Reduced Amalgamated Free Products of C*-algebras and the MF-Property

    DEFF Research Database (Denmark)

    Seebach, Jonas A.

    We establish an isomorphism of the group von Neumann algebra of an amalgamated free product of countable Abelian discrete groups. This result is then used to give some new examples of reduced group $ C^* $-algebras which are MF. Finally, we give a characterization of the amalgamated free products...

  2. The amalgam of faith and reason: Euclid’s Elements and the scientific thinker

    DEFF Research Database (Denmark)

    Andrade-Molina, Melissa; Valero, Paola; Ravn, Ole

    2017-01-01

    child intertwines with what was ought to be the ‘scientific thinker’ to Christianity. We focus on how Euclidean geometry, taken as a proper method of inquiry amalgamated with the Christian worldview to provide explanations about the natural world. In modern education, the core of this amalgamation...

  3. Reasons for failure and replacement of class I and class II amalgam ...

    African Journals Online (AJOL)

    Aim: The aim of this study is to evaluate the reasons for failure of amalgam restorations in a teaching hospital. Method: A structured questionnaire was used to obtain information from patients presenting with failed amalgam restorations in the conservative clinic of a teaching hospital. The questionnaire was administered by ...

  4. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-01

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg 2+ ), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg 2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T (25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg 2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg 2+ –T coordination chemistry. The chelated Hg 2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH 4 and Ru(NH 3 ) 6 3+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg 2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg 2+ . The strategy afforded exquisite selectivity for Hg 2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg 2+ in spiked tap-water samples, and the recovery was 87.9–113.8%

  5. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  6. Clinical longevity of extensive direct composite restorations in amalgam replacement : Up to 3.5 years follow-up

    NARCIS (Netherlands)

    Scholtanus, Johannes D.; Ozcan, Mutlu

    Objectives: This prospective clinical trial evaluated the longevity of direct resin composite (DRC) restorations made on stained dentin that is exposed upon removal of existing amalgam restorations in extensive cavities with severely reduced macro-mechanical retention for amalgam replacement.

  7. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  8. Development of a Novel Solid-State Sensor Electrode Based on Titanium Thin Film as an Indicator Electrode in Potentiometric and Conductometric Acid-Base Titration in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Nasser Abu Ghalwa

    2012-01-01

    Full Text Available A modified Ti/(SnO2 + Sb2O3 electrode was prepared by thermal deposition on titanium substrate and its use as indicator electrode to potentiometric and conductometric acid-base titration in aqueous solution at 298 K was developed. The E-pH curve is linear with slope of 0.0512 V/dec at 298 K. The standard potential of this electrode, E0, was determined with respect to the SCE as reference electrode. The recovery percentages for potentiometric and conductometric acid-base titration for acetic acid against NaOH were calculated. The cell constant, specific conductance, and the molar conductance with dilution for some common electrolytes were measured.

  9. An evaluation of a lathe-cut high-copper amalgam alloy.

    Science.gov (United States)

    Knibbs, P J; Plant, C G; Shovelton, D S; Jones, P A

    1987-09-01

    Modification of an amalgam alloy may give rise to improved physical properties. The physical properties of a newly formulated, single-composition lathe-cut amalgam alloy were studied and found to be superior to those of a conventional lathe-cut amalgam alloy. However, such modification in formulation may result in changes in the clinical handling properties of the material. The high-copper amalgam alloy was assessed by a panel of general practitioners who found that the general handling properties of the material were similar to those of conventional lathe-cut amalgam alloys. The longer term performance of the high-copper alloy was assessed by means of a blind, controlled clinical trial carried out by two operators. A 1-year assessment of the resulting restorations and tooth replicas could not distinguish between the high-copper alloy and a conventional alloy. The two alloys had both given good clinical results.

  10. Thiolate monolayers formed on different amalgam electrodes. Part II: Properties and application

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Yosypchuk, O.

    2013-01-01

    Roč. 694, APR 2013 (2013), s. 84-93 ISSN 1572-6657 R&D Projects: GA ČR GAP206/11/1638; GA AV ČR IAA400400806 Institutional support: RVO:61388955 ; RVO:68081707 Keywords : Thiolate monolayer * Reductive desorption * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.871, year: 2013

  11. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  12. Process Optimization for Valuable Metal Recovery from Dental Amalgam Residues

    Directory of Open Access Journals (Sweden)

    C.M. Parra–Mesa

    2009-07-01

    Full Text Available In this paper, the methodology used for optimizing leaching in a semi pilot plant is presented. This leaching process was applied to recover value metals from dental amalgam residues. 23 factorial design was used to characterize the process during the first stage and in the second one, a central compound rotational design was used for modeling copper percentage dissolved, a function of the nitric acid concentration, leaching time and temperature. This model explained the 81% of the response variability, which is considered satisfactory given the complexity of the process kinetics and, furthermore, it allowed the definition of the operation conditions for better copper recovery, which this was of 99.15%, at a temperature of 55°C, a concentration of 30% by weight and a time of 26 hours.

  13. A rationally designed self-standing V2O5 electrode for high voltage non-aqueous all-solid-state symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors.

    Science.gov (United States)

    Ghosh, Meena; Vijayakumar, Vidyanand; Soni, Roby; Kurungot, Sreekumar

    2018-05-10

    The maximum capacitive potential window of certain pseudocapacitive materials cannot be accessed in aqueous electrolytes owing to the low dissociation potential of 1.2 V possessed by water molecules. However, the inferior pseudocapacitance exhibited by the commonly used electrode materials when integrated with non-aqueous electrolytes still remains a challenge in the development of supercapacitors (SC). Proper selection of materials for the electrode and a rational design process are indeed important to overcome these practical intricacies so that such systems can perform well with non-aqueous electrolytes. We address this challenge by fabricating a prototype all-solid-state device designed with high-capacitive V2O5 as the electrode material along with a Li-ion conducting organic electrolyte. V2O5 is synthesized on a pre-treated carbon-fibre paper by adopting an electrochemical deposition technique that effects an improved contact resistance. A judicious electrode preparation strategy makes it possible to overcome the constraints of the low ionic and electrical conductivities imposed by the electrolyte and electrode material, respectively. The device, assembled in a symmetrical fashion, achieves a high specific capacitance of 406 F g-1 (at 1 A g-1). The profitable aspect of using an organic electrolyte is also demonstrated with an asymmetric configuration by using activated carbon as the positive and V2O5 as the negative electrode materials, respectively. The asymmetric device displays a wide working-voltage window of 2.8 V and delivers a high energy density of 102.68 W h kg-1 at a power density of 1.49 kW kg-1. Moreover, the low equivalent series resistance of 9.9 Ω and negligible charge transfer resistance are observed in the impedance spectra, which is a key factor that accounts for such an exemplary performance.

  14. Biomarkers of kidney integrity in children and adolescents with dental amalgam mercury exposure: Findings from the Casa Pia children's amalgam trial

    International Nuclear Information System (INIS)

    Woods, James S.; Martin, Michael D.; Leroux, Brian G.; DeRouen, Timothy A.; Bernardo, Mario F.; Luis, Henrique S.; Leitao, Jorge G.; Kushleika, John V.; Rue, Tessa C.; Korpak, Anna M.

    2008-01-01

    Mercury is toxic to the kidney, and dental amalgam is a source of mercury exposure. Few studies have evaluated the effects of dental amalgam on kidney function in a longitudinal context in children. Here, we evaluated urinary concentrations of glutathione S-transferases (GSTs) α and π as biomarkers of renal proximal and distal tubular integrity, respectively, and albumin as a biomarker of glomerular integrity in children and adolescents 8-18 years of age over a 7-year course of dental amalgam treatment. Five hundred seven children, 8-12 years of age at baseline, participated in a clinical trial to evaluate the neurobehavioral and renal effects of dental amalgam in children. Subjects were randomized to either dental amalgam or resin composite treatments. Urinary GSTs α and π, albumin, and creatinine concentrations were measured at baseline and annually in all subjects. Results were evaluated using linear regression analysis. GST-α concentrations were similar between treatment groups and in each sex and race (white vs. non-white) group in each follow-up year. GST-π levels tended upward over the course of follow-up by four- to six-fold. This increase was seen in all groups irrespective of the treatment, race, or gender. Females had GST-π levels approximately twice those of males at all ages. Albumin concentrations were constant throughout the follow-up period and did not differ by treatment, although females had 39% higher albumin levels than males. Additionally, we found no significant effects of amalgam treatment on the proportion of children with microalbuminuria (>30 mg/g creatinine). These findings are relevant within the context of children's health risk assessment as relates to the safety of mercury exposure from dental amalgam on kidney function. These data also provide normative values for sensitive indices of renal functional integrity that may serve in the evaluation of children and adolescents with renal disorders

  15. Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3-δ oxygen electrode for flexible power generation and hydrogen production

    Science.gov (United States)

    Meng, Xiuxia; Shen, Yichi; Xie, Menghan; Yin, Yimei; Yang, Naitao; Ma, Zi-Feng; Diniz da Costa, João C.; Liu, Shaomin

    2016-02-01

    This work investigates the performance of solid oxide cells as fuel cells (SOFCs) for power production and also as electrolysis cells (SOECs) for hydrogen production. In order to deliver this dual mode flexible operation system, a novel perovskite oxide based on Ga3+ doped SrCo0.8Fe0.1Ga0.1O3-δ (SCFG) is synthesized via a sol-gel method. Its performance for oxygen electrode catalyst was then evaluated. Single solid oxide cell in the configuration of Ni-YSZ|YSZ|GDC|SCFG is assembled and tested in SOFC or SOEC modes from 550 to 850 °C with hydrogen as the fuel or as the product, respectively. GDC is used to avoid the reaction between the electrolyte YSZ and the cobalt-based electrode. Under SOFC mode, a maximum power density of 1044 mW cm-2 is obtained at 750 °C. Further, the cell delivers a stable power output of 650 mW cm-2 up to 125 h at 0.7 V. In the electrolysis mode, when the applied voltage is controlled at 2 V, the electrolysis current density reaches 3.33 A cm-2 at 850 °C with the hydrogen production rate up to 22.9 mL min-1 cm-2 (STP). These results reveal that SCFG is a very promising oxygen electrode material for application in both SOFC and SOEC.

  16. Prenatal exposure to dental amalgam: evidence from the Seychelles Child Development Study main cohort.

    Science.gov (United States)

    Watson, Gene E; Lynch, Miranda; Myers, Gary J; Shamlaye, Conrad F; Thurston, Sally W; Zareba, Grazyna; Clarkson, Thomas W; Davidson, Philip W

    2011-11-01

    Dental amalgams contain approximately 50 percent metallic mercury and emit mercury vapor during the life of the restoration. Controversy surrounds whether fetal exposure to mercury vapor resulting from maternal dental amalgam restorations has neurodevelopmental consequences. The authors determined maternal amalgam restoration status during gestation (prenatal exposure to mercury vapor [Hg(0)]) retrospectively in 587 mother-child pairs enrolled in the Seychelles Child Development Study, a prospective longitudinal cohort study of the effects of prenatal and recent postnatal methylmercury (MeHg) exposure on neurodevelopment. They examined covariate-adjusted associations between prenatal maternal amalgam restoration status and the results of six age-appropriate neurodevelopmental tests administered at age 66 months. The authors fit the models without and with adjustment for prenatal and recent postnatal MeHg exposure metrics. The mean number of maternal amalgam restorations present during gestation was 5.1 surfaces (range, 1-22) in the 42.4 percent of mothers who had amalgam restorations. The authors found no significant adverse associations between the number of amalgam surfaces present during gestation and any of the six outcomes, with or without adjustment for prenatal and postnatal MeHg exposure. Results of analyses with the secondary metric, prenatal amalgam occlusal point scores, showed an adverse association in boys only on a letter- and word-identification subtest of a frequently used test of scholastic achievement, whereas girls scored better on several other tests with increasing exposure. This study's results provide no support for the hypothesis that prenatal Hg(0) exposure arising from maternal dental amalgam restorations results in neurobehavioral consequences in the child. These findings require confirmation from a prospective study of coexposure to MeHg and Hg(0).

  17. The Copper concentration variation to physical properties of high copper amalgam alloy

    Directory of Open Access Journals (Sweden)

    Aminatun Aminatun

    2006-09-01

    Full Text Available The function of copper (Cu inside amalgam is to increase hardness and impact force and to decrease thermal expansion coefficient. In general, amalgam which is used in dentistry and available in the market is contain Cu 22%, while the maximum Cu concentration is 30%. It is necessary to determine the concentration Cu does generate the best physical properties to be used as dental restorative agent. Amalgam is made by mixing blended-metal Ag-Sn-Cu (with Cu concentration of 13%, 21%, 22%, and 29% and Hg, stirred manually in a bowl for 15 minutes,leave it in temperature 27°C for 24 hours to become hardened. The result of X-Ray Diffractometer (XRD, analyzed by Rietveld method and Rietica program, shows amalgam with Cu 29% concentration for Cu3Sn compound density is 31.790 sma/Å3, for Ag2Hg3 compound is 41.733 sma/ Å3, a Cu3Sn relative weight percentage of 43.23%, Ag2Hg3 of 54.54%, Cu 7Hg6 of 2.23% and hardness of Cu 29% is 90.700 ± 0.005 kgf/mm2. These numbers are the highest values on Cu 29% concentrations compared to other copper concentration variants. Whereas amalgam thermal expansion coefficient on Cu 29% is (2.17 ± 0.9110-3 mm/°C is the lowest value compared to other Cu concentration. The conclution is that adding Cu concentration into amalgam will increase density value, Cu3Sn relative weight percentage, hardness level and will decrease amalgam thermal expansion coefficient. Amalgam 29% Cu concentration has better physical properties compared to amalgam Cu 22% concentration.

  18. Investigation of the mechanism of mercury removal from a silver dental amalgam alloy

    Directory of Open Access Journals (Sweden)

    M. DJURDJEVIC

    2004-12-01

    Full Text Available An investigation of silver dental amalgam decomposition and the mercury removal mechanism was performed. The decomposition process was analysed during thermal treatment in the temperature interval from 400 °C to 850 °C and for times from 0.5 to 7.5 h. The chemical compositions of the silver dental amalgam alloy and the treated alloy were tested and microstructure analysis using optical and scanning electron microscopy was carried out. The phases were identified using energy disperse electron probe microanalysis. A mechanism for the mercury removal process from silver dental amalgam alloy is suggested.

  19. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and three-dimensional reduced graphene oxide electrodes with high energy and power densities.

    Science.gov (United States)

    Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei

    2017-10-19

    An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.

  20. Fast and simultaneous determination of Pb2+ and Cu2+ in water samples using a solid paraffin-based carbon paste electrode chemically modified with 2-aminothiazole-silica-gel

    OpenAIRE

    Silva, Daiane H; Costa, Dayane A; Takeuchi, Regina M; Santos, André L

    2011-01-01

    A solid paraffin-based carbon paste electrode modified with 2-aminothiazole functionalized silica-gel was used for simultaneous quantification of Pb2+ and Cu2+ in water samples by anodic stripping voltammetry. The present method uses short preconcentration time (180 s), which allowed reliable and simultaneous quantification of Pb2+ and Cu2+ in a very fast way. Detection limits of 7.3 and 90 nmol L-1 were obtained for Pb2+ and Cu2+, respectively. These values are below their maximum concentrat...

  1. A comparison of glass cermet cement and amalgam restorations in primary molars.

    Science.gov (United States)

    Hickel, R; Voss, A

    1990-01-01

    The aim of this clinical study was to compare the efficacy of GCC with amalgam as a filling material in primary molars. Two hundred fifteen restorations were placed in the first and second primary molars of seventy-four patients, ranging in age from four to ten years. The overall failure rate of amalgam is lower than that of GCC, but not significantly different. In older children, amalgam has greater advantages. An advantage of GCC is the short time required to fill the cavity. This might be an important factor in young and/or difficult children. In these cases amalgam cannot be placed under optimal conditions and, therefore, the results are less satisfactory. GCC is a viable alternative filling material.

  2. Daya Antibakteri Bahan Tumpat Amalgam dan Resin Komposit Berfluor Terhadap Bakteri Streptococcus Mutans Serotipe KPSK2

    Directory of Open Access Journals (Sweden)

    Dewa Ayu Nyoman Putri Artiningsih

    2015-09-01

    Full Text Available This research was carried out to study the difference in the antibacterial capacity of two kinds of filling materials, namely amalgam and composite resin, on S. mutans KPSK2 bacteria with different times of treatment. In total, 48 amalgam and composite resin samples each were prepared and then divided into four groups of treatment. Of each group, 6 samples were used to count the number of bacterial colonies and 6 samples to count the right obstacle zone. The results show that the best antibacterial capacity of composite resin occurred within one week, while for amalgam the best performance appears within one day. The antibacterial capacity of fluorine containing composites is stronger than that of amalgam for a time of 1 to 2 weeks.

  3. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    Science.gov (United States)

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  4. Effect of Magnetic Resonance Imaging on Micro leakage of Amalgam Restorations

    International Nuclear Information System (INIS)

    Sayed, A.I.

    2013-01-01

    Objective: To authenticate whether exposure to magnetic resonance imaging (MRI) can cause micro leakage of amalgam restorations or not. Methods: This prospective in-vitro study study was conducted at Faculty of Oral and Dental Medicine, Cairo University. Thirty-six non-carious human teeth (18 premolars and 18 molars), (26 upper and 10 lower) were gathered from the Oral Surgery Department. Standard class V cavities with all margins in the enamel were made on the buccal and lingual aspects after surface debridement .Three groups of teeth were randomly assigned, each containing 12 teeth. Three types of amalgams were used, GS-80, Rupy Cap and Trend alloy. Each type of amalgams was randomly applied to one group. Each group was divided randomly into two equal categories, one was designed to be the control group and the other was scanned by a 1.5 Tesla MRI Scanner for approximately 5 minutes. Micro leakage was assessed in each group. Three amalgam specimens were scanned using 1.5 Tesla Optima MR360 Scanner .The three specimens were sticked to the superior aspect of the medium spine phantom (one specimen per scan) to induce magnetization transfer contrast to easily visualize these in vitro dental ware containing amalgam. The three specimens were scanned using the same Susceptibility Weighted Angiography (SWAN) technique in different orthogonal orientations (Axial, Coronal and Sagittal) to assess the amalgam induced artifacts during MRI scanning. The primary outcome measure was the micro leakage caused by different types of amalgams during MRI scanning; the second outcome measure was the artifacts that may be encountered by different types of amalgams during MRI scanning .

  5. A 24-month evaluation of amalgam and resin-based composite restorations

    DEFF Research Database (Denmark)

    McCracken, Michael S; Gordan, Valeria V; Litaker, Mark S

    2013-01-01

    Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations.......Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations....

  6. Central centrifugal cicatricial alopecia amalgamated with alopecia areata: immunologic findings

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2014-07-01

    Full Text Available Introduction: Both scarring and non-scarring alopecias exist; however, rare cases demonstrate features of both classes. Case Report: We describe an interesting alopecia case with amalgamated clinical, histologic and immunopathologic features of scarring and non-scarring alopecia. Specifically, the case displays combined features of alopecia areata (AA and of central centrifugal cicatricial alopecia (CCCA. A 36 year old female presented with symmetric, round, patchy hair loss on her scalp. Methods: Biopsies for hematoxylin and eosin (H&E examination, as well as for special stains, direct immunofluorescence (DIF and immunohistochemistry (IHC were performed. Results: The H&E biopsy revealed focally diminished hair follicular units, and sebaceous gland damage. Perifollicular concentric fibrosis was confirmed by Verhoeff elastin special staining. Antibodies to micelles were noted. Positive IHC staining for CD4, CD8, CD45 and multiple proteases and protease inhibitors was noted around selected follicular unit remnants. Conclusion: We present a rare alopecia, combining histologic features of CCCA with additional, selected immunologic features of AA.

  7. Kinetic and thermodynamic study of lithium ternary amalgams in contact with solvated lithium hydroxide

    International Nuclear Information System (INIS)

    Cordova M, M.

    1991-12-01

    Lithium amalgams are used on lithium isotope separation, the process has been studied in its different parameters, but there is no information on the isotopic separation in the presence of ternary metals diluted in the amalgam. The latest voltammetric technique developed for trace analysis is used for the study, to determine the effects of the presence of cadmium, which has been selected on compatibility criteria with the system, in the intermetallic structures of the amalgam. The differential pulse anodic stripping voltammetry indicates the presence of an intermetallic persistent structure after the potassium and lithium oxidation. This structure has a slow formation and destruction rate, with an anionic character, which accounts for the oxidation potential displacement of the amalgamated metals. The activation energy results of amalgam decomposition reaction in contact with water, allows to establish the intermetallic effects on this reaction, raising the energy of the activated state, on condition that there were time to form it. A reaction mechanism is proposed that agrees with these results. The study of the isotopic composition indicates that the intermetallic species affect the thermodynamic equilibrium between the phases in contact. The measurements of the system's isotopic composition do not give exact values for the separation factors, but they establish a difference in the sign of enthalpies of the isotopic equilibria. The enthalpy for the isotopic exchange for the binary amalgam is negative, with a value that agrees with those in the literature. Nevertheless, those of the ternary systems are positive, indicating an endothermic character process. (author)

  8. Comparison of shear bond strength of amalgam bonded to primary and permanent dentin

    Directory of Open Access Journals (Sweden)

    Mahdi S

    2008-06-01

    Full Text Available Amalgam′s non-adhesive characteristics necessitate cavity preparations incorporating retentive features, which often require the removal of non-carious tooth structure. Use of adhesives beneath amalgam restorations, would be helpful to overcome this disadvantage. This study was undertaken to compare the mean shear bond strength of amalgam bonded to primary and permanent dentin, to evaluate the efficacy of amalgam adhesives in pediatric dentistry.27 primary and 28 permanent posterior teeth with intact buccal or lingual surfaces were grounded to expose dentin and wet-polished with 400-grit silicone carbide paper. Scotchbond Multi Purpose Plus adhesive system was applied to the dentin surfaces and light cured. Amalgam was condensed onto the treated dentin through a plastic mold.shear bond strength testing was done using an Instron Universal testing machine, at a crosshead speed of 0.5 mm/min.The data were analyzed by independent samples t-test The difference among the two groups was not statistically significant (p>0.05 Bonded amalgam showed the same level of bond strength to primary and permanent dentin; so, application of amalgam bonding agents in pediatric dentistry can be recommended.

  9. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  10. Sulfur Tolerant Solid Oxide Fuel Cell for Coal Syngas Application: Experimental Study on Diverse Impurity Effects and Fundamental Modeling of Electrode Kinetics

    Science.gov (United States)

    Gong, Mingyang

    With demand over green energy economy, fuel cells have been developed as a promising energy conversion technology with higher efficiency and less emission. Solid oxide fuel cells (SOFC) can utilize various fuels in addition to hydrogen including coal derived sygas, and thus are favored for future power generation due to dependence on coal in electrical industry. However impurities such as sulfur and phosphorous present in coal syngas in parts per million (p.p.m.) levels can severely poison SOFC anode typically made of Ni/yttria-stabilized-zirconia (Ni-YSZ) and limit SOFC applicability in economically derivable fuels. The focus of the research is to develop strategy for application of high performance SOFC in coal syngas with tolerance against trace impurities such as H2S and PH3. To realize the research goal, the experimental study on sulfur tolerant anode materials and examination of various fuel impurity effects on SOFC anode are combined with electrochemical modeling of SOFC cathode kinetics in order to benefit design of direct-coal-syngas SOFC. Tolerant strategy for SOFC anode against sulfur is studied by using alternative materials which can both mitigate sulfur poisoning and function as active anode components. The Ni-YSZ anode was modified by incorporation of lanthanum doped ceria (LDC) nano-coatings via impregnation. Cell test in coal syngas containing 20 ppm H2S indicated the impregnated LDC coatings inhibited on-set of sulfur poisoning by over 10hrs. Cell analysis via X-ray photon spectroscopy (XPS), X-ray diffraction (XRD) and electrochemistry revealed LDC coatings reacted with H2S via chemisorptions, resulting in less sulfur blocking triple--phase-boundary and minimized performance loss. Meanwhile the effects of PH3 impurity on SOFC anode is examined by using Ni-YSZ anode supported SOFC. Degradation of cell is found to be irreversible due to adsorption of PH3 on TPB and further reaction with Ni to form secondary phases with low melting point. The

  11. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells

    Science.gov (United States)

    Ai, Na; He, Shuai; Li, Na; Zhang, Qi; Rickard, William D. A.; Chen, Kongfa; Zhang, Teng; Jiang, San Ping

    2018-04-01

    Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic conducting (MIEC) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite oxides directly assembled on barrier-layer-free yttria-stabilized zirconia (YSZ) electrolyte as highly active and stable oxygen electrodes of SOECs. Electrolysis polarization effectively induces the formation of electrode/electrolyte interface, similar to that observed under solid oxide fuel cell (SOFC) operation conditions. However, in contrast to the significant performance decay under SOFC operation conditions, the cell with directly assembled LSCF oxygen electrodes shows excellent stability, tested for 300 h at 0.5 A cm-2 and 750 °C under SOEC operation conditions. Detailed microstructure and phase analysis reveal that Sr segregation is inevitable for LSCF electrode, but anodic polarization substantially suppresses Sr segregation and migration to the electrode/electrolyte interface, leading to the formation of stable and efficient electrode/electrolyte interface for water and CO2 electrolysis under SOECs operation conditions. The present study demonstrates the feasibility of using directly assembled MIEC cobaltite based oxygen electrodes on barrier-layer-free YSZ electrolyte of SOECs.

  12. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    Science.gov (United States)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  13. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-14

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM(+) on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 ± 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.

  14. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    Science.gov (United States)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  16. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  17. Uptake and accumulation of mercury from dental amalgam in the common goldfish, Carassius auratus

    International Nuclear Information System (INIS)

    Kennedy, C.J.

    2003-01-01

    Exposure of fish to concentrations of dental amalgam typically found in waste discharge leads to mercury accumulation in tissues. - In this study, the bioavailability and accumulation of mercury from external environmental exposure to mixed, cured, milled, sieved and proportioned dental amalgam was examined in the common goldfish, Carassius auratus. Fish were exposed to dental amalgam (particle size range from <0.10 to 3.15 mm) in order to represent the particle size and distribution of that found within the typical dental office wastewater discharge stream. Experimental amalgam water loadings were 0 g/l, 0.5 g/l and 1 g/l in glass aquaria at 15 deg. C for 28 days. Fish tissues were sampled at 5 min and 28 days of exposure, and the liver, brain, muscle and whole body analyzed for total mercury using cold vapor atomic fluorescence spectroscopy. Mercury was found in several tissues examined and generally increased with exposure to higher amounts of dental amalgam. The highest levels were found in the whole body (17.68±5.73 μg/g) followed by the liver (0.80±0.16 μg/g) and muscle (0.47±0.16 μg/g). The lowest concentrations were seen in the brain (0.28±0.19 μg/g). Compared to controls, concentrations in the whole body, muscle and liver in fish exposed for 28 days to the highest concentration of amalgam were 200-, 233-, and 40-fold higher, respectively. This study shows that mercury from an environmental exposure to representative samples of dental amalgam typically found within the dental wastewater discharge stream is bioavailable to fish and may accumulate in internal tissues

  18. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-11-01

    Full Text Available A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1 develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2 investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC; the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU, and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control (p > 0.1, and much greater than RMGI (p < 0.05. Composite with 3% MPC had protein adsorption that was only 1/10 that of control composites (p < 0.05. Composite with 3% MPC had biofilm CFU and lactic acid much lower than control composites (p < 0.05. Biofilm growth, metabolic activity and lactic acid on the new composite with 3% MPC were reduced to the low level of amalgam and RMGI (p > 0.1. In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries.

  19. Uptake and accumulation of mercury from dental amalgam in the common goldfish, Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.J

    2003-03-01

    Exposure of fish to concentrations of dental amalgam typically found in waste discharge leads to mercury accumulation in tissues. - In this study, the bioavailability and accumulation of mercury from external environmental exposure to mixed, cured, milled, sieved and proportioned dental amalgam was examined in the common goldfish, Carassius auratus. Fish were exposed to dental amalgam (particle size range from <0.10 to 3.15 mm) in order to represent the particle size and distribution of that found within the typical dental office wastewater discharge stream. Experimental amalgam water loadings were 0 g/l, 0.5 g/l and 1 g/l in glass aquaria at 15 deg. C for 28 days. Fish tissues were sampled at 5 min and 28 days of exposure, and the liver, brain, muscle and whole body analyzed for total mercury using cold vapor atomic fluorescence spectroscopy. Mercury was found in several tissues examined and generally increased with exposure to higher amounts of dental amalgam. The highest levels were found in the whole body (17.68{+-}5.73 {mu}g/g) followed by the liver (0.80{+-}0.16 {mu}g/g) and muscle (0.47{+-}0.16 {mu}g/g). The lowest concentrations were seen in the brain (0.28{+-}0.19 {mu}g/g). Compared to controls, concentrations in the whole body, muscle and liver in fish exposed for 28 days to the highest concentration of amalgam were 200-, 233-, and 40-fold higher, respectively. This study shows that mercury from an environmental exposure to representative samples of dental amalgam typically found within the dental wastewater discharge stream is bioavailable to fish and may accumulate in internal tissues.

  20. Dental amalgam: effects of alloy/mercury mixing ratio, uses and waste management

    International Nuclear Information System (INIS)

    Kefi, I.; Maria, A.; Sana, J.; Afreen, J.; Adel, S.; Iftikhar, A.; Yawer, A.; Kaleem, M.

    2011-01-01

    Background: Silver dental amalgam is one of the oldest filling materials used in dentistry. The American Dental Association (ADA) has estimated that billions of amalgam restorations have been placed in patients in the last 150 years. Due to the presence of mercury and mishandling during the filling make it more controversial. The objective of this study was to conduct a survey of the use of different brands and to assess any deviations in practice from the hand mixing manual method of elemental mercury and alloy in a pestle/mortar and encapsulated form. Methods: A questionnaire was sent to 250 of randomly selected dental practitioner in various localities of Karachi. Data was analysed to record the specified brands used along with their powder/liquid (P/L) ratio and the different methods for disposing off mercury in this study. Results: The most commonly used form of dispensing method was hand mixing (57%) and only 30% of the dentists followed the manufacturer instruction for hand mixing ratio. Eighty-seven percent of dental amalgam restoration was performed and 13% removed by the dentist per month and the method of disposing the amalgam wastage that 55%, 25%, and 20% dentists were used the sink, bin and other methods respectively in their dental clinics. Conclusion: Amalgam restoration is still popular filling material in the posterior region of the mouth but we need to create awareness among the dentists who do not follow the ADA specifications. (author)

  1. Progressive Amalgamation of Building Clusters for Map Generalization Based on Scaling Subgroups

    Directory of Open Access Journals (Sweden)

    Xianjin He

    2018-03-01

    Full Text Available Map generalization utilizes transformation operations to derive smaller-scale maps from larger-scale maps, and is a key procedure for the modelling and understanding of geographic space. Studies to date have largely applied a fixed tolerance to aggregate clustered buildings into a single object, resulting in the loss of details that meet cartographic constraints and may be of importance for users. This study aims to develop a method that amalgamates clustered buildings gradually without significant modification of geometry, while preserving the map details as much as possible under cartographic constraints. The amalgamation process consists of three key steps. First, individual buildings are grouped into distinct clusters by using the graph-based spatial clustering application with random forest (GSCARF method. Second, building clusters are decomposed into scaling subgroups according to homogeneity with regard to the mean distance of subgroups. Thus, hierarchies of building clusters can be derived based on scaling subgroups. Finally, an amalgamation operation is progressively performed from the bottom-level subgroups to the top-level subgroups using the maximum distance of each subgroup as the amalgamating tolerance instead of using a fixed tolerance. As a consequence of this step, generalized intermediate scaling results are available, which can form the multi-scale representation of buildings. The experimental results show that the proposed method can generate amalgams with correct details, statistical area balance and orthogonal shape while satisfying cartographic constraints (e.g., minimum distance and minimum area.

  2. Facilitating organizational mergers: amalgamation of community care access centres.

    Science.gov (United States)

    Mercer, Kevin

    2008-01-01

    The development of 14 Local Health Integration Networks (LHINs) in Ontario necessitated the re-organization of Community Care Access Centres (CCACs). The achievement of LHIN objectives was contingent upon the organizations responsible for home and long-term care placement being aligned within the LHIN geographic boundaries. This re-alignment required 42 provincial organizations to re-structure, integrate and reduce to 14. This project was focused on the amalgamation of two CCACs in the Waterloo Wellington LHIN. Both were distinctly different due to their organizational evolution, the composition of the region and leadership approach. The different organizational cultures, if not managed properly, could result in a derailing of several current projects that were underway and were also key to the overall health system transformation agenda. A literature search provided a plethora of critiques of organizational change approaches and practical suggestions. Of particular relevance was a report to the Royal Commission on Health Care in 2002 that authenticates the dismal success in health care to meet change objectives. The project included a joint planning day for the leadership teams of the two organizations followed by an Organizational Readiness Assessment conducted by the Canadian Council on Health Services Accreditation (CCHSA). Both activities brought the leadership and staff of Waterloo and Wellington together, started the integration process and solicited staff participation. A follow-up survey of the leadership teams revealed the effectiveness of the project in advancing integration between the two organizations and recognizing organizational cultural differences. The CCHSA Organizational Readiness Assessment process was viewed as an effective means for advancing the integration of the two organizations, particularly as it relates to allowing the staff groups to define for themselves the benefits of the merger. The lack of hard evidence on the benefits of a

  3. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  4. Decomposing one-relator products of cyclic groups into free products with amalgamation

    International Nuclear Information System (INIS)

    Benyash-Krivets, V V

    1998-01-01

    The problem of the decomposition of one-relator products of cyclics into non-trivial free products with amalgamation is considered. Two theorems are proved, one of which is as follows. Let G= 2n =R m (a,b)=1>, where n≥0, m≥2, and R(a,b) is a cyclically reduced word containing b in the free group on a and b. Then G is a non-trivial free product with amalgamation. One consequence of this theorem is a proof of the conjecture of Fine, Levin, and Rosenberger that each two-generator one-relator group with torsion is a non-trivial free product with amalgamation

  5. Mercury content in amalgam tattoos of human oral mucosa and its relation to local tissue reactions

    Energy Technology Data Exchange (ETDEWEB)

    Forsell, M.; Larsson, B.; Ljungqvist, A.; Carlmark, B.; Johansson, O

    1998-02-01

    Mucosal biopsies from 48 patients with and 9 without amalgam tattoos were analysed with respect to their mercury content, distribution of mercury in the tissue, and histological tissue reactions. The distribution of mercury was assessed by auto-metallography (AMG), a silver amplification technique. The mercury content was determined by energy dispersive X-ray fluorescence (EDXRF), a multielemental analysis. Mercury was observed in connective tissue where it was confined to fibroblasts and macrophages, in vessel walls and in structures with the histological character of nerve fibres. A correlation was found between the histopathological tissue reaction, the type of mercury deposition, the intensity of the AMG reaction, and the mercury content. Mercury was also found in patients with amalgam dental fittings but without amalgam tattoos. (au) 24 refs.

  6. Mercury content in amalgam tattoos of human oral mucosa and its relation to local tissue reactions

    International Nuclear Information System (INIS)

    Forsell, M.; Larsson, B.; Ljungqvist, A.; Carlmark, B.; Johansson, O.

    1998-01-01

    Mucosal biopsies from 48 patients with and 9 without amalgam tattoos were analysed with respect to their mercury content, distribution of mercury in the tissue, and histological tissue reactions. The distribution of mercury was assessed by auto-metallography (AMG), a silver amplification technique. The mercury content was determined by energy dispersive X-ray fluorescence (EDXRF), a multielemental analysis. Mercury was observed in connective tissue where it was confined to fibroblasts and macrophages, in vessel walls and in structures with the histological character of nerve fibres. A correlation was found between the histopathological tissue reaction, the type of mercury deposition, the intensity of the AMG reaction, and the mercury content. Mercury was also found in patients with amalgam dental fittings but without amalgam tattoos. (au)

  7. Special aspects of the indirect radiotracer technique when used to study the adsorption and electrochemical reactions of organic substances at solid electrodes

    International Nuclear Information System (INIS)

    Andreev, V.N.; Horanyi, G.; Kazarinov, V.E.

    1986-01-01

    This paper analyzes the possibilities and special aspects of the indirect radiotracer technique with a number of examples. Data are presented concerning the effects of acetic and oxalic acid on chloride ion adsorption on platinized platinum electrodes at a potential E = 0.2 V. The effect on chloride ion adsorption is much larger in the case of oxalic acid, which is evidence for its higher adsorbability on platinum at E = 0.2 V. It is shown that the indirect radiotracer technique offers significant possibilities for studying the electrochemical properties of adsorption products of organic substances

  8. Electrochemical Biosensors Based on Enzymatic Reactor of Silver Solid Amalgam Powder for Measurements in Flow Systems

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Barek, J.; Josypčuk, Bohdan

    2014-01-01

    Roč. 26, č. 8 (2014), s. 1729-1738 ISSN 1040-0397 R&D Projects: GA ČR GAP206/11/1638 Institutional support: RVO:61388955 Keywords : Electrochemical biosensors * flow systems * Amperometry Subject RIV: CG - Electrochemistry Impact factor: 2.138, year: 2014

  9. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  10. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use.

    Science.gov (United States)

    Mortazavi, S M J; Daiee, E; Yazdi, A; Khiabani, K; Kavousi, A; Vazirinejad, R; Behnejad, B; Ghasemi, M; Mood, M Balali

    2008-04-15

    In the 1st phase of this study, thirty patients were investigated. Five milliliter stimulated saliva was collected just before and after MRI. The magnetic flux density was 0.23 T and the duration of exposure of patients to magnetic field was 30 minutes. In the 2nd phase, fourteen female healthy University students who had not used mobile phones before the study and did not have any previous amalgam restorations were investigated. Dental amalgam restoration was performed for all 14 students. Their urine samples were collected before amalgam restoration and at days 1, 2, 3 and 4 after restoration. The mean +/- SD saliva Hg concentrations of the patients before and after MRI were 8.6 +/- 3.0 and 11.3 +/- 5.3 microg L(-1), respectively (p mobile phone. The mean +/- SE urinary Hg concentrations of the students who used mobile phones were 2.43 +/- 0.25, 2.71 +/- 0.27, 3.79 +/- 0.25, 4.8 +/- 0.27 and 4.5 +/- 0.32 microg L(-1) before the amalgam restoration and at days 1, 2, 3 and 4, respectively. Whereas the respective Hg concentrations in the controls, were 2.07 +/- 0.22, 2.34 +/- 0.30, 2.51 +/- 0.25, 2.66 +/- 0.24 and 2.76 +/- 0.32 microg L(-1). It appears that MRI and microwave radiation emitted from mobile phones significantly release mercury from dental amalgam restoration. Further research is needed to clarify whether other common sources of electromagnetic field exposure may cause alterations in dental amalgam and accelerate the release of mercury.

  11. High-field MRI and mercury release from dental amalgam fillings.

    Science.gov (United States)

    Mortazavi, S M J; Neghab, M; Anoosheh, S M H; Bahaeddini, N; Mortazavi, G; Neghab, P; Rajaeifard, A

    2014-04-01

    Mercury is among the most toxic nonradioactive elements which may cause toxicity even at low doses. Some studies showed release of mercury from dental amalgam fillings in individuals who used mobile phone. This study was conducted to assess the effect of high-field MRI on mercury release from dental amalgam filling. We studied two groups of students with identical tooth decays requiring a similar pattern of restorative dentistry. They were exposed to a magnetic flux density of 1.5 T produced by a MRI machine. 16 otherwise healthy students with identical dental decay participated in this study. They underwent similar restorative dentistry procedures and randomly divided into two groups of MRI-exposed and control arms. Urinary concentrations of mercury in the control subjects were measured before (hour 0) and 48 and 72 hrs after amalgam restoration, using cold vapor atomic absorption spectrometry. Urinary concentrations of mercury in exposed individuals were determined before (hour 0), and 24, 48, 72 and 96 hrs after amalgam restoration. Unlike control subjects, they underwent conventional brain MRI (15 min, 99 slices), 24 hrs after amalgam restoration. The mean±SD urinary mercury levels in MRI-exposed individuals increased linearly from a baseline value of 20.70±17.96 to 24.83±22.91 μg/L 72 hrs after MRI. In the control group, the concentration decreased linearly from 20.70±19.77 to 16.14±20.05 μg/L. The difference between urinary mercury in the exposed and control group, 72 hrs after MRI (96 h after restoration),was significant (p=0.046). These findings provide further support for the noxious effect of MRI (exposure to strong magnetic field)and release of mercury from dental amalgam fillings.

  12. High-Field MRI and Mercury Release from Dental Amalgam Fillings

    Directory of Open Access Journals (Sweden)

    SMJ Mortazavi

    2014-04-01

    Full Text Available Mercury is among the most toxic nonradioactive elements which may cause toxicity even at low doses. Some studies showed release of mercury from dental amalgam fillings in individuals who used mobile phone. This study was conducted to assess the effect of high-field MRI on mercury release from dental amalgam filling. We studied two groups of students with identical tooth decays requiring a similar pattern of restorative dentistry. They were exposed to a magnetic flux density of 1.5 T produced by a MRI machine. 16 otherwise healthy students with identical dental decay participated in this study. They underwent similar restorative dentistry procedures and randomly divided into two groups of MRI-exposed and control arms. Urinary concentrations of mercury in the control subjects were measured before (hour 0 and 48 and 72 hrs after amalgam restoration, using cold vapor atomic absorption spectrometry. Urinary concentrations of mercury in exposed individuals were determined before (hour 0, and 24, 48, 72 and 96 hrs after amalgam restoration. Unlike control subjects, they underwent conventional brain MRI (15 min, 99 slices, 24 hrs after amalgam restoration. The mean±SD urinary mercury levels in MRI-exposed individuals increased linearly from a baseline value of 20.70±17.96 to 24.83±22.91 μg/L 72 hrs after MRI. In the control group, the concentration decreased linearly from 20.70±19.77 to 16.14±20.05 μg/L. The difference between urinary mercury in the exposed and control group, 72 hrs after MRI (96 h after restoration,was significant (p=0.046. These findings provide further support for the noxious effect of MRI (exposure to strong magnetic fieldand release of mercury from dental amalgam fillings.

  13. Hierarchically MnO2-Nanosheet Covered Submicrometer-FeCo2O4-Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors.

    Science.gov (United States)

    Zhu, Baogang; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2016-02-01

    The current problem of the still relatively low energy densities of supercapacitors can be effectively addressed by designing electrodes hierarchically on micro- and nanoscale. Herein, we report the synthesis of hierarchically porous, nanosheet covered submicrometer tube forests on Ni foam. Chemical deposition and thermal treatment result in homogeneous forests of 750 nm diameter FeCo2O4 tubes, which after hydrothermal reaction in KMnO4 are wrapped in MnO2-nanosheet-built porous covers. The covers' thickness can be adjusted from 200 to 800 nm by KMnO4 concentration. An optimal thickness (380 nm) with a MnO2 content of 42 wt % doubles the specific capacitance (3.30 F cm(-2) at 1.0 mA cm(-2)) of the bare FeCo2O4-tube forests. A symmetric solid-state supercapacitor made from these binder-free electrodes achieves 2.52 F cm(-2) at 2 mA cm(-2), much higher than reported for capacitors based on similar core-shell nanowire arrays. The large capacitance and high cell voltage of 1.7 V allow high energy and power densities (93.6 Wh kg(-1), 10.1 kW kg(-1)). The device also exhibits superior rate capability (71% capacitance at 20 mA cm(-2)) and remarkable cycling stability with 94% capacitance retention being stable after 1500 cycles.

  14. Solid electrolytes in thermodynamic investigations. Investigation of oxygen pressure effect in Ar + O2 type mixtures on cell potentials with CaF2 electrolyte and oxide electrodes

    International Nuclear Information System (INIS)

    Levitskij, V.A.; Narchuk, N.B.; Kashkarova, S.L.

    1982-01-01

    An experimental test of the P'sub(Osub(2))=P''sub(Osub(2)) condition (P'sub(Osub(2)) and P''sub(Osub(2)) - oxygen pressure above the first and the second electrodes) necessary for reversible work of the cells is carried out with the (-)O 2 , Pt (CaZrO 3 , 0.18CaOx0.82ZrO 2 )CaF 2 CaF 2 CaHfO 3 , HfO 2 , CaF 2 Pt, O 2 (+) cell as an example. The equilibrium potentials of the given cell are shown to be independent from Psub(Osub(2)) value above both electrodes up to the O 2 pressure equal to approximately 1 Pa at Psub(gen.)=Psub(Osub(2))+Psub(Ar)=10sup(5) Pa. Thermodynamic parameters of the CaO+HfO 2 =CaHfO 3 reaction obtained from the E=f(T) dependence in argon atmosphere under Psub(Osub(2))=1-10sup(2) Pa well agree with analogous values determined for the same cell under Psub(Osub(2)) = 10 5 Pa. Comparison of the results obtained by the e. m. f. method with F - - ion electrolyte both in pure oxygen and in argon atmosphere under low Psub(Osub(2)) with the present literature data testify to perspectives of using the cells of this type under controlled low Psub(Osub(2)) values for thermodynamic investigations

  15. Solid-state electrochemiluminescence sensor through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film onto electrode

    International Nuclear Information System (INIS)

    Yun Wen; Xu Ying; Dong Ping; Ma Xiongxiong; He Pingang; Fang Yuzhi

    2009-01-01

    Tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 2+ ) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy) 3 2+ /AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy) 3 2+ . Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy) 3 2+ , AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pK a (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy) 3 2+ . Additionally, these doping Ru(bpy) 3 2+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy) 3 2+ /AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 x 10 -10 M

  16. Solid-state electrochemiluminescence sensor through the electrodeposition of Ru(bpy){sub 3}{sup 2+}/AuNPs/chitosan composite film onto electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yun Wen; Xu Ying; Dong Ping; Ma Xiongxiong [Department of Chemistry, East China Normal University, ZhongShan Road North 3663, Shanghai 20062 (China); He Pingang [Department of Chemistry, East China Normal University, ZhongShan Road North 3663, Shanghai 20062 (China)], E-mail: pghe@chem.ecnu.edu.cn; Fang Yuzhi [Department of Chemistry, East China Normal University, ZhongShan Road North 3663, Shanghai 20062 (China)], E-mail: yuzhi@online.sh.cn

    2009-03-02

    Tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy){sub 3}{sup 2+}) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy){sub 3}{sup 2+}/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy){sub 3}{sup 2+}. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy){sub 3}{sup 2+}, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pK{sub a} (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy){sub 3}{sup 2+}. Additionally, these doping Ru(bpy){sub 3}{sup 2+} in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy){sub 3}{sup 2+}/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 x 10{sup -10} M.

  17. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  18. [The "dental amalgam syndrome" - an environmental somatization Syndrome? A comparison between chronic carbon monoxide intoxication and illness related to dental amalgam].

    Science.gov (United States)

    Leonhardt, T

    2001-01-01

    In 1940, during World War II, restrictions in import of petroleum products to Sweden necessitated the use of producer gas in motor traffic. In the following years, the incidence of acute carbon monoxide intoxications raised steeply. However, many patients with minor but longstanding exposition to producer gas exhibited a neurastenic syndrome (fatigue, headaches and vertigo) thought to be specific. In Stockholm, an epidemic of this syndrome can afterwards be traced to the personal conviction of an internist who also had an important influence on various authorities, leading to a forceful campaign to the public about the dangers of using producer gas. After some years, the frequency and even the existence of a chronic carbon monoxide intoxication was called in question and at the end of the war that diagnosis lost its actuality. In Sweden, oral galvanism attributed to dental amalgam was discussed in mass media in the 1970s, not least by evidence given by some well-known personalities. In the 1980s, the frequency of illness attributed to dental amalgam increased to an important epidemic. The question of the dangers of mercury released from amalgam fillings is still an important issue of debate among dentists and physicians, although the majority remains sceptical. Also medical authorities have found little evidence of the importance of dental amalgam toxicity. A patients organisation, Tandvårdsskadeförbundet, seems to have played a significant part in the acceptance of the syndrome among laymen. Thus, various psychosocial factors seem to have played a role in both syndromes which could thus be conceived as environmental somatization syndromes.

  19. Neurodevelopmental outcomes at 5 years in children exposed prenatally to maternal dental amalgam: the Seychelles Child Development Nutrition Study.

    Science.gov (United States)

    Watson, Gene E; van Wijngaarden, Edwin; Love, Tanzy M T; McSorley, Emeir M; Bonham, Maxine P; Mulhern, Maria S; Yeates, Alison J; Davidson, Philip W; Shamlaye, Conrad F; Strain, J J; Thurston, Sally W; Harrington, Donald; Zareba, Grazyna; Wallace, Julie M W; Myers, Gary J

    2013-01-01

    Limited human data are available to assess the association between prenatal mercury vapor (Hg⁰)) exposure from maternal dental amalgam restorations and neurodevelopment of children. We evaluated the association between maternal dental amalgam status during gestation and children's neurodevelopmental outcomes at 5 years in the Seychelles Child Development Nutrition Study (SCDNS). Maternal amalgam status was determined prospectively in a longitudinal cohort study examining the associations of prenatal exposure to nutrients and methylmercury (MeHg) with neurodevelopment. A total of 236 mother-child pairs initially enrolled in the SCDNS in 2001 were eligible to participate. Maternal amalgam status was measured as number of amalgam surfaces (the primary metric) and number of occlusal points. The neurodevelopmental assessment battery was comprised of age-appropriate tests of cognitive, language, and perceptual functions, and scholastic achievement. Linear regression analysis controlled for MeHg exposure, maternal fatty acid status, and other covariates relevant to child development. Maternal amalgam status evaluation yielded an average of 7.0 surfaces (range 0-28) and 11.0 occlusal points (range 0-40) during pregnancy. Neither the number of maternal amalgam surfaces nor occlusal points were associated with any outcome. Our findings do not provide evidence to support a relationship between prenatal exposure to Hg⁰ from maternal dental amalgam and neurodevelopmental outcomes in children at 5 years of age. © 2013.

  20. The Distribution of Mutans Streptococci in Plaque on the margin of Amalgam, on the Enamel, and on the Surface of Amalgam Restoration

    Directory of Open Access Journals (Sweden)

    Soeherwin Mangundjaja

    2015-10-01

    Full Text Available The aim of the study was to evaluate the level of distribution of mutans streptococci on the margin of amalgam restoration, compared with that on the enamel and on the surface of restoration. It is assumed that the level of distribution of mutans streptococci on the margin will be able to influence the presence of secondary caries. In this study the first molars of 20 patients were treated with amalgam restoration. The mutans streptococci was measured as the percentage of total CFU count in the plaque. The results showed a mean count of 108.8 (SD= 55.2 of mutans streptococci in the margin; 97.7 (SD=63.5 on the enamel; and 61.4 (SD=32.4 on the surface of amalgam restoration. It seems that the level of mutans streptococci on the margin is higher than those on the enamel (p=0.006 as well as higher than those on the surface of (p=0.031. It is suggested that elevated level of mutans streptococci on the margin can indicate risk to secondary caries.

  1. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, S M.J., [Shiraz Univ. of Medical Sciences (Iran, Islamic Republic of). School of Paramedical Sciences; Daiee, E; Yazdi, A; Khiabani, K; Kavousi, A [Rafsanjan Univ. of Medical Sciences (Iran, Islamic Republic of). Dentistry School; Vazirinejad, R [Rafsanjan Univ. of Medical Sciences (Iran, Islamic Republic of). School of Medicine, Community Medicine Dept.; Behnejad, B [Rafsanjan Univ. of Medical Sciences (Iran, Islamic Republic of). School of Paramedical Sciences, Radiologic Technology Dept.; Ghasemi, M [Mashad University of Medical Science (Iran, Islamic Republic of). Imam Reza Hospital, Toxicology Laboratory; Mood, M Balali [Mashad Univ. of Medical Science (Iran, Islamic Republic of). Imam Reza Hospital, Medical Toxicology Research Center

    2008-07-01

    Background: Mercury or Hydrargyrum (Hg) is the most non-radioactive toxic element. Dental amalgam is made up of 50% mercury. Exposure to electromagnetic fields of magnetic resonance imaging (MRI) and microwave radiation emitted from mobile phone use may increase the emission of mercury from dental amalgam fillings. It was thus aimed to study the effects of exposure to MRI and mobile phone use on the mercury release from dental amalgam restorations. Materials and Methods: Following approval of the University Medical Ethics Committee and the informed consents of the subjects, two different studies were undertaken. A-MRI: - Thirty patients (27 F, 3 M) aged 18 to 48 years who had been referred to MRI department of Ali-ebn Abitaleb Teaching Hospital and had at least four amalgam restorated teeth, were investigated. Five ml stimulated saliva was collected just before and after MRI. The magnetic flux density was 0.23 T, and the duration of exposure of patients to magnetic field was 30 minutes. B-Mobile phone Use: Fourteen female healthy University students aged 19-23 years, who had not used mobile phones before the study and did not have any previous amalgam restorations but had decays in at least four teeth were investigated. Their urine samples were collected before amalgam restoration, and at days 1, 2, 3 and 4 after restoration. Dental amalgam restoration was performed for all 14 students (2 molars on one side, one class I and one class II restorations with identical volume and surface area of the amalgam fillings). The students randomly divided into two equal groups. The test group students were exposed to microwave radiation emitted from a Nokia 3310 mobile phone (SAR=0.96 W kg{sup -1}) that was operated in talk mode for 15 min every day at days 1-4 after restoration. The other seven female age matched students who served as controls sham exposed to microwave radiation. For each subject, a questionnaire regarding their possible sources of exposure to electromagnetic

  2. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.; Daiee, E.; Yazdi, A.; Khiabani, K.; Kavousi, A.; Vazirinejad, R.; Behnejad, B.; Ghasemi, M.; Mood, M. Balali

    2008-01-01

    Background: Mercury or Hydrargyrum (Hg) is the most non-radioactive toxic element. Dental amalgam is made up of 50% mercury. Exposure to electromagnetic fields of magnetic resonance imaging (MRI) and microwave radiation emitted from mobile phone use may increase the emission of mercury from dental amalgam fillings. It was thus aimed to study the effects of exposure to MRI and mobile phone use on the mercury release from dental amalgam restorations. Materials and Methods: Following approval of the University Medical Ethics Committee and the informed consents of the subjects, two different studies were undertaken. A-MRI: - Thirty patients (27 F, 3 M) aged 18 to 48 years who had been referred to MRI department of Ali-ebn Abitaleb Teaching Hospital and had at least four amalgam restorated teeth, were investigated. Five ml stimulated saliva was collected just before and after MRI. The magnetic flux density was 0.23 T, and the duration of exposure of patients to magnetic field was 30 minutes. B-Mobile phone Use: Fourteen female healthy University students aged 19-23 years, who had not used mobile phones before the study and did not have any previous amalgam restorations but had decays in at least four teeth were investigated. Their urine samples were collected before amalgam restoration, and at days 1, 2, 3 and 4 after restoration. Dental amalgam restoration was performed for all 14 students (2 molars on one side, one class I and one class II restorations with identical volume and surface area of the amalgam fillings). The students randomly divided into two equal groups. The test group students were exposed to microwave radiation emitted from a Nokia 3310 mobile phone (SAR=0.96 W kg -1 ) that was operated in talk mode for 15 min every day at days 1-4 after restoration. The other seven female age matched students who served as controls sham exposed to microwave radiation. For each subject, a questionnaire regarding their possible sources of exposure to electromagnetic

  3. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  4. When Old and New Regionalism Collide: Deinstitutionalization of Regions and Resistance Identity in Municipality Amalgamations

    Science.gov (United States)

    Zimmerbauer, Kaj; Paasi, Anssi

    2013-01-01

    Regions as well as their identities and borders are social and discursive constructs that are produced and removed in contested, historically contingent and context-bound processes of institutionalization and deinstitutionalization. This article studies the deinstitutionalization of regions in the context of municipality amalgamations and the…

  5. An Empirical Consideration of a Balanced Amalgamation of Learning Strategies in Graduate Introductory Statistics Classes

    Science.gov (United States)

    Vaughn, Brandon K.

    2009-01-01

    This study considers the effectiveness of a "balanced amalgamated" approach to teaching graduate level introductory statistics. Although some research stresses replacing traditional lectures with more active learning methods, the approach of this study is to combine effective lecturing with active learning and team projects. The results of this…

  6. Amalgam shear bond strength to dentin using single-bottle primer/adhesive systems.

    Science.gov (United States)

    Cobb, D S; Denehy, G E; Vargas, M A

    1999-10-01

    To evaluate the in vitro shear bond strengths (SBS) of a spherical amalgam alloy (Tytin) to dentin using several single-bottle primer/adhesive systems both alone: Single Bond (SB), OptiBond Solo (Sol), Prime & Bond 2.1 (PB), One-Step (OS) and in combination with the manufacturer's supplemental amalgam bonding agent: Single Bond w/3M RelyX ARC (SBX) and Prime & Bond 2.1 w/Amalgam Bonding Accessory Kit (PBA). Two, three-component adhesive systems, Scotchbond Multi-Purpose (SBMP) and Scotchbond Multi-Purpose Plus w/light curing (S + V) and w/o light curing (S+) were used for comparison. One hundred eight extracted human third molars were mounted lengthwise in phenolic rings with acrylic resin. The proximal surfaces were ground to expose a flat dentin surface, then polished to 600 grit silicon carbide paper. The teeth were randomly assigned to 9 groups (n = 12), and dentin surfaces in each group were treated with an adhesive system according to the manufacturer's instructions, except for S + V specimens, where the adhesive was light cured for 10 s before placing the amalgam. Specimens were then secured in a split Teflon mold, having a 3 mm diameter opening and amalgam was triturated and condensed onto the treated dentin surfaces. Twenty minutes after condensation, the split mold was separated. Specimens were placed in distilled water for 24 hrs, then thermocycled (300 cycles, between 5 degrees C and 55 degrees C, with 12 s dwell time). All specimens were stored in 37 degrees C distilled water for 7 days, prior to shear strength testing using a Zwick Universal Testing Machine at a cross-head speed of 0.5 mm/min. The highest to the lowest mean dentin shear bond strength values (MPa) for the adhesive systems tested were: S + V (10.3 +/- 2.3), SBX (10.2 +/- 3.5), PBA, (6.4 +/- 3.6), SOL (5.8 +/- 2.5), SBMP (5.7 +/- 1.8), S+ (4.8 +/- 2.3), PB (2.7 +/- 2.6), SB (2.7 +/- 1.1) and OS (2.5 +/- 1.8). One-way ANOVA and Duncan's Multiple Range Test indicated significant

  7. A REFLECTION ON THE WAVE OF AMALGAMATIONS IN THE ROMANIAN HEALTH SECTOR

    Directory of Open Access Journals (Sweden)

    Ina MITU

    2014-12-01

    Full Text Available In the context of New Public Management (NPM and good governance, in the last decade the Romanian public health system has undergone a reform process. One of its consequences is the wave of public hospitals amalgamations that have occurred especially since the adoption of the new health law. Thus, in 2011 the Ministry of Health has made public a list of proposed amalgamations of hospitals (around 25% from total hospitals with beds that existed in that period. The aim of this research is to examine the wave of hospital mergers that occurred in Romania between 2011 and 2012. In particular, the study focuses on the drivers, social impact, typology and purpose of the analysed amalgamations. The study uses primary resources documents and it is based on a content analysis of 25 Government Decisions and Substantiation Notes from 2011 to 2012. An important generalization of the paper is that all the amalgamations from the analysed period are involuntary and are selected on territorial criteria and depending on the distance, the specific health services for the purpose of efficient use of human and material resources in order to enhance public health services. Additionally, the expected social impact of these events is materialized mainly in improving the quality of medical services provided to the population and providing unconditional access to medical services for policyholders. The expected changes include: reduction of staff costs; efficient use of public services; classifying the amalgamated hospitals in a higher category; reduction of management positions; optimizing medical activity in terms of economic efficiency; and achieving a management capable of the best use of existing financial resources.

  8. Nordic dentists' opinions on the safety of amalgam and other dental restorative materials.

    Science.gov (United States)

    Widström, E; Haugejorden, O; Sundberg, H; Birn, H

    1993-08-01

    The safety of amalgam and other restorative materials has caused concern among dental patients in recent years. The aim of this study was to obtain information on dentists' perceived competence in handling different filling materials and their opinions on the safety of these. A random sample of practising dentists in Denmark, Finland, Norway, and Sweden received a mail questionnaire in spring 1990. Answers were received from 1732 dentists (65%). The study showed that the respondents believed that their theoretic knowledge and clinical skills were generally at a high level regarding restorative materials. The risks of the side-effects of gold, ceramic materials, and glass ionomer were considered to be low by about 90% of the respondents. Amalgam was considered to be significantly more hazardous by the Swedish respondents than the others. Interestingly, composite was considered to be associated with a high risk of side-effects by about half of the dentists in all Nordic countries. The dentists' opinions were not found to be greatly influenced by their sex, age, or place of residence but rather by their country and service sector. Against the background of the present lack of scientific evidence on the hazardousness of amalgam or other restorative materials for patients' general health, these findings indicate that dentists are influenced by discussions in the mass media about dental treatment and materials and, of course, by the guidelines given by the health authorities in their own countries. Few dentists were shown to be concerned about occupational risks associated with the use of amalgam, and they had not had their own amalgam fillings replaced.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Effect of radiofrequency radiation from Wi-Fi devices on mercury release from amalgam restorations.

    Science.gov (United States)

    Paknahad, Maryam; Mortazavi, S M J; Shahidi, Shoaleh; Mortazavi, Ghazal; Haghani, Masoud

    2016-01-01

    Dental amalgam is composed of approximately 50% elemental mercury. Despite concerns over the toxicity of mercury, amalgam is still the most widely used restorative material. Wi-Fi is a rapidly using local area wireless computer networking technology. To the best of our knowledge, this is the first study that evaluates the effect of exposure to Wi-Fi signals on mercury release from amalgam restorations. Standard class V cavities were prepared on the buccal surfaces of 20 non-carious extracted human premolars. The teeth were randomly divided into 2 groups (n = 10). The control group was stored in non-environment. The specimens in the experimental groups were exposed to a radiofrequency radiation emitted from standard Wi Fi devices at 2.4 GHz for 20 min. The distance between the Wi-Fi router and samples was 30 cm and the router was exchanging data with a laptop computer that was placed 20 m away from the router. The concentration of mercury in the artificial saliva in the groups was evaluated by using a cold-vapor atomic absorption Mercury Analyzer System. The independent t test was used to evaluate any significant differences in mercury release between the two groups. The mean (±SD) concentration of mercury in the artificial saliva of the Wi-Fi exposed teeth samples was 0.056 ± .025 mg/L, while it was only 0.026 ± .008 mg/L in the non-exposed control samples. This difference was statistically significant (P =0.009). Exposure of patients with amalgam restorations to radiofrequency radiation emitted from conventional Wi-Fi devices can increase mercury release from amalgam restorations.

  10. The effect of rebonding and liner type on microleakage of Class V amalgam restorations

    Directory of Open Access Journals (Sweden)

    Moosavi H.

    2008-10-01

    Full Text Available Background and Aim: Application of varnish and dentin bonding agents can effectively reduce microleakage under amalgam restorations. Also rebonding may show some effects on microleakage and its complications. The aim of this study was to evaluate the effect of liner/ adhesives on microleakage of Class V amalgam restoration with or without rebonding. Materials and Methods: In this in vitro study Class V cavities were prepared on sixty sound human maxillary premolars with the gingival floor 1mm below the CEJ. Cases were divided into six groups of ten teeth each. Specimens in group 1 and 2 were lined with Copalite and Scotchbond Multi-Purpose (SBMP respectively. In the third group (control no liner was applied. The teeth were then restored with spherical amalgam. Specimens in group 4 to 6 received the same treatments but after filling, the interfaces of restorations and teeth were etched with 37% phosphoric acid gel, rinsed and dried. Adhesive resin of SBMP was applied over amalgam and tooth margins and polymerized (rebonding. Specimens were thermocycled, exposed to dye and sectioned. Microleakage was graded (0-3 using a stereomicroscope at X40 magnification. Data were analyzed with Kruskal-Wallis, Mann-Whitney and Wilcoxon pair wise statistical tests. P<0.05 was considered as the limit of significance. Results: The groups lined with SBMP showed the lowest and the groups without liner the highest microleakage (p= 0.001. Significant difference was observed in microleakage mean rank of enamel and dentin margins (p=0.048. Rebonding with resin did not improve the seal (p> 0.05. Conclusion: Based on the results of this study, total etch adhesive system had significant effect on microleakage of Class V amalgam restorations especially in cervical margin. Rebonding did not show a significant effect on microleakage.

  11. Co3O4/MnO2/Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Li, Xuemei; Dong, Fang; Xu, Nengneng; Zhang, Tao; Li, Kaixi; Qiao, Jinli

    2018-05-09

    The design of efficient, durable, and affordable catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is very indispensable in liquid-type and flexible all-solid-state zinc-air batteries. Herein, we present a high-performance bifunctional catalyst with cobalt and manganese oxides supported on porous carbon (Co 3 O 4 /MnO 2 /PQ-7). The optimized Co 3 O 4 /MnO 2 /PQ-7 exhibited a comparable ORR performance with commercial Pt/C and a more superior OER performance than all of the other prepared catalysts, including commercial Pt/C. When applied to practical aqueous (6.0 M KOH) zinc-air batteries, the Co 3 O 4 /MnO 2 /porous carbon hybrid catalysts exhibited exceptional performance, such as a maximum discharge peak power density as high as 257 mW cm -2 and the most stable charge-discharge durability over 50 h with negligible deactivation to date. More importantly, a series of flexible all-solid-state zinc-air batteries can be fabricated by the Co 3 O 4 /MnO 2 /porous carbon with a layer-by-layer method. The optimal catalyst (Co 3 O 4 /MnO 2 /PQ-7) exhibited an excellent peak power density of 45 mW cm -2 . The discharge potentials almost remained unchanged for 6 h at 5 mA cm -2 and possessed a long cycle life (2.5 h@5 mA cm -2 ). These results make the optimized Co 3 O 4 /MnO 2 /PQ-7 a promising cathode candidate for both liquid-type and flexible all-solid-state zinc-air batteries.

  12. Estimation of current constriction losses via 3D tomography reconstructions in electrochemical devices: a case study of a solid oxide cell electrode/electrolyte interface

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jørgensen, Peter Stanley

    2017-01-01

    In the present study, the methodology for accurate estimations of the current constriction resistance in solid state electrochemical devices via 3D tomography reconstructions is developed. The methodology is used to determine the current constriction resistances at the Ni:YSZ anode/YSZ electrolyte...... of the electrolyte thickness. The obtained results on current constriction resistances from numerical calculations on a 3D reconstruction of a Ni:YSZ anode/YSZ electrolyte assembly is compared with existing models with analytical expressions. The comparison shows, that the assumptions of existing models are by far...

  13. Methods for using atomic layer deposition to produce a film for solid state electrolytes and protective electrode coatings for lithium batteries

    Science.gov (United States)

    Elam, Jeffrey W.; Meng, Xiangbo

    2018-03-13

    A method for using atomic layer deposition to produce a film configured for use in an anode, cathode, or solid state electrolyte of a lithium-ion battery or a lithium-sulfur battery. The method includes repeating a cycle for a predetermined number of times in an inert atmosphere. The cycle includes exposing a substrate to a first precursor, purging the substrate with inert gas, exposing the substrate to a second precursor, and purging the substrate with inert gas. The film is a metal sulfide.

  14. Wet-process Fabrication of Low-cost All-solid Wire-shaped Solar Cells on Manganese-plated Electrodes

    International Nuclear Information System (INIS)

    Fan, Xing; Zhang, Xiaoying; Zhang, Nannan; Cheng, Li; Du, Jun; Tao, Changyuan

    2015-01-01

    Highlights: • All-solid wire-shaped flexible solar cells are firstly assembled on low-cost Mn-plated fibers. • Energy efficiency improved by >27% after coating a layer of Mn on various substrates. • The cell is fabricated via wet process under low temperature and mild pH conditions. • Stable flexible solar cells are realized on lightweight and low-cost polymer fiber. - Abstract: All-solid wire-shaped flexible solar cells are assembled for the first time on low-cost Mn-plated wires through wet-process fabrication under low temperature and mild pH conditions. With a price cheap as the steel, metal Mn can be easily plated on almost any substrates, and evidently promote the photovoltaic efficiency of wire-shaped solar cells on various traditional metal wire substrates, such as Fe and Ti, by 27% and 65%, respectively. Flexible solar cell with much lower cost and weight is assembled on Mn-plated polymer substrate, and is still capable of giving better performance than that on Fe or Ti substrate. Both its mechanical and chemical stability are good for future weaving applications. Owing to the wire-type structure, such low-cost metals as Mn, which are traditionally regarded as unsuitable for solar cells, may provide new opportunities for highly efficient solar cells

  15. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  16. [A study of different polishing techniques for amalgams and glass-cermet cement by scanning electron microscope (SEM)].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G; Argiri, G

    1989-01-01

    Finishing and polishing an amalgam restoration, is considered as an important and necessary step of the restorative procedure. Various polishing techniques have been recommended to success a smooth amalgam surface. The aim of this study was to investigate the influence of three different polishing treatments on the marginal integrity and surface smoothness of restorations made of three commercially available amalgams and a glass-cermet cement. The materials used were the amalgams, Amalcap (Vivadent), Dispersalloy (Johnson and Johnson), Duralloy (Degussa) and the glass-cermet Katac-Silver (ESPE). The occlusal surfaces of the restorations were polished by the methods: I) round bur, No4-rubber cup-zinc oxide paste in a small brush, II) round bur No 4-bur-brown, green and super green (Shofu) polishing cups and points successively and III) amalgam polishing bur of 12-blades-smooth amalgam polishing bur. Photographs from unpolished and polished surfaces of the restorations, were taken with scanning electron microscope, to evaluate the polishing techniques. An improvement of marginal integrity and surface smoothness of all amalgam restorations was observed after the specimens had been polished with the three techniques. Method II, included Shofu polishers, proved the best results in comparison to the methods I and III. Polishing of glass-cermet cement was impossible with the examined techniques.

  17. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  18. Effect of samaria-doped ceria (SDC) interlayer on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ/SDC composite oxygen electrode for reversible solid oxide fuel cells

    International Nuclear Information System (INIS)

    Shimura, Kazuki; Nishino, Hanako; Kakinuma, Katsuyoshi; Brito, Manuel E.; Uchida, Hiroyuki

    2017-01-01

    In order to establish clear criteria for designing highly active and highly durable oxygen electrode for reversible solid oxide fuel cells, we have focused on the effect of samaria-doped ceria (SDC) interlayers prepared on YSZ solid electrolyte surface on the performances of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF)-SDC composite oxygen electrode. Symmetrical cells with the configuration, LSCF-SDC|SDC interlayer|YSZ|SDC interlayer|LSCF-SDC, were constructed. We prepared two kinds of SDC interlayers, one from a mixed solution of cerium 2-ethylhexanoate (denoted as octoate) and samarium octoates (o-interlayer) and another from a mixed solution of cerium and samarium nitrates (n-interlayer). The LSCF-SDC electrodes with o-interlayer and n-interlayer exhibited very similar performances in both the anodic and cathodic reactions at 900 °C. When temperature was decreased to 800 °C, an increase in overpotentials was observed. However, the LSCF-SDC electrode with o-interlayer exhibited superior performance to that with n-interlayer. It was found that the entire surface of the YSZ electrolyte disk was well covered with a dense o-interlayer of uniform thickness. Such an interlayer enables uniform transport of oxide ions to and from the LSCF-SDC electrode, resulting in an enlarged effective reaction zone (ERZ). The I-E performance of the LSCF-SDC|o-interlayer|YSZ cell was found to be comparable to that of the identical electrode prepared on a dense SDC sintered electrolyte disk (as a reference). This observation supports our views regarding the essential role of a dense interlayer with uniform thickness in enhancing the performance of reversible solid oxide cells.

  19. Comparison of chlorine and chloramine in the release of mercury from dental amalgam.

    Science.gov (United States)

    Stone, Mark E; Scott, John W; Schultz, Stephen T; Berry, Denise L; Wilcoxon, Monte; Piwoni, Marv; Panno, Brent; Bordson, Gary

    2009-01-01

    The purpose of this project was to compare the ability of chlorine (HOCl/OCl(-)) and monochloramine (NH(2)Cl) to mobilize mercury from dental amalgam. Two types of amalgam were used in this investigation: laboratory-prepared amalgam and samples obtained from dental-unit wastewater. For disinfectant exposure simulations, 0.5 g of either the laboratory-generated or clinically obtained amalgam waste was added to 250 mL amber bottles. The amalgam samples were agitated by end-over-end rotation at 30 rpm in the presence of 1 mg/L chlorine, 10 mg/L chlorine, 1 mg/L monochloramine, 10 mg/L monochloramine, or deionized water for intervals of 0 h, 2 h, 4 h, 8 h, and 24 h for the clinically obtained amalgam waste samples and 4 h and 24 h for the laboratory-prepared samples. Chlorine and monochloramine concentrations were measured with a spectrophotometer. Samples were filtered through a 0.45 microm membrane filter and analyzed for mercury with USEPA standard method 245.7. When the two sample types were combined, the mean mercury level in the 1 mg/L chlorine group was 0.020 mg/L (n=25, SD=0.008). The 10 mg/L chlorine group had a mean mercury concentration of 0.59 mg/L (n=25, SD=1.06). The 1 mg/L chloramine group had a mean mercury level of 0.023 mg/L (n=25, SD=0.010). The 10 mg/L chloramine group had a mean mercury level of 0.024 mg/L (n=25, SD=0.011). Independent samples t-tests showed that there was a significant difference between the natural log mercury measurements of 10 mg/L chlorine compared to those of 1 mg/L and 10 mg/L chloramine. Changing from chlorine to chloramine disinfection at water treatment plants would not be expected to produce substantial increases in dissolved mercury levels in dental-unit wastewater.

  20. Comparison between La0.6Sr0.4CoO3-d and LaNi0.6Co0.4O3-d infiltrated oxygen electrodes for long-term durable solid oxide fuel cells

    DEFF Research Database (Denmark)

    Ovtar, Simona; Hauch, Anne; Veltzé, Sune

    2018-01-01

    The degradation of infiltrated oxygen electrodes during long-term operation of solid oxide fuel cells (SOFCs) was studied. The infiltrated oxygen electrodes were prepared by infiltration of the electro-catalysts La0.6Sr0.4CoO3-d (LSC) and LaNi0.6Co0.4O3-d (LCN) into a porous yttria stabilized...... conducted and the change of resistance was followed by electrochemical impedance spectroscopy under current load. The cell performance degradation profiles of the LSC and LCN infiltrated cells showed significant differences. The performance of the LSC infiltrated cell stabilized after 700 h of operation...

  1. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 2. La(Sr)CoO{sub 3} cathode

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Yoshida, Hiroyuki [The Kansai Electric Power, Hyogo (Japan); Miura, Kazuhiro [Kanden Kakou, Hyogo (Japan); Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa [Japan Fine Ceramics Center, Nagoya (Japan)

    2000-03-01

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM) electrolyte, La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} (LSCo) cathode, and Ni-(CeO{sub 2}){sub 0.8}(SmO{sub 1.5}){sub 0.2} (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm{sup 2}, at 800 C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO{sub 3}-YSZ cathode and Ni-YSZ cermet anode at 1000 C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm{sup 2} was measured for a cathode prepared by sintering at 1000 C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface. (orig.)

  2. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. II. La(Sr)CoO 3 cathode

    Science.gov (United States)

    Inagaki, Toru; Miura, Kazuhiro; Yoshida, Hiroyuki; Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- α (LSGM) electrolyte, La 0.6Sr 0.4CoO 3- δ (LSCo) cathode, and Ni-(CeO 2) 0.8(SmO 1.5) 0.2 (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm 2, at 800°C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO 3-YSZ cathode and Ni-YSZ cermet anode at 1000°C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm 2 was measured for a cathode prepared by sintering at 1000°C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface.

  3. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  4. The mercury-richest europium amalgam Eu{sub 10}Hg{sub 55}

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin [Department of Chemistry, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2015-03-15

    The mercury-richest europium amalgam Eu{sub 10}Hg{sub 55} was synthesized by isothermal electrocrystallization from a solution of EuI{sub 3}.8DMF in DMF on a reactive mercury cathode. The crystal structure shows remarkable complexity and polar metal-metal bonding. Closely related to the structures of mercury-rich amalgams A{sub 11-x}Hg{sub 55+x} (A = Na, Ca, Sr), it shows underoccupied Hg positions along [00z]. Eu{sub 10}Hg{sub 55} can be described as hettotype structure of the Gd{sub 14}Ag{sub 51} structure type. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    Duie, P.; Dirian, G.

    1962-01-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40 Ca and 46 Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH) 2 ; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H 2 bubbles. (authors) [fr

  6. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    Science.gov (United States)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  7. Fast-Rate Capable Electrode Material with Higher Energy Density than LiFePO4: 4.2V LiVPO4F Synthesized by Scalable Single-Step Solid-State Reaction.

    Science.gov (United States)

    Kim, Minkyung; Lee, Seongsu; Kang, Byoungwoo

    2016-03-01

    Use of compounds that contain fluorine (F) as electrode materials in lithium ion batteries has been considered, but synthesizing single-phase samples of these compounds is a difficult task. Here, it is demonstrated that a simple scalable single-step solid-state process with additional fluorine source can obtain highly pure LiVPO 4 F. The resulting material with submicron particles achieves very high rate capability ≈100 mAh g -1 at 60 C-rate (1-min discharge) and even at 200 C-rate (18 s discharge). It retains superior capacity, ≈120 mAh g -1 at 10 C charge/10 C discharge rate (6-min) for 500 cycles with >95% retention efficiency. Furthermore, LiVPO 4 F shows low polarization even at high rates leading to higher operating potential >3.45 V (≈3.6 V at 60 C-rate), so it achieves high energy density. It is demonstrated for the first time that highly pure LiVPO 4 F can achieve high power capability comparable to LiFePO 4 and much higher energy density (≈521 Wh g -1 at 20 C-rate) than LiFePO 4 even without nanostructured particles. LiVPO 4 F can be a real substitute of LiFePO 4.

  8. Fracture Resistance of Pulpotomized Primary Molar Restored with Extensive Class II Amalgam Restorations

    Directory of Open Access Journals (Sweden)

    F. Mazhari

    2008-06-01

    Full Text Available Objective: The aim of the present study was to evaluate fracture resistance of pulpoto-mized primary molar teeth restored with extensive multisurface amalgam restorations.Materials and Methods: Eighty extracted carious human primary molar teeth were se-lected forpresent study. Teeth were divided in to eight groups of ten. Mesio- or disto-occlusal and Mesio-occluso-distal cavities with different cavity wall thickness (1.5 or 2.5mm were prepared in both first and second primary molar teeth. After restoring teeth with amalgam, all specimens were stored in distilled water at 37°C for 7 days. Then samples were thermocycled for 1000 cycles from 5°C to 55°C. The specimens then were subjected to a compressive load in a universal testing machine at a crosshead speed of 0.5 mm min-1. ANOVA and t-test were used for statistical analysis.Results: Mean fracture resistance of first and second molar teeth were 975.5 N (SD=368.8 and 1049.2 N (SD=540.1 respectively. In the first molar group, fracture resis-tance of two-surface cavities was significantly more than three-surface cavities (P<0.001, however this difference was not statistically significant in the second molar group. In both first and second molar group, fracture resistance incavities with 2.5 mm wall thickness, was significantly more than the group with 1.5 mm wall thickness.Conclusion: The mean fracture resistance in pulpotomized primary molar restored with amalgam restorations was higher than reported maximum bite force in primary teeth even in extensive multi-surface restorations. Therefore, the teeth with large proximal carious lesions in schoolchildren could be restored with amalgam.

  9. Shear bond strength of amalgam to dentin using different dentin adhesive systems

    Directory of Open Access Journals (Sweden)

    Farimah Sardari

    2012-01-01

    Full Text Available Background and Aims: The aim of this in vitro study was to assess the shear bond strength of amalgam to dentin using four dentin adhesive systems.Materials and Methods: One hundred human molars were selected. After enamel removal, a dentin cylinder with 3 mm thickness was prepared. Eighty specimens were resorted with amalgam and four dentin adhesive systems as follows (n=20: group 1, Scotch Bond Multi-Purpose; group 2, One Coat Bond; group 3, PQ1; and group 4, Panavia-F. In group 5, 20 specimens were resorted with amalgam and varnish as control group. The specimens were incubated at 37°C for 24 h. The shear bond strengths were then measured by using push out method. The data were analyzed by one-way ANOVA and post hoc Duncan's tests.Results: Mean values for bond strengths of test groups were as follows: group 1=21.03±8.9, group 2=23.47±9, group 3=13.16±8.8, group 4=20.07±8.9 and group 5=14.15±8.7 MPa±SD. One-way ANOVA showed the statistically significant difference between the bond strengths of five groups (P=0.001. Post hoc Duncan's test showed significant difference between groups 1and 3 (P=0.008, groups 1 and 5 (P=0.019, groups 2 and 5 (P=0.0008, groups 4 and 5 (P=0.042, and groups 3 and 4 (P=0.018.Conclusion: Results of this study showed that the bond strength of amalgam to dentin using One Coat Bond as dentin adhesive system was higher than that observed in other dentin adhesive systems.

  10. Effect of amalgam cuspal coverage on the fracture resistance of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Mahshid Mohammdi Basir

    2013-05-01

    Full Text Available   Background and Aims: Endodontically treated teeth are prone to fracture because they loose a big amount of their structure. The treatment plan of those teeth is completed when they are rehabilitated with a strong and functional restoration. The purpose of this study was to evaluate the fracture resistance of endodontically treated teeth restored with amalgam cuspal coverage in comparison with other restorative techniques.   Materials and Methods: 40 human healthy maxillary premolars were divided into 4 groups: group1 (S: sound teeth, group 2(Co: endodontically treated teeth with MOD cavity restored with bonding and composite, group 3(Am-B: endodontically treated teeth with MOD cavity restored with bonding and amalgam and group 4 (Am-CC: endodontically treated teeth with MOD cavity restored with amalgam cuspal coverage. Then the restorations were stored in water and room temperature for 100 days at then thermocycled for 500 cycles between water baths at (5.5 ± 1 and (55 ± 1 0 C. The fracture resistance was evaluated by universal testing machine (Instron, 1195 UK with the compressive force of about 2000 N in 0.5 mm/min. The fracture modes were evaluated in four groups by a stereomicroscope. Statistical analysis (Scheffe test was done for all groups (P0.05. The lowest fracture resistance was found in group 2 (Co (384 ± 137.4 N that had no significant difference with group 3 (Am-B (P>0.05. The fracture resistance in group 4 was significantly higher than group 2 (Co and 3 (Am-B. The fracture mode in group 1 was cohesive within tooth and in group 2 (Co and 3 (Am-B was mixed cohesive and adhesive, and in group 4 was cohesive within in restorative material.   Conclusion: The highest fracture resistance was found in teeth that received amalgam cuspal coverage.

  11. Influence of different bonding agents on marginal sealing quality of amalgam restorations

    Directory of Open Access Journals (Sweden)

    Melih Irena

    2011-01-01

    Full Text Available Introduction. Although advanced adhesive systems are in use, marginal microleakage is one of the greatest problems of contemporary restorative dentistry. Objective. The aim of this in vitro study was to evaluate the influence of different bonding agents on the marginal sealing quality of class II amalgam restorations. Methods. Forty freshly extracted human premolar and molar teeth were divided into four groups with 10 teeth in each one. Class II preparations were prepared and different adhesives were applied as follows: group I - Amalgam Liner® (Voco; group II - ONE-STEP® PLUS (Bisco; group III - PQ 1 (Ultradent. Group IV was used as a control, without any bonding agent. Amalgam (Cavex Non Gamma 2, Cavex was hand-condensed into each preparation. Specimens were thermocycled 200 times at the following temperatures: 5-7°C, 37°C and 57-59°C, and were then immersed into 1% solution of gentian violet for 72 hours. The teeth were sectioned longitudinally and microleakage was graded in the area of the gingival and occlusal quantity rim using a binocular magnifying glass with 25 times magnification. Results. The highest microleakage was recorded in the Amalgam Liner group; 1526.0 μm at the gingival wall and 694.5 μm at the occlusal cavity wall. The lowest dye penetration was observed in the PQ1 group; 589.5 μm at the gingival wall, and 599.9 μm at the occlusal wall of the restoration. ANOVA test showed that there was a statistically significant difference of dye penetration values at the gingival wall among all examination groups (p<0.01. No statistically significant differences were found comparing microleakage values at the occlusal wall. Conclusion. Results of this study showed that the best marginal sealing was accomplished by using the PQ1 bonding agent.

  12. A biologists' perspective on amalgamating traditional environmental knowledge and resource management

    OpenAIRE

    A.W.L. Hawley; Sherry, E.E.; Johnson, C.J.

    2004-01-01

    Recent transitions in resource management and recognition of the role of First Nations in resource management have heightened the need for conciliation of these two different views of the world and the place of people in it (world view). Efforts to amalgamate these diverse perspectives in resource management are impeded by a legacy of cultural imperialism and difficulties in understanding and accommodating differences in world views, including the place of resource management in society, the ...

  13. Effect of bleaching on mercury release from amalgam fillings and antioxidant enzyme activities: a pilot study.

    Science.gov (United States)

    Cakir, Filiz Yalcin; Ergin, Esra; Gurgan, Sevil; Sabuncuoglu, Suna; Arpa, Cigdem Sahin; Tokgoz, İlknur; Ozgunes, Hilal; Kiremitci, Arlin

    2015-01-01

    The aim of this pilot clinical study was to determine the mercury release from amalgam fillings and antioxidant enzyme activities (Superoxide Dismutase [SOD] and Catalase[CAT] ) in body fluids after exposure to two different vital tooth bleaching systems. Twenty eight subjects with an average age of 25.6 years (18-41) having at least two but not more than four Class II amalgam fillings on each quadrant arch in the mouth participated in the study. Baseline concentrations of mercury levels in whole blood, urine, and saliva were measured by a Vapor Generation Accessory connected to an Atomic Absorption Spectrometer. Erythrocyte enzymes, SOD, and CAT activities in blood were determined kinetically. Subjects were randomly assigned to two groups of 14 volunteers. Group 1 was treated with an at-home bleaching system (Opalescence PF 35% Carbamide Peroxide, Ultradent), and Group 2 was treated with a chemically activated office bleaching system (Opalescence Xtra Boost 38% Hydrogen Peroxide, Ultradent) according to the manufacturer's recommendations. Twenty-four hours after bleaching treatments, concentrations of mercury and enzymes were remeasured. There were no significant differences on mercury levels in blood, urine, and saliva before and after bleaching treatments (p > 0.05). No differences were also found in the level of antioxidant enzyme activities (SOD and CAT) before and after treatments (p > 0.05). Mercury release did not affect the enzyme activities (p > 0.05). Bleaching treatments either office or home did not affect the amount of mercury released from amalgam fillings in blood, urine, and saliva and the antioxidant-enzyme activities in blood. Bleaching treatments with the systems tested in this pilot study have no deleterious effect on the mercury release from amalgam fillings and antioxidant enzymes in body fluids. © 2014 Wiley Periodicals, Inc.

  14. Perovskite electrodes and method of making the same

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  15. Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements.

    Science.gov (United States)

    Tibbetts, V R; Schnell, R J; Swartz, M L; Phillips, R W

    1976-01-01

    Thermal diffusion was measured in vitro and in vivo through amalgam and amalgam underlaid with bases of zinc phosphate, zinc oxide-eugenol, and calcium hydroxide cements. Although the magnitudes differed, there generally was good agreement between in vitro and in vivo data with respect to the relative rates of thermal diffusivity through amalgam restorations underlaid with bases of each of the three materials. In all tests, both in vitro and in vivo, the zinc oxide-eugenol base proved to be the best thermal insulator. Calcium hydroxide was the next best thermal barrier and was followed by zinc phosphate cement. In vitro tests indicated dentin to be a better thermal insulator than zinc phosphate cement but inferior to the zinc oxide-eugenol and calcium hydroxide base materials used here. Although a method has been presented here for the in vivo assessment of the efficacy of thermal insulating bases and a number of in vivo experiments were conducted, much research remains to be done in this area. Additional investigation is needed to better define the parameters of thermal change beneath various types of restoratives and also to establish more exactly the role of base thickness in providing thermal protection beneath clinical metallic restorations.

  16. In Vitro Description of Macroscopic Changes of Dental Amalgam Discs Subject to High Temperatures to Forensic Purposes.

    Science.gov (United States)

    Arcos, Carlos; Díaz, Juan-David; Canencio, Kenny; Rodríguez, Diana; Viveros, Carlos; Vega, Jonathan; Lores, Juliana; Sinisterra, Gustavo; Sepúlveda, Wilmer; Moreno, Freddy

    2015-07-01

    To describe the behavior of 45 discs of dental amalgam of known dimension prepared from three commercially available brands of dental amalgam (Contour® Kerr®-USA, Admix® SDI®-Australia and Nu Alloy® Newstethic®-Colombia) when subjected to the action of high temperatures (200 °C, 400 °C, 600 °C, 800 °C, 1000 °C). It was hoped to establish parameters that could be used for human dental identification in cases of charred, burned or incinerated human remains. A pseudo-experimental descriptive in-vitro study was designed to describe the macroscopic physical changes to the surface of 45 discs of pre-prepared amalgam of three commercially available brands exposed to a range of high temperatures. Characteristic and repetitive physical changes were a noticeable feature of the discs of amalgam of each brand of amalgam subjected to the different temperature ranges. These physical changes included changes in dimensional stability, changes in texture, changes in colour, changes in the appearance of fissures and cracks and changes in the fracture and fragmentation of the sample. The characteristics of dental amalgam may be of assistance in cases of human identification where charred, burned or incinerated human remains are a feature and where fingerprints or other soft tissue features are unavailable.

  17. Electrode activation and passivation of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Koch, Søren; Mogensen, Mogens Bjerg; Hendriksen, P.V.

    2006-01-01

    The performance of anode-supported cells with a composite LSM-YSZ cathode and an LSM current collector was investigated. Over the first 48 hours, after the application of a constant current, the cell voltage was observed to increase by up to 20%. When the current was switched off, the cell...... than at open circuit conditions. This frequency range of the spectrum was also sensitive to the oxygen partial pressure at the cathode side, indicating that it is the cathode that activates and passivates....

  18. Zinc electrode - its behaviour in the nickel oxide-zinc accumulator

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling. 193 references.

  19. Composite Replacement of Amalgam Restoration Versus Freshly Cut Dentin: An In Vitro Microleakage Comparison.

    Science.gov (United States)

    Redwan, H; Bardwell, D N; Ali, A; Finkelman, M; Khayat, S; Weber, H-P

    2016-01-01

    The aim of this study was to evaluate the microleakage of the composite restorations when bonded to tooth structure previously restored with amalgam material compared with that of freshly cut dentin. Thirty intact, extracted intact human molars were mounted in autopolymerizing acrylic resin. Class II box preparations were prepared on the occluso-proximal surfaces of each tooth (4-mm bucco-lingual width and 2-mm mesio-distal depth) with the gingival cavosurface margin 1 mm above the CEJ. Each cavity was then restored using high copper amalgam restoration (Disperalloy, Dentsply) and then thermocycled for 10,000 thermal cycles. Twenty-five of the amalgam restorations were then carefully removed and replaced with Filtek Supreme Ultra Universal (3M ESPE); the remaining five were used for scanning electron microscopy and energy dispersive x-ray spectroscopy analysis. A preparation of the same dimensions was performed on the opposite surface of the tooth and restored with composite resin and thermocycled for 5000 thermal cycles. Twenty samples were randomly selected for dye penetration testing using silver nitrate staining to detect the microleakage. The specimens were analyzed with a stereomicroscope at a magnification of 20×. All of the measurements were done in micrometers; two readings were taken for each cavity at the occlusal and proximal margins. Two measurements were taken using a 0-3 scale and the percentage measurements. Corrosion products were not detected in either group (fresh cut dentin and teeth previously restored with amalgam). No statistically significant difference was found between the microleakage of the two groups using a 0-3 scale at the occlusal margins (McNemar test, p=0.727) or proximal margins (Wilcoxon signed-rank test, p=0.174). No significance difference was found between the two groups using the percentage measurements and a Wilcoxon signed-rank test at either the occlusal (p=0.675) or proximal (p=0.513) margins. However, marginal

  20. MONITORING OF INTERNATIONAL DONOR ASSISTANCE IN THE CONTEXT OF THE DEVELOPMENT OF AMALGAMATED TERRITORIAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Elina Boichenko

    2017-12-01

    Full Text Available The research is conducted within the framework of the joint project of the F. Ebert Foundation (Germany and the Institute of Economic and Legal Studies of the National Academy of Sciences of Ukraine (Ukraine “The Experience of the Association of Territorial Communities in Eastern Ukraine: Economic and Legal Aspects”. The subject of the study is the theoretical, methodological, and practical aspects of monitoring international donor assistance in the context of the development of amalgamated territorial communities (ATC based on the example of Bilokurakyne and Novopskov ATC. Methodology. The system approach (in substantiating the directions of monitoring and established procedures for monitoring each component of the life of amalgamated territorial communities, logical generalization (in determining the state of development of amalgamated territorial communities, method of absolute, relative, and mean values, analysis of the dynamics series and structural shifts (in determining the dominant trends in the formation and development of ATC, method of economic analysis and synthesis (in determining the content of the monitoring, method of comparison (when the violations in the process of ATC, graphical method (the construction algorithm combined operation and development of local communities imaging method (for presenting the results of the total amount of international aid to ATC are used in the work. The purpose of the research is to develop theoretical, methodological, and practical approaches to the monitoring of international donor assistance in the context of the development of amalgamated territorial communities. The article suggests using monitoring as the most effective tool for controlling economic and social phenomena and processes. The authorial scheme for constructing a procedure for the monitoring of functioning and development of amalgamated territorial communities is developed. The monitoring of international donor support of the

  1. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  2. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  3. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  4. Study of high levels indoor air mercury contamination from mercury amalgam use in dentistry

    International Nuclear Information System (INIS)

    Khwaja, M.A.; Abbasi, M.S.; Mehmood, F.; Jahangir, S.

    2014-01-01

    In 2005, United Nations Environment Programme (UNEP) estimated that 362 tonnes of dental mercury are consumed annually worldwide. Dental mercury amalgams also called silver fillings and amalgam fillings are widely done. These fillings gave off mercury vapours. Estimated average absorbed concentrations of mercury vapours from dental fillings vary from 3,000 to 17,000 ng Hg. Mercury (Hg) also known as quick silver is an essential constituent of dental amalgam. It is a toxic substance of global concern. A persistent pollutant, mercury is not limited to its source but it travels, on time thousands of kilometers away from the source. Scientific evidence, including, UNEP Global Mercury report, establishes mercury as an extremely toxic substance, which is a major threat to wildlife, ecosystem and human health, at a global scale. Children are more at risk from mercury poisoning which affects their neurological development and brain. Mercury poisoning diminishes memory, attention, thinking and sight. In the past, a number of studies at dental sites in many countries have been carried out and reported which have been reviewed and briefly described. This paper describes and discusses the recent investigations, regarding mercury vapours level in air, carried out at 18 dental sites in Pakistan and other countries. It is evident from the data of 42 dental sites in 17 countries, including, selected dental sites in five main cities of Pakistan, described and discussed in this paper that at most dental sites in many countries including Pakistan, the indoor mercury vapours levels exceed far above the permissible limit, recommended for safe physical and mental health. At these sites, public, in general, and the medical, paramedical staff and vulnerable population, in particular, are at most serious risk to health resulting from exposure to toxic and hazardous mercury. (author)

  5. Residual mercury content and leaching of mercury and silver from used amalgam capsules.

    Science.gov (United States)

    Stone, M E; Pederson, E D; Cohen, M E; Ragain, J C; Karaway, R S; Auxer, R A; Saluta, A R

    2002-06-01

    The objective of this investigation was to carry out residual mercury (Hg) determinations and toxicity characteristic leaching procedure (TCLP) analysis of used amalgam capsules. For residual Hg analysis, 25 capsules (20 capsules for one brand) from each of 10 different brands of amalgam were analyzed. Total residual Hg levels per capsule were determined using United States Environmental Protection Agency (USEPA) Method 7471. For TCLP analysis, 25 amalgam capsules for each of 10 brands were extracted using a modification of USEPA Method 1311. Hg analysis of the TCLP extracts was done with USEPA Method 7470A. Analysis of silver (Ag) concentrations in the TCLP extract was done with USEPA Method 6010B. Analysis of the residual Hg data resulted in the segregation of brands into three groups: Dispersalloy capsules, Group A, retained the most Hg (1.225 mg/capsule). These capsules were the only ones to include a pestle. Group B capsules, Valliant PhD, Optaloy II, Megalloy and Valliant Snap Set, retained the next highest amount of Hg (0.534-0.770 mg/capsule), and were characterized by a groove in the inside of the capsule. Group C, Tytin regular set double-spill, Tytin FC, Contour, Sybraloy regular set, and Tytin regular set single-spill retained the least amount of Hg (0.125-0.266 mg/capsule). TCLP analysis of the triturated capsules showed Sybraloy and Contour leached Hg at greater than the 0.2 mg/l Resource Conservation and Recovery Act (RCRA) limit. This study demonstrated that residual mercury may be related to capsule design features and that TCLP extracts from these capsules could, in some brands, exceed RCRA Hg limits, making their disposal problematic. At current RCRA limits, the leaching of Ag is not a problem.

  6. “Triple M” Effect: A Proposed Mechanism to Explain Increased Dental Amalgam Microleakage after Exposure to Radiofrequency Electromagnetic Radiation

    Science.gov (United States)

    Mortazavi, Gh.; Mortazavi, S.A.R.; Mehdizadeh, A.R.

    2018-01-01

    A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce “Triple M” effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some “hot spots” in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed. PMID:29732349

  7. "Triple M" Effect: A Proposed Mechanism to Explain Increased Dental Amalgam Microleakage after Exposure to Radiofrequency Electromagnetic Radiation.

    Science.gov (United States)

    Mortazavi, Gh; Mortazavi, S A R; Mehdizadeh, A R

    2018-03-01

    A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce "Triple M" effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some "hot spots" in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed.

  8. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions; Etude physico-chimique de la separation des isotopes du calcium par echange chimique entre amalgame et solution saline

    Energy Technology Data Exchange (ETDEWEB)

    Duie, P; Dirian, G [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between {sup 40}Ca and {sup 46}Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH){sub 2}; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H{sub 2} bubbles. (authors) [French] On a fait une etude preliminaire, pour des systemes amalgame de calcium - solution aqueuse ou organique de sels de calcium, des principaux parametres pouvant intervenir dans l'application d'un procede d'echange a l'enrichissement isotopique du calcium: facteur de separation, cinetique de l'echange, cinetique de la decomposition de l'amalgame. Les facteurs de separation {sup 40}Ca-{sup 46}Ca sont de l'ordre de 1,02. L'echange est assez lent pour les solutions aqueuses, extremement lent pour les solutions organiques. La decomposition de l'amalgame est pratiquement inexistante avec les solutions dans le dimethyl- formamide, appreciable pour les solutions alcooliques, rapide pour les solutions aqueuses d'halogenures; elle est normalement lente pour les solutions aqueuses de formiate et surtout de chaux, mais la decomposition est en general acceleree par une reaction parasite entre l'amalgame et l'eau a l'etat vapeur, reaction que l'on n'evite dans des conditions tres particulieres. (auteurs)

  9. Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment

    International Nuclear Information System (INIS)

    Yunfeng, Yang; Yongqiang, Xue; Zixiang, Cui; Miaozhi, Zhao

    2014-01-01

    The particle size of electrode materials has a significant influence on the standard electrode potential and the thermodynamic properties of electrode reactions. In this paper, the size-dependent electrochemical thermodynamics has been theoretically investigated and successfully deduced electrochemical thermodynamics equations for nanoparticles electrode. At the same time, the electrode potential and thermodynamical properties of Ag 2 O/Ag nanoparticles electrode constructed by the solid and spherical Ag 2 O nanoparticles with different sizes further testified that the particle size of nanoparticles has a significant effect on electrochemical thermodynamics. The results show that the electrode potential depends on that of the smallest nanoparticle in a nanoparticles electrode which consisted of different particle sizes of nano-Ag 2 O. When the size of Ag 2 O nanoparticles reduces, the standard electrode potentials and the equilibrium constants of the corresponding electrode reactions increase, and the temperature coefficient, the mole Gibbs energy change, the mole enthalpy change and the mole entropy change decrease. Moreover, these physical quantities are all linearly related with the reciprocal of average particle size (r > 10 nm). The experimental regularities coincide with the theoretical equations

  10. Evaluating the Reasons of Amalgam Restoration Replacement in Esthetic and Restorative Department of Babol Dental School in 2013-14

    Directory of Open Access Journals (Sweden)

    F Abolghasemzade

    2015-08-01

    Results: Within 263 patients, there were 81(30.8% men and 182(69.2% women. Most patients aged 30-40(42.2%, and were reported to suffer from class Ι dental occlusion(92.4%.The mean DMF was 9.7±2.4 . Lower molars were demonstrated as the most frequent teeth group for replacing amalgam restorations as well as causing secondary caries. Furthermore, secondary caries involved the major causes of amalgam restoration replacement. The most prevalent class for amalgam restoration replacement was class II restorations. It should be noted that secondary caries were most prevalent within class II MO / DO(25 cases(44.6%. Conclusion: The study findings revealed that the most common cause of the restoration replacement involved the secondary caries which was most observed in the Class II restorations.

  11. Class II glass ionomer cermet tunnel, resin sandwich and amalgam restorations over 2 years.

    Science.gov (United States)

    Wilkie, R; Lidums, A; Smales, R

    1993-08-01

    This study compared the clinical behavior of a glass ionomer (polyalkenoate) silver cermet, a posterior resin composite used with the "tunnel" technique, a posterior resin composite used with the "closed sandwich" technique, and a high-copper amalgam for restoring small, proximal surface carious lesions. Two dentists placed 86 restorations in the posterior permanent teeth of 26 adults treated at a dental hospital. Restorations were assessed at 6-month intervals over 2 years for gingivitis adjacent to them, the tightness of proximal contacts, occlusal wear, surface voids, roughness and cracking, surface and marginal staining, and marginal fracture. Small filling defects, surface voids and occlusal wear were obvious with the cermet material, with surface crazing and cracking present in 48% of the tunnel restorations. Two of the posterior resin composites, but none of the amalgam restorations, also failed. The cermet cannot be recommended as a long-term permanent restorative material in situations where it is likely to be subjected to heavy occlusal stresses and abrasive wear.

  12. Evaluation of dental amalgam mercury in human body by nuclear techniques

    International Nuclear Information System (INIS)

    Khddour, S.S.

    2000-01-01

    The levels of mercury in blood and hair samples of different groups of population belong to the same geographical areas have been investigated using neutron activation technique. The level of mercury in the blood samples ranged between 1.021 - 81.64 mg/l, while that in the hair samples ranged between 0.17 - 3.95 mg/l. T-test analysis showed higher levels of Hg in blood and hair of group having amalgam restorations comparing to other groups. This study also showed high correlation between the concentration of mercury in the blood of treated and untreated mothers and their newborn babies, where the correlation factors were 0.66 and 0.49 respectively. Correlation between the levels of Hg and Se in the blood was week. It can undoubtedly be concluded that amalgam restorations will contribute in increasing the level of mercury in blood, but although these levels exceed the maximum permissible limit in some samples, there were no any clinical side effects noticed. these levels also remained below the poisoning level.(Author)

  13. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Freitas, A Z; Samad, R E; Zezell, D M; Vieira Jr, N D; Freschi, L R; Gouw-Soares, S C

    2010-01-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm 2 for the composite resins Z-100 and Z-350, and 0.25 J/cm 2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed

  14. Determining the baking isotherm temperature of Söderberg electrodes and associated structural changes

    OpenAIRE

    Shoko, L.; Beukes, J.P.; Strydom, C.A.

    2013-01-01

    One of the most commonly employed electrode systems in industrial metal smelting applications is continuous self-baking electrodes, i.e. the Söderberg electrode system. In this system, the temperature at which transition from a liquid/soft paste to a solid carbonaceous electrode takes place is termed the baking isotherm temperature. This temperature is extremely important within the context of electrode management. In this paper, thermo mechanical analysis (TMA) was used to measure the dimens...

  15. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Bennun, L.; Greaves, E.D.; Barros, H.; Diaz-Valdes, J.

    2009-01-01

    A method for thickness determination of thin amalgamable metallic films by total-reflection X-ray fluorescence (TXRF) is presented. The peak's intensity in TXRF spectra are directly related to the surface density of the sample, i.e. to its thickness in a homogeneous film. Performing a traditional TXRF analysis on a thin film of an amalgamated metal, and determining the relative peak intensity of a specific metal line, the layer thickness can be precisely obtained. In the case of gold thickness determination, mercury and gold peaks overlap, hence we have developed a general data processing scheme to achieve the most precise results.

  16. Graphene nanocomposites for electrochemical cell electrodes

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  17. The Changes in Dentists' Perception and Patient's Acceptance on Amalgam Restoration in Kurdistan-Iraq: A Questionnaire-based Cross-Sectional Study.

    Science.gov (United States)

    Faraj, Bestoon Mohammad; Mohammad, Hawzhen Masoud; Mohammad, Kale Masoud

    2015-04-01

    There has been considerable controversy concerning the health risks and benefits of utilizing mercury-containing amalgam. Across the developing countries, a reduction in the use of dental amalgam in oral health care provision is expected. Assessment of dentists' and patient's attitude of dental amalgam regarding attractiveness, perceived health, and treatment preferences in Kurdistan, Iraq. A 4-page questionnaire comprised two parts, specific for dentist and patient were structured and delivered to each dentist oneself. Both open-ended and close-ended questions about the treatment needs of patients, uses of amalgam and its alternative, the properties and usefulness of different materials. Patient's acceptance was assessed by means of structured questionnaire prepared based on commonly asked questions from routinely daily practice. Questions on the type of filling material in their mouth, previous knowledge of mercury in dental amalgam and disappointment due to mercury hazard and toxicity. They were to indicate their acceptance with filling their cavities by dental amalgam with or without prior information about its mercury content. This part was also accomplished by the dentists participated in this survey. Out of 185 dentists shared, only 39 (21.1%) indicated that amalgam presents no harm for the dentists and patients. While majority of dentists 85 (45.9%) were uncertain about this issue. Amalgam was selected most often 107 (57.8%) as the material of choice for restoring posterior teeth. About 94(50.8%) and 85(45.9%) of the practitioners primarily used glass ionomer/resin-reinforced glass ionomer and composite, respectively. Among 1850 patients received treatment, only 450 (24.32%) claimed to have heard about adverse reactions to dental amalgams. Those who believed it to be safe were 200 (10.82%).Acceptance towards amalgam was 62%. While amalgam was the most common material used for posterior restorations, direct tooth-coloured restorative materials were also

  18. Fuel cell electrodes: Electrochemical characterization and electrodeposition of Pt nanoparticles

    CSIR Research Space (South Africa)

    Modibedi, M

    2008-05-01

    Full Text Available Fuel Cell (PEMFC) Electrolyte: solid polymer membrane (typically Nafion) Types of fuel cells (FC) ? CSIR 2007 www.csir.co.za PEMFC http://fuelcellsworks.com/ ? CSIR 2007 www.csir.co.za Electrodes...

  19. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O

    Science.gov (United States)

    Bi, Kun; Zhao, Shi-Xi; Huang, Chao; Nan, Ce-Wen

    2018-06-01

    Octahedral cathode materials LiNi0.5Mn1.5O4 (LNMO), with primary particles size of 300-600 nm are prepared through one-step co-precipitation. Then solid-state electrolyte Li2O-Al2O3-TiO2-P2O5 (LATP) was coated on LNMO to form continuous surface-modification layer. There is no obviously difference of structure, morphology between coated LATP LiNi0.5Mn1.5O4 (LATP-LNMO) and pristine LiNi0.5Mn1.5O4 (P-LNMO). Low-temperature electrochemical performance of P-LNMO and LATP-LNMO electrodes, including charge-discharge capacity, cycle performance, middle discharge voltage and electrochemical impedance spectra (EIS), were measured systematically with three electrode. The results reveal that LATP-LNMO electrode presents superior electrochemical performance at low temperature, compared to P-LNMO electrode. At -20 °C, the capacity retention of LATP-LNMO (61%) is much higher than that of P-LNMO (39%). According to EIS, the enhancement of performance of LATP-LNMO cathode at low temperature can be attribute to LATP coating, which not only promotes lithium-ion diffusion at electrode/electrolyte interface but also decreases the charge transfer resistance. Finally, the electrochemical performances of full cell of LATP-LNMO or P-LNMO cathode vs Li4Ti5O12 anode are investigated. The energy density can be achieved to 270 Wh·Kg-1 at -20 °C if using LATP-LNMO, which is much better than that of P-LNMO.

  20. Scalp hair and saliva as biomarkers in determination of mercury levels in Iranian women: Amalgam as a determinant of exposure

    Energy Technology Data Exchange (ETDEWEB)

    Fakour, H., E-mail: fakour.h@gmail.com [Department of Environment, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran (Iran, Islamic Republic of); Esmaili-Sari, A. [Department of Environment, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran (Iran, Islamic Republic of); Zayeri, F. [Department of Biostatistics, Faculty of Paramedical Sciences and Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2010-05-15

    The aim of this study was to determine the relationship between mercury concentrations in saliva and hair in women with amalgam fillings and its relation with age and number of amalgam fillings. Eighty-two hair and saliva samples were collected randomly from Iranian women who have the same fish consumption pattern and free from occupational exposures. The mean {+-} SD age of these women was 29.37 {+-} 8.12 (ranged from 20 to 56). The determination of Hg level in hair samples was carried out by the LECO, AMA 254, Advanced Mercury Analyzer according to ASTM, standard No. D-6722. Mercury concentration in saliva samples was analyzed by PERKIN-ELMER 3030 Cold Vapor Atomic Absorption Spectrophotometer. The mean {+-} SD mercury level in the women was 1.28 {+-} 1.38 {mu}g/g in hair and 4.14 {+-} 4.08 {mu}g/l in saliva; and there were positive correlation among them. A significant correlation was also observed between Hg level of saliva (Spearman's {rho} = 0.93, P < 0.001) and hair (Spearman's {rho} = 0.92, P < 0.001) with number of amalgam fillings. According to the results, we can conclude that amalgam fillings may be an effective source for high Hg concentration in hair and releasing the mercury to the saliva samples.