WorldWideScience

Sample records for solenoidal focus magnets

  1. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    Directory of Open Access Journals (Sweden)

    T. J. Barton

    2012-12-01

    Full Text Available Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K. R. Samokhvalova, J. Zhou, and C. Chen, Phys. Plasmas 14, 103102 (2007PHPAEN1070-664X10.1063/1.2779281; J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008PHPAEN1070-664X10.1063/1.2837891]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  2. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-01-01

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B ∼ 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  3. A superconducting focusing solenoid for the neutrino factory linear accelerator

    International Nuclear Information System (INIS)

    Green, Michael A.; Lebedev, V.; Strauss, B.P.

    2001-01-01

    The proposed linear Accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can produce large stray fields. This report describes the 201.25 MHz acceleration system for the neutrino factory. This report also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity

  4. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  5. Designing focusing solenoids for superconducting RF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  6. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim

    2013-10-15

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  7. Design of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Gehrke, Tim

    2013-10-01

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  8. Progress in ATLAS central solenoid magnet

    CERN Document Server

    Yamamoto, A; Makida, Y; Tanaka, K; Haruyama, T; Yamaoka, H; Kondo, T; Mizumaki, S; Mine, S; Wada, K; Meguro, S; Sotoki, T; Kikuchi, K; ten Kate, H H J

    2000-01-01

    The ATLAS central solenoid magnet is being developed to provide a magnetic field of 2 Tesla in the central tracking volume of the ATLAS detector under construction at the CERN/LHC project. The solenoid coil design features high-strength aluminum stabilized superconductor to make the coil thinnest while maintaining its stability and the pure-aluminum strip technique for quench protection and safety. The solenoid coil is installed in a common cryostat with the LAr calorimeter in order to minimize the cryostat wall. A transparency of 0.66 radiation length is achieved with these integrated efforts. The progress in the solenoid coil fabrication is reported. (8 refs).

  9. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  10. Compact muon solenoid magnet reaches full field

    CERN Multimedia

    2006-01-01

    Scientist of the U.S. Department of Energy in Fermilab and collaborators of the US/CMS project announced that the world's largest superconducting solenoid magnet has reached full field in tests at CERN. (1 apge)

  11. Improved focus solenoid design for linear induction accelerators

    International Nuclear Information System (INIS)

    Zentler, J.M.; Van Maren, R.D.; Nexsen, W.E.

    1992-08-01

    Our FXR linear induction accelerator produces a 2 KA, 17 MeV electron beam of 60 ns duration. The beam is focused on a tantalum target to produce x-rays for radiography. The FWHM spot size of the focused beam is currently 2.2 mm. We strive to reduce the spot size by 30% by improving the field characteristics of focusing solenoids housed in each of 50 induction cells along the beamline. Tilts in the magnetic axis of the existing solenoids range up to 12 mrad (0.7 degrees). We are building new solenoid assemblies which include ferromagnetic homogenizer rings. These dramatically reduce field errors. A field tilt of under 0.5 mrad has been achieved. Mechanical alignment of the rings is critical. We developed a novel construction method in which the rings are wound with 4 mil thick Si-Fe ribbon into grooves on an aluminum cylinder. The cylinder then becomes the winding mandrel for the focus solenoids. This forms a more accurate and compact assembly than the standard practice of pressing individual solid rings onto a tube

  12. Test Results for HINS Focusing Solenoids at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, M.A.; Orris, D.F.; Terechkine, I.; Tompkins, J.C.; /Fermilab

    2008-08-01

    A focusing lens R&D program is close to completion and industrial production of magnets has begun. Two types of magnets are being built for use in the room temperature RF section at the front end of a superconducting H-minus linac of a High Intensity Neutrino Source. All of the magnets are designed as a solenoid with bucking coils to cancel the field in the vicinity of adjacent RF cavities, and one type incorporates steering dipole corrector coils. We present a summary of the predicted and measured quench and magnetic properties for both R&D and production device samples that have been tested at Fermilab.

  13. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  14. Focusing solenoid for the front end of a linear RF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Terechkine, I.; Kashikhin, V.V.; Page, T.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2007-06-01

    A prototype of a superconducting focusing solenoid for use in an RF linac has been built and tested at Fermi National Accelerator Laboratory (FNAL). The solenoid is comprised of the main coil, two bucking coils, two dipole corrector windings, and a low carbon steel flux return. At the excitation current of 250 A, the magnetic field reaches 7.2 T in the center of the solenoid and is less than 5 G on the axis at a distance of 150 mm from the center. The length of the solenoid is 150 mm; the length of a cryovessel for the solenoid with a 20 mm diameter 'warm' bore is 270 mm. This paper presents the main design features of the focusing solenoid and discusses results from tests of the solenoid.

  15. Growth techniques for monolithic YBCO solenoidal magnets

    International Nuclear Information System (INIS)

    Scruggs, S.J.; Putman, P.T.; Fang, H.; Alessandrini, M.; Salama, K.

    2006-01-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample

  16. Growth techniques for monolithic YBCO solenoidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scruggs, S.J. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)]. E-mail: Sscruggs2@uh.edu; Putman, P.T. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Fang, H. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Alessandrini, M. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Salama, K. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)

    2006-10-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample.

  17. Solenoidal Fields for Ion Beam Transport and Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some

  18. Solenoidal Fields for Ion Beam Transport and Focusing

    International Nuclear Information System (INIS)

    Lee, Edward P.; Leitner, Matthaeus

    2007-01-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries (1-1), but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations (1-2) provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools (1-3) contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field (1-4). Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy (1-5) and Warm Dense Matter experiments (1-6), although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca(copyright) code (1-7) and some numerical

  19. Stable particle motion in a linear accelerator with solenoid focusing

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1979-01-01

    The equation governing stable particle motion in a linear ion accelerator containing discrete rf and either discrete or continuous solenoid focusing was derived. It was found for discrete solenoid focusing that: cos μ = (1 + dΔ) cos theta/2 + (lΔ/theta - dtheta/2l - thetaΔd 2 /4l) sin theta/2, Δ = 1/f and l + 2d = βlambda, where μ, theta, f, l, and d are the phase advance per cell, precession angle in the solenoid, focal length of the rf lens, length of the solenoid in one cell, and the drift distance between the center of the rf gap and the effective edge of the solenoid. The relation for a continuous solenoid is found by setting d equal to zero. The boundaries of the stability region for theta vs Δ with fixed l and d are obtained when cos μ =+-1

  20. Error field generation of solenoid magnets

    International Nuclear Information System (INIS)

    Saunders, J.L.

    1982-01-01

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10 -4 , the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  1. Successful mapping of the solenoid magnet

    CERN Multimedia

    Aleksa, M.

    The ATLAS solenoid coil is about 5.3m long, has a diameter of 2.5m and is designed to deliver a magnetic field of approximately 2T for the ATLAS inner detector. The superconducting solenoid coil has been integrated inside the LAr barrel cryostat and was installed at its final position inside the cavern in November 2005. This summer - after completion of the extended barrel calorimeters and before the installation of the inner detector - the end cap calorimeters (LAr end caps and Tile extended barrels) were moved for the first time into their final position in order to create conditions as close as possible to final for the solenoid tests and for mapping the field inside the solenoid bore. Design and construction of the mapping machine The requirement on the absolute precision of the field measurements are 0.05% on the field integrals seen by particles; if this is achieved the momentum error coming from insufficient knowledge of the magnetic field will be negligible compared to the error stemming from the inn...

  2. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  3. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  4. Design and characterization of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Hachmann, M.; Flöttmann, K.; Gehrke, T.; Mayet, F.

    2016-01-01

    REGAE is a small electron linear accelerator at DESY. In order to focus short and low charged electron bunches down to a few μm permanent magnetic solenoids were designed, assembled and field measurements were done. Due to a shortage of space close to the operation area an in-vacuum solution has been chosen. Furthermore a two-ring design made of wedges has been preferred in terms of beam dynamic issues. To keep the field quality of a piecewise built magnet still high a sorting algorithm for the wedge arrangement including a simple magnetic field model has been developed and used for the construction of the magnets. The magnetic field of these solenoids has been measured with high precision and compared to simulations. - Highlights: • presenting a two-ring radially magnetized permanent magnetic solenoid design. • development of a analytical field description and field quality factor. • development of a sorting algorithm for permanent magnetic pieces to form a magnet. • performing a high-precision field measurement of a high gradient field.

  5. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    International Nuclear Information System (INIS)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-01-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  6. Dispersion in a bent-solenoid channel with symmetric focusing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-xi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2001-08-21

    Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the lattice functions, in particular, the dispersion functions.

  7. The Cold Mass Support System and the Helium Cooling System for the MICE Focusing Solenoid

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake, Rohan S.; Witte, Holger

    2006-01-01

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed

  8. Design of a Solenoid Magnet for a Microwave Ion Source

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Dae Il

    2011-01-01

    A microwave ion source has many advantages, such as long-life time, low emittance, high brightness, and compactness. Also it is a big merit that 2.45GHz rf systems are easily available and inexpensive. Due to the reasons microwave ion sources are very attractive for industrial applications. But microwave ion sources need a solenoid magnet which is usually an electromagnet with a DC current power supply. The electromagnet solenoids of microwave ion sources can be installed in two methods. The first method is to use isolation transformer to supply electrical power to DC current power supply for the magnets. In this case the magnet is compact because it has the same potential with the extraction voltage. The second method is to put an electrical insulator, such as G10, between ion sources and magnets. In this case the solenoid magnet is bigger than one in the first method, especially for higher extraction voltage, because the space for the insulator is required. Permanent magnets can be a good candidate to make microwave ion source more compact. But it is difficult to control the magnetic field profile and the magnetic flux density for the permanent magnet solenoids. Due to the reason, in the case that the best performances in many operating conditions should be achieved by adjusting the profile and strength of the solenoid, electromagnet is better than permanent magnet. But in the case of industrial applications where operating conditions is usually fixed and the compactness is required, permanent magnet is better choice to build an ion source

  9. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  10. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Orris, D. [Fermilab; Soyars, W. [Fermilab; Sylvester, C. [Fermilab

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  11. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  12. Mechanical design of a 250 kilogauss solenoidal magnet

    International Nuclear Information System (INIS)

    Bonanos, P.

    1975-12-01

    The mechanical design and construction of a 5 cm bore, 23 cm long solenoidal magnet operated at 250 kilogauss is described. The magnet provides confining field for a plasma heated by a CO 2 laser. Radial diagnostic ports with a clear aperture of 0.41 cm allow viewing access near the magnet midplane. The on-axis field homogeneity is within 5 percent over a central length of 12 cm. The magnet sustained 500 to 1000 pulses at the highest field levels before catastrophic failure

  13. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.

    1976-01-01

    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  14. R108 view inside the solenoid magnet

    CERN Multimedia

    1977-01-01

    One can see the four sets of cylindrical drift chambers and, between the vacuum tubes, a small device for the detection of magnetic monopoles introduced as a "parasite" experiment by another Collaboration (R109, by Rome-CERN Collaboration)

  15. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  16. Effect of solenoidal magnetic field on drifting laser plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-01-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  17. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  18. Analysis of an adjustable field permanent magnet solenoid

    Science.gov (United States)

    Burris-Mog, T.; Burns, M.; Chavez, A.; Schillig, J.

    2017-10-01

    A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fields ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.

  19. Design of high-energy high-current linac with focusing by superconducting solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  20. Test results of the g-2 superconducting solenoid magnet system

    NARCIS (Netherlands)

    Bunce, G; Morse, WM; Benante, J; Cullen, MH; Danby, GT; Endo, K; Fedotovich, GV; Geller, J; Green, MA; Grossmann, A; GrossePerdckamp, M; Haeberlen, U; Hseuh, H; Hirabayashi, H; Hughes, VW; Jackson, JW; Jia, LX; Jungmann, K; Krienen, F; Larsen, R; Khazin, B; Kawall, D; Meng, W; Pai, C; Polk, T.; Prigl, R; Putlitz, GZ; Redin, S; Roberts, BL; Ryskulov, N; Semertzidas, Y; Shutt, R; Snydstrup, L; Tallerico, T; vonWalter, P; Woodle, K; Yamamoto, A

    The g-2 experiment dipole consists of a single 48 turn, 15.1 meter diameter outer solenoid and a pair of 24 turn inner solenoids, 13.4 meters in diameter. The inner solenoids are hooked in series and are run at a polarity that is opposite that of the outer solenoid, thus creating a dipole field in

  1. Generation of ten kilotesla longitudinal magnetic fields in ultraintense laser-solenoid target interactions

    OpenAIRE

    Xiao, K. D.; Zhou, C. T.; Zhang, H.; Huang, T. W.; Li, R.; Qiao, B.; Cao, J. M.; Cai, T. X.; Ruan, S. C.; He, X. T.

    2018-01-01

    Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten kilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of impo...

  2. Derivation of magnetic Coulomb's law for thin, semi-infinite solenoids

    OpenAIRE

    Kitano, Masao

    2006-01-01

    It is shown that the magnetic force between thin, semi-infinite solenoids obeys a Coulomb-type law, which corresponds to that for magnetic monopoles placed at the end points of each solenoid. We derive the magnetic Coulomb law from the basic principles of electromagnetism, namely from the Maxwell equations and the Lorentz force.

  3. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    OpenAIRE

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length ap...

  4. A superconducting solenoid and press for permanent magnet fabrication

    International Nuclear Information System (INIS)

    Mulcahy, T. M.; Hull, J. R.

    2002-01-01

    For the first time, a superconducting solenoid (SCM) was used to increase the remnant magnetization of sintered NdFeB permanent magnets (PMs). In particular, improved magnetic alignment of commercial-grade PM powder was achieved, as it was axial die pressed into 12.7-mm diameter cylindrical compacts in the 76.2-mm warm bore of a 9-T SCM. The press used to compact the powder is unique and was specifically designed for use with the SCM. Although the press was operated in the batch mode for this proof of concept study, its design is intended to enable automated production. In operation, a simple die and punch set made of nonmagnetic materials was filled with powder and loaded into a nonmagnetic press tube. The cantilevered press tube was inserted horizontally, on a carrier manually advanced along a track, into the SCM. The robustness of the mechanical components and the SCM, in its liquid helium dewar, were specifically designed to allow for insertion and extraction of the magnetic powder and compacts, while operating at 9 T. Compaction was achieved by pressing the punches between the closed end of the press tube and the hydraulic cylinder mounted on the opposite end. Improvements up to 10% in magnetization and 20% in energy products of the permanent magnets were obtained, as the alignment fields were increased above the 2-T maximum field of the electromagnets used in industry. Increases in magnetization of 3% are significant in the mature sintered magnet industry

  5. Design of an elliptical solenoid magnet for transverse beam matching to the spiral inflector

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V.S.

    2013-01-01

    In this work, we present the design study of an elliptical solenoid magnet to be used for transverse beam matching at the input of a spiral inflector for efficient transmission. We have studied the dependence of axial field and gradients in the transverse directions of the elliptical solenoid magnet with ellipticity of the aperture. Using the beam envelope equations we have studied the feasibility of using an elliptical solenoid for transverse beam matching to the acceptance of a spiral inflector. (author)

  6. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    Olson, C.L.

    1990-01-01

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  7. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  8. Computer simulations of quench properties of thin, large superconducting solenoid magnets

    International Nuclear Information System (INIS)

    Kishimoto, Takeshi; Mori, Shigeki; Noguchi, Masaharu

    1983-01-01

    Measured quench data of a 1 m diameter x 1 m thin superconducting solenoid magnet with a single layer aluminum-stabilized NbTi/Cu superconductor of 269 turns were fitted by computer simulations using the one-dimensional approximation. Parameters obtained were used to study quench properties of a 3 m diameter x 5 m (1.5 Tesla) thin superconducting solenoid magnet with a stored magnetic energy of 30 x 10 6 J. Conductor dimensions with which the solenoid could be built substantially safe for the full field quench were optimized. (author)

  9. Pressure control valve using proportional electro-magnetic solenoid actuator

    International Nuclear Information System (INIS)

    Yun, So Nam; Ham, Young Bog; Park, Pyoung Won

    2006-01-01

    This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed

  10. Design features of the solenoid magnets for the central cell of the MFTF-B

    International Nuclear Information System (INIS)

    Wohlwend, J.W.; Tatro, R.E.; Ring, D.S.

    1981-01-01

    The 14 superconducting solenoid magnets which form the central cell of the MFTF-B are being designed and fabricated by General Dynamics for the Lawrence Livermore National Laboratory. Each solenoid coil has a mean diameter of five meters and contains 600 turns of a proven conductor type. Structural loading resulting from credible fault events, cooldown and warmup requirements, and manufacturing processes consistent with other MFTF-B magnets have been considered in the selection of 304 LN as the structural material for the magnet. The solenoid magnets are connected by 24 intercoil beams and 20 solid struts which resist the longitudinal seismic and electromagnetic attractive forces and by 24 hanger/side supports which react magnet dead weight and seismic loads. A modular arrangement of two solenoid coils within a vacuum vessel segment allow for sequential checkout and installation

  11. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Science.gov (United States)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  12. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Directory of Open Access Journals (Sweden)

    Ingo Hofmann

    2013-04-01

    Full Text Available Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  13. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    International Nuclear Information System (INIS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-01-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons

  14. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Takahashi, K. [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137 (Japan); Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Horioka, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan)

    2016-02-15

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  15. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Science.gov (United States)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  16. Development of a permanent magnet alternative for a solenoidal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.; Fahy, A.; Barr, M. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Jardine, A.; Allison, W. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dastoor, P.C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-12-01

    The most sensitive desktop-sized ionizer utilising electron bombardment is currently the solenoidal ion source. We present an alternate design for such an ion source whereby the solenoidal windings of the electromagnet are replaced by a shaped cylindrical permanent magnet in order to reduce the complexity and running costs of the instrument. Through finite element modelling of the magnetic field in COMSOL and experimental measurements on a small-scale prototype magnet stack, we demonstrate the required shape of the permanent magnet in order to generate the needed field, and the necessity of soft iron collars to smooth fluctuations along the central axis.

  17. Fourier Bessel transform method for efficiently calculating the magnetic field of solenoids

    International Nuclear Information System (INIS)

    Nachamkin, J.; Maggiore, C.J.

    1980-01-01

    A numerical procedure for calculating the magnetic field of a selenoid is derived. Based on the properties of Bessel functions, the procedure is shown to be convergent everywhere, including within the windings of the solenoid. The most critical part of the procedure is detailed in the main text. A simple method is used to ensure numerical significance while allowing economical computational times. In the appendix the procedure is generalized to universal convergence by appropriate partitioning of the solenoid windings

  18. Solenoidal magnetic field influences the beam neutralization by a background plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.

    2004-01-01

    An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when ω ce > βω pe . Here, ω ce is the electron gyrofrequency, ω pe is the electron plasma frequency, and β = V b /c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit ω ce >> βω pe , the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse

  19. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Rabehl, R. [Fermilab; Sylvester, C. [Fermilab; Tartaglia, M. [Fermilab

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  20. Design of wide flat-topped low transverse field solenoid magnet

    International Nuclear Information System (INIS)

    Jing Xiaobing; Chen Nan; Li Qin

    2010-01-01

    A wide flat-topped low transverse error field solenoid magnet design for linear induction accelerator is presented. The design features non-uniform winding to reduce field fluctuation due to the magnets' gap, and homogenizer rings within the solenoid to greatly reduce the effects of winding errors. Numerical modeling of several designs for 12 MeV linear induction accelerator (LIA) in China Academy of Engineering Physics has demonstrated that by using these two techniques the magnetic field fluctuations in the accelerator gap can be reduced by 70% and the transverse error field can be reduced by 96.5%. (authors)

  1. Coherent states of non-relativistic electron in the magnetic-solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Filho, D P Meira; Gitman, D M

    2010-01-01

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  2. Coherent states of non-relativistic electron in the magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050, Tomsk (Russian Federation); Gavrilov, S P; Filho, D P Meira [Institute of Physics, University of Sao Paulo (Brazil); Gitman, D M, E-mail: bagrov@phys.tsu.r, E-mail: gavrilovsergeyp@yahoo.co, E-mail: gitman@dfn.if.usp.b, E-mail: dmeira@dfn.if.usp.b [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo (Brazil)

    2010-09-03

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  3. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    International Nuclear Information System (INIS)

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-01-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam

  4. Fabrication of a solenoid-type inductor with Fe-based soft magnetic core

    International Nuclear Information System (INIS)

    Lei Chong; Zhou Yong; Gao Xiaoyu; Ding Wen; Cao Ying; Choi, Hyung; Won, Jonghwa

    2007-01-01

    A solenoid-type inductor was fabricated by MEMS (Microelectromechanical systems) technique. The fabrication process uses UV-LIGA, dry etching, fine polishing, and electroplating technique to achieve high performance of the solenoid-type inductor. Fe-based soft magnetic thin film was sputtered as the magnetic core, and polyimide was used as the insulation materials. The inductor was in size of 4x4 mm with coil width of 20 μm and space of 35 μm. The inductance is 1.61 μH at a frequency of 5 MHz with the maximum quality factor of 1.42

  5. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  6. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    Science.gov (United States)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  7. CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM

    International Nuclear Information System (INIS)

    GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

    2001-01-01

    A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II

  8. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    Science.gov (United States)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  9. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  10. Performance of Nb3Sn multifilamentary superconductors in solenoidal magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.; Suenaga, M.; Robins, K.E.

    High current Nb 3 Sn multifilamentary conductors have been formed by heat treating cables braided from three types of composite wire. In the simplest configuration, these wires contain niobium filaments in a pure copper matrix. After braiding the conductor is coated with a layer of tin which diffuses through the copper during heat treatment to form Nb 3 S n filaments. The second configuration is made from wires containing niobium filaments in a copper-tin alloy and requires only heat treatment to form the Nb 3 Sn filaments. The third type of braid has wires which consist of groups of niobium filaments in the bronze matrix which are in turn in a copper matrix. Tantalum barriers surround each group of filaments to prevent the tin from contaminating the pure copper matrix. The cables have been wound into solenoids after heat treatment and the effect of mechanical handling was studied by monitoring the resistive voltage distribution in the coils. (U.S.)

  11. Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities

    International Nuclear Information System (INIS)

    Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; Norem, J.; Li, D.; Zisman, M.; Torun, Y.; Rimmer, R.; Errede, D.

    2005-01-01

    There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity

  12. The cryogenic system for the superconducting solenoid magnet of the CMS experiment

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Lottin, J C; Lottin, J P; Lyraud, C

    1998-01-01

    The design concept of the CMS experiment, foreseen for the Large Hadron Collider (LHC) project at CERN, is based on a superconducting solenoid magnet. The large coil will be made of a four layers winding generating the 4 T uniform magnetic induction required by the detector. The length of the solenoid is 13 m with an inner diameter of 5.9 m. The mass kept at liquid helium temperature totals 220 t and the electromagnetic stored energy is 2.7 GJ. The windings are indirectly cooled with a liquid helium flow driven by a thermosyphon effect. The external cryogenic system consists of a 1.5 kW at 4.5 K (entropy equivalent) cryoplant including an additional liquid nitrogen precooling unit and a 5000 litre liquid helium buffer. The whole magnet and cryogenic system will be tested at the surface by 2003 before final installation in the underground area of LHC.

  13. Magnetic Focusing Horn

    CERN Multimedia

    1974-01-01

    This magnetic focusing horn was used for the AA (antiproton accumulator). Its development was an important step towards using CERN's Super Proton Synchrotron as a proton - antiproton collider. This eventually led to the discovery of the W and Z particles in 1983. Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons.

  14. Magnetic field, inductance of circular coil and solenoids

    International Nuclear Information System (INIS)

    Ramirez Hoyos, P.; Barbero Garcia, A.J.; Mafe Matoses, S.

    1995-01-01

    The self-inductance of a current-carrying circular coil and the mutual inductances of the Helmholtz coils and coil-sole-noid systems have been measured and calculated theoretically. The experiments and the required equipment are suited to an undergraduate laboratory. The theoretical calculation involve the use of simple numerical integration methods for evaluating the magnetic field of the circular coil and the inductances. The calculated values agree with the measurements within the experimental error. The material presented can be proposed to the students as a laboratory project. (Author) 7 refs

  15. Effect of High Solenoidal Magnetic Fields on Breakdown Voltages of High Vacuum 805 MHz Cavities

    CERN Document Server

    Moretti, A; Geer, S; Qian, Z

    2004-01-01

    The demonstration of muon ionization cooling by a large factor is necessary to demonstrate the feasilibility of a collider or neutrino factory. An important cooling experiment, MICE [1], has been proposed to demonstrate 10 % cooling which will validate the technology. Ionization cooling is accomplished by passing a high-emittance beam in a multi-Tesla solenoidal channel alternately through regions of low Z material and very high accelerating RF Cavities. To determine the effect of very large solenoidal magnetic fields on the generations of Dark current, X-Rays and breakdown Voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station, and a large bore 5 T solenoidal superconducting magnet containing a pill box type Cavity with thin removable window apertures allowing dark current studies and breakdown studies of different materials. The results of this study will be presented. The study has shown that the peak achievab...

  16. Effect Of The LEBT Solenoid Magnetic Field On The Beam Generation For Particle Tracking

    CERN Document Server

    Yarmohammadi Satri, M; CERN. Geneva. ATS Department

    2013-01-01

    Linac4 is a 160 MeV H- linear accelerator which will replace the 50 MeV proton Linac2 for upgrade of the LHC injectors with higher intensity and eventually an increase of the LHC luminosity. Linac4 structure is a source, a 45 keV low energy beam transport line (LEBT) with two solenoids, a 3 MeV Radiofrequency Quadrupole (RFQ), a Medium Energy Beam Transport line (MEBT), a 50 Mev DTL, a 100 Mev CCDTL and PIMS up to 160 Mev. We use Travel v4.07 and PathManager code for simulation. Firstly, we need to a file as a source and defining the beginning point (last point in tracking back) of simulation. We recognise the starting point base on the solenoid magnetic property of LEBT.

  17. Fabrication of solenoid-type inductor with electroplated NiFe magnetic core

    International Nuclear Information System (INIS)

    Gao Xiaoyu; Cao Ying; Zhou Yong; Ding Wen; Lei Chong; Chen Jian

    2006-01-01

    Solenoid-type inductor with ultra-low profile was fabricated by MEMS (Microelectromechanical systems) technique. NiFe film was electroplated as the magnetic core, and polyimide with a low relative permittivity was used as the insulation material. In the fabrication process, UV-LIGA, dry etching, fine polishing and electroplating technique have been adopted to achieve high performance of the solenoid-type inductor. The inductor was in size of 1.5 mmx0.9 mmx0.1 mm with coil width of 20 μm and aspect ratio of 5:1. The inductance and the quality factor were 0.42-0.345 μH and 1.8-5.3 in the frequency range of 1-10 MHz, respectively

  18. A harmonic expansion for the magnetic field of the helical solenoid

    International Nuclear Information System (INIS)

    Dewar, R.L.; Gardner, H.J.

    1987-03-01

    We discuss the boundary value problem for calculating the scalar magnetic potentials inside and outside of a helically symmetric solenoid. Under some circumstances the potentials can be expanded in infinite series of cylindrical harmonics. For a circular cross-section solenoid, we derive a Green's function integral representation of the series coefficients and calculate the radii of convergence of the series by a saddle point method. In some cases the cylinders of convergence can intersect the coil, so that there are physically accessible regions where the series fail to converge. Numerical evidence is presented to show that, even in some of these cases, the potentials can be accurately approximated by finite sums of cylindrical harmonics using boundary collocation

  19. Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler

    CERN Document Server

    Tsunawaki, Y

    2005-01-01

    We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.

  20. Stress Analysis of the D-Zero Solenoid Magnet Lifting Fixture PPD Fixture No.102

    International Nuclear Information System (INIS)

    Zaczek, M.

    1997-01-01

    This engineering note presents stress analysis calculations for the below the hook lifting fixture which will be used to move the D-Zero solenoid magnet during installation work at the D-Zero Assembly building. Load bearing structural members are shown to have a minimum design factor of 3 based on yield strength as required by ASME B30.20. All bolts were analyzed and shown to be kept below allowable loads/stresses listed in the American Institute of Steel Construction (AISC) manual. The lifting fixture will be manufactured at Fermilab using some material scavenged from an existing lifting fixture that was shipped with the magnet from the magnet manufacturer, Toshiba Corporation. The fixture is designed with built in versatility so that the solenoid magnet can be maneuvered through the stages of preparation and installation into it's final mounted position. The structure has been analyzed for all phases of its use, although the analysis of the structure as a below the hook lifting device is the main purpose of this note.

  1. Optimal laser heating of plasmas confined in strong solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Vitela, J.; Akcasu, A.Z.

    1987-01-01

    Optimal Control Theory is used to analyze the laser-heating of plasmas confined in strong solenoidal magnetic fields. Heating strategies that minimize a linear combination of heating time and total energy spent by the laser system are found. A numerical example is used to illustrate the theory. Results of this example show that by an appropriate modulation of the laser intensity, significant savings in the laser energy are possible with only slight increases in the heating time. However, results may depend strongly on the initial state of the plasma and on the final ion temperature. (orig.)

  2. Magnetic shielding for a transversely polarized target in the longitudinal field of the PANDA solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold; Ahmed, Samer; Dbeyssi, Alaa; Mora Espi, Maria Carmen; Gerz, Kathrin; Lin, Dexu; Maas, Frank; Martinez, Ana Penuelas; Morales, Cristina; Wang, Yadi [Helmholtz Institut Mainz (Germany); Aguar Bartolome, Patricia [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A transversely polarized target in PANDA would allow for the first time access to the imaginary part of the time like electromagnetic proton form factors, namely the phase angle in the imaginary plane between electric and magnetic form factors. Moreover it would allow for a number of other target single spin asymmetries revealing nucleon structure observables connected with the transverse spin structure of the proton. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present experimental results on intense magnetic flux shielding using a BSCCO-2212 high temperature superconducting hollow cylinder at liquid helium temperature.

  3. Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shao Qing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2015-06-15

    Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone. Several models for ECR ion source were and will be constructed depending on their operating conditions. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

  4. NuFact muon storage ring: study of a triangle design based on solenoid focusing decay straights

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Service Accelerateurs, Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)]|[Commissariat a l' Energie Atomique, CEA, 31-33, rue de la Federation (Paris 15e), BP 510, 75752 Paris Cedex 15 (France); Reesy, G. [Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom)

    2006-06-15

    Properties of acceptance and beam transmission in a triangle design of the neutrino factory muon decay ring, with decay straights based on solenoidal focusing, are reported.The muon storage ring in the neutrino factory, NuFact, is located at the high energy end of the muon acceleration chain. It delivers the {mu}{sup +}/{mu}{sup -} decay neutrinos to physics detectors. The design of concern here, is a triangle geometry 20 GeV storage ring, upgradable to 50 GeV, (the parameters are given), which features two decay straight sections, each one aiming at a distant detector. The third straight section of the ring is devoted to tuning, collimation and RF. A particularity of the proposed design, is in its being based on solenoid focusing decay straights, which has the virtue of minimizing the betatron amplitudes, compared to equivalent quadrupole focusing. The solenoidal focusing ensures the requested ratio, for the r.m.s. divergences of the 20 GeV muon and the neutrino beam, of 0.1 for an assumed muon normalized r.m.s. emittance of 4800 {pi} mm mr (3 {pi} cm, total). The goal of the present work is to show the viability of this design, in particular as concerns the impact of the solenoid focusing on machine behavior. It addresses the questions of residual coupling, machine acceptance, and concludes with a computation of beam transmission over 1000 turns. The paper has the following structure: 1. Introduction; 2. Working hypothesis; 3. Building-up ray-tracing data; 3.1. Arcs; 3.2. Solenoid straight; 3.3. Tuning/Collimation/RF straight; 3.4. Full ring; 3.4.1. Beam envelopes; 3.4.2. Closed orbits; 3.4.3. Momentum dispersion; 3.5 Large amplitude tracking, preliminary tests; 4. Tracking, linear machine; 4.1. Large amplitude tracking; 4.1.1. 2-D horizontal initial conditions; 4.1.2. 2-D vertical initial conditions; 4.1.3. 4-D + {delta}p/p initial conditions; 4.2. Transmission, 4-D + {delta}p/p, no sextupoles; 4.2.1. {epsilon}{sub x} {epsilon}{sub z} = 3 {pi} cm (norm.), {delta

  5. NuFact muon storage ring: study of a triangle design based on solenoid focusing decay straights

    International Nuclear Information System (INIS)

    Meot, F.; Reesy, G.

    2006-06-01

    Properties of acceptance and beam transmission in a triangle design of the neutrino factory muon decay ring, with decay straights based on solenoidal focusing, are reported.The muon storage ring in the neutrino factory, NuFact, is located at the high energy end of the muon acceleration chain. It delivers the μ + /μ - decay neutrinos to physics detectors. The design of concern here, is a triangle geometry 20 GeV storage ring, upgradable to 50 GeV, (the parameters are given), which features two decay straight sections, each one aiming at a distant detector. The third straight section of the ring is devoted to tuning, collimation and RF. A particularity of the proposed design, is in its being based on solenoid focusing decay straights, which has the virtue of minimizing the betatron amplitudes, compared to equivalent quadrupole focusing. The solenoidal focusing ensures the requested ratio, for the r.m.s. divergences of the 20 GeV muon and the neutrino beam, of 0.1 for an assumed muon normalized r.m.s. emittance of 4800 π mm mr (3 π cm, total). The goal of the present work is to show the viability of this design, in particular as concerns the impact of the solenoid focusing on machine behavior. It addresses the questions of residual coupling, machine acceptance, and concludes with a computation of beam transmission over 1000 turns. The paper has the following structure: 1. Introduction; 2. Working hypothesis; 3. Building-up ray-tracing data; 3.1. Arcs; 3.2. Solenoid straight; 3.3. Tuning/Collimation/RF straight; 3.4. Full ring; 3.4.1. Beam envelopes; 3.4.2. Closed orbits; 3.4.3. Momentum dispersion; 3.5 Large amplitude tracking, preliminary tests; 4. Tracking, linear machine; 4.1. Large amplitude tracking; 4.1.1. 2-D horizontal initial conditions; 4.1.2. 2-D vertical initial conditions; 4.1.3. 4-D + δp/p initial conditions; 4.2. Transmission, 4-D + δp/p, no sextupoles; 4.2.1. ε x ε z = 3 π cm (norm.), δp/p = ±1%; 4.2.2. ε x ε z = 6 π cm (norm.), δp/p ±4

  6. Chromatic, geometric and space charge effects on laser accelerated protons focused by a solenoid

    OpenAIRE

    Al-Omari, Husam; Hofmann, Ingo; Ratzinger, Ulrich

    2011-01-01

    We stud­ied nu­mer­i­cal­ly emit­tance and trans­mis­sion ef­fects by chro­mat­ic and ge­o­met­ric aber­ra­tions, with and with­out space charge, for a pro­ton beam be­hind a solenoid in the laser pro­ton ex­per­i­ment LIGHT at GSI. The TraceWin code was em­ployed using a field map for the solenoid and an ini­tial dis­tri­bu­tion with ex­po­nen­tial en­er­gy de­pen­dence close to the ex­per­i­ment. The re­sults show a strong ef­fect of chro­mat­ic, and a rel­a­tive­ly weak one of ge­o­met­ric...

  7. Approximate theory the electromagnetic energy of solenoid in special relativity

    International Nuclear Information System (INIS)

    Prastyaningrum, I; Kartikaningsih, S.

    2017-01-01

    Solenoid is a device that is often used in electronic devices. A solenoid is electrified will cause a magnetic field. In our analysis, we just focus on the electromagnetic energy for solenoid form. We purpose to analyze by the theoretical approach in special relativity. Our approach is begun on the Biot Savart law and Lorentz force. Special theory relativity can be derived from the Biot Savart law, and for the energy can be derived from Lorentz for, by first determining the momentum equation. We choose the solenoid form with the goal of the future can be used to improve the efficiency of the electrical motor. (paper)

  8. Strength-limited magnetic field intensity of toroidal magnet systems fabricated or the base of layer-by-layer shrouded solenoids

    International Nuclear Information System (INIS)

    Litvinnko, Yu.A.

    1982-01-01

    The possibilities, as to the ultimate magnetic field strength, of tokamak magnet systems made on the base of layer-by-laeyer shrouded coils are considered numerically. The toroidal magnet system is considered which consists of N skewe, layer-by-layer shrouded, equistrong coils in the ideal torus approximation. The dependences of the ragnetic field strength on the internal- and external torus radii, pulse duration and aspect ratio for copper coils shrouded with fiberglass are calculated as an example. The analysis of the obtained results shows that using of the layer-by-layer shrouding scheme for toroidal solenoid coils leads to a considerable growth of the ultimate magnetic field strengths in a wide duration range. For example, the limiting field strength along the toroidal solenoid axis of the considered type inside the ''FT'' installation toroidal solenoid at equivalent field pulse duration of approximately 0.3 s reaches H 0 =1.3zx10 7 A/m

  9. The CMS superconducting solenoid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The huge solenoid that will generate the magnetic field for the CMS experiment at the LHC is shown stored in the assembly hall above the experimental cavern. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. It weighs 220 tonnes and will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field, storing enough energy to melt 18 tonnes of gold.

  10. Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles

    Science.gov (United States)

    Badfar, Homayoun; Motlagh, Saber Yekani; Sharifi, Abbas

    2017-10-01

    In this paper, biomagnetic blood flow in the stenosis vessel under the effect of the solenoid magnetic field is studied using the ferrohydrodynamics (FHD) model. The parabolic profile is considered at an inlet of the axisymmetric stenosis vessel. Blood is modeled as electrically non-conducting, Newtonian and homogeneous fluid. Finite volume and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are utilized to discretize governing equations. The investigation is studied at different magnetic numbers ( MnF=164, 328, 1640 and 3280) and the number of the coil loops (three, five and nine loops). Results indicate an increase in heat transfer, wall shear stress and energy loss (pressure drop) with an increment in the magnetic number (ratio of Kelvin force to dynamic pressure force), arising from the FHD, and the number of solenoid loops. Furthermore, the flow pattern is affected by the magnetic field, and the temperature of blood can be decreased up to 1.48 {}°C under the effect of the solenoid magnetic field with nine loops and reference magnetic field ( B0) of 2 tesla.

  11. Application of optimal control theory to laser heating of a plasma in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Neal, R.D.

    1975-01-01

    Laser heating of a plasma column confined by a solenoidal magnetic field is studied via modern optimal control techniques. A two-temperature, constant pressure model is used for the plasma so that the temperature and density are functions of time and location along the plasma column. They are assumed to be uniform in the radial direction so that refraction of the laser beam does not occur. The laser intensity used as input to the column at one end is taken as the control variable and plasma losses are neglected. The localized behavior of the plasma heating dynamics is first studied and conventional optimal control theory applied. The distributed parameter optimal control problem is next considered with minimum time to reach a specified final ion temperature criterion as the objective. Since the laser intensity can only be directly controlled at the input end of the plasma column, a boundary control situation results. The problem is unique in that the control is the boundary value of one of the state variables. The necessary conditions are developed and the problem solved numerically for typical plasma parameters. The problem of maximizing the space-time integral of neutron production rate in the plasma is considered for a constant distributed control problem where the laser intensity is assumed fixed at maximum and the external magnetic field is taken as a control variable

  12. Nuclear magnetic resonance at 310 MHz in a superconducting solenoid; Resonance magnetique nucleaire a 310 MHz dans un solenoide supra-conducteur

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, J J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    The realisation of an NMR spectrometer with a superconducting magnet is presented in the first section. The methods to attain the best possible homogeneity of the magnetic field and to minimize the error in the spectrometer are described. The second section is devoted to the study of elastomers and nitr-oxides free radicals. A shift of the transition temperature with the magnetic field appears for the elastomers. The increasing paramagnetic shift has allowed a complete study by NMR of piperidinic and pyrrolidinic nitroxide free radicals. (author) [French] Dans la premiere partie est exposee la realisation d'un spectrometre de RMN utilisant un solenoide supraconducteur. Des solutions sont donnees pour obtenir la meilleure homogeneite possible du champ magnetique et pour minimiser les sources d'erreur apportees par le spectrometre. La deuxieme partie est consacree a l'etude d'elastomeres et de radicaux libres nitroxydes. Une variation de la temperature de transition avec le champ magnetique est mise en evidence pour les elastomeres. L'accroissement du deplacement paramagnetique a permis une etude complete par RMN des radicaux libres nitroxydes piperidiniques et pyrrolidiniques. (auteur)

  13. Nuclear magnetic resonance at 310 MHz in a superconducting solenoid; Resonance magnetique nucleaire a 310 MHz dans un solenoide supra-conducteur

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, J.J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    The realisation of an NMR spectrometer with a superconducting magnet is presented in the first section. The methods to attain the best possible homogeneity of the magnetic field and to minimize the error in the spectrometer are described. The second section is devoted to the study of elastomers and nitr-oxides free radicals. A shift of the transition temperature with the magnetic field appears for the elastomers. The increasing paramagnetic shift has allowed a complete study by NMR of piperidinic and pyrrolidinic nitroxide free radicals. (author) [French] Dans la premiere partie est exposee la realisation d'un spectrometre de RMN utilisant un solenoide supraconducteur. Des solutions sont donnees pour obtenir la meilleure homogeneite possible du champ magnetique et pour minimiser les sources d'erreur apportees par le spectrometre. La deuxieme partie est consacree a l'etude d'elastomeres et de radicaux libres nitroxydes. Une variation de la temperature de transition avec le champ magnetique est mise en evidence pour les elastomeres. L'accroissement du deplacement paramagnetique a permis une etude complete par RMN des radicaux libres nitroxydes piperidiniques et pyrrolidiniques. (auteur)

  14. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  15. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  16. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  17. Short-circuited coil in a solenoid circuit of a pulse magnetic field

    International Nuclear Information System (INIS)

    Kivshik, A.F.; Dubrovin, V.Yu.

    1976-01-01

    A short-circuited coil at the end of a long pulse solenoid attenuates the dissipation field by 3-5 times. A plug-configuration field is set up in the middle portion of the pulse solenoid incorporating the short-circuited coils. Shunting of the coils with the induction current by resistor Rsub(shunt) provides for the adjustment of the plug ratio γ

  18. Schrödinger and Dirac operators with the Aharonov-Bohm and magnetic-solenoid fields

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2012-01-01

    We construct all self-adjoint Schrödinger and Dirac operators (Hamiltonians) with both the pure Aharonov-Bohm (AB) field and the so-called magnetic-solenoid field (a collinear superposition of the AB field and a constant magnetic field). We perform a spectral analysis for these operators, which includes finding spectra and spectral decompositions, or inversion formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow, respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals. (paper)

  19. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    International Nuclear Information System (INIS)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  20. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  1. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.

    2008-01-01

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when ω ce ∼> ω pe β b , where ω ce = eB/m e c is the electron gyrofrequency, ω pe is the electron plasma frequency, and β b = V b /c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement

  2. LCLS Gun Solenoid Design Considerations

    International Nuclear Information System (INIS)

    Schmerge, John

    2010-01-01

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  3. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Joshua T. [Jefferson Lab, Newport News, VA; Biallas, George H. [Jefferson Lab, Newport News, VA; Brown, G.; Butler, David E. [Jefferson Lab, Newport News, VA; Carstens, Thomas J. [Jefferson Lab, Newport News, VA; Chudakov, Eugene A. [Jefferson Lab, Newport News, VA; Creel, Jonathan D. [Jefferson Lab, Newport News, VA; Egiyan, Hovanes [Jefferson Lab, Newport News, VA; Martin, F.; Qiang, Yi [Jefferson Lab, Newport News, VA; Smith, Elton S. [Jefferson Lab, Newport News, VA; Stevens, Mark A. [Jefferson Lab, Newport News, VA; Spiegel, Scot L. [Jefferson Lab, Newport News, VA; Whitlatch, Timothy E. [Jefferson Lab, Newport News, VA; Wolin, Elliott J. [Carnegie Mellon University , Pittsburgh, PA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  4. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  5. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050 Tomsk (Russian Federation); Gavrilov, S P; Gitman, D M; Filho, D P Meira, E-mail: bagrov@phys.tsu.ru, E-mail: gavrilovsergeyp@yahoo.com, E-mail: gitman@dfn.if.usp.br, E-mail: dmeira@dfn.if.usp.br [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo, SP (Brazil)

    2011-02-04

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  6. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Filho, D P Meira

    2011-01-01

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  7. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain)], E-mail: sobron@ifca.unican.es; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)] (and others)

    2009-07-21

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  8. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    International Nuclear Information System (INIS)

    Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L.; Sobron, M.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.

    2009-01-01

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  9. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  10. Magnetic tearing in plasma focus

    International Nuclear Information System (INIS)

    Sharkawy, W.

    1994-01-01

    A plasma focus device used is Mather type filled with hydrogen gas at pressure between 0.1 and 1 torr. When connected to a large capacitor ≤10 KV a discharge is started with peak current 100 KA. Under the influence of the radial electric field E r , due to the potential between electrodes, and B φ the plasma will drift in the axial direction with velocity cE r /B φ . An induced axial magnetic field B z has been detected which due to sheath velocity. A propagation of magnetosonic wave has been observed with velocity ≅10 3 m sec -1 . Such a wave might be excited when the magnetic pressure is much greater than the plasma kinetic pressure B 2 /8π>nKT. Assuming (MHD) to be stable, Tearing model was driven which generally has smaller growth rates than (MHD) modes. Using the designed theoretical model and the plasma parameters the electron energy dΦ/dt=Ba 2 /τ R was calculated to be 2.22 KeV, which is comparable with that detected from X-ray measurements. (author)

  11. Inauguration of the CMS solenoid

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In early 2005 the final piece of the CMS solenoid magnet arrived, marked by this ceremony held in the CMS assembly hall at Cessy, France. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. Weighing 220 tonnes, it will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field and store enough energy to melt 18 tonnes of gold.

  12. Demonstration of Focusing Wolter Mirrors for Neutron Phase and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Daniel S. Hussey

    2018-03-01

    Full Text Available Image-forming focusing mirrors were employed to demonstrate their applicability to two different modalities of neutron imaging, phase imaging with a far-field interferometer, and magnetic-field imaging through the manipulation of the neutron beam polarization. For the magnetic imaging, the rotation of the neutron polarization in the magnetic field was measured by placing a solenoid at the focus of the mirrors. The beam was polarized upstream of the solenoid, while the spin analyzer was situated between the solenoid and the mirrors. Such a polarized neutron microscope provides a path toward considerably improved spatial resolution in neutron imaging of magnetic materials. For the phase imaging, we show that the focusing mirrors preserve the beam coherence and the path-length differences that give rise to the far-field moiré pattern. We demonstrated that the visibility of the moiré pattern is modified by small angle scattering from a highly porous foam. This experiment demonstrates the feasibility of using Wolter optics to significantly improve the spatial resolution of the far-field interferometer.

  13. Laser heating and magnetic compression of plasma in a fast solenoid

    International Nuclear Information System (INIS)

    Hoida, H.W.; Vlases, G.C.

    1978-01-01

    A low-β plasma column a few mm in diameter by 22 cm in length is heated by an axially directed CO 2 laser to a high-β state in a fast rising solenoidal field. Successful heating depends on proper timing between the laser pulse and rising field. Typical conditions attained are a line energy density of 6 J/cm, T-barapprox. =40 eV, and n/sub e/approx. =3 x 10 17 e - /cm 3 , with conditions quite uniform along the length. The heating suppresses instabilities which appear under certain conditions in the non-laser-heated case

  14. Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid

    Science.gov (United States)

    Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.

    2016-10-01

    We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  15. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    Science.gov (United States)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  16. The first module of CMS superconducting magnet is leaving towards CERN: a huge solenoid, which will hold the world record of stored energy

    CERN Multimedia

    2004-01-01

    The first module of the five which will make up the CMS superconducting magnet is sailing today from Genova port to CERN. The CMS (Compact Muon Solenoid) is one of the experiments that will take place at the accelerator LHC. The device will arrive after 10-days of travel (1 page)

  17. Periodic permanent magnet focused klystron

    Science.gov (United States)

    Ferguson, Patrick; Read, Michael; Ives, R Lawrence

    2015-04-21

    A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.

  18. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, O; Xu, H; Becker, J; Feldbauer, F; Heinsius, F -H; Held, T; Koch, H; Kopf, B; Pelizaeus, M; Schröder, T; Steinke, M; Wiedner, U; Zhong, J; Bianconi, A; Bragadireanu, M; Pantea, D; Tudorache, A; Tudorache, V; De Napoli, M; Giacoppo, F; Raciti, G; Rapisarda, E; Sfienti, C; Bialkowski, E; Budzanowski, A; Czech, B; Kistryn, M; Kliczewski, S; Kozela, A; Kulessa, P; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; zycki, W Czy; Domagala, M; Hawryluk, M; Lisowski, E; Lisowski, F; Wojnar, L; Gil, D; Hawranek, P; Kamys, B; Kistryn, St; Korcyl, K; Krzemien, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wronska, A; Al-Turany, M; Augustin, I; Deppe, H; Flemming, H; Gerl, J; Goetzen, K; Hohler, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Mishra, D; Orth, H; Peters, K; Saitô, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Voss, B; Wieczorek, P; Wilms, A; Brinkmann, K -T; Freiesleben, H; Jaekel, R; Kliemt, R; Wuerschig, T; Zaunick, H -G; Abazov, V M; Alexeev, G; Arefev, A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigorian, S; Karmokov, A; Koshurnikov, E K; Kudaev, V Ch; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, A; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Föhl, K; Glazier, D; Watts, D; Woods, P; Eyrich, W; Lehmann, A; Teufel, A; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A G; Bettoni, D; Carassiti, V; Cecchi, A; Dalpiaz, P; Fioravanti, E; Garzia, I; Negrini, M; Savri`e, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Brodski, I; Döring, W; Drexler, P; Düren, M; Gagyi-Palffy, Z; Hayrapetyan, A; Kotulla, M; Kühn, W; Lange, S; Liu, M; Metag, V; Nanova, M; Novotny, R; Salz, C; Schneider, J; Schoenmeier, P; Schubert, R; Spataro, S; Stenzel, H; Strackbein, C; Thiel, M; Thoering, U; Yang, S; Clarkson, T; Cowie, E; Downie, E; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, S; MacGregor, D; McKinnon, B; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Bubak, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Löhner, H; Messchendorp, J; Smit, H; van der Weele, J C; García, F; Riska, D -O; Büscher, M; Dosdall, R; Dzhygadlo, R; Gillitzer, A; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Stockmanns, T; Wintz, P; Wüstner, P; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, S; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Balanutsa, V; Chernetsky, V; Demekhin, A; Dolgolenko, A; Fedorets, P; Gerasimov, A; Goryachev, V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Hoeppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Weitzel, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Varma, R; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Boucher, J; Hennino, T; Kunne, R; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Van de Wiele, J; Zerguerras, T; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Belikov, N I; Davidenko, A M; Derevshchikov, A A; Goncharenko, Yu M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Kravtsov, V I; Matulenko, Yu A; Melnik, Y M; Meshchanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasilev, A N; Yakutin, A E; Baeck, T; Cederwall, B; Bargholtz, C; Geren, L; Tegnér, P E; Belostotskii, S; Gavrilov, G; Itzotov, A; Kiselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Yu; Veretennikov, D; Vikhrov, V; Zhadanov, A; Fava, L; Panzieri, D; Alberto, D; Amoroso, A; Botta, E; Bressani, T; Bufalino, S; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Grasso, A; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Serbanut, G; Sosio, S; Bertini, R; Calvo, D; Coli, S; De Remigis, P; Feliciello, A; Filippi, A; Giraudo, G; Mazza, G; Rivetti, A; Szymanska, K; Tosello, F; Wheadon, R; Morra, O; Agnello, M; Iazzi, F; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Ekström, C; Calén, H; Grape, S; Hoeistad, B; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Zlomanczuk, Yu; Díaz, J; Ortiz, A; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlovskii, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.

  19. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    NARCIS (Netherlands)

    Erni, W.; Keshelashvili, I; Krusche, B.

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible

  20. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    International Nuclear Information System (INIS)

    Ikeda, Shunsuke; Sekine, Megumi; Romanelli, Mark; Cinquegrani, David; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-01-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface

  1. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Science.gov (United States)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  2. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2014-02-15

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  3. Design of SC solenoid with high homogeneity

    International Nuclear Information System (INIS)

    Yang Xiaoliang; Liu Zhong; Luo Min; Luo Guangyao; Kang Qiang; Tan Jie; Wu Wei

    2014-01-01

    A novel kind of SC (superconducting) solenoid coil is designed to satisfy the homogeneity requirement of the magnetic field. In this paper, we first calculate the current density distribution of the solenoid coil section through the linear programming method. Then a traditional solenoid and a nonrectangular section solenoid are designed to produce a central field up to 7 T with a homogeneity to the greatest extent. After comparison of the two solenoid coils designed in magnet field quality, fabrication cost and other aspects, the new design of the nonrectangular section of a solenoid coil can be realized through improving the techniques of framework fabrication and winding. Finally, the outlook and error analysis of this kind of SC magnet coil are also discussed briefly. (authors)

  4. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  5. Slice through an LHC focusing magnet

    CERN Multimedia

    Slice through an LHC superconducting quadrupole (focusing) magnet. The slice includes a cut through the magnet wiring (niobium titanium), the beampipe and the steel magnet yokes. Particle beams in the Large Hadron Collider (LHC) have the same energy as a high-speed train, squeezed ready for collision into a space narrower than a human hair. Huge forces are needed to control them. Dipole magnets (2 poles) are used to bend the paths of the protons around the 27 km ring. Quadrupole magnets (4 poles) focus the proton beams and squeeze them so that more particles collide when the beams’ paths cross. Bringing beams into collision requires a precision comparable to making two knitting needles collide, launched from either side of the Atlantic Ocean.

  6. A novel NiZn ferrite integrated magnetic solenoid inductor with a high quality factor at 0.7–6 GHz

    Directory of Open Access Journals (Sweden)

    Xinjun Wang

    2017-05-01

    Full Text Available Integrated inductor is one of the fundamental components and has been widely used in radio frequency integrated circuits (RFICs. It has been challenging to achieve simultaneously high inductance and quality factor, particularly at GHz frequencies. In this work, we reported a novel integrated solenoid inductor with a magnetic NiZn ferrite as the core material, which was deposited by a low-cost spin spray technique. These integrated inductors showed a significant improvement in both inductance and quality factor at GHz frequencies over their air core counterparts. A stable inductance was observed within a wide frequency ranged from 700 MHz to 6 GHz. The peak value of quality factor reached 23, a relatively higher value not reported for solenoid inductors up to date. Our results indicate that the integrated inductor are promising for applications in RFICs.

  7. Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms

    Science.gov (United States)

    Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.

    2015-06-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.

  8. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for a Thin Solenoid with Uniform Current Density

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential Aθ is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing Bz and Aθ become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r2 in the some of the expressions.

  9. Solenoid System for PRISM and COMET

    International Nuclear Information System (INIS)

    Yoshida, Makoto

    2008-01-01

    An experiment of searching for coherent neutrino-less conversion of muons to electron conversion in muonic atom, μ - +N(A,Z)→e - +N(A,Z), is powerful probe for new physics phenomena beyond the Standard Model. We offer the experiment at a sensitivity of B(μ - N→e - N) -16 with muon beamline consisting of high-field pion capture solenoids, curved solenoids to select beam momenta, and a curved solenoid spectrometer to detect μ - -e - conversion with low-counting-rate conditions. Design of superconducting solenoid magnets of pion capture and transport beam line has been studied and is described in this paper

  10. Impact of detector solenoid on the Compact Linear Collider luminosity performance

    CERN Document Server

    Inntjore Levinsen, Y.; Tomás, Rogelio; Schulte, Daniel

    2014-05-27

    In order to obtain the necessary luminosity with a reasonable amount of beam power, the Compact Linear Collider (CLIC) design includes an unprecedented collision beam size of {\\sigma} = 1 nm vertically and {\\sigma} = 45 nm horizontally. Given the small and very flat beams, the luminosity can be significantly degraded from the impact of the experimental solenoid field in combination with a large crossing angle. Main effects include y-x'-coupling and increase of vertical dispersion. Additionally, Incoherent Synchrotron Radiation (ISR) from the orbit deflection created by the solenoid field, increases the beam emittance. A detailed study of the impact from a realistic solenoid field and the associated correction techniques for the CLIC Final Focus is presented. In particular, the impact of techniques to compensate the beam optics distortions due to the detector solenoid main field and its overlap with the final focus magnets are shown. The unrecoverable luminosity loss due to ISR has been evaluated, and found to...

  11. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  12. On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field

    Science.gov (United States)

    Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.

    2018-01-01

    At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.

  13. Some options for the muon collider capture and decay solenoids

    International Nuclear Information System (INIS)

    Green, M.A.

    1995-11-01

    This report discusses some of the problems associated with using solenoid magnets to capture the secondary particles that are created when an intense beam of 8 to 10 GeV protons interacts with the target at the center of the capture region. Hybrid capture solenoids with inductions of 28 T and a 22T are described. The first 14 to 15 T of the solenoid induction will be generated by a superconducting magnet. The remainder of the field will be generated by a Bitter type of water cooled solenoid. The capture solenoids include a transition section from the high field solenoid to a 7 T decay channel where pions and kaons that come off of the target decay into muons. A short 7 T solenoidal decay channel between the capture solenoid system and the phase rotation system is described. A concept for separation of negative and positive pions and kaons is briefly discussed

  14. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    Fowler, T.K.; Condit, W.C.

    1979-01-01

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  15. Plasma confinement apparatus using solenoidal and mirror coils

    Science.gov (United States)

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  16. Sprag solenoid brake

    Science.gov (United States)

    Dane, P. H.

    1972-01-01

    Operation of solenoid braking mechanism is discussed. Illustrations of construction of the brake are provided. Device is used for braking low or medium speed shaft rotations and produces approximately ten times braking torque of similar solenoid brakes.

  17. Focusing magnets for HIF based on racetracks

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N N; Manahan, R R

    2000-09-11

    Heavy Ion Fusion (HIF) is considered a promising path to a practical fusion reactor. A driver for a HIF reactor will require a large number of quadrupole arrays to focus heavy ion beams. A conceptual design, and trade off studies of the quadrupole array based on racetracks are presented. A comparison with a conventional shell magnet is given and advantages and disadvantages are discussed. A more detailed design of a single quadrupole for the High Current experiment (HCX) is presented and discussed.

  18. Comparative performance analysis of a dual-solenoid mechanical oscillator

    International Nuclear Information System (INIS)

    Lee, V C C; Lee, H V; Harno, H G; Woo, K C

    2015-01-01

    An innovative dual-solenoid electro-mechanical-vibro-impact system has been constructed and experimentally studied. Comparative studies against a mechanical spring system and a permanent magnet system have been performed, where it is shown that the dual-solenoid system is able to produce oscillations better than the permanent magnet system and more energy efficiently. Comparison with a higher-powered dual solenoid system has also been conducted where a stationary solenoid has shown to be a more dominant parameter. In addition, it is also discovered that a mechanical oscillator in the dual-solenoid system is independent of the angular frequency. (paper)

  19. HB+ inserted into the CMS Solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2006-01-01

    The first half of the barrel hadron calorimeter (HB+) has been inserted into the superconducting solenoid of CMS, in preparation for the magnet test and cosmic challenge. The operation went smoothly, lasting a couple of days.

  20. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  1. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  2. ATLAS's superconducting solenoid takes up position

    CERN Multimedia

    2004-01-01

    The ATLAS superconducting solenoid was moved to its final destination on 16 January. It has taken up position opposite the ATLAS liquid argon barrel cryostat, which will house the electromagnetic calorimeter. All that remains to do now is to slide it into the insulation vacuum, this will be done in the next few weeks. Built by Toshiba, under responsibility of KEK in Japan, the central solenoid is 2.4 metres in diameter, 5.3 metres long and weighs 5.5 tonnes. "It will provide an axial magnetic field of 2 Tesla that will deflect particles inside the inner detector," as Roger Ruber, on-site project coordinator, explains. The inner detector, which consists of three sub-detectors, will be installed inside the solenoid later. The solenoid during one of the transport operations. Securely attached to the overhead travelling crane, the solenoid is situated in front of the opening to the liquid argon calorimeter, it will be inserted soon.

  3. Magnetic focusing in triangular electron billiards

    DEFF Research Database (Denmark)

    Bøggild, Peter; Kristensen, A.; Lindelof, Poul Erik

    1999-01-01

    The classical ballistic magnetotransport in triangular electron billiards fabricated in a high mobility GaAs heterostructure has been studied at 4.2 K. The sample geometry may be viewed as a double-slit structure with a skewed injection angle. We observe a striking cancellation of the magnetic...... focusing spectrum compared to the case of a perpendicular injection angle. From numerical and analytical analysis, we confirm that the quenching is a fundamental geometrical effect, and identify two mechanisms responsible for the anomaly. The focusing spectrum of the considered skewed geometry...... is remarkably sensitive to the angular distribution of injected electrons as well as the overall injection angle. [S0163-1829(99)06619-9]....

  4. Magnetized whirls in plasma focus discharges

    International Nuclear Information System (INIS)

    Witalis, E.

    1979-05-01

    The plasma focus is briefly described with emphasis on its capabilities as a neutron source. The filamentary whirl structures observed in the discharge plasma are described. Starting with a simple, early and particularly well established case of vorticity imparted by a rotational electric field to the plasma in MHD generators, a general derivation is then outlined proving that such magnetically induced rotation is a general feature for the normally Hall-conducting magnetized plasma. Physical interpretations of the effect are given and objections to it are critically reviewed as is also a theory proposing radiation cooling as the cause of plasma filamentation. A more detailed derivation based essentially on the consistent description of the motion and the field generation of the charged plasma particles yields a theoretical model where the specific features of magnetically compressed plasmas are found. In particular, the ion collisionless skin depth is obtained as the key length parameter. This length is identified as roughly the whirl radius. In conjunction with a generalized Bennett relation theoretical whirl properties are predicted and found to agree with observations. Mechanisms that relate the whirls to nuclear fusion reaction conditions are tentatively indicated. (author)

  5. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  6. Solenoidal fusion system

    International Nuclear Information System (INIS)

    Linlor, W.I.

    1980-01-01

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  7. SSC detector solenoid

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, E.D.; Wands, R.H.

    1989-01-01

    A detector utilizing a superconducting solenoid is being discussed for the Superconducting Super Collider (SSC). A useful field volume of 8 m diameter x 16 m length at 1.5-2 T (--1 GJ at 2T) is required. It has been decided that all of the particle physics calorimetry will be inside the bore of the solenoid and that there is no need for the coil and cryostat to be ''thin'' in radiation lengths. An iron yoke will reduce the excitation required and will provide muon identification and a redundant momentum measurement of the muons. The authors have developed a conceptual design to meet these requirements. The magnet will use a copper-stabilized Nb-Ti conductor sized for a cryostable pool boiling heat flux --0.025 W/cm/sup 2/. A thermosiphon from a storage vessel above the cryostat will be used to prevent bubble stagnation in the liquid helium bath. The operating current, current density, coil subdivision and dump resistor have been chosen to guarantee that the coil will be undamaged should a quench occur. The axial electromagnetic force will be reacted by metallic support links; the stainless steel coil case will support the radial force. The 5000 metric tons of calorimetry will be supported from the iron yoke through a trussed cylindrical shell structure separate from the cryostat. The coil and case, radiation shield and stainless vacuum vessel would be fabricated and cryogenically tested as two 8-m sections. These would be lowered into the underground experimental hall and installed into the iron flux return yoke to provide the required 16-m length

  8. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    Science.gov (United States)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  9. Ultimate Performance of the ATLAS Superconducting Solenoid

    CERN Document Server

    Ruber, R; Kawai, M; Kondo, Y; Doi, Y; Haruyama, T; Haug, F; Kate, H ten; Kondo, T; Pirotte, O; Metselaar, J; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A

    2007-01-01

    A 2 tesla, 7730 ampere, 39 MJ, 45 mm thin superconducting solenoid with a 2.3 meters warm bore and 5.3 meters length, is installed in the center of the ATLAS detector and successfully commissioned. The solenoid shares its cryostat with one of the detector's calorimeters and provides the magnetic field required for the inner detectors to accurately track collision products from the LHC at CERN. After several years of a stepwise construction and test program, the solenoid integration 100 meters underground in the ATLAS cavern is completed. Following the on-surface acceptance test, the solenoid is now operated with its final cryogenic, powering and control system. A re-validation of all essential operating parameters is completed. The performance and test results of underground operation are reported and compared to those previously measured.

  10. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    Amherd, N.A.

    1975-09-01

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  11. The Design Parameters for the MICE Tracker Solenoid

    International Nuclear Information System (INIS)

    Green, Michael A.; Chen, C.Y.; Juang, Tiki; Lau, Wing W.; Taylor, Clyde; Virostek, Steve P.; Wahrer, Robert; Wang, S.T.; Witte, Holger; Yang, Stephanie Q.

    2006-01-01

    The first superconducting magnets to be installed in the muon ionization cooling experiment (MICE) will be the tracker solenoids. The tracker solenoid module is a five coil superconducting solenoid with a 400 mm diameter warm bore that is used to provide a 4 T magnetic field for the experiment tracker module. Three of the coils are used to produce a uniform field (up to 4 T with better than 1 percent uniformity) in a region that is 300 mm in diameter and 1000 mm long. The other two coils are used to match the muon beam into the MICE cooling channel. Two 2.94-meter long superconducting tracker solenoid modules have been ordered for MICE. The tracker solenoid will be cooled using two-coolers that produce 1.5 W each at 4.2 K. The magnet system is described. The decisions that drive the magnet design will be discussed in this report

  12. Laser-heated solenoid fusion

    International Nuclear Information System (INIS)

    Vlases, G.C.

    1977-01-01

    Since the suggestion by Dawson, Hertzberg, and Kidder that high-energy CO 2 lasers could be used to heat magnetically confined plasma columns to thermonuclear temperatures, a great deal of theoretical and experimental work has been performed. In this paper we first review the experiments on the basic laser-plasma interaction phenomena, in which lasers with energies up to 1 kJ have been used to produce plasmas at n/sub e/ greater than 10 18 and T/sub e/ greater than 200 eV. The second part reviews fusion reactor studies based on the laser solenoid

  13. High field laser heated solenoids

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1979-01-01

    A 10 kJ pulsed CO 2 laser and 3.8 cm bore, 15 T, 8 μs rise time, 1-m long fast solenoid facility has been constructed to demonstrate the feasibility of using long wavelength lasers to heat magnetically confined plasmas. The most critical physics requirement is the necessity of creating and maintaining an on-axis electron density minimum to trap the axially directed laser beam. Satisfaction of this requirement has been demonstrated by heating 1.5 Torr deuterium fill plasmas in 2.7 cm bore plasma tubes to line energies of approximately 1 kJ/m. (Auth.)

  14. Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus

    CERN Document Server

    Iwashita, Y

    2004-01-01

    Super-strong permanent magnets are being considered as one of the candidates for the final focus quadrupole magnets in a linear collider. A short prototype with temperature compensation included and variable strength capability has been designed and fabricated. Fabrication details and some magnetic measurement results will be presented.

  15. EDITORIAL: Focus on Dilute Magnetic Semiconductors FOCUS ON DILUTE MAGNETIC SEMICONDUCTORS

    Science.gov (United States)

    Chambers, Scott A.; Gallagher, Bryan

    2008-05-01

    This focus issue of New Journal of Physics is devoted to the materials science of dilute magnetic semiconductors (DMS). A DMS is traditionally defined as a diamagnetic semiconductor doped with a few to several atomic per cent of some transition metal with unpaired d electrons. Several kinds of dopant-dopant interactions can in principle couple the dopant spins leading to a ferromagnetic ground state in a dilute magnetic system. These include superexchange, which occurs principally in oxides and only between dopants with one intervening oxygen, and double exchange, in which dopants of different formal charges exchange an electron. In both of these mechanisms, the ferromagnetic alignment is not critically dependent on free carriers in the host semiconductor because exchange occurs via bonds. A third mechanism, discovered in the last few years, involves electrons associated with lattice defects that can apparently couple dopant spins. This mechanism is not well understood. Finally, the most desirable mechanism is carrier-mediated exchange interaction in which the dopant spins are coupled by itinerant electrons or holes in the host semiconductor. This mechanism introduces a fundamental link between magnetic and electrical transport properties and offers the possibility of new spintronic functionalities. In particular electrical gate control of ferromagnetism and the use of spin polarized currents to carry signals for analog and digital applications. The spin light emitting diode is a prototypical device of this kind that has been extensively used to characterize the extent of spin polarization in the active light emitting semiconductor heterostructure. The prototypical carrier mediated ferromagnetic DMS is Mn-doped GaAs. This and closely related narrow gap III-V materials have been very extensively studied. Their properties are generally quite well understood and they have led to important insights into fundamental properties of ferromagnetic systems with strong spin

  16. A historical review on ''magnetic focusing method'' in Japan

    International Nuclear Information System (INIS)

    Yamada, Y.; Tanaka, K.; Abe, Z.

    1986-01-01

    Several topics on the development of the magnetic focusing method and its recent progress are discussed. The magnetic focusing method will be effective for measuring the local NMR parameters, and the advanced imaging technique will also be as useful as the recent conventional NMR Imaging techniques

  17. A solenoidal and monocusp ion source (SAMIS) (abstract)ab

    International Nuclear Information System (INIS)

    Burns, E.J.; Brainard, J.P.; Draper, C.H.; Ney, R.H.; Leung, K.N.; Perkins, L.T.; Williams, M.D.; Wilde, S.B.

    1996-01-01

    We have developed a new magnetic monocusp ion source for single aperture applications such as neutron generators. Coupling solenoidal magnetic fields on both sides of a monocusp magnetic field has generated over 70% atomic deuterium ions at pressures as low as 0.4 Pa (3 mTorr). This article describes the performance and characteristics of the solenoidal and monocusp ion source. copyright 1996 American Institute of Physics

  18. Superconducting solenoids for an international muon cooling experiment

    International Nuclear Information System (INIS)

    Green, M.A.; Rey, J.M.

    2002-01-01

    The international muon ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the muons to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the muons putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the muon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about 1 part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling

  19. Compensation of oscillation coupling induced by solenoids

    International Nuclear Information System (INIS)

    Zelinskij, A.Yu.; Karnaukhov, I.M.; Shcherbakov, A.A.

    1988-01-01

    Methods for construction of various schemes of oscillation coupling compensation, induced by solenoids in charged particle storage rings, are described. Peculiarities of magnetic structure, enabling to localize oscillation coupling in wide energy range are discussed. Results of calculation of compensation schemes for design of NR-2000 storage ring spin rotation are presented

  20. Focus on Materials Analysis and Processing in Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings

  1. Central Solenoid On-surface Test

    CERN Multimedia

    Ruber, R

    2004-01-01

    A full scale on-surface test of the central solenoid has been performed before its final installation in the ATLAS cavern starting in November. The successful integration of the central solenoid into the barrel cryostat, as reported in the March 2004 ATLAS eNews, was hardly finished when testing started. After a six-week period to cool down the LAr calorimeter, the solenoid underwent a similar procedure. Cooling it down to 4.6 Kelvin from room temperature took just over five and a half days. Cold and superconducting, it was time to validate the functionality of the control and safety systems. These systems were largely the same as the systems to be used in the final underground installation, and will be used not only for the solenoid and toroid magnets, but parts of it also for other LHC experiments. This solenoid test was the first occasion to test the system functionality in a real working environment. Several days were spent to fine tune the systems, especially the critical safety system, which turned out...

  2. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  3. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. At the start of the New Year the solenoid was moved to the cryostat insertion stand. After a test insertion on 6th February and a few weeks of preparation work it was finally inserted on 27th February. A couple of hectic 24-hours/7-day weeks followed in order to connect all services in the cryostat bulkhead. But last Monday, 15th March, both warm flanges of the cryostat could be closed. In another week's time we expect to finish the connection of the cryogenic cooling lines and the superconducting bus lines with the external services. Then the cool-down and test will commence... ...

  4. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  5. An Inexpensive Toroidal Solenoid for an Investigative Student Lab

    Science.gov (United States)

    Ferstl, Andrew; Broberg, John

    2008-09-01

    Magnetism and Ampère's law is a common subject in most calculus-based introductory physics courses. Many textbooks offer examples to calculate the magnetic field produced by a symmetric current by using Ampère's law. These examples include the solenoid and the toroidal solenoid (sometimes called a torus; see Fig. 1), which are used in many applications, including the study of plasmas.

  6. Energy losses in the D0 β solenoid cryostat caused by current changes

    International Nuclear Information System (INIS)

    Visser, A.T.

    1993-11-01

    The proposed D0 β solenoid is a superconducting solenoid mounted inside an aluminum tube which supports the solenoid winding over it's full length. This aluminum support tube, also called bobbin, is therefore very tightly coupled to magnetic flux changes caused by solenoid current variations. These current changes in the solenoid, will cause answer currents to flow in the resistive bobbin wall and therefore cause heat losses. The insertion of an external dump resistor in the solenoid current loop reduces energy dissipation inside the cryostat during a quench and will shorten the discharge time constant. This note presents a simple electrical model for the coupled bobbin and solenoid and makes it easier to understand the circuit behavior and losses. Estimates for the maximum allowable rate of solenoid current changes, based on the maximum permissible rate of losses can be made using this model

  7. First Operation of the Central Solenoid

    CERN Multimedia

    Ruber, R.

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. It was cooled down from the 17th to 23th May 2006, and the first kA was put into it the same evening as it was cold and superconductive. That makes our solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas. The Central Solenoid in its final position at the heart of ATLAS. The coil current (red line) and voltage (blue line) showing the operation at nominal current of 7.73 kA for a magnetic field of 2.0 T and the subsequent successful commissioning up to 8 kAT The cool down and powering of the solenoid was a major milestone for all control, cryogenic, power and vacuum systems and was achieved in perfect collaboration with the liquid argon detector with which it shares the Barrel Cryostat. Powering up to nominal current had to wait until the last week of July when the End-Cap Calorimeters were in closed position. The Tile Barrel and E...

  8. ATLAS superconducting solenoid on-surface test

    CERN Document Server

    Ruber, Roger J M Y; Doi, Y; Haruyama, T; Haug, F; ten Kate, H H J; Kawai, M; Kondo, T; Kondo, Y; Makida, Y; Mizumaki, S; Olesen, G; Pavlov, O V; Pezzetti, M; Pirotte, O; Sbrissa, E; Yamamoto, A

    2005-01-01

    The ATLAS detector is presently under construction as one of the five LHC experiment set-ups. It relies on a sophisticated magnet system for the momentum measurement of charged particle tracks. The superconducting solenoid is at the center of the detector, the magnet system part nearest to the proton-proton collision point. It is designed for a 2 Tesla strong axial magnetic field at the collision point, while its thin-walled construction of 0.66 radiation lengths avoids degradation of energy measurements in the outer calorimeters. The solenoid and calorimeter have been integrated in their common cryostat, cooled down and tested on-surface. We review the on-surface set-up and report the performance test results.

  9. Quench Protection and Magnet Powe Supply Requirements for the MICE Focusing and Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched

  10. Down with Physics: giant compact muon solenoid (CMS) magnet goes underground at CERN UCR physicists to participate in the international experiment

    CERN Multimedia

    2007-01-01

    "Scientists of the US CMS collaboration, which includes UC riverside physicists, joined colleagues around the world in announcing today that the heaviest piece of the Compact Muon Solenoid particle detector has begun te momentous journey into its experimenta cavern 100 meters underground." (2,5 pages)

  11. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  12. A superconducting magnet upgrade of the ATF2 final focus

    CERN Document Server

    Parker, B; Escallier, J; He, P; Jain, P; Marone, A; Wanderer, P; Wu, KC; Hauviller, C; Marin, E; Tomas, R; Zimmermann, F; Bolzon, B; Jeremie, A; Kimura, N; Kubo, K; Kume, T; Kuroda, S; Okugi, T; Tauchi, T; Terunuma, N; Tomaru, T; Tsuchiya, K; Urakawa, J; Yamamoto, A; Bambade, P; Coe, P; Urner, D; Seryi, A; Spencer, C; White, G

    2010-01-01

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF [1]. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF [2]. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction [3]. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC [4]. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet perfo...

  13. Motions of CMS Detector structures due to the magnetic field forces as observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    CERN Document Server

    Calderón, Alicia; González-Sánchez, F J; Martínez-Rivero, C; Matorras, Francisco; Rodrigo, Teresa; Martínez, P; Scodellaro, Luca; Sobrón, M; Vila, Ivan; Virto, A L; Alberdi, Javier; Arce, Pedro; Barcala, Jose Miguel; Calvo, Enrique; Ferrando, Antonio; Josa-Mutuberria, I; Molinero, Antonio; Navarrete, Jose Javier; Oller, Juan Carlos; Yuste, Ceferino

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  14. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  15. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  16. Conceptual design of a 20 Tesla pulsed solenoid for a laser solenoid fusion reactor

    International Nuclear Information System (INIS)

    Nolan, J.J.; Averill, R.J.

    1977-01-01

    Design considerations are described for a strip wound solenoid which is pulsed to 20 tesla while immersed in a 20 tesla bias field so as to achieve within the bore of the pulsed solenoid at net field sequence starting at 20 tesla and going first down to zero, then up to 40 tesla, and finally back to 20 tesla in a period of about 5 x 10 -3 seconds. The important parameters of the solenoid, e.g., aperture, build, turns, stored and dissipated energy, field intensity and powering circuit, are given. A numerical example for a specific design is presented. Mechanical stresses in the solenoid and the subsequent choice of materials for coil construction are discussed. Although several possible design difficulties are not discussed in this preliminary report of a conceptual magnet design, such as uniformity of field, long-term stability of insulation under neutron bombardment and choice of structural materials of appropriate tensile strength and elasticity to withstand magnetic forces developed, these questions are addressed in detail in the complete design report and in part in reference one. Furthermore, the authors feel that the problems encountered in this conceptual design are surmountable and are not a hindrance to the construction of such a magnet system

  17. On the Suitability of a Solenoid Horn for the ESS Neutrino Superbeam

    CERN Document Server

    Olvegård, Maja; Ruber, R; Ziemann, R; Koutchouk, J -P

    2015-01-01

    The European Spallation Source (ESS), now under construction in Lund, Sweden, offers unique opportunities for experimental physics, not only in neutron science but potentially in particle physics. The ESS neutrino superbeam project plans to use a 5 MW proton beam from the ESS linac to generate a high intensity neutrino superbeam, with the final goal of detecting leptonic CP-violation in an underground megaton Cherenkov water detector. The neutrino production requires a second target station and a complex focusing system for the pions emerging from the target. The normal-conducting magnetic horns that are normally used for these applications cannot accept the 2.86 ms long proton pulses of the ESS linac, which means that pulse shortening in an accumulator ring would be required. That, in turn, requires H- operation in the linac to accommodate the high intensity. As an attractive alternative, we investigate the possibility of using superconducting solenoids for the pion focusing. This solenoid horn system needs ...

  18. Tests of planar permanent magnet multipole focusing elements

    International Nuclear Information System (INIS)

    Cobb, J.; Tatchyn, R.

    1993-08-01

    In recent work, planar configurations of permanent magnets were proposed as substitutes for conventional current-driven iron quadrupoles in applications limited by small aperture sizes and featuring small beam occupation diameters. Important examples include the configuring of focusing lattices in small-gap insertion devices, and the implementation of compact mini-beta sections on linear or circular machines. In subsequent analysis, this approach was extended to sextupoles and higher-order multipoles. In this paper we report on initial measurements conducted at the Stanford Linear Accelerator Center on recently fabricated planar permanent magnet quadrupoles and sextupoles configured out of SmCo and NdFe/B

  19. A magnetic focusing channel for VEC at Calcutta

    International Nuclear Information System (INIS)

    Mallik, C.

    1986-01-01

    The extent of the useful aperture of a beam handling quadrupole magnet of the variable energy cyclotron at Calcutta is about 6 cms, but the extent of the beam in radial plane near the entrance to the quadrupole is at least 10 cm i.e. it exceeds the size of the useful aperture. This creates the problem of phase space distortion decreasing the efficiency of the beam transport line and the usable beam. To correct this problem, a triplet bar has been used as a magnetic focusing channel. The magnetic field induced due to this bar in the median plane is shown in a figure and advantages of its use are described. (M.G.B.)

  20. Solenoid for Laser Induced Plasma Experiments at Janus

    Science.gov (United States)

    Klein, Sallee; Leferve, Heath; Kemp, Gregory; Mariscal, Derek; Rasmus, Alex; Williams, Jackson; Gillespie, Robb; Manuel, Mario; Kuranz, Carolyn; Keiter, Paul; Drake, R.

    2017-10-01

    Creating invariant magnetic fields for experiments involving laser induced plasmas is particularly challenging due to the high voltages at which the solenoid must be pulsed. Creating a solenoid resilient enough to survive through large numbers of voltage discharges, enabling it to endure a campaign lasting several weeks, is exceptionally difficult. Here we present a solenoid that is robust through 40 μs pulses at a 13 kV potential. This solenoid is a vast improvement over our previously fielded designs in peak magnetic field capabilities and robustness. Designed to be operated at small-scale laser facilities, the solenoid housing allows for versatility of experimental set-ups among diagnostic and target positions. Within the perpendicular field axis at the center there is 300 degrees of clearance which can be easily modified to meet the needs of a specific experiment, as well as an f/3 cone for transmitted or backscattered light. After initial design efforts, these solenoids are relatively inexpensive to manufacture.

  1. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S.Y.; Zheng, S.X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-01-01

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  2. "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator"

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Kjeldsen, B.; Reimers, R.L.

    2005-01-01

    Implementing DNA and protein microarrays into lab-on-a-chip systems can be problematic since these are sensitive to heat and strong chemicals. Here, we describe the functionalization of a microchannel with two types of magnetic beads using hydrodynamic focusing combined with a passive magnetic...

  3. Design, fabrication, and characterization of a solenoid system to ...

    Indian Academy of Sciences (India)

    system to generate magnetic field for an ECR proton source. S K JAIN .... The bore of the solenoid coils was fabricated using high voltage glass epoxy. Each ... sure drop and flow, the inlet and outlet connections were provided. ... stability of an ECR plasma source, as any small change in the distribution of the axial magnetic.

  4. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-01-01

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  5. HINS Linac front end focusing system R&D

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G.; Carcagno, R.H.; Dimarco, J.; Huang, Y.; Kashikhin, V.V.; Orris, D.F.; Page, T.M.; Rabehl, R.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab /Argonne

    2008-08-01

    This report summarizes current status of an R&D program to develop a focusing system for the front end of a superconducting RF linac. Superconducting solenoids will be used as focusing lenses in the low energy accelerating sections of the front end. The development of focusing lenses for the first accelerating section is in the production stage, and lens certification activities are in preparation at FNAL. The report contains information about the focusing lens design and performance, including solenoid, dipole corrector, and power leads, and about cryogenic system design and performance. It also describes the lens magnetic axis position measurement technique and discusses scope of an acceptance/certification process.

  6. HINS Linac front end focusing system R and D

    International Nuclear Information System (INIS)

    Apollinari, G.; Carcagno, R.H.; Dimarco, J.; Huang, Y.; Kashikhin, V.V.; Orris, D.F.; Page, T.M.; Rabehl, R.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Fermilab; Argonne

    2008-01-01

    This report summarizes current status of an R and D program to develop a focusing system for the front end of a superconducting RF linac. Superconducting solenoids will be used as focusing lenses in the low energy accelerating sections of the front end. The development of focusing lenses for the first accelerating section is in the production stage, and lens certification activities are in preparation at FNAL. The report contains information about the focusing lens design and performance, including solenoid, dipole corrector, and power leads, and about cryogenic system design and performance. It also describes the lens magnetic axis position measurement technique and discusses scope of an acceptance/certification process

  7. Superconducting Solenoid for Superfast THz Spectroscopy

    Science.gov (United States)

    Bragin, A. V.; Khrushchev, S. V.; Kubarev, V. V.; Mezencev, N. A.; Tsukanov, V. M.; Sozinov, G. I.; Shkaruba, V. A.

    This project is related to new spectroscopy method in little-developed THz range. The method is founded on using of a free electron laser (NovoFEL) with high spectral power radiation which can be smoothly tuned in desirable range of spectrum. The objects of research of this method are fast processes in physics, chemical and biological reactions. Uniform magnetic field of 6 T value in the research area can considerably increase possibilities of this method. The magnetic field will modulate radiation of free molecules induction on characteristic frequencies of the Zeeman splitting that gives more possibilities of identification of molecules having even weak magnetic momentum. Moreover, the use of magnetic field allows essentially increase sensitivity of this method due to almost complete separation of weak measuring signals from powerful radiation of the laser. A superconducting solenoid was developed for this method. Its design and peculiarities are described in this paper.

  8. Calculus of the Cryebis 2 supraconductor solenoid

    International Nuclear Information System (INIS)

    Levy, G.

    1985-01-01

    This report describes the design of the superconducting solenoid CRYEBIS 2. With the prescribed parameters (5 Teslas central field, 120mm for inner diameter, 1600 mm for length), one determinates the dimensions of coil, its energy, the conductor, the working point of the magnet with its critical limits (intensity, field, temperature). The superconducting switch is calculated in the same manner. The study of a quench shows the good behaviour of the coil which is always safe even the detection system is in failure. In final, the mechanical stresses are verified lower than yield strength [fr

  9. A solenoidal and monocusp ion source (SAMIS) (abstract){sup a}{sup b}

    Energy Technology Data Exchange (ETDEWEB)

    Burns, E.J.; Brainard, J.P.; Draper, C.H.; Ney, R.H. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0516 (United States); Leung, K.N.; Perkins, L.T.; Williams, M.D.; Wilde, S.B. [Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1996-03-01

    We have developed a new magnetic monocusp ion source for single aperture applications such as neutron generators. Coupling solenoidal magnetic fields on both sides of a monocusp magnetic field has generated over 70{percent} atomic deuterium ions at pressures as low as 0.4 Pa (3 mTorr). This article describes the performance and characteristics of the solenoidal and monocusp ion source. {copyright} {ital 1996 American Institute of Physics.}

  10. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  11. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties

    International Nuclear Information System (INIS)

    Burn, D M; Atkinson, D; Hase, T P A

    2014-01-01

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga + ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe. (paper)

  12. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K.; Alber, I.; Guenther, M.; Nuernberg, F.; Otten, A.; Schuetrumpf, J.; Roth, M.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Tampo, M.; Schollmeier, M.

    2010-01-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 10 12 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  13. Structure design of the central solenoid in JT-60SA

    International Nuclear Information System (INIS)

    Asakawa, Shuji; Tsuchiya, Katsuhiko; Kuramochi, Masaya; Yoshida, Kiyoshi

    2009-09-01

    The upgrade of JT-60U magnet system to superconducting coils (JT-60SA: JT-60 Super Advanced) has been decided by parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of a central solenoid (CS), equilibrium field(EF) coils, toroidal field(TF) coils. The central solenoid consists the four winding pack modules. In order to counteract the thermal contraction as well as the electric magnetic repulsion and attraction together with other forces generated in each module, it is necessary to apply pre-loading to the support structure of the solenoid and to pursue a structure which is capable of sustaining such loading. In the present report, the structural design of the supporting structure of the solenoid and the jackets of the modules is verified analytically, and the results indicate that the structural design satisfies the 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure -'. (author)

  14. Completion of the ITER central solenoid model coils installation

    International Nuclear Information System (INIS)

    Tsuji, H.

    1999-01-01

    The short article details how dozens of problems, regarding the central solenoid model coils installation, were faced and successfully overcome one by one at JAERI-Naga. A black and white photograph shows K. Kwano, a staff member of the JAERI superconducting magnet laboratory, to be still inside the vacuum tank while the lid is already being brought down..

  15. Insulating process for HT-7U central solenoid model coils

    International Nuclear Information System (INIS)

    Cui Yimin; Pan Wanjiang; Wu Songtao; Wan Yuanxi

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the super-conducting experiment condition

  16. Electromagnetic behaviour of the shield in turbogenerators with superconducting solenoids

    International Nuclear Information System (INIS)

    Del Vecchio, P.; Veca, G.M.; Sacerdoti, G.

    1975-11-01

    The structure of turbogenerators with superconducting solenoids is analyzed and the investigation of electromagnetic behaviour of the rotating shield is presented. The cases considered are: (a) An hypothetical operation with a single phase with nominal current; (b) Steady-state operation in inverse sequence with 10% of the nominal current; (c) A step variation of the magnetic field intensity in the shield

  17. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  18. A large superconducting thin solenoid for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Green, M.A.

    1992-06-01

    This Report describes the 4.4 meter, warm bore diameter, thin superconducting solenoid, for the proposed STAR experiment at the Brookhaven National Laboratory. The STAR solenoid will generate a very uniform central magnetic induction of 0.5 T within a space which is 4.0 meters in diameter by 4.2 meters long. The solenoid and its cryostat will be 0.7 radiation lengths thick over a length of 5.45 meters, about the center of the magnet making it the largest solenoid less than one radiation length to be built. This report describes a proposed design for the solenoid and cryostat, its flux return iron, its cryogenic system and its power supply and quench protection system

  19. Reconstruction of a cold atom cloud by magnetic focusing

    International Nuclear Information System (INIS)

    Saba, C.V.

    1999-12-01

    Over the passed 15 years advances in laser cooling techniques have made it routinely possible to prepare cold clouds of atoms exhibiting temperatures of the order of several micro-Kelvin or less. Such low temperatures correspond to average atomic velocities of a few centimetres per second. Therefore, according to the de Broglie relationship p = h/λ, the atoms increasingly exhibit wave-like behaviour and can no longer be treated solely as particles. These advances in atom manipulation have renewed interest in the field of atom optics. One of the concerns of atom optics is the manipulation of atoms with optical elements analogous to those used in photon optics. The most basic of such elements is the mirror. This thesis presents a curved mirror for paramagnetic atoms fabricated from commercial video tape. It is the smoothest magnetic mirror to date and is the third generation of mirrors fabricated by our group using magnetic recording media. Previous designs used audio tape and 5 1/4 inch floppy disk. Using fluorescence imaging we have directly imaged atoms bouncing above the mirror and, owing to its smoothness, have observed the first ever reconstruction of a cold atom cloud above a curved reflector. The atoms were collected in a magneto optical trap (MOT), cooled to a temperature of 18 μK and then dropped onto the mirror. When released from a height of 13.5 mm we observed the collimation and refocusing of the cloud on consecutive bounces. Furthermore, we observed up to 14 bounces of the cloud, which corresponds to a time of ∼1.5 s. One of the factors that limited the number of observable bounces was the presence of some finite roughness in the reflecting surface. Using images of the focused cloud at the peak of even bounces we were able to measure this roughness and found it to be 5.9 mrads. By analysing magnetic force microscope (MFM) scans of the fields above the mirror we attributed this residual roughness to the spatial inhomogeneity of magnetic particles in

  20. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  1. Report of the large solenoid detector group

    International Nuclear Information System (INIS)

    Hanson, G.G.; Mori, S.; Pondrom, L.G.

    1987-09-01

    This report presents a conceptual design of a large solenoid for studying physics at the SSC. The parameters and nature of the detector have been chosen based on present estimates of what is required to allow the study of heavy quarks, supersymmetry, heavy Higgs particles, WW scattering at large invariant masses, new W and Z bosons, and very large momentum transfer parton-parton scattering. Simply stated, the goal is to obtain optimum detection and identification of electrons, muons, neutrinos, jets, W's and Z's over a large rapidity region. The primary region of interest extends over +-3 units of rapidity, although the calorimetry must extend to +-5.5 units if optimal missing energy resolution is to be obtained. A magnetic field was incorporated because of the importance of identifying the signs of the charges for both electrons and muons and because of the added possibility of identifying tau leptons and secondary vertices. In addition, the existence of a magnetic field may prove useful for studying new physics processes about which we currently have no knowledge. Since hermeticity of the calorimetry is extremely important, the entire central and endcap calorimeters were located inside the solenoid. This does not at the moment seem to produce significant problems (although many issues remain to be resolved) and in fact leads to a very effective muon detector in the central region

  2. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  3. Concept design of the CFETR central solenoid

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Song, Yuntao; Liu, Xufeng; Li, Jiangang; Wan, Yuanxi; Wan, Baonian; Ye, Minyou; Wu, Huan

    2015-01-01

    Highlights: • Main concept design work including coil's geometry, superconductor and support structure has been carried out. • The maximum magnetic field of CS coil is 11.9 T which is calculated by the coils’ operation current based on plasma equilibrium configuration. • The stray field in plasma area is less than 20 Gs under the CS coils’ operation currents designed for the plasma-heating phase. - Abstract: China Fusion Engineering Test Reactor (CFETR) superconducting tokamak is a national scientific research project of China with major and minor radius is 5.7 m and 1.6 m respectively. The magnetic field at the center of plasma with radius as R = 5.7 m is set to be 5.0 T. The major objective of the project is to build a fusion engineering tokamak reactor with fusion power in the range of 50–200 MW and should be self-sufficient by blanket. Six central solenoid coils of CFETR with same structure are made of Nb 3 Sn superconductor. Besides, the stray field in plasma area should be less than 20 Gs with the operation current of CS coils for plasma heating phase. The maximum magnetic field of CS coil is 11.9 T. It is calculated by the coils’ operation current based on plasma equilibrium configuration. The central solenoid needs to have enough stability margin under the condition of high magnetic field and strain. This paper discusses the design parameters, electromagnetic distribution, structure and stability analysis of the CS superconducting magnet for CFETR

  4. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    International Nuclear Information System (INIS)

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable open-quotes Integrated Research Experimentclose quotes (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, open-quotes the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenologyclose quotes. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well

  5. The Analysis of Quadrupole Magnetic Focusing Effect by Finite Element Method

    International Nuclear Information System (INIS)

    Utaja

    2003-01-01

    Quadrupole magnets will introduce focusing effect to a beam of the charge particle passing parallel to the magnet faces. The focusing effect is need to control the particle beam, so that it is in accordance with necessity requirement stated. This paper describes the analysis of focusing effect on the quadrupole magnetic by the finite element method. The finite element method in this paper is used for solve the potential distribution of magnetic field. If the potential magnetic field distribution in every node have known, a charge particle trajectory can be traced. This charge particle trajectory will secure the focusing effect of the quadrupole magnets. (author)

  6. Periodic permanent magnet focusing system with high peak field

    International Nuclear Information System (INIS)

    Zhang Hong; Liu Weiwei; Bai Shuxin; Chen Ke

    2008-01-01

    In this study, hybrid periodic permanent magnet (PPM) system is studied, which has high axial magnetic field and low magnetic leakage. By simulation computation, some laws of magnetic field distribution vs. structure dimensions were obtained. A hybrid PPM is designed and constructed whose peak field reaches 0.6 T. The factors inducing discrepancies between computational results and practical measurements are analyzed. The magnetic field distribution is very sensitive to the variations of constructional parameters. Construction accuracy greatly influences the magnetic field distribution. Research results obtained here are potentially valuable for future work

  7. A general method, a la Transport, for evaluation of the perturbing effects of solenoidal inserts in storage ring interaction regions

    International Nuclear Information System (INIS)

    Murray, J.J.

    1976-07-01

    It may be expected that solenoid magnets will be used in many storage ring experiments. Typically an insert would consist of a main solenoid at the interaction point with a symmetrical pair of compensating solenoids located somewhere between the main solenoid and the ends of the interaction region. The magnetic fields of such an insert may significantly affect storage ring performance. We suggest here a simple, systematic method for evaluation of the effects, which together with adequate design supervision and field measurements will help to prevent any serious operational problems that might result if significant perturbations went unnoticed. 5 refs

  8. Motions of CMS Detector Structures as Observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferramdp, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martin-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.

    2008-07-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micro metres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed displacements are studied as functions of the magnetic fi eld intensity. In addition, a comparison of the reconstructed position of active element sensors with respect to their position as measured by photogrammetry is made and the reconstructed motions due to the magnetic field strength are described. (Author) 19 refs.

  9. Motions of CMS Detector Structures as Observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martin-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micro metres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed displacements are studied as functions of the magnetic fi eld intensity. In addition, a comparison of the reconstructed position of active element sensors with respect to their position as measured by photogrammetry is made and the reconstructed motions due to the magnetic field strength are described. (Author) 19 refs

  10. Conceptual design of the CMS 4 Tesla solenoid

    International Nuclear Information System (INIS)

    Baze, J.M.; Desportes, H.; Duthil, R.; Lesmond, C.; Lottin, J.C.; Pabot, Y.

    1992-02-01

    A large and important meeting 'Toward the LHC experimental programme' is due to be held at EVIAN-les-BAINS, on 5-8 March 1992. The major goal accurate measurement of muon momenta makes necessary, for the detectors, the use of large and powerful magnetic system producing high bending power. The CMS experiment is based on a solenoidal magnetic configuration. It has been designed to produce a high magnetic induction (4 T) in a 14 m long, 5.9 m bore cylindrical volume surrounding the interaction point. The diameter has been fixed to the maximum dimension compatible with road transportation to CERN. This long solenoid with its 12 500 ton iron yoke is a fully shielded magnet. The paper presents the conceptual design of the superconducting coil and its technical characteristics

  11. Applications of a superconducting solenoidal separator in the experimental investigation of nuclear reactions

    International Nuclear Information System (INIS)

    Hinde, D J; Carter, I P; Dasgupta, M; Simpson, E C; Cook, K J; Kalkal, Sunil; Luong, D H; Williams, E

    2017-01-01

    This paper describes applications of a novel superconducting solenoidal separator, with magnetic fields up to 8 Tesla, for studies of nuclear reactions using the Heavy Ion Accelerator Facility at the Australian National University. (paper)

  12. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens

    International Nuclear Information System (INIS)

    Konvalina, I.; Muellerova, I.

    2011-01-01

    The cathode lens is an electron optical element in an emission electron microscope accelerating electrons from the sample, which serves as a source for a beam of electrons. Special application consists in using the cathode lens first for retardation of an illuminating electron beam and then for acceleration of reflected as well as secondary electrons, made in the directly imaging low energy electron microscope or in its scanning version discussed here. In order to form a real image, the cathode lens has to be combined with a focusing magnetic lens or a focusing immersion-magnetic lens, as used for objective lenses of some commercial scanning electron microscopes. These two alternatives are compared with regards to their optical properties, in particular with respect to predicted aberration coefficients and the spot size, as well as the optimum angular aperture of the primary beam. The important role of the final aperture size on the image resolution is also presented.

  13. The D0 solenoid NMR magnetometer

    International Nuclear Information System (INIS)

    Sten Uldall Hansen; Terry Kiper; Tom Regan; John Lofgren

    2002-01-01

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10 5 . To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV

  14. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  15. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  16. The Mechanical Design Optimization of a High Field HTS Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, SL; Gupta, RC

    2015-06-01

    This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.

  17. Stabilization of superconducting dry solenoids

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.

    1989-01-01

    Premature quenches in superconducting solenoids, wound with Formvar coated NbTi conductors, have been studied. Some model coils were tested wound with various winding tensions. The experimental results are discussed considering the calculated stress distribution for coil winding, cool-down to liquid helium temperature, and energization at 4.2 K. /Some mechanisms of premature quenches are classified by the winding tension. Some stabilization methods are presented based on these quench mechanisms

  18. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    Science.gov (United States)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. Detector solenoid compensation in the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Cai, Y.; Irwin, J.; Sullivan, M.

    1995-01-01

    The PEP-II experimental detector includes a strong 1.5 T solenoid field in the interaction region (IR). With the fringe fields, the solenoid extends over a range of 6 m. Additional complications are that (1) it is displaced longitudinally from the interaction point (IP) by about 40 cm, (2) neither beam is parallel to the solenoid axis, and (3) the solenoid overlaps a dipole and a quadrupole on either side of the IP. In each half IR the correction system includes a set of skew quadrupoles, dipole correctors and normal quadrupoles to independently compensate the coupling, orbit perturbation, dispersion and focusing effect produced by the solenoid. The correction schemes for the Low Energy Ring (LER) and for the High Energy Ring (HER) are described, and the impact on the dynamic aperture is evaluated

  20. 2 T superconducting detector solenoid for the PANDA target spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, A.A.; Koshurnikov, E.K. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation); Lobanov, Y.Y. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation)], E-mail: lobanov@jinr.ru; Makarov, A.F. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation); Orth, H. [Gesellschaft fuer Schwerionenforschung, Planckstrasse 1, D-64291, Darmstadt (Germany); Sissakian, A.N.; Vodopianov, A.S. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation)

    2008-02-01

    This paper describes the JINR design of the large 2 T superconducting solenoid for the target spectrometer of the PANDA experiment at HESR (FAIR, GSI, Darmstadt, Germany). The solenoid coil has an inner radius of 1.08 m and a length of 2.90 m. This solenoid is non-centrally split providing a warm bore of 100 mm in diameter through the coil to accommodate sufficient space for the internal target installations. Maximally stored energy in the windings is 22.3 MJ. All tracking and calorimetric detectors surrounding the target point, with exception of a forward cone of 5{sup 0} opening, are placed inside the lqHe-cryostat. The main features of the design and technique are as follows: a copper stabilizer and soldering technique for the superconducting cable; a stainless steel cryostat; winding technique over a mandrel; coreless type of the coil; low operational current. The details of the PANDA solenoid design including the magnetic field and stress-strain calculations are covered.

  1. A novel magnet focusing plate for matrix-assisted laser desorption/ionization analysis of magnetic bead-bound analytes.

    Science.gov (United States)

    Gode, David; Volmer, Dietrich A

    2013-05-15

    Magnetic beads are often used for serum profiling of peptide and protein biomarkers. In these assays, the bead-bound analytes are eluted from the beads prior to mass spectrometric analysis. This study describes a novel matrix-assisted laser desorption/ionization (MALDI) technique for direct application and focusing of magnetic beads to MALDI plates by means of dedicated micro-magnets as sample spots. Custom-made MALDI plates with magnetic focusing spots were made using small nickel-coated neodymium micro-magnets integrated into a stainless steel plate in a 16 × 24 (384) pattern. For demonstrating the proof-of-concept, commercial C-18 magnetic beads were used for the extraction of a test compound (reserpine) from aqueous solution. Experiments were conducted to study focusing abilities, the required laser energies, the influence of a matrix compound, dispensing techniques, solvent choice and the amount of magnetic beads. Dispensing the magnetic beads onto the micro-magnet sample spots resulted in immediate and strong binding to the magnetic surface. Light microscope images illustrated the homogeneous distribution of beads across the surfaces of the magnets, when the entire sample volume containing the beads was pipetted onto the surface. Subsequent MALDI analysis of the bead-bound analyte demonstrated excellent and reproducible ionization yields. The surface-assisted laser desorption/ionization (SALDI) properties of the strongly light-absorbing γ-Fe2O3-based beads resulted in similar ionization efficiencies to those obtained from experiments with an additional MALDI matrix compound. This feasibility study successfully demonstrated the magnetic focusing abilities for magnetic bead-bound analytes on a novel MALDI plate containing small micro-magnets as sample spots. One of the key advantages of this integrated approach is that no elution steps from magnetic beads were required during analyses compared with conventional bead experiments. Copyright © 2013 John Wiley

  2. Completeness for coherent states in a magnetic–solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Górska, K

    2012-01-01

    This paper completes our study of coherent states in the so-called magnetic–solenoid field (a collinear combination of a constant uniform magnetic field and Aharonov–Bohm solenoid field) presented in Bagrov et al (2010 J. Phys. A: Math. Theor. 43 354016, 2011 J. Phys. A: Math. Theor. 44 055301). Here, we succeeded in proving nontrivial completeness relations for non-relativistic and relativistic coherent states in such a field. In addition, we solve here the relevant Stieltjes moment problem and present a comparative analysis of our coherent states and the well-known, in the case of pure uniform magnetic field, Malkin–Man’ko coherent states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  3. The influence of the iron shield of the solenoid on spin tracking

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2005-01-01

    Full Text Available The influence of the iron shield of the solenoid on spin tracking is studied in this paper. In the case of the 200 MeV proton, the study has been numerically done in the ZGOUBI code. The distribution of the magnetic field was done by POISSON. We have come to the conclusion that the influence of the solenoid’s shielding on spin tracking is the same at its entrance and exit and that is directly proportional to the intensity of the magnetic induction B on the axis of the solenoid. We have also determined that the influence of the solenoid’s shielding is much stronger on transversal components of the spin than on its longitudinal component. The differences between components of the spin for the shielded and not-shielded solenoid diminish with the in crease in the distance from the solenoid.

  4. LIL-W: Positron conversion target and solenoid (pictures 01 and 04).

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    In the direction of the beam, from right to left: a steering dipole (DHZ.25); the arm, at 45 deg, of a wire scanner which measures beam size; the conversion target, housed in the small tank with a window, where positrons are produced; immediately afterwards, invisible inside the vacuum chamber, is a pulsed solenoid to focus the emerging positrons; finally, a large solenoid, consisting of 3 pancakes, further focuses the positrons. Towards the left, the linac LIL-W, its accelerating structure hidden under a continuous outer solenoid mantle.

  5. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  6. A new scheme for critical current measurements on straight superconducting cables in a large solenoid

    International Nuclear Information System (INIS)

    Rossi, L.; Volpini, G.

    1991-01-01

    The precision of I c measurement of straight superconducting cables in solenoids can be limited by the magnetic field inhomogeneity. A solution in order to improve the field homogeneity based on iron shims is presented here. A conceptual design for the experimental lay-out of a test station to be used in connection with the SOLEMI-I solenoid at the Milan INFN Section (LASA Laboratory) is given

  7. Inservice diagnostic methods for solenoid-operated valves

    International Nuclear Information System (INIS)

    Kryter, R.C.

    1993-01-01

    Solenoid-operated valves (SOVs) were studied at Oak Ridge National Laboratory as part of the USNRC Nuclear Plant Aging Research (NPAR) Program. The primary objective of the study was to identify, evaluate, and recommend methods for inspection, surveillance, monitoring, and maintenance of SOVs that can help ensure their operational readiness-that is, their ability to perform required safety functions under all anticipated operating conditions, since failure of one of these small and relatively inexpensive devices could have serious consequences under certain circumstances. An earlier (Phase 1) NPAR program study described SOV failure modes and causes and had identified measurable parameters thought to be linked to the progression of everpresent degradation mechanisms that may ultimately result in functional failure of the valve. Using this earlier work as a guide, the present (Phase 11) study focused on devising and then demonstrating the effectiveness of techniques and equipment with which to measure performance parameters that show promise for detecting the presence and trending the progress of such degradations before they reach a critical stage. Intrusive techniques requiring the addition of magnetic or acoustic sensors or the application of special test signals were investigated briefly, but major emphasis was placed on the examination of condition-indicating techniques that can be applied with minimal cost and impact on plant operation. Experimental results are presented that demonstrate the technical feasibility and practicality of the monitoring techniques assessed in the study, and recommendations for further work are provided

  8. Central Solenoid Insert Technical Specification

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

    2011-09-01

    The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by

  9. Design study of superconducting sextupole magnet using HTS coated conductor for neutron-focusing device

    International Nuclear Information System (INIS)

    Tosaka, T.; Koyanagi, K.; Ono, M.; Kuriyama, T.; Watanabe, I.; Tsuchiya, K.; Suzuki, J.; Adachi, T.; Shimizu, H.M.

    2006-01-01

    We performed a design study of sextupole magnet using high temperature superconducting (HTS) wires. The sextupole magnet is used as a focusing lens for neutron-focusing devices. A neutron-focusing device is desired to have a large aperture and a high magnetic field gradient of G, where G = 2B/r 2 , B is the magnetic field and r is a distance from the sextupole magnet axis. Superconducting magnets offer promising prospects to meet the demands of a neutron-focusing device. Recently NbTi coils of low temperature superconducting (LTS) have been developed for a sextupole magnet with a 46.8 mm aperture. The maximum magnetic field gradient G of this magnet is 9480 T/m 2 at 4.2 K and 12,800 T/m 2 at 1.8 K. On the other hand, rapid progress on second generation HTS wire has been made in increasing the performance of critical current and in demonstrating a long length. The second generation HTS wire is referred to as coated conductor. It consists of tape-shaped base upon which a thin coating of superconductor, usually YBCO, is deposited or grown. This paper describes a design study of sextupole magnet using coated conductors

  10. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Dhavalikar, Rohan [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611 (United States)

    2016-12-01

    Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI. - Highlights: • SAR predictions based on a field-dependent magnetization relaxation model.

  11. Three-Dimensional Design of a Non-Axisymmetric Periodic Permanent Magnet Focusing System

    CERN Document Server

    Chen Chi Ping; Radovinsky, Alexey; Zhou, Jing

    2005-01-01

    A three-dimensional (3D) design is presented of a non-axisymmetric periodic permanent magnet focusing system which will be used to focus a large-aspect-ratio, ellipse-shaped, space-charge-dominated electron beam. In this design, an analytic theory is used to specify the magnetic profile for beam transport. The OPERA3D code is used to compute and optimize a realizable magnet system. Results of the magnetic design are verified by two-dimensional particle-in-cell and three-dimensional trajectory simulations of beam propagation using PFB2D and OMNITRAK, respectively. Results of fabrication tolerance studies are discussed.

  12. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-01-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  13. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  14. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  15. Confinement of laser plasma by solenoidal field for laser ion source

    International Nuclear Information System (INIS)

    Okamura, M.; Kanesue, T.; Kondo, K.; Dabrowski, R.

    2010-01-01

    A laser ion source can provide high current, highly charged ions with a simple structure. However, it was not easy to control the ion pulse width. To provide a longer ion beam pulse, the plasma drift length, which is the distance between laser target and extraction point, has to be extended and as a result the plasma is diluted severely. Previously, we applied a solenoid field to prevent reduction of ion density at the extraction point. Although a current enhancement by a solenoid field was observed, plasma behavior after a solenoid magnet was unclear because plasma behavior can be different from usual ion beam dynamics. We measured a transverse ion distribution along the beam axis to understand plasma motion in the presence of a solenoid field.

  16. Effects of Transferring to STEM-Focused Charter and Magnet Schools on Student Achievement

    Science.gov (United States)

    Judson, Eugene

    2014-01-01

    There have been strong calls to action in recent years to promote both school choice and the learning of science, technology, engineering, and mathematics (STEM). This has led to the burgeoning development of STEM-focused schools. Nine STEM-focused charter and 2 STEM-focused magnet schools that serve elementary-aged students were examined to…

  17. ''Massless gaps'' for solenoid + calorimeter

    International Nuclear Information System (INIS)

    Marraffino, J.; Wu, W.; Beretvas, A.; Green, D.; Denisenko, K.; Para, A.

    1991-11-01

    The necessary existence of material in front of the first active element in a calorimeter will degrade the performance of that device. The question is by what factor. The follow up question is what can be done to minimize the damage. These questions are usually of primary importance for liquid argon calorimetry because of the necessity of containment dewars. However, the problem is universal. For example, the Solenoid Detector Collaboration, SDC, has proposed a superconducting coil which would be placed in front of the EM calorimeter. Although much effort has been made to minimize the depth of material in the coil, still the resolution and linearity must be optimized if the SDC goal of precision electromagnetic (EM) calorimetry is to be realized

  18. Thermal and Mechanical Performance of the First MICE Coupling Coil and the Fermilab Solenoid Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, Roger [Fermilab; Carcagno, Ruben [Fermilab; Caspi, Shlomo [LBNL, Berkeley; DeMello, Allan [LBNL, Berkeley; Kokoska, Lidija [Fermilab; Orris, D. [Fermilab; Pan, Heng [LBNL, Berkeley; Sylvester, Cosmore [Fermilab; Tartaglia, Michael

    2014-11-06

    The first coupling coil for the Muon Ionization Cooling Experiment (MICE) has been tested in a conduction-cooled environment at the Solenoid Test Facility at Fermilab. An overview of the thermal and mechanical performance of the magnet and the test stand during cool-down and power testing of the magnet is presented.

  19. Hybrid design method for air-core solenoid with axial homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-03-15

    In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million)

  20. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Science.gov (United States)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-02-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  1. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-01-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL

  2. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 216-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-02-15

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  3. The optical properties of a double focusing bending magnet measured with a thin alpha source

    International Nuclear Information System (INIS)

    Armitage, S.A.; Eastham, D.A.

    1978-01-01

    The focusing properties of the 90 0 inflector magnet for the Nuclear Structure Facility (NSF) tandem at Daresbury Laboratory have been measured in the 2rho configuration using very thin alpha sources and a position-sensitive detector. (Auth.)

  4. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  5. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    CERN Document Server

    Frisch, J; Decker, V; Hendrickson, L; Markiewicz, T W; Partridge, R; Seryi, Andrei

    2004-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  6. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    International Nuclear Information System (INIS)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; SLAC

    2006-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system

  7. Indirectly cooled large thin superconducting CDF solenoid

    International Nuclear Information System (INIS)

    Kondo, Kunitaka; Mori, Shigeki; Yoshizaki, Ryozo; Saito, Ryusei; Asano, Katsuhiko.

    1985-01-01

    The manufacturing technique of the indirectly cooled large thin superconducting solenoid for the collider detector facility (CDF solenoid) has been studied through cooperation of University of Tsukuba and the National Laboratory for High Energy Physics of the Ministry of Education of Japan, and the Fermi National Accelerator Laboratory in the U.S. Fabrication and testing of the solenoid has recently been completed by Hitachi. The CDF solenoid has a large-sized thin structure for meeting the requirement by experiments to be applied. Hitachi has thus developed a variety of new technologies including the design standard, coil cooling method, material selection, and manufacturing technique in accordance with experimental data, which were confirmed in a series of analyses and tests made on various prototypes. The CDF solenoid, built using Hitachi's new technologies, is of the world's top class among equipment of this type. This paper outlines the design criteria for the major components employed in the CDF solenoid and the test results of the solenoid. (author)

  8. Review of magnetic resonance-guided focused ultrasound in the treatment of uterine fibroids

    Directory of Open Access Journals (Sweden)

    Pedro Felipe Magalhães Peregrino

    Full Text Available Uterine leiomyoma is the most frequently occurring solid pelvic tumor in women during the reproductive period. Magnetic resonance-guided high-intensity focused ultrasound is a promising technique for decreasing menorrhagia and dysmenorrhea in symptomatic women. The aim of this study is to review the role of Magnetic resonance-guided high-intensity focused ultrasound in the treatment of uterine fibroids in symptomatic patients. We performed a review of the MEDLINE and Cochrane databases up to April 2016. The analysis and data collection were performed using the following keywords: Leiomyoma, High-Intensity Focused Ultrasound Ablation, Ultrasonography, Magnetic Resonance Imaging, Menorrhagia. Two reviewers independently performed a quality assessment; when there was a disagreement, a third reviewer was consulted. Nineteen studies of Magnetic resonance-guided high-intensity focused ultrasound-treated fibroid patients were selected. The data indicated that tumor size was reduced and that symptoms were improved after treatment. There were few adverse effects, and they were not severe. Some studies have reported that in some cases, additional sessions of Magnetic resonance-guided high-intensity focused ultrasound or other interventions, such as myomectomy, uterine artery embolization or even hysterectomy, were necessary. This review suggests that Magnetic resonance-guided high-intensity focused ultrasound is a safe and effective technique. However, additional evidence from future studies will be required before the technique can be recommended as an alternative treatment for fibroids.

  9. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    International Nuclear Information System (INIS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-01-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects

  10. Embedded Solenoid Transformer for Power Conversion

    DEFF Research Database (Denmark)

    2015-01-01

    A resonant power converter for operation in the radio frequency range, preferably in the VHF, comprises at least one PCB-embedded transformer. The transformer is configured for radio frequency operation and comprises a printed circuit board defining a horizontal plane, the printed circuit board...... comprising at least two horizontal conductive layers separated by an isolating layer, a first embedded solenoid forming a primary winding of the transformer and a second embedded solenoid being arranged parallel to the first solenoid and forming a secondary winding of the transformer, wherein the first...

  11. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  12. What caused the failures of the solenoid valve screws

    International Nuclear Information System (INIS)

    Vassallo, T.P.; Mumford, J.R.; Hossain, F.

    2001-01-01

    At Seabrook Station on May 5,1998 following a lengthy purge of the pressurizer steam space through Containment isolation sample valve 1-RC-FV-2830, the UL status light associated with this solenoid valve did not come on when the valve was closed from the plant's main control board. The UL status light is used to confirm valve closure position to satisfy the plant's Technical Specification requirements. The incorrect valve position indication on the main control board was initially believed to have resulted from excessive heat from a failed voltage control module that did not reduce the voltage to the valve's solenoid coil. This conclusion was based on a similar event that occurred in November of 1996. Follow-up in-plant testing of the valve determined that the voltage control module had not failed and was functioning satisfactorily. Subsequent investigations determined the root cause of the event to be excessive heat-up of the valve caused by high process fluid temperature and an excessively long purge of the pressurizer. The excessive heat-up of the valve from the high temperature process fluid weakened the magnetic field strength of the valve stem magnet to the extent that the UL status light reed switch would not actuate when the valve was closed. Since the voltage control module was tested and found to be functioning properly it was not replaced. Only the UL status light reed switch was replaced with a more sensitive reed that would respond better to a reduced magnetic field strength that results from a hot magnet. During reed switch replacement, three terminal block screws in the valve housing were found fractured and three other terminal block screws fractured during determination of the electrical conductors. This paper describes the initial plant event and ensuing laboratory tests and examinations that were performed to determine the root cause of the failure of the terminal block screws from the Containment isolation sample solenoid valve. (author)

  13. Performance of high power S-band klystrons focused with permanent magnet

    Science.gov (United States)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.

  14. Performance of high power S-band klystrons focused with permanent magnet

    International Nuclear Information System (INIS)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 % of the longitudinal field in the entire rf interaction region of the klystron. (author)

  15. Design and development of permanent magnet based focusing lens for J-Band Klystron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K., E-mail: kumuds@barc.gov.in [Control Instrumentation Division, Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhay, Ayan; Meena, Rakesh; Rawat, Vikram; Joshi, L.M [Microwave Tubes Division, Central Electronics Engineering Research Institute, Pilani (India)

    2014-07-01

    Applying permanent magnet technology to beam focusing in klystrons can reduce their power consumption and increase their reliability of operation. Electromagnetic design of the beam focusing elements, for high frequency travelling wave tubes, is very critical. The magnitude and profile of the magnetic field need to match the optics requirement from beam dynamics studies. The rise of the field from cathode gun region to the uniform field region (RF section) is important as the desired transition from zero to peak axial field must occur over a short axial distance. Confined flow regime is an optimum choice to minimize beam scalloping but demands an axial magnetic field greater than 2 - 3 times the Brillouin flow field. This necessitates optimization in the magnet design achieve high magnetic field within given spatial constraints. Electromagnetic design and simulations were done using 3D Finite element method (FEM) analysis software. A permanent magnet based focusing lens for a miniature J-Band klystron has been designed and developed at Control Instrumentation Division, BARC. This paper presents the design, simulation studies, beam transmission and RF tests results for J Band klystron with permanent magnet focusing lens. (author)

  16. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  17. Beam collimation and transport of laser-accelerated protons by a solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Tauschwitz, A; Bagnoud, V [GSI - Hemholtzzentrum fur Schwerionenforschung GmbH, Plasmaphysik and PHELIX, Planckstrasse 1, 64291 Darmstadt (Germany); Daido, H; Tampo, M [Photo Medical Research Center, JAEA, 8-1 Umemidai, Kizugawa-city, Kyoto, 619-0215 (Japan); Schollmeier, M, E-mail: k.harres@gsi.d [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2010-08-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10{sup 12} particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  18. Beam collimation and transport of laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M; Tauschwitz, A; Bagnoud, V; Daido, H; Tampo, M; Schollmeier, M

    2010-01-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10 12 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  19. Conceptual design of the Mu2e production solenoid cold mass

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Lamm, M.; Mokhov, N.V.; Nicol, T.H.; Page, T.M.; Pronskikh, V.; /Fermilab

    2011-06-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The required magnetic field is produced by a series of superconducting solenoids of various apertures and lengths. This paper describes the conceptual design of the 5 T, 4 m long solenoid cold mass with 1.67 m bore with the emphasis on the magnetic, radiation and thermal analyses.

  20. To the problem of spatial focusing of ultracold neutrons by nonuniform magnetic field. Eikonal approximation

    CERN Document Server

    Chen, T

    2002-01-01

    Motion of the ultracold neutrons in the nonuniform magnetic field with a square nonuniformity by two coordinates is considered. The Schroedinger equation is solved with application of the quasi-classical (eikonal) approach. The theoretical possibility of the neutrons spatial focusing with formation of the point focus and also the neutrons bunches is shown

  1. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    International Nuclear Information System (INIS)

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-01-01

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged

  2. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Slater, JD; Wroe, AJ [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  3. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  4. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  5. TUTORIAL: Focused-ion-beam-based rapid prototyping of nanoscale magnetic devices

    Science.gov (United States)

    Khizroev, S.; Litvinov, D.

    2004-03-01

    In this tutorial, focused-ion-beam (FIB)-based fabrication is considered from a very unconventional angle. FIB is considered not as a fabrication tool that can be used for mass production of electronic devices, similar to optical and E-beam—based lithography, but rather as a powerful tool to rapidly fabricate individual nanoscale magnetic devices for prototyping future electronic applications. Among the effects of FIB-based fabrication of magnetic devices, the influence of Ga+-ion implantation on magnetic properties is presented. With help of magnetic force microscopy (MFM), it is shown that there is a critical doze of ions that a magnetic material can be exposed to without experiencing a change in the magnetic properties. Exploiting FIB from such an unconventional perspective is especially favourable today when the future of so many novel technologies depends on the ability to rapidly fabricate prototype nanoscale magnetic devices. As one of the most illustrative examples, the multi-billion-dollar data storage industry is analysed as the technology field that strongly benefited from implementing FIB in the above-described role. The essential role of FIB in the most recent trend of the industry towards perpendicular magnetic recording is presented. Moreover, other emerging and fast-growing technologies are considered as examples of nanoscale technologies whose future could strongly depend on the implementation of FIB in the role of a nanoscale fabrication tool for rapid prototyping. Among the other described technologies are 'ballistic' magnetoresistance, patterned magnetic media, magnetoresistive RAM (MRAM), and magnetic force microscopy.

  6. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, G; Slater, J [Loma Linda University, Loma Linda, CA (United States); Wroe, A [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  7. Solenoid fringe field compensation for the Cluster Klystron

    International Nuclear Information System (INIS)

    Wang, H.; Fernow, R.C.; Kirk, H.G.; Palmer, R.B.; Zhao, Y.

    1996-04-01

    Optimization of the solenoid pancake currents so as to have a uniform axial magnetic field over an extended volume, is very important for the successful operation of the Cluster Klystron. By boosting the first and the last pancake currents by 35%, a uniform field Br/Bz ≤ 0.1% at radius R ≤ 2 cm can be extended from ± 7 cm to ± 16 cm. The result confirms simulations and the requirements for a 3-beam Cluster Klystron Experiment are achieved

  8. HB+ prepares for insertion into the CMS solenoid

    CERN Multimedia

    Dave Barney, CERN

    2006-01-01

    With calibration of the first half of the barrel Hadron Calorimeter (HB+) complete (using a radioactive source), preparations begin for its insertion into the solenoid for the Magnet Test and Cosmic Challenge (MTCC). It was moved out of its alcove at the beginning of March - a non-trivial (but completely successful) operation due to the proximity of one of the barrel yoke rings (YB+1). The other half of the barrel Hadron Calorimeter (HB-) and one of the endcaps (HE+) should also be calibrated before the MTCC.

  9. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  10. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  11. Focused tight dressing does not prevent cochlear implant magnet migration under 1.5 Tesla MRI.

    Science.gov (United States)

    Cuda, D; Murri, A; Succo, G

    2013-04-01

    We report a retrospective case of inner magnet migration, which occurred after 1.5 Tesla MRI scanning in an adult recipient of a bilateral cochlear implant (CI) despite a focused head dressing. The patient, bilaterally implanted with Nucleus 5 CIs (Cochlear LTD, Sydney, Australia), underwent a 1.5 Tesla cholangio-MRI scan for biliary duct pathology. In subsequent days, a focal skin alteration appeared over the left inner coil. Plain skull radiographs showed partial magnet migration on the left side. Surgical exploration confirmed magnet twisting; the magnet was effectively repositioned. Left CI performance was restored to pre-migration level. The wound healed without complications. Thus, focused dressing does not prevent magnet migration in CI recipients undergoing 1.5 Tesla MRI. All patients should be counselled on this potential complication. A minor surgical procedure is required to reposition the magnet. Nevertheless, timely diagnosis is necessary to prevent skin breakdown and subsequent device contamination. Plain skull radiograph is very effective in identifying magnet twisting; it should be performed systematically after MRI or minimally on all suspected cases.

  12. Experiments with a double solenoid system

    Energy Technology Data Exchange (ETDEWEB)

    Pampa Condori, R.; Lichtenthaeler Filho, R.; Faria, P.N. de; Lepine-Szily, A.; Mendes Junior, D.R.; Pires, K.C.C.; Assuncao, M.; Scarduelli, V.B.; Leistenschneider, E.; Morais, M.C.; Shorto, J.M.B.; Gasques, L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: RIBRAS [1] is presently the only experimental equipment in South America capable of producing secondary beams of rare isotopes. It consists of two superconducting solenoids, installed in one of the beam lines of the 8 MV Pelletron Tandem accelerator of the University of Sao Paulo. The exotic nuclei are produced in the collision between the primary beam of the Pelletron Accelerator and the primary target. The secondary beam is selected by the in-flight technique and is usually contaminated with particles coming from scattering and reactions in the primary target such as {sup 7}Li, alpha and other light particles as protons, deuterons and tritons. Solenoids are selectors with large acceptance and the double solenoid system provides ways to improve the quality of the secondary beam by using a degrador in the midst of the two solenoids. The main contamination of the secondary beam comes from {sup 7}Li{sup 2+} particles coming from the primary beam. A degrador placed between the two solenoids is able to separate those particles from the {sup 6}He beam providing an additional charge exchange {sup 7}Li{sup 2+-→}3{sup +}. In addition, the differential energy loss in the degrador provides further selection of the light particles as protons, deuterons, tritons and and alpha particles by the second solenoid. Here we present the results of the first experiment performed at RIBRAS using both solenoids. A pure {sup 6}He beam was produced and the reaction {sup 6}He+p was measured using a thick CH{sub 2} target. 1. R. Lichtenthaeler et al., Eur. Phys. J. A 25,s01,733 (2005) and Nucl. Phys. News 15, 25 (2005). (author)

  13. submitter Starting Manufacture of the ITER Central Solenoid

    CERN Document Server

    Libeyre, P; Dolgetta, N; Gaxiola, E; Jong, C; Lyraud, C; Mitchell, N; Journeaux, J Y; Vollmann, T; Evans, D; Sgobba, S; Langeslag, S; Reiersen, W; Martovetsky, N; Everitt, D; Hatfield, D; Rosenblad, P; Litherland, S; Freudenberg, K; Myatt, L; Smith, J; Brazelton, C; Abbott, R; Daubert, J; Rackers, K; Nentwich, T

    2016-01-01

    The central solenoid (CS) is a key component of the ITER magnet system to provide the magnetic flux swing required to drive induced plasma current up to 15 MA. The manufacture of its different subcomponents has now started, following completion of the design analyses and achievement of the qualification of the manufacturing procedures. A comprehensive set of analyses has been produced to demonstrate that the CS final design meets all requirements. This includes in particular structural analyses carried out with different finite-element models and addressing normal and fault conditions. Following the Final Design Review, held in November 2013, and the subsequent design modifications, the analyses were updated for consistency with the final design details and provide evidence that the Magnet Structural Design Criteria are fully met. Before starting any manufacturing activity of a CS component, a corresponding dedicated qualification program has been carried out. This includes manufacture of mockups using the re...

  14. Testing of the superconducting solenoid for the Fermilab collider detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Holmes, C.N.; Kephart, R.D.

    1985-07-01

    The 3 m phi x 5 m long x 1.5 T superconducting solenoid for the Fermilab Collider Detector has been installed at Fermilab and was tested in early 1985 with a dedicated refrigeration system. The refrigerator and 5.6-Mg magnet cold mass were cooled to 5 K in 210 hours. After testing at low currents, the magnet was charged to the design current of 5 kA in 5-MJ steps. During a 390 A/min charge a spontaneous quench occurred at 4.5 kA due to insufficient liquid helium flow. Three other quenches occurred during ''slow'' discharges which were nevertheless fast enough to cause high eddy current heating in the outer support cylinder. Quench behavior is well understood and the magnet is now quite reliable

  15. Manufacturing of Nb3Sn Sample Conductor for CFETR Central Solenoid Model Coil

    NARCIS (Netherlands)

    Qin, Jing Gang; Wu, Yu; Xiang, Bing Lun; Dai, Chao; Mao, Zhe Hua; Jin, Huan; Liao, Guo Jun; Liu, Fang; Xue, Tianjun; Wei, Zhou Rong; Devred, Arnaud; Nijhuis, Arend; Zhou, Chao

    2017-01-01

    China fusion engineering test reactor (CFETR) is a new tokamak device, whose magnet system includes the toroidal field, central solenoid (CS), and poloidal field coils. In order to develop the manufacturing process for the full-size CS coil, the CS model coil (CSMC) project was launched first. The

  16. TESTING OF FRAMED STRUCTURE PARTS OF COMPACT MUON SOLENOID BY NONDESTRUCTIVE METHOD

    Directory of Open Access Journals (Sweden)

    L. V. Larchenkov

    2013-01-01

    Full Text Available Suspension parts of a compact muon solenoid for Large Hadron Collider have been tested in the paper. The paper describes a steady-state and cyclic “tension-compression” load created by superconducting electromagnet with energy of 3 GJ and magnetic induction of 4 tesla. A nondestructive testing method has been applied in the paper.

  17. Adjustable, short focal length permanent-magnet quadrupole based electron beam final focus system

    Directory of Open Access Journals (Sweden)

    J. K. Lim

    2005-07-01

    Full Text Available Advanced high-brightness beam applications such as inverse-Compton scattering (ICS depend on achieving of ultrasmall spot sizes in high current beams. Modern injectors and compressors enable the production of high-brightness beams having needed short bunch lengths and small emittances. Along with these beam properties comes the need to produce tighter foci, using stronger, shorter focal length optics. An approach to creating such strong focusing systems using high-field, small-bore permanent-magnet quadrupoles (PMQs is reported here. A final-focus system employing three PMQs, each composed of 16 neodymium iron boride sectors in a Halbach geometry has been installed in the PLEIADES ICS experiment. The field gradient in these PMQs is 560   T/m, the highest ever reported in a magnetic optics system. As the magnets are of a fixed field strength, the focusing system is tuned by adjusting the position of the three magnets along the beam line axis, in analogy to familiar camera optics. This paper discusses the details of the focusing system, simulation, design, fabrication, and experimental procedure in creating ultrasmall beams at PLEIADES.

  18. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Rose, P.H.

    1975-01-01

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 10 13 to 10 14 neutrons/cm 2 -sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  19. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    International Nuclear Information System (INIS)

    Mihara, T.

    2004-01-01

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials and with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown

  20. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  1. A long arm for ultrasound: a combined robotic focused ultrasound setup for magnetic resonance-guided focused ultrasound surgery.

    Science.gov (United States)

    Krafft, Axel J; Jenne, Jürgen W; Maier, Florian; Stafford, R Jason; Huber, Peter E; Semmler, Wolfhard; Bock, Michael

    2010-05-01

    Focused ultrasound surgery (FUS) is a highly precise noninvasive procedure to ablate pathogenic tissue. FUS therapy is often combined with magnetic resonance (MR) imaging as MR imaging offers excellent target identification and allows for continuous monitoring of FUS induced temperature changes. As the dimensions of the ultrasound (US) focus are typically much smaller than the targeted volume, multiple sonications and focus repositioning are interleaved to scan the focus over the target volume. Focal scanning can be achieved electronically by using phased-array US transducers or mechanically by using dedicated mechanical actuators. In this study, the authors propose and evaluate the precision of a combined robotic FUS setup to overcome some of the limitations of the existing MRgFUS systems. Such systems are typically integrated into the patient table of the MR scanner and thus only provide an application of the US wave within a limited spatial range from below the patient. The fully MR-compatible robotic assistance system InnoMotion (InnoMedic GmbH, Herxheim, Germany) was originally designed for MR-guided interventions with needles. It offers five pneumatically driven degrees of freedom and can be moved over a wide range within the bore of the magnet. In this work, the robotic system was combined with a fixed-focus US transducer (frequency: 1.7 MHz; focal length: 68 mm, and numerical aperture: 0.44) that was integrated into a dedicated, in-house developed treatment unit for FUS application. A series of MR-guided focal scanning procedures was performed in a polyacrylamide-egg white gel phantom to assess the positioning accuracy of the combined FUS setup. In animal experiments with a 3-month-old domestic pig, the system's potential and suitability for MRgFUS was tested. In phantom experiments, a total targeting precision of about 3 mm was found, which is comparable to that of the existing MRgFUS systems. Focus positioning could be performed within a few seconds

  2. Time-dependent beam focusing at the DARHT-II injector diode

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Fawley, W.; Yu, S.

    1999-01-01

    The injector for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) is being designed and constructed at LBNL. The injector consists of a single gap diode extracting 2(micro)s, 2kA, 3.2 MeV electron beam from a 6.5 inches diameter thermionic dispenser cathode. The injector is powered through a ceramic column by a Marx generator. We also investigated the possibility of extracting a beam current of 4 kA. The focusing system for the electron beam consists of a Pierce electrostatic focusing electrode at the cathode and three solenoidal focusing magnets positioned between the anode and induction accelerator input. The off-energy components (beam-head) during the 400 ns energy rise time are overfocused, leading to beam envelope mismatch and growth resulting in the possibility of beam hitting the accelerator tube walls. The anode focusing magnets can be tuned to avoid the beam spill in the 2kA case. To allow beam-head control for the 4kA case we are considering the introduction of time-varying magnetic focusing field along the accelerator axis generated by a single-loop solenoid magnet positioned in the anode beam tube. We will present the beam-head dynamics calculations as well as the solenoid design and preliminary feasibility test results

  3. A spectrometer using one or two superconducting coaxial solenoids

    International Nuclear Information System (INIS)

    Schapira, J.P.; Gales, S.; Laurent, J.P.

    1979-06-01

    A set of two superconducting solenoidal coils which are presently under construction at the Orsay I.P.N. is described. Because of its optical properties, the system can be used as spectrometer: focusing properties with small geometrical aberrations allowing large solid angles to be used together with good transmission and isochronism. Various types of experiments can be envisaged with such a device: angular correlation at zero degree, study of rare events like exotic reactions, time of flight for mass identification and rapid (much less than 1 μs) and efficient collection of radioactive nuclei for subsequent spectroscopy measurements [fr

  4. Dynamic analysis of fast-acting solenoid valves using finite element method

    International Nuclear Information System (INIS)

    Kwon, Ki Tae; Han, Hwa Taik

    2001-01-01

    It is intended to develop an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the finite element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well the experimental results including bouncing effects

  5. A feasibility study of a linear laser heated solenoid fusion reactor. Final report

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-02-01

    This report examines the feasibility of a laser heated solenoid as a fusion or fusion-fission reactor system. The objective of this study, was an assessment of the laser heated solenoid reactor concept in terms of its plasma physics, engineering design, and commercial feasibility. Within the study many pertinent reactor aspects were treated including: physics of the laser-plasma interaction; thermonuclear behavior of a slender plasma column; end-losses under reactor conditions; design of a modular first wall, a hybrid (both superconducting and normal) magnet, a large CO 2 laser system; reactor blanket; electrical storage elements; neutronics; radiation damage, and tritium processing. Self-consistent reactor configurations were developed for both pure fusion and fusion-fission designs, with the latter designed both to produce power and/or fissile fuels for conventional fission reactors. Appendix A is a bibliography with commentary of theoretical and experimental studies that have been directed at the laser heated solenoid

  6. Manufacture and Test of a Small Ceramic-Insulated Nb$_{3}$Sn Split Solenoid

    CERN Document Server

    Bordini, B; Rossi, L; Tommasini, D

    2008-01-01

    A small split solenoid wound with high-Jc Nb$_{3}$Sn conductor, constituted by a 0.8 mm Rod Re-stack Process (RRP®) strand, was built and tested at CERN in order to study the applicability of: 1) ceramic wet glass braid insulation without epoxy impregnation of the magnet; 2) a new heat treatment devised at CERN and particularly suitable for reacting RRP® Nb$_{3}$Sn strands. This paper briefly describes the solenoid and the experimental results obtained during 4.4 K and 1.9 K tests. The split solenoid consists of two coils (25 mm inner diameter, 51.1 mm outer diameter, 12.9 mm height). The coils were initially separately tested, in an iron mirror configuration, and then tested together in split solenoid configuration. In all the tests at 4.4 K the coils reached a current higher than 95 % of their short sample limits at the first quench; in split solenoid configuration the maximum field values in the coils and in the aperture were respectively 10.7 T and 12.5 T. At 1.9 K the coils had premature quenches due ...

  7. A quantitative investigation of the effect of a close-fitting superconducting shield on the coil factor of a solenoid

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, R.; Koshelet, V.

    2009-01-01

    Superconducting shields are commonly used to suppress external magnetic interference. We show, that an error of almost an order of magnitude can occur in the coil factor in realistic configurations of the solenoid and the shield. The reason is that the coil factor is determined by not only...... the geometry of the solenoid, but also the nearby magnetic environment. This has important consequences for many cryogenic experiments involving magnetic fields such as the determination of the parameters of Josephson junctions, as well as other superconducting devices. It is proposed to solve the problem...

  8. Floquet Engineering of Optical Solenoids and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators

    Science.gov (United States)

    Wang, Botao; Ünal, F. Nur; Eckardt, André

    2018-06-01

    The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.

  9. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    International Nuclear Information System (INIS)

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-01-01

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  10. Quench protection analysis of the Mu2e production solenoid

    International Nuclear Information System (INIS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions

  11. Quench protection analysis of the Mu2e production solenoid

    Science.gov (United States)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  12. Behaviour of large cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Boer, W. de; Fues, W.; Grindhammer, G.; Kotthaus, R.; Lierl, H.; Moss, L.

    1980-04-01

    We describe the construction and behaviour of a set of cylindrical drift chambers operating inside a superconducting solenoid with a central magnetic field of 1.3 T. The chambers are part of the 4 π detector CELLO at the e + e - storage ring PETRA in Hamburg. The chambers were designed without field shaping to keep them as simple as possible. In order to parametrize accurately the nonlinear space-time relation, we used a computer simulation of the drift process in inhomogenous electric and magnetic fields. With such a parametrization we achieved a resolution of 210 μm, averaged over the whole drift cell and angles of incidence up to 30 0 . (orig.)

  13. Design of the pancake-winding central solenoid coil

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Nishi, Masataka; Tsuji, Hirosi

    1995-01-01

    There was a debate over whether a pancake-winding or layer-winding technique is more appropriate for the Central Solenoid (CS) coil for ITER superconducting magnet. The layer-winding CS has the advantage of homogeneous winding supporting the TF centering force without weak joints, but has many difficulties during manufacturing and quality control. On other hand, the pancake-winding has the advantage of better quality control during manufacturing and module testing but has difficulties with joints and feeders, and pipes located in the load path of the bucking force from the toroidal field coils. The compact joints, reinforcement by preformed amour, sharp bending, and double seals are applied to the design of pancake-winding CS coil and demonstrated by hardware developments. The pancake-winding CS coil by using modified existing technology is compatible with the bucking concept of the ITER magnet system. (author)

  14. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-01-01

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  15. New classical inversion formulas for centrosymmetric electric and magnetic fields; focusing potentials

    International Nuclear Information System (INIS)

    Bogdanov, I.V.; Demkov, Y.N.

    1982-01-01

    New inversion formulas are obtained for the classical scattering of a charged particle by a spherical or axisymmetric electric or magnetic field at a fixed impact parameter or angular momentum. For different cases, focusing fields are obtained similar to those previously considered for scattering by an electric field at a given energy, viz., of the backscattering (cat's eye), Maxwell fish eye, or Luneberg lens type. A magnetoelectric analogy is formulated, namely the existence of equivalent axisymmetric electric and magnetic fields that scatter charged particles in identical fashion

  16. Magnetic electron focusing and tuning of the electron current with a pn-junction

    Energy Technology Data Exchange (ETDEWEB)

    Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Ramezani Masir, M., E-mail: mrmphys@gmail.com; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2014-01-28

    Transverse magnetic focusing properties of graphene using a ballistic four terminal structure are investigated. The electric response is obtained using the semiclassical billiard model. The transmission exhibits pronounced peaks as a consequence of skipping orbits at the edge of the structure. When we add a pn-junction between the two probes, snake states along the pn-interface appear. Injected electrons are guided by the pn-interface to one of the leads depending on the value of the applied magnetic field. Oscillations in the resistance are found depending on the amount of particles that end up in each lead.

  17. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  18. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  19. Flowfield Analysis of a Pneumatic Solenoid Valve

    Directory of Open Access Journals (Sweden)

    Sheam-Chyun Lin

    2018-07-01

    Full Text Available Pneumatic solenoid valve has been widely used in the vehicle control systems for meeting the rapid-reaction demand triggered by the dynamic conditions encountered during the driving course of vehicle. For ensuring the safety of human being, the reliable and effective solenoid valve is in great demand to shorten the reaction time and thus becomes the topic of this research. This numerical study chooses a commercial 3/2-way solenoid valve as the reference valve for analysing its performance. At first, CFD software Fluent is adopted to simulate the flow field associated with the valve configuration. Then, the comprehensive flow visualization is implemented to identify the locations of adverse flow patterns. Accordingly, it is found that a high-pressure region exists in the zone between the nozzle exit and the top of iron core. Thereafter, the nozzle diameter and the distance between nozzle and spool are identified as the important design parameters for improving the pressure response characteristics of valve. In conclusion, this work establishes a rigorous and systematic CFD scheme to evaluate the performance of pneumatic solenoid valve.

  20. First experiment with the double solenoid RIBRAS system

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenthaeler, R.; Condori, R. Pampa; Lepine-Szily, A.; Pires, K. C. C.; Morais, M. C.; Leistenschneider, E.; Scarduelli, V. B.; Gasques, L. R. [Instituto de Fisica da USP, Sao Paulo, Brazil, C.P. 66318, 05314-970 (Brazil); Faria, P. N. de; Mendes, D. R. Jr. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ, 24210-340 (Brazil); Shorto, J. M. B. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Lineu Prestes, 2242, 05508-000, Sao Paulo, SP (Brazil); Assuncao, M. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Campus Diadema, Sao Paulo (Brazil)

    2013-05-06

    A description of the double solenoid system (RIBRAS) operating since 2004 in one of the beam lines of the Pelletron Laboratory of the Institute of Physics of the University of Sao Paulo is presented. The recent installation of the secondary scattering chamber after the second solenoid is reported and the first experiment in RIBRAS using both solenoids is described.

  1. Ultra-long magnetization needle induced by focusing azimuthally polarized beams with a spherical mirror.

    Science.gov (United States)

    Hang, Li; Luo, Kai; Fu, Jian; Chang, Yizhe; Wang, Ying; Chen, Peifeng

    2018-03-20

    Based on extended Richards-Wolf theory for axisymmetric surfaces and the inverse Faraday effect, we propose the generation of a purely longitudinal magnetization needle by focusing Gaussian annular azimuthally polarized beams with a spherical mirror. The needle obtained has a longitudinal length varying hundreds to thousands of wavelengths while keeping the lateral size under 0.4λ, and the corresponding aspect ratio can easily reach more than 2000. It may be the first time that a magnetization needle whose aspect ratio is over 500 has been achieved. The approximate analytical expressions of the magnetization needle are given, and the longitudinal length is tunable by changing the value of the angular thickness and the position of the annular beams.

  2. Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity

    Science.gov (United States)

    Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun

    2018-06-01

    We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.

  3. Modeling of the free space and focused magnetic field profiles of the ORNL superconducting motor

    International Nuclear Information System (INIS)

    Bailey, J.M.; Rader, M.; Sohns, C.W.; McKeever, J.; Schwenterly, S.W.

    1992-01-01

    The ORNL superconducting motor, is a device consisting of 4 DC superconducting magnets in a square cross section. These coils are arranged in a N-S-N-S configuration and at present have no iron flux return paths. Experimentally the device has been operated and has been shown to produce 102.3 kg-m of locked rotor torque at 100 Ampers winding current. The superconductors were operating at 40 Kelvin. The peak magnetic field at 2,100 amperes operating current was 2 Tesla on the cryostat face. Recently there has been an effort under way to improve the operating parameters of the device by improving the flux utilization of the device. This was to be accomplished by the use of flux focusing pole pieces. The effects of the pole pieces and the vacuum magnetic field have been modeled with the MSC EMAS code to see the possible benefit of adding pole pieces to the in situ experiment

  4. Combined centroid-envelope dynamics of intense, magnetically focused charged beams surrounded by conducting walls

    International Nuclear Information System (INIS)

    Fiuza, K.; Rizzato, F.B.; Pakter, R.

    2006-01-01

    In this paper we analyze the combined envelope-centroid dynamics of magnetically focused high-intensity charged beams surrounded by conducting walls. Similar to the case where conducting walls are absent, it is shown that the envelope and centroid dynamics decouple from each other. Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to analytically obtain characteristics of halo formation seen in the full simulations

  5. Designing and testing glaser lens for focusing low energy charged particle beam

    International Nuclear Information System (INIS)

    Rashid, M.H.; Mallik, C.; Bhandari, R.K.

    2009-01-01

    A Glaser lens is an iron shielded solenoid magnet having bell-shaped distribution of axial field along the central z-axis. Like a simple solenoid, it also rotates the beam about the axis and focuses it. The axial field can be generated analytically from one of the several devised expressions for scalar potentials or it can be computed using 2D codes. One or more of the methods can be used to set the geometrical and electrical parameters of a Glaser solenoid of particular focal length (f) for focusing a beam of given rigidity (Bρ). The measured field data along the axis of a designed and constructed lens is used to verify the design. A scheme of sectionalizing a thick lens into a number of thin lenses improves the values of the cardinal points. The section model is proposed for the first time to track particles through an accurately designed Glaser solenoid. It can be used to study electric and magnetic combined lens and/ or uni-potential lens too. It is of interest and benefit for the accelerator persons in general and lens designers in particular. (author)

  6. An analysis of the performance of the Compact Muon Solenoid Endcap Muon Chambers

    CERN Document Server

    Ippolito, Nicole M

    2008-01-01

    In the fall of 2006, the Compact Muon Solenoid, one of the two multi-purpose detectors built along the Large Hadron Collider ring, was used to collect data in a full magnetic field of 4 Tesla. This series of runs was the so-named Magnet Test-Cosmic Challenge (or MTCC). For the first time, some sector of all sub-detectors were included in the data chain. Many terabytes of data was collected during this approximately month-long endeavor. The analysis of some subset of this data is considered herein. All work focused on the achievements made by the Cathode-Strip Chambers, which are part of the Endcap Muon system. Two major areas were considered: the resolution being achieved by the CSC's using the reconstruction software at the time of the MTCC, and the possibility of momentum reconstruction from the local tracks within the CSC's, removed from other parts of the detector. This thesis is divided into a number of different chapters. In chapter 1, the physics which the LHC hopes to achieve is discussed in some gene...

  7. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    Science.gov (United States)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  8. Bent solenoids for spectrometers and emittance exchange sections

    International Nuclear Information System (INIS)

    Norem, J.

    1999-01-01

    Bent solenoids can be used to transport low energy beams as they provide both confinement and dispersion of particle orbits. Solenoids are being considered both as emittance exchange sections and spectrometers in the muon cooling system as part of the study of the muon collider. They present the results of a study of bent solenoids which considers the design of coupling sections between bent solenoids to straight solenoids, drift compensation fields, aberrations, and factors relating to the construction, such as field ripple, stored energy, coil forces and field errors

  9. Reference Design of the Mu2e Detector Solenoid

    CERN Document Server

    Feher, S; Brandt,, J; Cheban, S; Coleman, R; Dhanaraj, N; Fang, I; Lamm, M; Lombardo, V; Lopes, M; Miller, J; Ostojic, R ,; Orris, D; Page, T; Peterson, T; Tang, Z; Wands, R

    2014-01-01

    The Mu2e experiment at Fermilab has been approved by the Department of Energy to proceed developing the preliminary design. Integral to the success of Mu2e is the superconducting solenoid system. One of the three major solenoids is the Detector Solenoid that houses the stopping target and the detectors. The goal of the Detector Solenoid team is to produce detailed design specifications that are sufficient for vendors to produce the final design drawings, tooling and fabrication procedures and proceed to production. In this paper we summarize the Reference Design of the Detector Solenoid.

  10. Form factor of some types of toroidal solenoids

    International Nuclear Information System (INIS)

    Koryavko, V.I.; Litvinenko, Yu.A.

    1979-01-01

    Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume

  11. Focal point determination in magnetic resonance-guided focused ultrasound using tracking coils.

    Science.gov (United States)

    Svedin, Bryant T; Beck, Michael J; Hadley, J Rock; Merrill, Robb; de Bever, Joshua T; Bolster, Bradley D; Payne, Allison; Parker, Dennis L

    2017-06-01

    To develop a method for rapid prediction of the geometric focus location in MR coordinates of a focused ultrasound (US) transducer with arbitrary position and orientation without sonicating. Three small tracker coil circuits were designed, constructed, attached to the transducer housing of a breast-specific MR-guided focused US (MRgFUS) system with 5 degrees of freedom, and connected to receiver channel inputs of an MRI scanner. A one-dimensional sequence applied in three orthogonal directions determined the position of each tracker, which was then corrected for gradient nonlinearity. In a calibration step, low-level heating located the US focus in one transducer position orientation where the tracker positions were also known. Subsequent US focus locations were determined from the isometric transformation of the trackers. The accuracy of this method was verified by comparing the tracking coil predictions to thermal center of mass calculated using MR thermometry data acquired at 16 different transducer positions for MRgFUS sonications in a homogeneous gelatin phantom. The tracker coil predicted focus was an average distance of 2.1 ± 1.1 mm from the thermal center of mass. The one-dimensional locator sequence and prediction calculations took less than 1 s to perform. This technique accurately predicts the geometric focus for a transducer with arbitrary position and orientation without sonicating. Magn Reson Med 77:2424-2430, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Calibration of NS value of magnetic probe on EAST

    International Nuclear Information System (INIS)

    Sun Jiuyu; Shen Biao; Liu Guangjun; Sun Youwen; Qian Jinping; Li Shi; Xiao Bingjia; Chen Dalong; Shi Tonghui

    2014-01-01

    Based on the basic principle of measuring magnetic field by magnetic probe, a solenoid calibration system is constructed by a long solenoid, alternating current power, standard probe and data acquisition system in order to get the accurate magnetic field data. The NS value of magnetic probe on EAST is calibrated accurately by the solenoid calibration system and the data of the calibration is analysed. The obtained results are what we expected and provide the prerequisite for accurate magnetic field measurement in tokamak. (authors)

  13. Numerical study of the elastic-plastic cyclic deformation of the ''GLOBUS-M'' compact tokamak central solenoid

    International Nuclear Information System (INIS)

    Bykov, V.; Kavin, A.; Krivchenkov, Y.; Panin, A.

    1996-01-01

    The ''GLOBUS-M'' is a compact resistive tokamak with a central solenoid (CS) wound around the inner portion of the toroidal field coils. The magnetic field at the solenoid axis amounts to 8.3 T. The CS incorporates two layers of conductor (CuCr copper alloy) baked into insulation. The solenoid is designed to sustain 80,000 energizing. During each loading cycle the solenoid is subjected to the radial forces accompanied with the vertical compression. The most loaded region has been considered and modeled with the use of 2D axisymmetric finite element (FE) model. The model includes two conductor turns baked into insulation compound, copper cooling tubes and solder. The stress analysis shows that there is some plastic deformation in the copper tube and solder during loading and there is some back plastic deformation in the solder during unloading. The reloading does not cause any change in the solenoid stress-strain state in comparison with the case of loading. The number of cycles to failure has been simulated for all metallic components of the solenoid

  14. SU-F-T-211: Evaluation of a Dual Focusing Magnet System for the Treatment of Small Proton Targets

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, TT; McAuley, GA; Heczko, S; Slater, J [Loma Linda University, Loma Linda, CA (United States); Wroe, A [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To investigate magnetic focusing for small volume proton targets using a doublet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Monte Carlo computer simulations were performed using the Geant4 toolkit to compare dose depositions of proton beams transported through two focusing magnets or in their absence. Proton beams with energies of 127 MeV and initial diameters of 5, 8 and 10 mm were delivered through two identical focusing magnets similar to those currently in experimental use at Loma Linda University Medical Center. Analogous experiments used optimized configurations based on the simulation results. Dose was measured by a diode detector and Gafchromic EBT3 film and compared to simulation data. Based on results from the experimental data, an additional set of simulations was performed with an initial beam diameter of 18 mm and a two differing length magnets (40mm & 68mm). Results: Experimental data matched well with Monte Carlo simulations. However, under conditions necessary to produce circular beam spots at target depth, magnetically focused beams using two identical 40 mm length magnets did not meet all of our performance criteria of circular beam spots, improved peak to entrance (P/E) dose ratios and dose delivery efficiencies. The simulations using the longer 68 mm 2nd magnet yielded better results with 34% better P/E dose ratio and 20–50% better dose delivery efficiencies when compared to unfocused 10 mm beams. Conclusion: While magnetic focusing using two magnets with identical focusing power did not yield desired results, ongoing Monte Carlo simulations suggest that increasing the length of the 2nd magnet to 68 mm could improve P/E dose ratios and dose efficiencies. Future work includes additional experimental validation of the longer 2nd magnet setup as well as experiments with triplet magnet systems. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).

  15. CMS - The Compact Muon Solenoid

    CERN Multimedia

    Bergauer, T; Waltenberger, W; Kratschmer, I; Treberer-treberspurg, W; Escalante del valle, A; Andreeva, I; Innocente, V; Camporesi, T; Malgeri, L; Marchioro, A; Moneta, L; Weingarten, W; Beni, N T; Cimmino, A; Rovere, M; Jafari, A; Lange, C G; Vartak, A P; Gilbert, A J; Pantaleo, F; Reis, T; Cucciati, G; Alipour tehrani, N; Stakia, A; Fallavollita, F; Pizzichemi, M; Rauco, G; Zhang, S; Hu, T; Yazgan, E; Zhang, H; Thomas-wilsker, J; Reithler, H K V; Philipps, B; Merschmeyer, M K; Heidemann, C A; Mukherjee, S; Geenen, H; Kuessel, Y; Weingarten, S; Gallo, E; Schwanenberger, C; Walsh bastos rangel, R; Beernaert, K S; De wit, A M; Elwood, A C; Connor, P; Lelek, A A; Wichmann, K H; Myronenko, V; Kovalchuk, N; Bein, S L; Dreyer, T; Scharf, C; Quast, G; Dierlamm, A H; Barth, C; Mol, X; Kudella, S; Schafer, D; Schimassek, R R; Matorras, F; Calderon tazon, A; Garcia ferrero, J; Bercher, M J; Sirois, Y; Callier, S; Depasse, P; Laktineh, I B; Grenier, G; Boudoul, G; Heath, G P; Hartley, D A; Quinton, S; Tomalin, I R; Harder, K; Francis, V B; Thea, A; Zhang, Z; Loukas, D; Hernath, S T; Naskar, K; Colaleo, A; Maggi, G P; Maggi, M; Loddo, F; Calabria, C; Campanini, R; Cuffiani, M; D'antone, I; Grandi, C; Navarria, F; Guiducci, L; Battilana, C; Tosi, N; Gulmini, M; Meola, S; Longo, E; Meridiani, P; Marzocchi, B; Schizzi, A; Cho, S; Ha, S; Kim, D H; Kim, G N; Md halid, M F B; Yusli, M N B; Dominik, W M; Bunkowski, K; Olszewski, M; Byszuk, A P; Rasteiro da silva, J C; Varela, J; Leong, Q; Sulimov, V; Vorobyev, A; Denisov, A; Murzin, V; Egorov, A; Lukyanenko, S; Postoev, V; Pashenkov, A; Solovey, A; Rubakov, V; Troitsky, S; Kirpichnikov, D; Lychkovskaya, N; Safronov, G; Fedotov, A; Toms, M; Barniakov, M; Olimov, K; Fazilov, M; Umaraliev, A; Dumanoglu, I; Bakirci, N M; Dozen, C; Demiroglu, Z S; Isik, C; Zeyrek, M; Yalvac, M; Ozkorucuklu, S; Chang, Y; Dolgopolov, A; Gottschalk, E E; Maeshima, K; Heavey, A E; Kramer, T; Kwan, S W L; Taylor, L; Tkaczyk, S M; Mokhov, N; Marraffino, J M; Mrenna, S; Yarba, V; Banerjee, B; Elvira, V D; Gray, L A; Holzman, B; Dagenhart, W; Canepa, A; Ryu, S C; Strobbe, N C; Adelman-mc carthy, J K; Contescu, A C; Andre, J O; Wu, J; Dittmer, S J; Bucinskaite, I; Zhang, J; Karchin, P E; Thapa, P; Zaleski, S G; Gran, J L; Wang, S; Zilizi, G; Raics, P P; Bhardwaj, A; Naimuddin, M; Smiljkovic, N; Stojanovic, M; Brandao malbouisson, H; De oliveira martins, C P; Tonelli manganote, E J; Medina jaime, M; Thiel, M; Laurila, S H; Graehling, P; Tonon, N; Blekman, F; Postiau, N J S; Leroux, P J; Van remortel, N; Janssen, X J; Di croce, D; Aleksandrov, A; Shopova, M F; Dogra, S M; Shinoda, A A; Arce, P; Daniel, M; Navarrete marin, J J; Redondo fernandez, I; Guirao elias, A; Cela ruiz, J M; Lottin, J; Gras, P; Kircher, F; Levesy, B; Payn, A; Guilloux, F; Negro, G; Leloup, C; Pasztor, G; Panwar, L; Bhatnagar, V; Bruzzi, M; Sciortino, S; Starodubtsev, O; Azzi, P; Conti, E; Lacaprara, S; Margoni, M; Rossin, R; Tosi, M; Fano', L; Lucaroni, A; Biino, C; Dattola, D; Rotondo, F; Ballestrero, A; Obertino, M M; Kiani, M B; Paterno, A; Magana villalba, R; Ramirez garcia, M; Reyes almanza, R; Gorski, M; Wrochna, G; Bluj, M J; Zarubin, A; Nozdrin, M; Ladygin, V; Malakhov, A; Golunov, A; Skrypnik, A; Sotnikov, A; Evdokimov, N; Tiurin, V; Lokhtin, I; Ershov, A; Platonova, M; Tyurin, N; Slabospitskii, S; Talov, V; Belikov, N; Ryazanov, A; Chao, Y; Tsai, J; Foord, A; Wood, D R; Orimoto, T J; Luckey, P D; Jaditz, S H; Stephans, G S; Darlea, G L; Di matteo, L; Maier, B; Trovato, M; Bhattacharya, S; Roberts, J B; Padley, P B; Tu, Z; Rorie, J T; Clarida, W J; Tiras, E; Khristenko, V; Cerizza, G; Pieri, M; Krutelyov, V; Saiz santos, M D; Klein, D S; Derdzinski, M; Murray, M J; Gray, J A; Minafra, N; Castle, J R; Bowen, J L S; Buterbaugh, K; Morrow, S I; Bunn, J; Newman, H; Spiropulu, M; Balcas, J; Lawhorn, J M; Thomas, S D; Panwalkar, S M; Kyriacou, S; Xie, Z; Ojalvo, I R; Salfeld-nebgen, J; Laird, E M; Wimpenny, S J; Yates, B R; Perry, T M; Schiber, C C; Diaz, D C; Uniyal, R; Mesic, B; Kolosova, M; Snow, G R; Lundstedt, C; Johnston, D; Zvada, M; Weitzel, D J; Damgov, J V; Cowden, C S; Giammanco, A; David, P N Y; Zobec, J; Cabrera jamoulle, J B; Daubie, E; Nash, J A; Evans, L; Hall, G; Nikitenko, A; Ryan, M J; Huffman, M A J; Styliaris, E; Evangelou, I; Sharan, M K; Roy, A; Rout, P K; Kalbhor, P N; Bagliesi, G; Braccini, P L; Ligabue, F; Boccali, T; Rizzi, A; Minuti, M; Oh, S; Kim, J; Sen, S; Boz evinay, M; Xiao, M; Hung, W T; Jensen, F O; Mulholland, T D; Kumar, A; Jones, M; Roozbahani, B H; Neu, C C; Thacker, H B; Wolfe, E M; Jabeen, S; Gilmore, J; Winer, B L; Rush, C J; Luo, W; Alimena, J M; Ko, W; Lander, R; Broadley, W H; Shi, M; Furic, I K; Low, J F; Bortignon, P; Alexander, J P; Zientek, M E; Conway, J V; Padilla fuentes, Y L; Florent, A H; Bravo, C B; Crotty, I M; Wenman, D L; Sarangi, T R; Ghabrous larrea, C; Gomber, B; Smith, N C; Long, K D; Roberts, J M; Hildreth, M D; Jessop, C P; Karmgard, D J; Loukas, N; Ferbel, T; Zielinski, M A; Cooper, S I; Jung, A; Van driessche, W G M; Fagot, A; Vermassen, B; Valchkova-georgieva, F K; Dimitrov, D S; Roumenin, T S; Podrasky, V; Re, V; Zucca, S; De canio, F; Romaniuk, R; Teodorescu, L; Krofcheck, D; Anderson, N G; Bell, S T; Salazar ibarguen, H A; Kudinov, V; Onishchenko, S; Naujikas, R; Lyubynskiy, V; Sobolev, O; Khan, M S; Adeel-ur-rehman, A; Hassan, Q U; Ali, I; Kreuzer, P K; Robson, A J; Gadrat, S G; Ivanov, A; Mendis, D; Da silva di calafiori, D R; Zeinali, M; Behnamian, H; Moroni, L; Malvezzi, S; Park, I; Pastika, N J; Oropeza barrera, C; Elkhateeb, E A A; Elmetenawee, W; Mohammed, Y; Tayel, E S A; Mcclatchey, R H; Kovacs, Z; Munir, K; Odeh, M; Magradze, E; Oikashvili, B; Shingade, P; Shukla, R A; Banerjee, S; Kumar, S; Jashal, B K; Grzanka, L; Adam, W; Ero, J; Fabjan, C; Jeitler, M; Rad, N K; Auffray hillemanns, E; Charkiewicz, A; Fartoukh, S; Garcia de enterria adan, D; Girone, M; Glege, F; Loos, R; Mannelli, M; Meijers, F; Sciaba, A; Meschi, E; Ricci, D; Petrucciani, G; Daguin, J; Vazquez velez, C; Karavakis, E; Nourbakhsh, S; Rabady, D S; Ceresa, D; Karacheban, O; Beguin, M; Kilminster, B J; Ke, Z; Meng, X; Zhang, Y; Tao, J; Romeo, F; Spiezia, A; Cheng, L; Zhukov, V; Feld, L W; Autermann, C T; Fischer, R; Erdweg, S; Kress, T H; Dziwok, C; Hansen, K; Schoerner-sadenius, T M; Marfin, I; Keaveney, J M; Diez pardos, C; Muhl, C W; Asawatangtrakuldee, C; Defranchis, M M; Asmuss, J P; Poehlsen, J A; Stober, F M H; Vormwald, B R; Kripas, V; Gonzalez vazquez, D; Kurz, S T; Niemeyer, C; Rieger, J O; Borovkov, A; Shvetsov, I; Sieber, G; Caspart, R; Iqbal, M A; Sander, O; Metzler, M B; Ardila perez, L E; Ruiz jimeno, A; Fernandez garcia, M; Scodellaro, L; Gonzalez sanchez, J F; Curras rivera, E; Semeniouk, I; Ochando, C; Bedjidian, M; Giraud, N A; Mathez, H; Zoccarato, Y D; Ianigro, J; Galbit, G C; Flacher, H U; Shepherd-themistocleous, C H; French, M J; Hill, J A; Jones, L L; Markou, A; Bencze, G L; Mishra, D K; Netrakanti, P K; Jha, V; Chudasama, R; Katta, S; Venditti, R; Cristella, L; Braibant-giacomelli, S; Dallavalle, G; Fabbri, F; Codispoti, G; Borgonovi, L; Caponero, M A; Berti, L; Fienga, F; Dafinei, I; Organtini, G; Del re, D; Pettinacci, V; Park, S K; Lee, K S; Kang, M; Kim, B; Park, H K; Kong, D J; Lee, S; Pak, S I; Zolkapli, Z B; Konecki, M A; Walczak, M B; Bargassa, P; Viegas guerreiro leonardo, N T; Levchenko, P; Orishchin, E; Suvorov, V; Uvarov, L; Gruzinskii, N; Pristavka, A; Kozlov, V; Radovskaia, A; Solovey, A; Kolosov, V; Vlassov, E; Parygin, P; Tumasyan, A; Topakli, H; Boran, F; Akin, I V; Oz, C; Gulmez, E; Atakisi, I O; Bakken, J A; Govi, G M; Lewis, J D; Shaw, T M; Bailleux, D; Stoynev, S E; Sexton-kennedy, E M; Huang, C; Lincoln, D W; Roser, R; Ito, A; Adams, M R; Apanasevich, L; Varelas, N; Sandoval gonzalez, I D; Hangal, D A; Yoo, J H; Ovcharova, A K; Bradmiller-feld, J W; Amin, N J; Miller, M P; Patterson, A S; Sharma, R K; Santoro, A; Lassila-perini, K M; Tuominiemi, J; Voutilainen, M A; Wu, X; Gross, L O; Le bihan, A; Fuks, B; Kieffer, E; Pansanel, J; Jansova, M; D'hondt, J; Abuzeid hassan, S A; Bilin, B; Beghin, D; Soultanov, G; Vankov, I D; Konstantinov, P B; Marra da silva, J; De souza santos, A; Arruda ramalho, L; Renker, D; Erdmann, W; Molinero vela, A; Fernandez bedoya, C; Bachiller perea, I; Chipaux, R; Faure, J D; Hamel de monchenault, G; Mandjavidze, I; Rander, J; Ferri, F; Leroy, C L; Machet, M; Nagy, M I; Felcini, M; Kaur, S; Saizu, M A; Civinini, C; Latino, G; Checchia, P; Ronchese, P; Vanini, S; Fantinel, S; Cecchi, C; Leonardi, R; Arneodo, M; Ruspa, M; Pacher, L; Rabadan trejo, R I; Mondragon herrera, C A; Golutvin, I; Zhiltsov, V; Melnichenko, I; Mjavia, D; Cheremukhin, A; Zubarev, E; Kalagin, V; Alexakhin, V; Mitsyn, V; Shulha, S; Vishnevskiy, A; Gavrilenko, M; Boos, E E; Obraztsov, S; Dubinin, M; Demiyanov, A; Dudko, L; Azhgirey, I; Chikilev, O; Turchanovich, L; Rurua, L; Hou, G W; Wang, M; Chang, P; Kumar, A; Liau, J; Lazic, D; Lawson, P D; Zou, D; Wisecarver, A L; Sumorok, K C; Klute, M; Lee, Y; Iiyama, Y; Velicanu, D A; Mc ginn, C; Abercrombie, D R; Tatar, K; Hahn, K A; Nussbaum, T W; Southwick, D C; Cittolin, S; Martin, T; Welke, C V; Wilson, G W; Baringer, P S; Sanders, S J; Mcbrayer, W J; Engh, D J; Sheldon, P D; Gurrola, A; Velkovska, J A; Melo, A M; Padeken, K O; Johnson, C N; Ni, H; Montalvo, R J; Heindl, M D; Ferguson, T; Vogel, H; Mudholkar, T K; Elmer, P; Tully, C; Luo, J; Hanson, G; Jandir, P S; Askew, A W; Kadija, K; Dimovasili, E; Attikis, A; Vasilas, I; Chen, G; Bockelman, B P; Kamalieddin, R; Barrefors, B P; Farleigh, B S; Akchurin, N; Demin, P; Pavlov, B A; Petkov, P S; Goranova, R; Tomsa, J; Lyons, L; Buchmuller, O; Magnan, A; Laner ogilvy, C; Di maria, R; Dutta, S; Thakur, S; Bettarini, S; Bosi, F; Giassi, A; Massa, M; Calzolari, F; Androsov, K; Lee, H; Komurcu, Y; Kim, D W; Wagner, S R; Perloff, A S; Rappoccio, S R; Harrington, C I; Baden, A R; Ricci-tam, F; Kamon, T; Rathjens, D; Pernie, L; Larsen, D; Ji, W; Pellett, D E; Smith, J; Acosta, D E; Field, R D; Yelton, J M; Kotov, K; Wang, S; Smolenski, K W; Mc coll, N W; Dasu, S R; Lanaro, A; Cook, J R; Gorski, T A; Buchanan, J J; Jain, S; Musienko, Y; Taroni, S; Meng, H; Siddireddy, P K; Xie, W; Rott, C; Benedetti, D; Everett, A A; Schulte, J; Mahakud, B; Ryckbosch, D D E; Crucy, S; Cornelis, T G M; Betev, B; Dimov, H; Raykov, P A; Uzunova, D G; Mihovski, K T; Mechinsky, V; Makarenko, V; Yermak, D; Yevarouskaya, U; Salvini, P; Manghisoni, M; Fontaine, J; Agram, J; Palinkas, J; Reid, I D; Bell, A J; Clyne, M N; Zavodchikov, S; Veelken, C; Kannike, K; Dewanjee, R K; Skarupelov, V; Piibeleht, M; Ehataht, K; Chang, S; Kuchinski, P; Bukauskas, L; Zhmurin, P; Kamal, A; Mubarak, M; Asghar, M I; Ahmad, N; Muhammad, S; Mansoor-ul-islam, S; Saddique, A; Waqas, M; Irshad, A; Veckalns, V; Toda, S; Choi, Y K; Yu, I; Hwang, C; Yumiceva, F X; Djambazov, L; Meinhard, M T; Becker, R J U; Grimm, O; Wallny, R S; Tavolaro, V R; Eller, P D; Meister, D; Paktinat mehdiabadi, S; Chenarani, S; Dini, P; Leporini, R; Dinardo, M; Brianza, L; Hakkarainen, U T; Parashar, N; Malik, S; Ramirez vargas, J E; Dharmaratna, W; Noh, S; Uang, A J; Kim, J H; Lee, J S H; Jeon, D; You, Z; Assran, Y; Elgammal, S; Ellithi kamel, A Y; Nayak, A K; Dash, D; Koca, N; Kothekar, K K; Karnam, R; Patil, M R; Torims, T; Hoch, M; Schieck, J R; Valentan, M; Spitzbart, D; Lucio alves, F L; Blanchot, G; Gill, K A; Orsini, L; Petrilli, A; Sharma, A; Tsirou, A; Deile, M; Hudson, D A; Gutleber, J; Folch, R; Tropea, P; Cerminara, G; Vichoudis, P; Pardo, T; Sabba, H; Selvaggi, M; Verzetti, M; Ngadiuba, J; Kornmayer, A; Niedziela, J; Aarrestad, T K; He, K; Li, B; Huang, Q; Pierschel, G; Esch, T; Louis, D; Quast, T; Nowack, A S; Beissel, F; Borras, K A; Mankel, R; Pitzl, D D; Kemp, Y; Meyer, A B; Krucker, D B; Mittag, G; Burgmeier, A; Lenz, T; Arndt, T M; Pflitsch, S K; Danilov, V; Dominguez damiani, D; Cardini, A; Kogler, R; Troendle, D C; Aggleton, R C; Lange, J; Reimers, A C; De boer, W; Weber, M M; Theel, A; Mozer, M U; Wayand, S; Harrendorf, M A; Harbaum, T R; El morabit, K; Marco, J; Rodrigo, T; Vila alvarez, I; Lopez garcia, A; Rembser, J; Mathieu, A; Kurca, T; Mirabito, L; Verdier, P; Combaret, C; Newbold, D M; Smith, V; Brooke, J J; Metson, S; Coughlan, J A; Torbet, M J; Belyaev, A; Kyriakis, A; Horvath, D; Veszpremi, V; Topkar, A; Selvaggi-maggi, G; Nuzzo, S V; Romano, F; Marangelli, B; Spinoso, V; Lezki, S; Castro, A; Rovelli, T; Brigliadori, L; Bianco, S; Fabbricatore, P; Farinon, S; Musenich, R; Ferro, F; Gozzelino, A; Buontempo, S; Casolaro, P; Paramatti, R; Vignati, M; Belforte, S; Hong, B; Roh, Y J; Choi, S Y; Son, D; Yang, Y C; Butanov, K; Kotobi, A; Krolikowski, J; Pozniak, K T; Misiura, M; Seixas, J C; Jain, A K; Nemallapudi, M V; Shchipunov, L; Lebedev, V; Skorobogatov, V; Klimenko, K; Terkulov, A; Kirakosyan, M; Azarkin, M; Krasnikov, N; Stepanova, L; Gavrilov, V; Spiridonov, A; Semenov, S; Krokhotin, A; Rusinov, V; Chistov, R; Zhemchugov, E; Nishonov, M; Hmayakyan, G; Khachatryan, V; Ozdemir, K; Ozturk, S; Tali, B; Kangal, E E; Turkcapar, S; Zorbakir, I S; Aliyev, T; Demir, D A; Liu, W; Apollinari, G; Osborne, I; Genser, K; Lammel, S; Whitmore, J; Mommsen, R; Apyan, A; Badgett jr, W F; Atac, M; Joshi, U P; Vidal, R A; Giacchetti, L A; Merkel, P; Johnson, M E; Soha, A L; Tran, N V; Rapsevicius, V; Hirschauer, J F; Voirin, E; Altunay cheung, M; Liu, T T; Mosquera morales, J F; Gerber, C E; Chen, X; Clarke, C J; Stuart, D D; Franco sevilla, M; Marsh, B J; Shivpuri, R K; Adzic, P; De almeida pacheco, M A; Matos figueiredo, D; De queiroz franco, A B; Melo de almeida, M; Bernardo valadao, R; Linden, T; Tuovinen, E V; Jarvinen, T T; Siikonen, H J L; Ripp-baudot, I L; Richer, M; Vander velde, C; Randle-conde, A S; Dong, J; Van haevermaet, H J H; Dimitrov, L; De paula bianchini, C; Muller cascadan, A; Kotlinski, B; Alcaraz maestre, J; Josa mutuberria, M I; Gonzalez lopez, O; Marin munoz, J; Puerta pelayo, J; Rodriguez vazquez, J J; Denegri, D; Jarry, P; Rosowsky, A; Tsipolitis, G; Grunewald, M; Singh, J; Chawla, R; Gupta, R; Giordano, F; Parrini, G; Russo, L; Dosselli, U; Mazzucato, M; Verlato, M; Wulzer, A; Traldi, S; Bortolato, D; Biasini, M; Bilei, G M; Movileanu, M; Santocchia, A; Mariani, V; Mariotti, C; Monaco, V; Accomando, E; Pinna angioni, G L; Boimska, B; Yuldashev, B; Kamenev, A; Belotelov, I; Filozova, I; Bunin, P; Golovanov, G; Gribushin, A; Kaminskiy, A; Volkov, P; Vorotnikov, G; Bityukov, S; Kryshkin, V; Petrov, V; Volkov, A; Troshin, S; Levin, A; Sumaneev, O V; Kalinin, A; Kulagin, N; Mandrik, P; Lin, C; Kovalskyi, D; Demiragli, Z; Hsu, D G; Michlin, B A; Fountain, M; Debbins, P A; Durgut, S; Tadel, M; White, A; Molina-perez, J A; Dost, J M; Boren, S S; Klein, A; Bhatti, A; Mesropian, C; Wilkinson, R; Xie, S; Marlow, D R; Jindal, P; Palmer, C A; Narain, M; Berry, E A; Usai, E; Korotkov, A L; Strossman, W; Kennedy, E; Burt, K F; Saha, A; Starodumov, A; Mavromanolakis, G; Nicolaou, C; Mao, Y; Claes, D R; Sill, A F; Lamichhane, K; Antunovic, Z; Piotrzkowski, K; Bondu, O; Dimitrov, A A; Albajar, C; Torga teixeira, R F; Iles, G M; Borg, J; Cripps, N A; Uchida, K; Fayer, S W; Wright, J C; Kokkas, P; Manthos, N; Bhattacharya, S; Nandan, S; Bellazzini, R; Carboni, A; Arezzini, S; Yang, U K; Roskes, J; Corcodilos, L A; Nauenberg, U; Johnson, D; Kharchilava, A; Mc lean, C A; Cox, B B; Hirosky, R J; Cummings, G E; Skuja, A; Bard, R L; Mueller, R D; Puigh, D M; Chertok, M B; Calderon de la barca sanchez, M; Gunion, J F; Vogt, R; Conway, R T; Gearhart, J W; Band, R E; Kukral, O; Korytov, A; Fu, Y; Madorsky, A; Brinkerhoff, A W; Rinkevicius, A; Mcdermott, K P; Tao, Z; Bellis, M; Gronberg, J B; Hauser, J; Bachtis, M; Kubic, J; Nash, W A; Greenler, L S; Caillol, C S; Woods, N; De jesus pardal vicente, M; Trembath-reichert, S; Singovski, A; Wolf, M; Smith, G N; Bucci, R E; Reinsvold, A C; Rupprecht, N C; Taus, R A; Buccilli, A T; Kroeger, R S; Reidy, J J; Barnes, V E; Kress, M K; Thieman, J R; Mccartin, J W; Gul, M; Khvastunov, I; Georgiev, I G; Biselli, A; Berzano, U; Vai, I; Braghieri, A; Cardoso lopes, R; Cuevas maestro, J F; Palencia cortezon, J E; Reucroft, S; Bheesette, S; Butler, A; Ivanov, A; Mizelkov, M; Kashpydai, O; Kim, J; Janulis, M; Zemleris, V; Ali, A; Ahmed, U S; Awan, M I; Lee, J; Dissertori, G; Pauss, F; Musella, P; Gomez espinosa, T A; Pigazzini, S; Vesterbacka olsson, M L; Klijnsma, T; Khakzad, M; Arfaei, H; Bonesini, M; Ciriolo, V; Gomez moreno, B; Linares garcia, L E; Bae, S; Ko, B; Hatakeyama, K; Mahmoud mohammed, M A; Aly, A; Ahmad, A; Bahinipati, S; Kim, T J; Goh, J; Fang, W; Kemularia, O; Melkadze, A; Sharma, S; Rane, A P; Ayala amaya, E R; Akle, B; Palomo pinto, F R; Madlener, T; Spanring, M; Pol, M E; Alda junior, W L; Rodrigues simoes moreira, P; Kloukinas, K; Onnela, A T O; Passardi, G; Perez, E F; Postema, W J; Petagna, P; Gaddi, A; Vieira de castro ferreira da silva, P M; Gastal, M; Dabrowski, A E; Mersi, S; Bianco, M; Alandes pradillo, M; Chen, Y; Kieseler, J; Bawej, T A; Roedne, L T; Hugo, G; Baschiera, M; Loiseau, T L; Donato, S; Wang, Y; Liu, Z; Yue, X; Teng, C; Wang, Z; Liao, H; Zhang, X; Chen, Y; Ahmad, M; Zhao, H; Qi, F; Li, B; Raupach, F; Tonutti, M P; Radziej, M; Fluegge, G; Haj ahmad, W; Kunsken, A; Roy, D M; Ziemons, T; Behrens, U; Henschel, H M; Kleinwort, C H; Dammann, D J; Van onsem, G P; Contreras campana, C J; Penno, M; Haranko, M; Singh, A; Turkot, O; Scheurer, V; Schleper, P; Schwandt, J; Schwarz, D; Hartmann, F; Muller, T; Mallows, S; Funke, D; Baselga bacardit, M; Mitra, S; Martinez rivero, C; Moya martin, D; Hidalgo villena, S; Chazin quero, B; Mine, P M G; Poilleux, P R; Salerno, R A; Martin perez, C; Amendola, C; Caponetto, L; Pugnere, D Y; Giraud, Y A N; Sordini, V; Grimes, M A; Burns, D J P; Harper, S J; Hajdu, C; Vami, T A; Dutta, D; Pant, L M; Kumar, V; Sarin, P; Di florio, A; Giacomelli, P; Montanari, A; Siroli, G P; Robutti, E; Maron, G; Fabozzi, F; Galati, G; Rovelli, C I; Della ricca, G; Vazzoler, F; Oh, Y D; Park, W H; Kwon, K H; Choi, J; Kalinowski, A; Santos amaral, L C; Di francesco, A; Velichko, G; Smirnov, I; Kozlov, V; Vavilov, S; Kirianov, A; Dremin, I; Rusakov, S; Nechitaylo, V; Kovzelev, A; Toropin, A; Anisimov, A; Barniakov, A; Gasanov, E; Eskut, E; Polatoz, A; Karaman, T; Zorbilmez, C; Bat, A; Tok, U G; Dag, H; Kaya, O; Tekten, S; Lin, T; Abdoulline, S; Bauerdick, L; Denisov, D; Gingu, C; Green, D; Nahn, S C; Prokofiev, O E; Strait, J B; Los, S; Bowden, M; Tanenbaum, W M; Guo, Y; Dykstra, D W; Mason, D A; Chlebana, F; Cooper, W E; Anderson, J M K; Weber, H A; Christian, D C; Alyari, M F; Diaz cruz, J A; Wang, M; Berry, D R; Siehl, K F; Poudyal, N; Kyre, S A; Mullin, S D; George, C; Szabo, Z; Malhotra, S; Milosevic, J; Prado da silva, W L; Martins mundim filho, L; Sanchez rosas, L J; Karimaki, V J; Toor, S Z; Karadzhinova, A G; Maazouzi, C; Van hove, P J; Hosselet, J; Goorens, R; Brun, H L; Kalsi, A K; Wang, Q; Vannerom, D; Antchev, G; Iaydjiev, P S; Mitev, G M; Amadio, G; Langenegger, U; Kaestli, H C; Meier, B; Fernandez ramos, J P; Besancon, M; Fabbro, B; Ganjour, S; Locci, E; Gevin, O; Suranyi, O; Bansal, S; Kumar, R; Sharma, S; Tuve, C N; Tricomi, A; Meschini, M; Paoletti, S; Sguazzoni, G; Gori, V; Carlin, R; Dal corso, F; Simonetto, F; Torassa, E; Zumerle, G; Borsato, E; Gonella, F; Dorigo, A; Larsen, H; Peroni, C; Trapani, P P; Buarque franzosi, D; Tamponi, U; Mejia guisao, J A; Zepeda fernandez, C H; Szleper, M; Zalewski, P D; Rybka, D K; Gorbunov, I; Perelygin, V; Kozlov, G; Semenov, R; Khvedelidze, A; Kodolova, O; Klyukhin, V; Snigirev, A; Kryukov, A; Ukhanov, M; Sobol, A; Bayshev, I; Akimenko, S; Lei, Y; Chang, Y; Kao, K; Lin, S; Yu, P; Li, Y; Fantasia, C; Gastler, D E; Paus, C; Wyslouch, B; Knuteson, B O; Azzolini, V; Goncharov, M; Brandt, S; Chen, Z; Liu, J; Chen, Z; Freed, S M; Zhang, A; Nachtman, J M; Penzo, A; Akgun, U; Yi, K; Rahmat, R; Gandrajula, R P; Dilsiz, K; Letts, J; Sharma, V A; Holzner, A G; Wuerthwein, F K; Padhi, S; Suarez silva, I M; Tapia takaki, D J; Stringer, R W; Kropivnitskaya, A; Majumder, D; Al-bataineh, A A; Gabella, W E; Johns, W E; Mora, J G; Shi, Z; Ciesielski, R A; Bornheim, A; Bartz, E H; Doroshenko, J; Halkiadakis, E; Salur, S; Robles, J A; Gray, R C; Saka, H; Osherson, M A; Hughes, E J; Paulini, M G; Russ, J S; Jang, D W; Piroue, P; Olsen, J D; Sands, W; Saluja, S; Cutts, D; Hadley, M H; Hakala, J C; Clare, R; Luthra, A P; Paneva, M I; Seto, R K; Mac intire, D A; Tentindo, S; Wahl, H; Chokheli, D; Micanovic, S; Razis, P; Mousa, J; Pantelides, S; Qian, S; Li, W; Stieger, B B; Lee, S W; Michotte de welle, D; De favereau de jeneret, J; Bakhshiansohi, H; Krintiras, G; Caputo, C; Sabev, C; Batinkov, A I; Zenz, S C; Pesaresi, M F; Summers, S P; Saoulidou, N; Koraka, C K; Ghosh, S; Sikdar, A K; Castaldi, R; Dell'orso, R; Palmonari, F; Rolandi, L; Moggi, A; Fedi, G; Coscetti, S; Seo, S H; Cankocak, K; Cumalat, J P; Smith, J G; Iashvili, I; Gallo, S M; Parker, A M; Ledovskoy, A; Hung, P Q; Vaman, D; Goodell, J D; Gomez, J A; Celik, A; Luo, S; Hill, C S; Francis, B P; Tripathi, S M; Squires, M K; Thomson, J A; Brainerd, C; Tuli, S; Bourilkov, D; Mitselmakher, G; Patterson, J R; Kuznetsov, V Y; Tan, S M; Strohman, C R; Rebassoo, F O; Valouev, V; Zelepukin, S; Lusin, S; Vuosalo, C O U; Ruggles, T H; Rusack, R; Woodard, A E; Meng, F; Dev, N; Vishnevskiy, D; Cremaldi, L M; Oliveros tautiva, S J; Jones, T M; Wang, F; Zaganidis, N; Tytgat, M G; Fedorov, A; Korjik, M; Panov, V; Montagna, P; Vitulo, P; Traversi, G; Gonzalez caballero, I; Eysermans, J; Logatchev, O; Orlov, A; Tikhomirov, A; Kulikova, T; Strumia, A; Nam, S K; Soric, I; Padimanskas, M; Siddiqi, H M; Qazi, S F; Ahmad, M; Makouski, M; Chakaberia, I; Mitchell, T B; Baarmand, M; Hits, D; Theofilatos, K; Mohr, N; Jimenez estupinan, R; Micheli, F; Pata, J; Corrodi, S; Mohammadi najafabadi, M; Menasce, D L; Pedrini, D; Malberti, M; Linn, S L; Mesa, D; Tuuva, T; Carrillo montoya, C A; Roque romero, G A; Suwonjandee, N; Kim, H; Khalil ibrahim, S S; Mahrous mohamed kassem, A M; Trojman, L; Sarkar, U; Bhattacharya, S; Babaev, A; Okhotnikov, V; Nakad, Z S; Fruhwirth, R; Majerotto, W; Mikulec, I; Rohringer, H; Strauss, J; Krammer, N; Hartl, C; Pree, E; Rebello teles, P; Ball, A; Bialas, W; Brachet, S B; Gerwig, H; Lourenco, C; Mulders, M P; Vasey, F; Wilhelmsson, M; Dobson, M; Botta, C; Dunser, M F; Pol, A A; Suthakar, U; Takahashi, Y; De cosa, A; Hreus, T; Chen, G; Chen, H; Jiang, C; Yu, T; Klein, K; Schulz, J; Preuten, M; Millet, P N; Keller, H C; Pistone, C; Eckerlin, G; Jung, J; Mnich, J; Jansen, H; Wissing, C; Savitskyi, M; Eichhorn, T V; Harb, A; Botta, V; Martens, I; Knolle, J; Eren, E; Reichelt, O; Schutze, P J; Saibel, A; Schettler, H H; Schumann, S; Kutzner, V G; Husemann, U; Giffels, M; Akbiyik, M; Friese, R M; Baur, S S; Faltermann, N; Kuhn, E; Gottmann, A I D; Muller, D; Balzer, M N; Maier, S; Schnepf, M J; Wassmer, M; Renner, C W; Tcherniakhovski, D; Piedra gomez, J; Vilar cortabitarte, R; Trevisani, N; Boudry, V; Charlot, C P; Tran, T H; Thiant, F; Lethuillier, M M; Perries, S O; Popov, A; Morrissey, Q; Brummitt, A J; Bell, S J; Assiouras, P; Sikler, F; De palma, M; Fiore, L; Pompili, A; Marzocca, C; Errico, F; Soldani, E; Cavallo, F R; Rossi, A M; Torromeo, G; Masetti, G; Virgilio, S; Thyssen, F D M; Iorio, A O M; Montecchi, M; Santanastasio, F; Bulfon, C; Zanetti, A M; Casarsa, M; Han, D; Song, J; Ibrahim, Z A B; Faccioli, P; Gallinaro, M; Beirao da cruz e silva, C; Kuznetsova, E; Levchuk, L; Andreev, V; Toropin, A; Dermenev, A; Karpikov, I; Epshteyn, V; Uliyanov, A; Polikarpov, S; Markin, O; Cagil, A; Karapinar, G; Isildak, B; Yu, S; Banicz, K B; Cheung, H W K; Butler, J N; Quigg, D E; Hufnagel, D; Rakness, G L; Spalding, W J; Bhat, P; Kreis, B J; Jensen, H B; Chetluru, V; Albert, M; Hu, Z; Mishra, K; Vernieri, C; Larson, K E; Zejdl, P; Matulik, M; Cremonesi, M; Doualot, N; Ye, Z; Wu, Z; Geffert, P B; Dutta, V; Heller, R E; Dorsett, A L; Choudhary, B C; Arora, S; Ranjeet, R; Melo da costa, E; Torres da silva de araujo, F; Da silveira, G G; Alves coelho, E; Belchior batista das chagas, E; Buss, N H; Luukka, P R; Tuominen, E M; Havukainen, J J; Tigerstedt, U B S; Goerlach, U; Patois, Y; Collard, C; Mathieu, C; Lowette, S R J; Python, Q P; Moortgat, S; Vanlaer, P; De lentdecker, G W P; Rugovac, S; Tavernier, F F; Beaumont, W; Van de klundert, M; Vankov, P H; Verguilov, V Z; Hadjiiska, R M; De moraes gregores, E; Iope, R L; Ruiz vargas, J C; Barcala riveira, M J; Hernandez calama, J M; Oller, J C; Flix molina, J; Navarro tobar, A; Sastre alvaro, J; Redondo ferrero, D D; Titov, M; Bausson, P; Major, P; Bala, S; Dhingra, N; Kumari, P; Costa, S; Pelli, S; Meneguzzo, A T; Passaseo, M; Pegoraro, M; Montecassiano, F; Dorigo, T; Silvestrin, L; Del duca, V; Demaria, N; Ferrero, M I; Mussa, R; Cartiglia, N; Mazza, G; Maina, E; Dellacasa, G; Covarelli, R; Cotto, G; Sola, V; Monteil, E; Shchelina, K; Castilla-valdez, H; De la cruz burelo, E; Kazana, M; Gorbunov, N; Kosarev, I; Smirnov, V; Korenkov, V; Savina, M; Lanev, A; Semenyushkin, I; Kashunin, I; Krouglov, N; Markina, A; Bunichev, V; Zotov, N; Miagkov, I; Nazarova, E; Uzunyan, A; Riutin, R; Tsverava, N; Paganis, E; Chen, K; Lu, R; Psallidas, A; Gorodetzky, P P; Hazen, E S; Avetisyan, A; Richardson, C A; Busza, W; Roland, C E; Cali, I A; Marini, A C; Wang, T; Schmitt, M H; Geurts, F; Ecklund, K M; Repond, J O; Schmidt, I; George, N; Ingram, F D; Wetzel, J W; Ogul, H; Spanier, S M; Mrak tadel, A; Zevi della porta, G J; Maguire, C F; Janjam, R K; Chevtchenko, S; Zhu, R; Voicu, B R; Mao, J; Stone, R L; Schnetzer, S R; Nash, K C; Kunnawalkam elayavalli, R; Laflotte, I; Weinberg, M G; Mc cracken, M E; Kalogeropoulos, A; Raval, A H; Cooperstein, S B; Landsberg, G; Kwok, K H M; Ellison, J A; Gary, J W; Si, W; Hagopian, V; Hagopian, S L; Bertoldi, M; Brigljevic, V; Ptochos, F; Ather, M W; Konstantinou, S; Yang, D; Li, Q; Attebury, G; Siado castaneda, J E; Lemaitre, V; Caebergs, T P M; Litov, L B; Fernandez de troconiz, J; Colling, D J; Davies, G J; Raymond, D M; Virdee, T S; Bainbridge, R J; Lewis, P; Rose, A W; Bauer, D U; Sotiropoulos, S; Papadopoulos, I; Triantis, F; Aslanoglou, X; Majumdar, N; Devadula, S; Ciocci, M A; Messineo, A; Palla, F; Grippo, M T; Yu, G B; Willemse, T; Lamsa, J; Blumenfeld, B J; Maksimovic, P; Gritsan, A; Cocoros, A A; Arnold, P; Tonwar, S C; Eno, S C; Mignerey, A L C; Nabili, S; Dalchenko, M; Maghrbi, Y; Huang, T; Sheharyar, A; Durkin, L S; Wang, Z; Tos, K M; Kim, B J; Guo, Y; Ma, P; Rosenzweig, D J; Reeder, D D; Smith, W; Surkov, A; Mohapatra, A K; Maurisset, A; Mans, J M; Kubota, Y; Frahm, E J; Chatterjee, R M; Ruchti, R; Mc cauley, T P; Ivie, P A; Betchart, B A; Hindrichs, O H; Sultana, M; Henderson, C; Sanders, D; Summers, D; Perera, L; Miller, D H; Miyamoto, J; Peng, C; Zahariev, R Z; Peynekov, M M; Ratti, L; Ressegotti, M; Czellar, S; Molnar, J; Khan, A; Morton, A; Vischia, P; Erice cid, C F; Carpinteyro bernardino, S; Chmelev, D; Smetannikov, V; Hektor, A; Kadastik, M; Godinovic, N; Simelevicius, D; Alvi, O I; Hoorani, H U R; Shahzad, H; Shah, M A; Shoaib, M; Rao, M A S; Sidwell, R; Roettger, T J; Corkill, S; Lustermann, W; Roeser, U H; Backhaus, M; Perrin, G L; Naseri, M; Rapuano, F; Redaelli, N; Carbone, L; Spiga, F; Brivio, F; Monti, F; Markowitz, P E; Rodriguez, J L; Morelos pineda, A; Norberg, S R; Ryu, M S; Jeng, Y G; Esteban lallana, M C; Trabelsi, A; Dittmann, J R; Elsayed, E; Khan, Z A; Soomro, K; Janikashvili, M; Kapoor, A; Rastogi, A; Remnev, G; Hrubec, J; Wulz, C; Fichtinger, S K; Abbaneo, D; Janot, P; Racz, A; Roche, J; Ryjov, V; Sphicas, P; Treille, D; Wertelaers, P; Cure, B R; Fulcher, J R; Moortgat, F W; Bocci, A; Giordano, D; Hegeman, J G; Hegner, B; Gallrapp, C; Cepeda hermida, M L; Riahi, H; Chapon, E; Orfanelli, S; Guilbaud, M R J; Seidel, M; Merlin, J A; Heidegger, C; Schneider, M A; Robmann, P W; Salerno, D N; Galloni, C; Neutelings, I W; Shi, J; Li, J; Zhao, J; Pandoulas, D; Rauch, M P; Schael, S; Hoepfner, K; Weber, M K; Teyssier, D F; Thuer, S; Rieger, M; Albert, A; Muller, T; Sert, H; Lohmann, W F; Ntomari, E; Grohsjean, A J; Wen, Y; Ron alvarez, E; Hampe, J; Bin anuar, A A; Blobel, V; Mattig, S; Haller, J; Sonneveld, J M; Malara, A; Rabbertz, K H; Freund, B; Schell, D B; Savoiu, D; Geerebaert, Y; Becheva, E L; Nguyen, M A; Stahl leiton, A G; Magniette, F B; Fay, J; Gascon-shotkin, S M; Ille, B; Viret, S; Finco, L; Brown, R; Cockerill, D; Williams, T S; Markou, C; Anagnostou, G; Mohanty, A K; Creanza, D M; De robertis, G; Verwilligen, P O J; Perrotta, A; Fanfani, A; Ciocca, C; Ravera, F; Toniolo, N; Badoer, S; Paolucci, P; Khan, W A; Voevodina, E; De iorio, A; Cavallari, F; Bellini, F; Cossutti, F; La licata, C; Da rold, A; Lee, K; Go, Y; Park, J; Kim, M S; Wan abdullah, W; Toldaiev, O; Golovtcov, V; Oreshkin, V; Sosnov, D; Soroka, D; Gninenko, S; Pivovarov, G; Erofeeva, M; Pozdnyakov, I; Danilov, M; Tarkovskii, E; Chadeeva, M; Philippov, D; Bychkova, O; Kardapoltsev, L; Onengut, G; Cerci, S; Vergili, M; Dolek, F; Sever, R; Gamsizkan, H; Ocalan, K; Dogan, H; Kaya, M; Kuo, C; Chang, Y; Albrow, M G; Banerjee, S; Berryhill, J W; Chevenier, G; Freeman, J E; Green, C H; O'dell, V R; Wenzel, H; Lukhanin, G; Di luca, S; Spiegel, L G; Deptuch, G W; Ratnikova, N; Paterno, M F; Burkett, K A; Jones, C D; Klima, B; Fagan, D; Hasegawa, S; Thompson, R; Gecse, Z; Liu, M; Pedro, K J; Jindariani, S; Zimmerman, T; Skirvin, T M; Hofman, D J; Evdokimov, O; Jung, K E; Trauger, H C; Gouskos, L; Karancsi, J; Kumar, A; Garg, R B; Keshri, S; Nogima, H; Sznajder, A; Vilela pereira, A; Eerola, P A; Pekkanen, J T K; Guldmyr, J H; Gele, D; Charles, L; Bonnin, C; Bourgatte, G; De clercq, J T; Favart, L; Grebenyuk, A; Yang, Y; Allard, Y; Genchev, V I; Galli mercadante, P; Tomei fernandez, T R; Ahuja, S; Ingram, Q; Rohe, T V; Colino, N; Ferrando, A; Garcia-abia, P; Calvo alamillo, E; Goy lopez, S; Delgado peris, A; Alvarez fernandez, A; Couderc, F; Moudden, Y; Potenza, R; D'alessandro, R; Landi, G; Viliani, L; Bisello, D; Gasparini, F; Michelotto, M; Benettoni, M; Bellato, M A; Fanzago, F; De castro manzano, P; Mantovani, G; Menichelli, M; Passeri, D; Placidi, P; Manoni, E; Storchi, L; Cirio, R; Romero, A; Staiano, A; Pastrone, N; Solano, A M; Argiro, S; Bellan, R; Duran osuna, M C; Ershov, Y; Zamyatin, N; Palchik, V; Afanasyev, S; Nikonov, E; Miller, M; Baranov, A; Ivanov, V; Petrushanko, S; Perfilov, M; Eyyubova, G; Baskakov, A; Kachanov, V; Korablev, A; Bordanovskiy, A; Kepuladze, Z; Hsiung, Y B; Wu, S; Rankin, D S; Jacob, C J; Alverson, G; Hortiangtham, A; Roland, G M; Gomez ceballos retuerto, G; Innocenti, G M; Allen, B L; Baty, A A; Narayanan, S M; Hu, M; Bi, R; Sung, K K H; Gunter, T K; Bueghly, J D; Yepes stork, P P; Mestvirishvili, A; Miller, M J; Norbeck, J E; Snyder, C M; Branson, J G; Sfiligoi, I; Rogan, C S; Edwards-bruner, C R; Young, R W; Verweij, M; Goulianos, K; Galvez, P D; Zhu, K; Lapadatescu, V; Dutta, I; Somalwar, S V; Park, M; Kaplan, S M; Feld, D B; Vorobiev, I; Lange, D; Zuranski, A M; Mei, K; Knight iii, R R; Spencer, E; Hogan, J M; Syarif, R; Olmedo negrete, M A; Ghiasi shirazi, S; Erodotou, E; Ban, Y; Xue, Z; Kravchenko, I; Keller, J D; Knowlton, D P; Wigmans, M E J; Volobouev, I; Peltola, T H T; Kovac, M; Bruno, G L; Gregoire, G; Delaere, C; Bodlak, M; Della negra, M J; James, T O; Shtipliyski, A M; Tziaferi, E; Karageorgos, V W; Karasavvas, D; Fountas, K; Mukhopadhyay, S; Basti, A; Raffaelli, F; Spandre, G; Mazzoni, E; Manca, E; Mandorli, G; Yoo, H D; Aerts, A; Eminizer, N C; Amram, O; Stenson, K M; Ford, W T; Green, M L; Kellogg, R; Jeng, G; Kunkle, J M; Baron, O; Feng, Y; Wong, K; Toufique, Y; Sehgal, V; Breedon, R E; Cox, P T; Mulhearn, M J; Gerhard, R M; Taylor, D N; Konigsberg, J; Sperka, D M; Lo, K H; Carnes, A M; Quach, D M; Li, T; Andreev, V; Herve, L A M; Klabbers, P R; Svetek, A; Hussain, U; Evans, A C; Lannon, K P; Fedorov, S; Bodek, A; Demina, R; Khukhunaishvili, A; West, C A; Perez, C U; Godang, R; Meier, M; Neumeister, N; Gruchala, M M; Zagurski, K B; Prosolovich, V; Kuhn, J; Ratti, S P; Riccardi, C M; Vacchi, C; Szekely, G; Hobson, P R; Fernandez menendez, J; Rodriguez bouza, V; Butler, P; Pedraza morales, M I; Barakat, N; Sakharov, V; Lavrenov, P; Ahmed, I; Kim, T Y; Pac, M Y; Sculac, T; Gajdosik, T; Tamosiunas, K; Juodagalvis, A; Dudenas, V; Barannik, S; Bashir, A; Khan, F; Saeed, F; Khan, M T; Maravin, Y; Mohammadi, A; Noonan, D C; Saunders, M D; Dittmar, M; Donega, M; Perrozzi, L; Nageli, C; Dorfer, C; Zhu, D H; Spirig, Y A; Ruini, D; Alishahiha, M; Ardalan, F; Saramad, S; Mansouri, R; Eskandari tadavani, E; Ragazzi, S; Tabarelli de fatis, T; Govoni, P; Ghezzi, A; Stringhini, G; Sevilla moreno, A C; Smith, C J; Abdelalim, A A; Hassan, A F A; Swain, S K; Sahoo, D K; Carrera jarrin, E F; Chauhan, S; Munoz chavero, F; Ambrogi, F; Hensel, C; Alves, G A; Baechler, J; Christiansen, J; De roeck, A; Gayde, J; Hansen, M; Kienzle, W; Reynaud, S; Schwick, C; Troska, J; Zeuner, W D; Osborne, J A; Moll, M; Franzoni, G; Tinoco mendes, A D; Milenovic, P; Garai, Z; Bendavid, J L; Dupont, N A; Gulhan, D C; Daponte, V; Martinez turtos, R; Giuffredi, R; Rapacz, K J; Otiougova, P; Zhu, G; Leggat, D A; Kiesel, M K; Lipinski, M; Wallraff, W; Meyer, A; Pook, T; Pooth, O; Behnke, O; Eckstein, D; Fischer, D J; Garay garcia, J; Vagnerini, A; Klanner, R; Stadie, H; Perieanu, A; Benecke, A; Abbas, S M; Schroeder, M; Lobelle pardo, P; Chwalek, T; Heidecker, C; Floh, K M; Gomez, G; Cabrillo bartolome, I J; Orviz fernandez, P; Duarte campderros, J; Busson, P; Dobrzynski, L; Fontaine, G R R; Granier de cassagnac, R; Paganini, P R J; Arleo, F P; Balagura, V; Martin blanco, J; Ortona, G; Kucher, I; Contardo, D C; Lumb, N; Baulieu, G; Lagarde, F; Shchablo, K; Heath, H F; Kreczko, L; Clement, E J; Paramesvaran, S; Bologna, S; Bell, K W; Petyt, D A; Moretti, S; Durkin, T J; Daskalakis, G; Kataria, S K; Iaselli, G; Pugliese, G; My, S; Sharma, A; Abbiendi, G; Taneja, S; Benussi, L; Fabbri, F; Calvelli, V; Frizziero, E; Barone, L M; De notaristefani, F; D'imperio, G; Gobbo, B; Yusupov, H; Liew, C S; Zabolotny, W M; Sobolev, S; Gavrikov, Y; Kozlov, I; Golubev, N; Andreev, Y; Tlisov, D; Zaytsev, V; Stepennov, A; Popova, E; Kolchanova, A; Shtol, D; Sirunyan, A; Gokbulut, G; Kara, O; Damarseckin, S; Guler, A M; Ozpineci, A; Hayreter, A; Li, S; Gruenendahl, S; Yarba, J; Para, A; Ristori, L F; Rubinov, P M; Reichanadter, M A; Churin, I; Beretvas, A; Muzaffar, S M; Lykken, J D; Gutsche, O; Baldin, B; Uplegger, L A; Lei, C M; Wu, W; Derylo, G E; Ruschman, M K; Lipton, R J; Whitbeck, A J; Schmitt, R; Contreras pasuy, L C; Olsen, J T; Cavanaugh, R J; Betts, R R; Wang, H; Sturdy, J T; Gutierrez jr, A; Campagnari, C F; White, D T; Brewer, F D; Qu, H; Ranjan, K; Lalwani, K; Md, H; Shah, A H; Fonseca de souza, S; De jesus damiao, D; Revoredo, E A; Chinellato, J A; Amadei marques da costa, C; Lampen, P T; Wendland, L A; Brom, J; Andrea, J; Tavernier, S; Van doninck, W K; Van mulders, P K A; Clerbaux, B; Rougny, R; Rashevski, G D; Rodozov, M N; Padula, S; Bernardes, C A; Dias maciel, C; Deiters, K; Feichtinger, D; Wiederkehr, S A; Cerrada, M; Fouz iglesias, M; Senghi soares, M; Pasquetto, E; Ferry, S C; Georgette, Z; Malcles, J; Csanad, M; Lal, M K; Walia, G; Kaur, A; Ciulli, V; Lenzi, P; Zanetti, M; Costa, M; Dughera, G; Bartosik, N; Ramirez sanchez, G; Frueboes, T M; Karjavine, V; Skachkov, N; Litvinenko, A; Petrosyan, A; Teryaev, O; Trofimov, V; Makankin, A; Golunov, A; Savrin, V; Korotkikh, V; Vardanyan, I; Lukina, O; Belyaev, A; Korneeva, N; Petukhov, V; Skvortsov, V; Konstantinov, D; Efremov, V; Smirnov, N; Shiu, J; Chen, P; Rohlf, J; Sulak, L R; St john, J M; Morse, D M; Krajczar, K F; Mironov, C M; Niu, X; Wang, J; Charaf, O; Matveev, M; Eppley, G W; Mccliment, E R; Ozok, F; Bilki, B; Zieser, A J; Olivito, D J; Wood, J G; Hashemi, B T; Bean, A L; Wang, Q; Tuo, S; Xu, Q; Roberts, J W; Anderson, D J; Lath, A; Jacques, P; Sun, M; Andrews, M B; Svyatkovskiy, A; Hardenbrook, J R; Heintz, U; Lee, J; Wang, L; Prosper, H B; Adams, J R; Liu, S; Wang, D; Swanson, D; Thiltges, J F; Undleeb, S; Finger, M; Beuselinck, R; Rand, D T; Tapper, A D; Malik, S A; Lane, R C; Panagiotou, A; Diamantopoulou, M; Vourliotis, E; Mallios, S; Mondal, K; Bhattacharya, R; Bhowmik, D; Libby, J F; Azzurri, P; Foa, L; Tenchini, R; Verdini, P G; Ciampa, A; Radburn-smith, B C; Park, J; Swartz, M L; Sarica, U; Borcherding, F O; Barria, P; Goadhouse, S D; Xia, F; Joyce, M L; Belloni, A; Bouhali, O; Toback, D; Osipenkov, I L; Almes, G T; Walker, J W; Bylsma, B G; Lefeld, A J; Conway, J S; Flores, C S; Avery, P R; Terentyev, N; Barashko, V; Ryd, A P E; Tucker, J M; Heltsley, B K; Wittich, P; Riley, D S; Skinnari, L A; Chu, J Y; Ignatenko, M; Lindgren, M A; Saltzberg, D P; Peck, A N; Herve, A A M; Savin, A; Herndon, M F; Mason, W P; Martirosyan, S; Grahl, J; Hansen, P D; Saradhy, R; Mueller, C N; Planer, M D; Suh, I S; Hurtado anampa, K P; De barbaro, P J; Garcia-bellido alvarez de miranda, A A; Korjenevski, S K; Moolekamp, F E; Fallon, C T; Acosta castillo, J G; Gutay, L; Barker, A W; Gough, E; Poyraz, D; Verbeke, W L M; Beniozef, I S; Krasteva, R L; Winn, D R; Fenyvesi, A C; Makovec, A; Munro, C G; Sanchez cruz, S; Bernardino rodrigues, N A; Lokhovitskiy, A; Uribe estrada, C; Rebane, L; Racioppi, A; Kim, H; Kim, T; Puljak, I; Boyaryntsev, A; Saeed, M; Tanwir, S; Butt, U; Hussain, A; Nawaz, A; Khurshid, T; Imran, M; Sultan, A; Naeem, M; Kaadze, K; Modak, A; Taylor, R D; Kim, D; Grab, C; Nessi-tedaldi, F; Fischer, J; Manzoni, R A; Zagozdzinska-bochenek, A A; Berger, P; Reichmann, M P; Hashemi, M; Rezaei hosseinabadi, F; Paganoni, M; Farina, F M; Joshi, Y R; Avila bernal, C A; Cabrera mora, A L; Segura delgado, M A; Gonzalez hernandez, C F; Asavapibhop, B; U-ruekolan, S; Kim, G; Choi, M; Aly, S; El sawy, M; Castaneda hernandez, A M; Pinna, D; Shamdasani, J; Tavkhelidze, D; Hegde, V; Aziz, T; Sur, N; Sutar, B J; Karmakar, S; Ghete, V M; Dragicevic, M G; Brandstetter, J; Marques moraes, A; Molina insfran, J A; Aspell, P; Baillon, P; Barney, D; Honma, A; Pape, L; Sakulin, H; Macpherson, A L; Bangert, N; Guida, R; Steggemann, J; Voutsinas, G G; Da silva gomes, D; Ben mimoun bel hadj, F; Bonnaud, J Y R; Canelli, F M; Bai, J; Qiu, J; Bian, J; Cheng, Y; Kukulies, C; Teroerde, M; Erdmann, M; Hebbeker, T; Zantis, F; Scheuch, F; Erdogan, Y; Campbell, A J; Kasemann, M; Lange, W; Raspiareza, A; Melzer-pellmann, I; Aldaya martin, M; Lewendel, B; Schmidt, R S; Lipka, E; Missiroli, M; Grados luyando, J M; Shevchenko, R; Babounikau, I; Steinbrueck, G; Vanhoefer, A; Ebrahimi, A; Pena rodriguez, K J; Niedziela, M A; Eich, M M; Froehlich, A; Simonis, H J; Katkov, I; Wozniewski, S; Marco de lucas, R J; Lopez virto, A M; Jaramillo echeverria, R W; Hennion, P; Zghiche, A; Chiron, A; Romanteau, T; Beaudette, F; Lobanov, A; Grasseau, G J; Pierre-emile, T B; El mamouni, H; Gouzevitch, M; Goldstein, J; Cussans, D G; Seif el nasr, S A; Titterton, A S; Ford, P J W; Olaiya, E O; Salisbury, J G; Paspalaki, G; Asenov, P; Hidas, P; Kiss, T N; Zalan, P; Shukla, P; Abbrescia, M; De filippis, N; Donvito, G; Radogna, R; Miniello, G; Gelmi, A; Capiluppi, P; Marcellini, S; Odorici, F; Bonacorsi, D; Genta, C; Ferri, G; Saviano, G; Ferrini, M; Minutoli, S; Tosi, S; Lista, L; Passeggio, G; Breglio, G; Merola, M; Diemoz, M; Rahatlou, S; Baccaro, S; Bartoloni, A; Talamo, I G; Cipriani, M; Kim, J Y; Oh, G; Lim, J H; Lee, J; Mohamad idris, F B; Gani, A B; Cwiok, M; Doroba, K; Martins galinhas, B E; Kim, V; Krivshich, A; Vorobyev, A; Ivanov, Y; Tarakanov, V; Lobodenko, A; Obikhod, T; Isayev, O; Kurov, O; Leonidov, A; Lvova, N; Kirsanov, M; Suvorova, O; Karneyeu, A; Demidov, S; Konoplyannikov, A; Popov, V; Pakhlov, P; Vinogradov, S; Klemin, S; Blinov, V; Skovpen, I; Chatrchyan, S; Grigorian, N; Kayis topaksu, A; Sunar cerci, D; Hos, I; Guler, Y; Kiminsu, U; Serin, M; Deniz, M; Turan, I; Eryol, F; Pozdnyakov, A; Liu, Z; Doan, T H; Hanlon, J E; Mcbride, P L; Pal, I; Garren, L; Oleynik, G; Harris, R M; Bolla, G; Kowalkowski, J B; Evans, D E; Vaandering, E W; Patrick, J F; Rechenmacher, R; Prosser, A G; Messer, T A; Tiradani, A R; Rivera, R A; Jayatilaka, B A; Duarte, J M; Todri, A; Harr, R F; Richman, J D; Bhandari, R; Dordevic, M; Cirkovic, P; Mora herrera, C; Rosa lopes zachi, A; De paula carvalho, W; Kinnunen, R L A; Lehti, S T; Maeenpaeae, T H; Bloch, D; Chabert, E C; Rudolf, N G; Devroede, O; Skovpen, K; Lontkovskyi, D; De wolf, E A; Van mechelen, P; Van spilbeeck, A B E; Georgiev, L S; Novaes, S F; Costa, M A; Costa leal, B; Horisberger, R P; De la cruz, B; Willmott, C; Perez-calero yzquierdo, A M; Dejardin, M M; Mehta, A; Barbagli, G; Focardi, E; Bacchetta, N; Gasparini, U; Pantano, D; Sgaravatto, M; Ventura, S; Zotto, P; Candelori, A; Pozzobon, N; Boletti, A; Servoli, L; Postolache, V; Rossi, A; Ciangottini, D; Alunni solestizi, L; Maselli, S; Migliore, E; Amapane, N C; Lopez fernandez, R; Sanchez hernandez, A; Heredia de la cruz, I; Matveev, V; Kracikova, T; Shmatov, S; Vasilev, S; Kurenkov, A; Oleynik, D; Verkheev, A; Voytishin, N; Proskuryakov, A; Bogdanova, G; Petrova, E; Bagaturia, I; Tsamalaidze, Z; Zhao, Z; Arcaro, D J; Barberis, E; Wamorkar, T; Wang, B; Ralph, D K; Velasco, M M; Odell, N J; Sevova, S; Li, W; Merlo, J; Onel, Y; Mermerkaya, H; Moeller, A R; Haytmyradov, M; Dong, R; Bugg, W M; Ragghianti, G C; Delannoy sotomayor, A G; Thapa, K; Yagil, A; Gerosa, R A; Masciovecchio, M; Schmitz, E J; Kapustinsky, J S; Greene, S V; Zhang, L; Vlimant, J V; Mughal, A; Cury siqueira, S; Gershtein, Y; Arora, S R R; Lin, W X; Stickland, D P; Mc donald, K T; Pivarski, J M C; Lucchini, M T; Higginbotham, S L; Rosenfield, M; Long, O R; Johnson, K F; Adams, T; Susa, T; Rykaczewski, H; Ioannou, A; Ge, Y; Levin, A M; Li, J; Li, L; Bloom, K A; Monroy montanez, J A; Kunori, S; Wang, Z; Favart, D; Maltoni, F; Vidal marono, M; Delcourt, M; Markov, S I; Seez, C; Richards, A J; Ferguson, W; Chatziangelou, M; Karathanasis, G; Kontaxakis, P; Jones, J A; Strologas, J; Katsoulis, P; Dutt, S; Roy chowdhury, S; Bhardwaj, R; Purohit, A; Singh, B; Behera, P K; Sharma, A; Spagnolo, P; Tonelli, G E; Giannini, L; Poulios, S; Groote, J F; Untuc, B; Oztirpan, F O; Koseoglu, I; Luiggi lopez, E E; Hadley, N J; Shin, Y H; Safonov, A; Eusebi, R; Rose, A K; Overton, D A; Erbacher, R D; Funk, G N; Pilot, J R; Regnery, B J; Klimenko, S; Matchev, K; Gleyzer, S; Wang, J; Cadamuro, L; Sun, W M; Soffi, L; Lantz, S R; Wright, D; Cline, D; Cousins jr, R D; Erhan, S; Yang, X; Schnaible, C J; Dasgupta, A; Loveless, R; Bradley, D C; Monzat, D; Dodd, L M; Tikalsky, J L; Kapusta, J; Gilbert, W J; Lesko, Z J; Marinelli, N; Wayne, M R; Heering, A H; Galanti, M; Duh, Y; Roy, A; Arabgol, M; Hacker, T J; Salva, S; Petrov, V; Barychevski, V; Drobychev, G; Lobko, A; Gabusi, M; Fabris, L; Conte, E R E; Kasprowicz, G H; Kyberd, P; Cole, J E; Lopez, J M; Salazar gonzalez, C A; Benzon, A M; Pelagio, L; Walsh, M F; Postnov, A; Lelas, D; Vaitkus, J V; Jurciukonis, D; Sulmanas, B; Ahmad, A; Ahmed, W; Jalil, S H; Kahl, W E; Taylor, D R; Choi, Y I; Jeong, Y; Roy, T; Schoenenberger, M A; Khateri, P; Etesami, S M; Fiorini, E; Pullia, A; Magni, S; Gennai, S; Fiorendi, S; Zuolo, D; Sanabria arenas, J C; Florez bustos, C A; Holguin coral, A; Mendez, H; Srimanobhas, N; Jaikar, A H; Arteche gonzalez, F J; Call, K R; Vazquez valencia, E F; Calderon monroy, M A; Abdelmaguid, A; Mal, P K; Yuan, L; Lomidze, I; Prangishvili, I; Adamov, G; Dube, S S; Dugad, S; Mohanty, G B; Bhat, M A; Bheesette, S; Malawski, M L; Abou kors, D J

    CMS is a general purpose proton-proton detector designed to run at the highest luminosity at the LHC. It is also well adapted for studies at the initially lower luminosities. The CMS Collaboration consists of over 1800 scientists and engineers from 151 institutes in 31 countries. The main design goals of CMS are: \\begin{enumerate} \\item a highly performant muon system, \\item the best possible electromagnetic calorimeter \\item high quality central tracking \\item hermetic calorimetry \\item a detector costing less than 475 MCHF. \\end{enumerate} All detector sub-systems have started construction. Engineering Design Reviews of parts of these sub-systems have been successfully carried-out. These are held prior to granting authorization for purchase. The schedule for the LHC machine and the experiments has been revised and CMS will be ready for first collisions now expected in April 2006. \\\\\\\\ ~~~~$\\bullet$ Magnet \\\\ The detector (see Figure) will be built around a long (13~m) and large bore ($\\phi$=5.9~m) high...

  16. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  17. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Kanesue, Takeshi; Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-01-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11 , which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  18. Laser ion source with solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fuwa, Yasuhiro [Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-7501 (Japan); RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  19. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  20. Start-up of spherical tokamak without a center solenoid

    International Nuclear Information System (INIS)

    Maekawa, Takashi; Nagata, Masayoshi

    2012-01-01

    For low-aspect tokamak reactors, spherical tokamak reactors, ST-type FESF/CTFs, it is essential to remove or minimize a central solenoid (CS). Even with the minimized CS, non-inductive start up of the plasma current is required. Rapid increase in the spontaneous plasma current at the final stage of current start-up drives ignition. At the initial stage, formation of plasma and magnetic surfaces are required. As non-inductive plasma start-up scenarios, ECH/ECCD, LHCD, HHFW, DC HELICITY injection, plasma merging and NBI have been studied. In the present article, the present status and future prospect of experimental and theoretical works on these subjects. (author)

  1. Alternative connections for the large MFTF-B solenoids

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    The MFTF-B central-cell solenoids are a set of twelve closely coupled, large superconducting magnets with similar but not exactly equal currents. Alternative methods of connecting them to their power supplies and dump resistors are investigated. The circuits are evaluated for operating conditions and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the current induced in coils that remain superconducting when one or more coils quench. The alternative connections include separate power supplies, combined power supplies, individual dump resistors, series dump resistors and combinations of these. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed in detail

  2. Construction of compact FEM using solenoid-induced helical wiggler

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Fujita, M.; Imasaki, K.; Mima, K.; Nakai, S.

    2003-01-01

    A prototype of compact Free-Electron Maser (FEM) has been designed for the operation in a usual small laboratory which does not have electric source capacity available enough. The electron energy is 60-120 keV. As it is lower, stronger guiding magnetic field is necessary in addition to wiggler field. To fulfil this condition a solenoid-induced helical wiggler is applied from the viewpoint of saving the electric power of restricted source capacity. The wiggler, for example, with the period of 12 mm creates the field of 92 G in the guiding field of 3.2 kG. The whole system of FEM has been just constructed in a small-scale laboratory. It is so small to occupy the area of 0.7x2.9 m 2

  3. A historical overview of magnetic resonance imaging, focusing on technological innovations.

    Science.gov (United States)

    Ai, Tao; Morelli, John N; Hu, Xuemei; Hao, Dapeng; Goerner, Frank L; Ager, Bryan; Runge, Val M

    2012-12-01

    Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.

  4. Computer simulation of a plasma focus device driven by a magnetic pulser

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    A plasma focus device, driven by a magnetic pulse compression circuit, is simulated by using a PSPICE proffam. The elaborated program is much simpler than the other existing ones, which analyse the circuit by directly solving a system of integral-differential equations. The pre-pulse voltage and the high-voltage rise-times are obtained for a set of values of the bypass impedance (R or L). The optimum bypass impedance turns out to be an inductance. During the discharge period, the plasma load is considered as an LR impedance, each component being time dependent. A method is presented for giving us the possibility to introduce the time varying impedances in a PSPICE program. Finally, a set of simulation results (plasma current and voltage, plasma magnetic energy, plasma sheath mechanical energy, pinch voltage) is shown. The results are in good agreement with the classical experimental data. (author). 2 figs., 4 refs.

  5. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  6. Design of new central solenoid for SST-1

    Science.gov (United States)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V. L.; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A. N.; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-04-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  7. Design of new central solenoid for SST-1

    International Nuclear Information System (INIS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V L; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A N; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-01-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  8. Design of new superconducting central solenoid of SST-1 tokamak

    International Nuclear Information System (INIS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh

    2015-01-01

    The key role of the central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current for longer duration. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼655 mm. The physics basis of the design includes volt-sec storage capacity of ∼0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼0.3 volt/m.The engineering design of new CS consists of Nb 3 Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The inter-layer low resistance (∼1 nΩ) at 14 kA @ 4.5 K terminal praying hand joints has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K

  9. 3D magnetic nanostructures grown by focused electron and ion beam induced deposition

    Science.gov (United States)

    Fernandez-Pacheco, Amalio

    Three-dimensional nanomagnetism is an emerging research area, where magnetic nanostructures extend along the whole space, presenting novel functionalities not limited to the substrate plane. The development of this field could have a revolutionary impact in fields such as electronics, the Internet of Things or bio-applications. In this contribution, I will show our recent work on 3D magnetic nanostructures grown by focused electron and ion beam induced deposition. This 3D nano-printing techniques, based on the local chemical vapor deposition of a gas via the interaction with electrons and ions, makes the fabrication of complex 3D magnetic nanostructures possible. First, I will show how by exploiting different growth regimes, suspended Cobalt nanowires with modulated diameter can be patterned, with potential as domain wall devices. Afterwards, I will show recent results where the synthesis of Iron-Gallium alloys can be exploited in the field of artificial multiferroics. Moreover, we are developing novel methodologies combining physical vapor deposition and 3D nano-printing, creating Permalloy 3D nanostrips with controllable widths and lengths up to a few microns. This approach has been extended to more complex geometries by exploiting advanced simulation growth techniques combining Monte Carlo and continuum model methods. Throughout the talk, I will show the methodology we are following to characterize 3D magnetic nanostructures, by combining magneto-optical Kerr effect, scanning probe microscopy and electron and X-R magnetic imaging, and I will highlight some of the challenges and opportunities when studying these structures. I acknowledge funding from EPSRC and the Winton Foundation.

  10. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  11. Superconducting solenoids for suspension of high-speed overhead transportation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Omel' yanenko, V I [Kharkov Polytechnical Inst., USSR; Bocharov, V I; Dolgosheev, E A; Usichenko, Y G

    1977-08-01

    A superconducting solenoid is the most important component of a suspension for overhead transportation facilities operating on the repulsion principle. Its design is aimed at producing an adequate magnetic field within the active zone, to ensure a high ratio of lifting force to braking force, the necessary speed dependence of both forces, and a high ratio of lifting force to solenoid mass. The design must also be both technologically and economically feasible. For safety considerations, the magnetic field intensity inside the passenger compartment must be minimum. A survey of existing designs indicates a preference for race track solenoids of quasi-rectangular shape. While all designers already agree on a coil width within 0.25 to 0.6 m, the optimum coil length has not yet been established. Intrinsic stabilization of superconductors by stranding and twisting has pushed the maximum allowable current density to 200 A/mm/sup 2/ and the energy storing capacity of magnets to 100 kJ, a capacity of 1 MJ being within reach. The recommended coil dimensions for laboratory models are 1 m length and 0.3 m width, to carry magnetizing currents up to 0.3 MA.

  12. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  13. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  14. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  15. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B., E-mail: bruno.albertazzi@polytechnique.edu [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Québec J3X 1S2 (Canada); Graduate School of Engineering, Osaka University, Suita, Osaka 565-087 (Japan); D' Humières, E. [CELIA, Universite de Bordeaux, Talence 33405 (France); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Lancia, L.; Antici, P. [Dipartimento SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 16, 00161 Roma (Italy); Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J., E-mail: Julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Böcker, J.; Swantusch, M.; Willi, O. [Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf D-40225 (Germany); Bonlie, J.; Cauble, B.; Shepherd, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T. [CELIA, Universite de Bordeaux, Talence 33405 (France); Chen, S. N. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  16. Static stress analysis of coupling superconducting solenoid coil assembly for muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Pan Heng; Wang Li; Wu Hong; Guo Xinglong; Xu Fengyu

    2010-01-01

    The stresses in the coupling superconducting solenoid coil assembly, which is applied in the Muon Ionization Cooling Experiment (MICE), are critical for the structure design and mechanical stability because of a large diameter and relative high magnetic field. This paper presents an analytical stress solution for the MICE coupling coil assembly. The stress due to winding tension is calculated by assuming the coil package as a set of combined cylinders. The thermal and electromechanical stresses are obtained by solving the partial differential equations of displacement based on the power series expansion method. The analytical stress solution is proved to be feasible by calculating stresses in a tested superconducting solenoid with 2.58 m bore at room temperature. The analytical result of the MICE coupling coil is in good agreement with that of the finite element which shows that the transverse shear stress induced by Lorentz force is principally dominant to magnet instability. (authors)

  17. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability.

    Science.gov (United States)

    Payne, Allison H; Hawryluk, Gregory W; Anzai, Yoshimi; Odéen, Henrik; Ostlie, Megan A; Reichert, Ethan C; Stump, Amanda J; Minoshima, Satoshi; Cross, Donna J

    2017-12-01

    Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

  18. Rapid prototyping of magnetic tunnel junctions with focused ion beam processes

    International Nuclear Information System (INIS)

    Persson, Anders; Thornell, Greger; Nguyen, Hugo

    2010-01-01

    Submicron-sized magnetic tunnel junctions (MTJs) are most often fabricated by time-consuming and expensive e-beam lithography. From a research and development perspective, a short lead time is one of the major concerns. Here, a rapid process scheme for fabrication of micrometre size MTJs with focused ion beam processes is presented. The magnetic properties of the fabricated junctions are investigated in terms of magnetic domain structure, tunnelling magnetoresistance (TMR) and coercivity, with extra attention given to the effect of Ga implantation from the ion beam. In particular, the effect of the implantation on the minimum junction size and the magnetization of the sensing layer are studied. In the latter case, magnetic force microscopy and micromagnetic simulations, with the object-oriented micromagnetic framework (OOMMF), are used to study the magnetization reversal. The fabricated junctions show considerable coercivity both along their hard and easy axes. Interestingly, the sensing layer exhibits two remanent states: one with a single and one with a double domain. The hard axis TMR loop has kinks at about ±20 mT which is attributed to a non-uniform lateral coercivity, where the rim of the junctions, which is subjected to Ga implantation from the flank of the ion beam, is more coercive than the unirradiated centre. The width of the coercive rim is estimated to be 160 nm from the hard axis TMR loop. The easy axis TMR loop shows more coercivity than an unirradiated junction and, this too, is found to stem from the coercive rim, as seen from the simulations. It is concluded that the process scheme has three major advantages. Firstly, it has a high lateral and depth resolution—the depth resolution is enhanced by end point detection—and is capable of making junctions of sizes down towards the limit set by the width of the irradiated rim. Secondly, the most delicate process steps are performed in the unbroken vacuum enabling the use of materials prone to

  19. Simulation study of a pulsed neutron focusing using a pulsed electromagnetic lens coupled with a permanent magnet

    International Nuclear Information System (INIS)

    Iwashita, H.; Iwasa, H.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Suzuki, J.; Shinohara, T.; Oku, T.; Shimizu, H.M.

    2009-01-01

    A pulsed sextupole electromagnetic lens with suitably controlled time-dependent magnetic field can in principle focus pulsed neutrons at the same focal point over a wide range of wavelength as the lens removes aberrations. However, in fact, it is difficult to focus neutrons over a wide range of wavelength because attenuation of a practical pulsed sextupole electromagnet is faster than an ideal case. We have devised a method of canceling the difference between the practical pulsed sextupole magnetic field and the ideal magnetic field with the use of a permanent sextupole magnet. We performed simulation calculations to investigate the feasibility of this method, and it was shown that focusing wavelength range spread compared with the case using a pulsed magnetic lens only. This result indicates the usefulness of the method.

  20. Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop

    Directory of Open Access Journals (Sweden)

    Myung-Hwan Yoon

    2017-05-01

    Full Text Available Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.

  1. Functional and genomic analyses of alpha-solenoid proteins.

    Science.gov (United States)

    Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  2. Numerical analysis of modified Central Solenoid insert design

    Energy Technology Data Exchange (ETDEWEB)

    Khodak, Andrei, E-mail: akhodak@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Martovetsky, Nicolai; Smirnov, Aleksandre [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Titus, Peter [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2015-10-15

    Highlights: • Modified design of coil for testing ITER superconducting cable is presented. • Numerical analysis allowed design verification. • Three-dimensional current sharing temperature distributions are obtained from the results. - Abstract: The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design three-dimensional numerical simulations were performed using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4 K, no current, (3) temperature 4 K, current 60 kA direct charge, and (4) temperature 4 K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4 K, no current, and temperature 4 K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor

  3. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jay Jayakumar, R.; Tsuji, H.; Ohsaki, O.

    2001-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  4. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Tsuji, H.; Ohsaki, O.

    1999-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  5. An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code

    Energy Technology Data Exchange (ETDEWEB)

    Gad Elmowla, Khaled Mohamed M; Chai, Jong Seo, E-mail: jschai@skku.edu; Yeon, Yeong H; Kim, Sangbum; Ghergherehchi, Mitra

    2016-10-01

    In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.

  6. Laser heated solenoid proof-of-concept experiment (PCX) facility

    International Nuclear Information System (INIS)

    DeHart, T.E.; Zumdieck, J.F.; Hoffman, A.L.; Lowenthal, D.D.; Crawford, E.A.; Parry, B.

    1977-01-01

    The total facility, including laser, magnet, focusing optics, instrumentation and control, its design problems, and its current performance are discussed. Preliminary results from plasma heating experiments are discussed

  7. C.A.P. plasma physics summer school, Banff, June 1975. I. Experiments on laser-heated solenoids and pinches

    International Nuclear Information System (INIS)

    Vlases, G.C.

    1975-01-01

    A review is given of experimental progress on the use of long wavelength lasers (CO 2 or CO) to heat long, magnetically confined plasma columns to thermonuclear temperatures. Theoretical studies of the feasibility of the concept for controlled fusion power are reviewed. The laser-heated solenoid concept is reviewed in particular

  8. Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for the Treatment of Symptomatic Uterine Fibroids

    Directory of Open Access Journals (Sweden)

    Laura Geraci

    2017-01-01

    Full Text Available Uterine fibroids, the most common benign tumor in women of childbearing age, may cause symptoms including pelvic pain, menorrhagia, dysmenorrhea, pressure, urinary symptoms, and infertility. Various approaches are available to treat symptomatic uterine fibroids. Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS represents a recently introduced noninvasive safe and effective technique that can be performed without general anesthesia, in an outpatient setting. We review the principles of MRgFUS, describing patient selection criteria for the treatments performed at our center and we present a series of five selected patients with symptomatic uterine fibroids treated with this not yet widely known technique, showing its efficacy in symptom improvement and fibroid volume reduction.

  9. Plasma waves generated by rippled magnetically focused electron beams surrounded by tenuous plasmas

    International Nuclear Information System (INIS)

    Cuperman, S.; Petran, F.

    1982-01-01

    This chapter investigates the electrostatic instability and the corresponding unstable wave spectrum of magnetically focused neutralized rippled electron beams under spacelike conditions. Topics considered include general equations and equilibrium, the derivation of the dispersion relation, and the solution of the dispersion relation (long wavelength perturbations, short wavelength perturbations, the rippled beam). The results indicate that in the long wavelength limit two types of instability (extending over different frequency ranges) exist. An instability of the beam-plasma type occurs due to the interaction between the beam electrons and the surrounding plasm electrons at the beam-plasma interface. A parametric type instability is produced by the coupling of a fast forward wave and a fast backward wave due to the rippling (modulation) of the beam. It is demonstrated that in the short wavelength limit, surface waves which are stable for the laminar beam may become unstable in the rippled beam case

  10. Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for the Treatment of Symptomatic Uterine Fibroids.

    Science.gov (United States)

    Geraci, Laura; Napoli, Alessandro; Catalano, Carlo; Midiri, Massimo; Gagliardo, Cesare

    2017-01-01

    Uterine fibroids, the most common benign tumor in women of childbearing age, may cause symptoms including pelvic pain, menorrhagia, dysmenorrhea, pressure, urinary symptoms, and infertility. Various approaches are available to treat symptomatic uterine fibroids. Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) represents a recently introduced noninvasive safe and effective technique that can be performed without general anesthesia, in an outpatient setting. We review the principles of MRgFUS, describing patient selection criteria for the treatments performed at our center and we present a series of five selected patients with symptomatic uterine fibroids treated with this not yet widely known technique, showing its efficacy in symptom improvement and fibroid volume reduction.

  11. Evidence of magnetic field in plasma focus by means of Faraday rotation measurements

    International Nuclear Information System (INIS)

    Fischfeld, G.

    1982-01-01

    Preliminary results of Faraday rotation measurements on a beam of laser light crossing the plasma column in the axial direction. are repacted. The presence of intense axial magnetic field Bsup(z) in the column both before and during the pinch phase is demonstrated. The experiments were performed on the Mather type Frascati 1 MJ plasma Focus, operated at 250 KJ 3 torr D 2 filling pressure. Is is used in the measurements a Quantel YG 49 YAG laser, frecuency doubled by means of KD*P crystal, which delivers about 60 mJ in 3 ns at = 530 nm. The beam polarization is analized by Wollaston prism. The electronic density is determined by Mach-Zender insterferometry. Two measurements are taken at time close to the end of the radial collapse phase, yielding Faraday rotation angles of 0.25 +- 0.05 rd and 0.56 +- o.05 rd which correspond to values, of axial magnetic fields of b(sup z) = 500 KG and B(sub z) = 400 KG. (Author) [pt

  12. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    Science.gov (United States)

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus

  13. Magnetic Resonance-Guided High-Intensity-Focused Ultrasound for Palliation of Painful Skeletal Metastases: A Pilot Study.

    Science.gov (United States)

    Chan, Michael; Dennis, Kristopher; Huang, Yuexi; Mougenot, Charles; Chow, Edward; DeAngelis, Carlo; Coccagna, Jennifer; Sahgal, Arjun; Hynynen, Kullervo; Czarnota, Gregory; Chu, William

    2017-10-01

    Bone is one of the most common sites of metastases, with bone metastases-related pain representing a significant source of morbidity among patients with cancer. Magnetic resonance-guided focused ultrasound is a noninvasive, outpatient modality with the potential for treating painful bone metastases. The aim of this study is to report our initial experience with magnetic resonance-guided focused ultrasound in the treatment of bone metastases and our preliminary analysis of urinary cytokine levels after therapy. This was a single-center pilot study of 10 patients with metastatic cancer to investigate the feasibility of magnetic resonance-guided focused ultrasound for primary pain control in device-accessible skeletal metastases. Treatments were performed on a clinical magnetic resonance-guided focused ultrasound system using a volumetric ablation technique. Primary efficacy was assessed using Brief Pain Inventory scores and morphine equivalent daily dose intake at 3 time points: before, day 14, and day 30 after the magnetic resonance-guided focused ultrasound treatment. Urine cytokines were measured 3 days before treatment and 2 days after the treatment. Of the 10 patients, 8 were followed up 14 days and 6 were followed up 30 days after the treatment. At day 14, 3 patients (37.5%) exhibited partial pain response and 4 patients (50%) exhibited an indeterminate response, and at day 30 after the treatment, 5 patients (83%) exhibited partial pain response. No treatment-related adverse events were recorded. Of the urine cytokines measured, only Transforming growth factor alpha (TGFα) demonstrated an overall decrease, with a trend toward statistical significance ( P = .078). Our study corroborates magnetic resonance-guided focused ultrasound as a feasible and safe modality as a primary, palliative treatment for painful bone metastases and contributes to the limited body of literature using magnetic resonance-guided focused ultrasound for this clinical indication.

  14. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    International Nuclear Information System (INIS)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-01-01

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented

  15. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe [Department of Electrical and Electronic Engineering, Ariel University, Ariel 40700 (Israel)

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  16. Plans for longitudinal and transverse neutralized beam compression experiments, and initial results from solenoid transport experiments

    International Nuclear Information System (INIS)

    Seidl, P.A.; Armijo, J.; Baca, D.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grote, D.; Haber, I.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Molvik, A.W.; Rose, D.V.; Roy, P.K.; Sefkow, A.B.; Sharp, W.M.; Vay, J.L.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2007-01-01

    This paper presents plans for neutralized drift compression experiments, precursors to future target heating experiments. The target-physics objective is to study warm dense matter (WDM) using short-duration (∼1 ns) ion beams that enter the targets at energies just above that at which dE/dx is maximal. High intensity on target is to be achieved by a combination of longitudinal compression and transverse focusing. This work will build upon recent success in longitudinal compression, where the ion beam was compressed lengthwise by a factor of more than 50 by first applying a linear head-to-tail velocity tilt to the beam, and then allowing the beam to drift through a dense, neutralizing background plasma. Studies on a novel pulse line ion accelerator were also carried out. It is planned to demonstrate simultaneous transverse focusing and longitudinal compression in a series of future experiments, thereby achieving conditions suitable for future WDM target experiments. Future experiments may use solenoids for transverse focusing of un-neutralized ion beams during acceleration. Recent results are reported in the transport of a high-perveance heavy ion beam in a solenoid transport channel. The principal objectives of this solenoid transport experiment are to match and transport a space-charge-dominated ion beam, and to study associated electron-cloud and gas effects that may limit the beam quality in a solenoid transport system. Ideally, the beam will establish a Brillouin-flow condition (rotation at one-half the cyclotron frequency). Other mechanisms that potentially degrade beam quality are being studied, such as focusing-field aberrations, beam halo, and separation of lattice focusing elements

  17. TU-H-CAMPUS-TeP1-03: Magnetically Focused Proton Irradiation of Small Volume Radiosurgery Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Wroe, AJ [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To investigate the use of magnetic focusing for small volume proton radiosurgery targets using a triplet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Fourteen quadrupole magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into k=3 Halbach cylinders with various field gradients (100 to 250 T/m) were designed and manufactured. Triplet combinations of the magnets were placed on a positioning track on our Gantry 1 treatment table. Unmodulated 127 MeV proton beams with initial diameters of 3 to 20 mm were delivered to a water tank using single-stage scattering. Depth and transverse dose distributions were measured using a PTW PR60020 diode detector and EBT3 film, respectively. This data was compared with unfocused passively collimated beams. Monte Carlo simulations were also performed - both for comparison with experimental data and to further investigate the potential of triplet magnetic focusing. Results: Experimental results using 150 T/m gradient magnets and 15 to 20 mm initial diameter beams show peak to entrance dose ratios that are ∼ 43 to 48 % larger compared with spot size matched 8 mm collimated beams (ie, transverse profile full-widths at 90% maximum dose match within 0.5 mm of focused beams). In addition, the focusing beams were ∼ 3 to 4.4 times more efficient per MU in dose to target delivery. Additional results using different magnet combinations will also be presented. Conclusion: Our results suggest that triplet magnetic focusing could reduce entrance dose and beam number while delivering dose to small (∼≤ 10 mm diameter) radiosurgery targets in less time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however other treatment sites can be also envisioned. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).

  18. Observation of the dynamics of magnetic nanoparticles induced by a focused laser beam by using dark-field microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hai-Dong, E-mail: dhdong@scau.edu.cn [Department of Applied Physics, College of Science, South China Agricultural University, Guangzhou 510642 (China); Li, Guang-Can [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Li, Hai [Department of Applied Physics, College of Science, South China Agricultural University, Guangzhou 510642 (China)

    2014-08-01

    The dynamics of Fe{sub 3}O{sub 4} magnetic nanoparticles under the irradiation of a tightly focused laser beam was investigated by using a high-intensity dark-field microscopy. A depletion region of magnetic nanoparticles was found at the center of the laser beam where the dissipative force (absorption and scattering forces) dominated the dynamics of the magnetic nanoparticles. In contrast, the dynamics of magnetic nanoparticles was dominated by thermal and mass diffusions at the edge of the laser beam where the dissipative force was negligible. In addition, the transient variation in the concentration of magnetic nanoparticles was characterized by recording the transient scattering light intensity. The coefficients of thermal diffusion, mass diffusion and the Soret effect for this kind of magnetic nanoparticles were successfully extracted by using this technique. - Highlights: • The dynamics of magnetic nanoparticles induced by a focused laser beam was investigated by using dark-field microscopy. • The experimental results revealed that the dynamics of magnetic nanoparticles was dominated by different mechanisms. • A convenient technique to measure the Soret coefficient of nanoparticles was provided.

  19. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  20. Efficacy of Magnetic Resonance-guided Focused Ultrasound Surgery for Bone Metastases Pain Palliation

    Science.gov (United States)

    Kawasaki, Motohiro; Nanba, Hirofumi; Kato, Tomonari; Tani, Toshikazu; Ushida, Takahiro

    2011-09-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a novel treatment method that achieves non-invasive thermal ablation by focusing many ultrasound waves on a target tissue with real-time monitoring of the location and temperature of the target during the procedure. We investigated the palliative effect on pain and safety of MRgFUS in painful bone metastases. Six patients (mean age, 65.8 years) who met eligibility criteria for the clinical study approved by our Institutional Ethics Committee based on the cooperative protocol were treated with MRgFUS. Targeted sites included the sacrum (n = 1), ilium (n = 2), scapula (n = 2), and femur (n = 1). The mean follow-up period was 9.2 months. All procedures were performed as a single-session treatment using the treatment system that is integrated into the patient table of a magnetic resonance image (MRI) scanner. Endpoints were change in the intensity of pain due to bone metastases from before to after the treatment, as measured on a numerical rating scale, pain interference with daily activities as determined by the Brief pain inventory (BPI), change in images, and safety. Pain relief was obtained in all patients early after treatment, with a reduction in the mean pain score from 6.0±1.3 at baseline to 1.2±1.0 at the end of follow-up as well as in pain interference with daily activities. The mean time required for a single-session treatment was 83.7±37.0 min, with a mean number of sonications required of 13.3±3.7 and mean energy applied of 846.4±273.5 J. No significant growth of tumors was observed, nor were there treatment-related adverse events. These results suggest that MRgFUS has a non-invasive palliative effect on the localized pain in patients with bone metastasis. MRgFUS could become an option in treatment strategies for painful bone metastases in the future.

  1. Development of a neutron-polarizing device based on a quadrupole magnet and its application to a focusing SANS instrument

    International Nuclear Information System (INIS)

    Oku, Takayuki

    2009-01-01

    We have investigated suitable magnetic field distribution to polarize neutrons based only on the electromagnetic interaction between a neutron magnetic moment and magnetic field, and found out a quadrupole field was the most suitable among simple multipole fields. Then we constructed a quadrupole magnet with a Halbach magnetic circuit as the neutron polarizing device. A cold neutron polarizing experiment of the quadrupole magnet was performed at the beamline C3-1-2-1 (NOP) of JRR-3 at JAEA. By passing through the aperture of the quadrupole magnet, positive and negative polarity neutrons are accelerated in opposite directions and spatially separated. Therefore, we extracted the one-spin component and analyzed its polarization degree. As a result very high neutron polarization degree P=0.9993±0.0025 was obtained. Then the quadrupole magnet was installed into the polarized neutron focusing geometry SANS instrument SANS-J-II of JRR-3. The instrument performance was enhanced by about 10 times compared with the case with the magnetic supermirror as the neutron polarizing device. The details are shown and discussed. (author)

  2. Focusing mechanisms in the Pulselac CU accelerator

    International Nuclear Information System (INIS)

    Johnson, D.J.; Lockner, T.R.

    1986-06-01

    The post-acceleration of a 400 keV, 10 kA proton beam by a 200 kV magnetically insulated gap is investigated. The deflection from self and applied E and B fields are measured and compared to calculated values. We find that the beam is inadequately space-charge neutralized without gas puffs in regions of applied-B field to allow efficient transport. The beam is also non-current neutralized in these regions leading to self-magnetic deflection. The applied-B field is used to focus the beam both directly as a solenoidal lens and indirectly by defining the equipotential surfaces in the accelerating gap. It is also pointed out how azimuthal asymmetries in the beam current density and cathode plasma cause beam self-field asymmetries that lead to emittance growth. 4 refs., 4 figs

  3. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    NARCIS (Netherlands)

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron

  4. Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.

    Science.gov (United States)

    Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali

    2017-06-01

    The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.

  5. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    International Nuclear Information System (INIS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-01-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate ( 2 , since T 2 increases linearly in fat during heating. T 2 -mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T 2 . Calibration of T 2 -based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T 2 and temperature with a thermocouple. A positive T 2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T 2 -mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  6. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound.

    Science.gov (United States)

    Devarakonda, Surendra Balaji; Myers, Matthew R; Giridhar, Dushyanth; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak Kumar

    2017-01-01

    Collateral damage and long sonication times occurring during high-intensity focused ultrasound (HIFU) ablation procedures limit clinical advancement. In this reserarch, we investigated whether the use of magnetic nano-particles (mNPs) can reduce the power required to ablate tissue or, for the same power, reduce the duration of the procedure. Tissue-mimicking phantoms containing embedded thermocouples and physiologically acceptable concentrations (0%, 0.0047%, and 0.047%) of mNPs were sonicated at acoustic powers of 5.2 W, 9.2 W, and 14.5 W, for 30 seconds. Lesion volumes were determined for the phantoms with and without mNPs. It was found that with the 0.047% mNP concentration, the power required to obtain a lesion volume of 13 mm3 can be halved, and the time required to achieve a 21 mm3 lesion decreased by a factor of 5. We conclude that mNPs have the potential to reduce damage to healthy tissue, and reduce the procedure time, during tumor ablation using HIFU.

  7. Development of high-strength and high-RRR aluminum-stabilized superconductor for the ATLAS thin solenoid

    CERN Document Server

    Wada, K; Sakamoto, H; Shimada, T; Nagasu, Y; Inoue, I H; Tsunoda, K; Endo, S; Yamamoto, A; Makida, Y; Tanaka, K; Doi, Y; Kondo, T

    2000-01-01

    The ATLAS central solenoid magnet is being constructed to provide a magnetic field of 2 Tesla in the central tracking part of the ATLAS detector at the LHC. Since the solenoid coil is placed in front of the liquid-argon electromagnetic calorimeter, the solenoid coil must be as thin (and transparent) as possible. The high-strength and high- RRR aluminum-stabilized superconductor is a key technology for the solenoid to be thinnest while keeping its stability. This has been developed with an alloy of 0.1 wt% nickel addition to 5N pure aluminum and with the subsequent mechanical cold working of 21% in area reduction. A yield strength of 110 MPa at 4.2 K has been realized keeping a residual resistivity ratio (RRR) of 590, after a heat treatment corresponding to coil curing at 130 degrees C for 15 hrs. This paper describes the optimization of the fabrication process and characteristics of the developed conductor. (8 refs).

  8. Quench protection and safety of the ATLAS central solenoid

    CERN Document Server

    Makida, Y; Haruyama, T; ten Kate, H H J; Kawai, M; Kobayashi, T; Kondo, T; Kondo, Y; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A; Yamaoka, H

    2002-01-01

    Fabrication of the ATLAS central solenoid was completed and the performance test has been carried out. The solenoid was successfully charged up to 8.4 kA, which is 10% higher than the normal operational current of 7.6 kA. Two methods for quench protection, pure aluminum strips accelerating quench propagation and quench protection heaters distributing normal zones, are applied in order to safely dissipate the stored energy. In this paper, quench characteristics and protection methods of the ATLAS central solenoid are described. (14 refs).

  9. Magnetic resonance imaging-guided focused ultrasound ablation of uterine fibroids. Early clinical experience

    International Nuclear Information System (INIS)

    Mikami, Koji; Osuga, Keigo; Tomoda, Kaname; Nakamura, Hironobu; Murakami, Takamichi; Okada, Atsuya

    2008-01-01

    The aim of this study was to assess the feasibility and effectiveness of magnetic resonance (MRI)-guided focused ultrasound (MRIgFUS) ablation for uterine fibroids and to identify the candidates for this treatment. A total of 48 patients with a symptomatic uterine fibroid underwent MRIgFUS. The percent ablation volume was calculated, and the patients' characteristics and the MR imaging features of the fibroids that might predict the effect of this treatment were assessed. Changes in the symptoms related to the uterine fibroid were assessed at 6 and 12 months. The planned target zone were successfully treated in 32 patients with bulk-related and menstrual symptoms but unsuccessfully treated in the remaining 16 patients. These 16 patients were obese or their uterine fibroid showed heterogeneous high signal intensity on T2-weighted images. The 32 successfully treated patients were followed up for 6 months. At the 6-month follow-up, bulk-related and menstrual symptoms were diminished in 60% and 51% of patients, respectively. Among them, 17 patients were followed up for 12 months, and 9 of them who showed alleviation of bulk-related symptoms at 6 months had further improvement. The mean percent ablation volume of those nine patients was 51%. In 5 (33%) of the 15 patients with alleviation of menstrual symptoms at 6 months, the symptoms became worse at 12 months. There was a significant difference in the mean percent ablation volume between patients with alleviation of menstrual symptoms and those without (54% vs. 37%; P=0.03). MRIgFUS ablation is a safe, effective treatment for nonobese patients with symptomatic fibroids that show low signal intensity on T2-weighted images. Ablation of more than 50% of the fibroid volume may be needed with a short-term follow-up. (author)

  10. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    OpenAIRE

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron beam. A two-stage GM cryocooler, equipped with a first generation ErNi5 regenerator, cools the epoxy impregnated solenoid down to the operating temperature of about 7.5 K. This leaves a conservati...

  11. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  12. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    NARCIS (Netherlands)

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  13. The g-2 storage ring superconducting magnet system

    International Nuclear Information System (INIS)

    Green, M.A.

    1993-09-01

    The g-2 μ lepton (muon) storage ring is a single dipole magnet that is 44 meters in circumference. The storage ring dipole field is created by three large superconducting solenoid coils. A single outer solenoid, 15.1 meters in diameter, carries 254 kA. Two inner solenoids, 13.4 meters in diameter, carry 127 kA each in opposition to the current carried by the outer solenoid. A room temperature C shaped iron yoke returns the magnetic flux and shapes the magnetic field in a 180 mm gap where the stored muon beam circulates. The gap induction will be 1.47 T. This report describes the three large superconducting solenoids, the cryogenic system needed to keep them cold, the solenoid power supply and the magnet quench protection system

  14. Solenoid hammer valve developed for quick-opening requirements

    Science.gov (United States)

    Wrench, E. H.

    1967-01-01

    Quick-opening lightweight solenoid hammer valve requires a low amount of electrical energy to open, and closes by the restoring action of the mechanical springs. This design should be applicable to many quick-opening requirements in fluid systems.

  15. Low-energy nuclear reactions with double-solenoid- based ...

    Indian Academy of Sciences (India)

    solenoids to produce low-energy radioactive nuclear beams. In these systems the ... For many years, the disadvantage in these investigations ... fusion or breakup reaction, preferred with large forward-peaked cross-sections. To transfer the ...

  16. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  17. The Compact Muon Solenoid Detector Control System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  18. Detailed design of the ITER central solenoid

    International Nuclear Information System (INIS)

    Libeyre, P.; Mitchell, N.; Bessette, D.; Gribov, Y.; Jong, C.; Lyraud, C.

    2009-01-01

    The central solenoid (CS) of the ITER tokamak contributes to the inductive flux to drive the plasma, to the shaping of the field lines in the divertor region and to vertical stability control. It is made of 6 independent coils, using a Nb3Sn cable-in-conduit superconducting conductor, held together by a vertical precompression structure. This design enables ITER to access a wide operating window of plasma parameters, up to 17 MA and covering inductive and non-inductive operation. Each coil is based on a stack of multiple pancake winding units to minimise joints. A glass-polyimide electrical insulation, impregnated with epoxy resin, is giving a high voltage operating capability, tested up to 29 kV. The CS performance is fatigue driven mainly by the stress levels in the conductor jacket and in the precompression structure needed to keep the modules in contact during the repulsive forces which can arise in operation. A rigid connection to the TF coils provided at one end and a centering support at the other end allow to resist net vertical forces as well as unbalanced radial forces while avoiding torsion transmission from the TF Coils to the CS assembly.

  19. Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2013-04-01

    Full Text Available Ion beams (including protons with low emittance and high space-charge intensity can be propagated with normal incidence through a sequence of thin metallic foils separated by vacuum gaps of order the characteristic transverse beam extent to transport/collimate the beam or to focus it to a small transverse spot. Energetic ions have sufficient range to pass through a significant number of thin foils with little energy loss or scattering. The foils reduce the (defocusing radial electric self-field of the beam while not altering the (focusing azimuthal magnetic self-field of the beam, thereby allowing passive self-beam focusing if the magnetic field is sufficiently strong relative to the residual electric field. Here we present an envelope model developed to predict the strength of this passive (beam generated focusing effect under a number of simplifying assumptions including relatively long pulse duration. The envelope model provides a simple criterion for the necessary foil spacing for net focusing and clearly illustrates system focusing properties for either beam collimation (such as injecting a laser-produced proton beam into an accelerator or for magnetic pinch focusing to a small transverse spot (for beam driven heating of materials. An illustrative example is worked for an idealization of a recently performed laser-produced proton-beam experiment to provide guidance on possible beam focusing and collimation systems. It is found that foils spaced on the order of the characteristic transverse beam size desired can be employed and that envelope divergence of the initial beam entering the foil lens must be suppressed to limit the total number of foils required to practical values for pinch focusing. Relatively modest proton-beam current at 10 MeV kinetic energy can clearly demonstrate strong magnetic pinch focusing achieving a transverse rms extent similar to the foil spacing (20–50  μm gaps in beam propagation distances of tens of mm

  20. Method to reduce non-specific tissue heating of small animals in solenoid coils.

    Science.gov (United States)

    Kumar, Ananda; Attaluri, Anilchandra; Mallipudi, Rajiv; Cornejo, Christine; Bordelon, David; Armour, Michael; Morua, Katherine; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.

  1. Treatment of uterine leiomyoma with magnetic resonance-guided focused ultrasound surgery (MRgFUS)

    International Nuclear Information System (INIS)

    Fukunishi, Hidenobu

    2007-01-01

    Uterine leiomyoma is the most common pelvic tumor in women. Although hysterectomy has long been the standard treatment for uterine myoma, some uterus-preserving alternatives are available today. Among these, magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a minimally-invasive procedure that uses high intensity ultrasound waves to ablate tissue. The present study investigates the efficacy of MRgFUS in the treatment of uterine myoma and the histopathological features on extirpated myoma tissue, when alternative surgical treatment is requisite. The Ethics Committee of Shinsuma Hospital approved the treatment of uterine myoma by MRgFUS, and written informed consent was obtained from all of the patients in compliance with the principles of good clinical practice. Between June 2004 and March 2007, 81 premenopausal patients with 125 myomas confirmed by T2-weighted MRI were treated by MRgFUS. The myomas were classified into 3 types based on signal intensity of T2-weighted images type I, low intensity; type II, intermediate intensity and type III, high intensity. The ablation (the non-perfused ratio of gadolinium injection) was about 55% in type I and type II, and 38% in type III. There was no correlation between the ablation ratio and the location or the size of the myoma. The uterine muscle was spared ablation when 2 combined myomas were treated as one tumor, suggesting that the vascularity was richer in the uterine muscle layer than in the myoma Sufficient ablation of the myoma near the Os sacrum is not able to attain immediately after the treatment; however, in several cases a complete non-perfusion margin was observed 3 or 6 months after the treatment. These cases yield very satisfactory results and it is meaningful to search for the reason why such good results were induced. Alternative treatment such as hysterectomy, myomectomy, trans cervical resection (TCR) or uterine artery embolization (UAE) was indicated for 13.6% of the patients. Here, we

  2. A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

    International Nuclear Information System (INIS)

    Magara, T.

    2010-01-01

    In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet-like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  3. Electrical characterization of S/C conductor for the CMS solenoid

    CERN Document Server

    Fabbricatore, P; Farinon, S; Greco, Michela; Kircher, F; Musenich, R

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The coil is wound from 20 high purity aluminum-stabilized NbTi conductors with a total length of 45 km. The main peculiarity of the CMS magnet among other existing thin detector solenoids is its sandwich-type aluminum-stabilized superconductor. This special feature was chosen in order to have a mechanically self-supporting winding structure. We measured the critical current of all the 21 finished conductors in fields up to 6 T using the Ma.Ri.S.A. test facility at INFN-Genova. We compare these results with the critical current of single strands measured by CEA- Saclay, extracted from the conductor after the co-extrusion. A comparison among the measurements provides information about the possible critical current degradation and assures an accurate quality control of the conductor pr...

  4. The FCC-ee Interaction Region Magnet Design

    CERN Document Server

    Koratzinos, Michael; Blondel, Alain; Bogomyagkov, Anton; Holzer, Bernhard; Oide, Katsunobu; Sinyatkin, Sergey; Zimmermann, Frank; van Nugteren, Jeroen

    2016-01-01

    The design of the region close to the interaction point of the FCC-ee experiments is especially challenging. The beams collide at an angle (+-15 mrad) in the high-field region of the detector solenoid. Moreover, the very low vertical beta_y* of the machine necessitates that the final focusing quadrupoles have a distance from the IP (L*) of around 2 m and therefore are inside the main detector solenoid. The beams should be screened from the effect of the detector magnetic field, and the emittance blow-up due to vertical dispersion in the interaction region should be minimized, while leaving enough space for detector components. Crosstalk between the two final focus quadrupoles, only about 6 cm apart at the tip, should also be minimized.

  5. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  6. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  7. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  8. Acute pelvic inflammatory disease: pictorial essay focused on computed tomography and magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Febronio, Eduardo Miguel; Rosas, George de Queiroz; D' Ippolito, Giuseppe, E-mail: giuseppe_dr@uol.com.br [Department of Imaging Diagnosis, Escola Paulista de Medicina - Universidade Federal de Sao Paulo (EPMUnifesp), Sao Paulo, SP (Brazil)

    2012-11-15

    The present study was aimed at describing key computed tomography and magnetic resonance imaging findings in patients with acute abdominal pain derived from pelvic inflammatory disease. Two radiologists consensually selected and analyzed computed tomography and magnetic resonance imaging studies performed between January 2010 and December 2011 in patients with proven pelvic inflammatory disease leading to presentation of acute abdomen. Main findings included presence of intracavitary fluid collections, anomalous enhancement of the pelvic excavation and densification of adnexal fat planes. Pelvic inflammatory disease is one of the leading causes of abdominal pain in women of childbearing age and it has been increasingly been diagnosed by means of computed tomography and magnetic resonance imaging supplementing the role of ultrasonography. It is crucial that radiologists become familiar with the main sectional imaging findings in the diagnosis of this common cause of acute abdomen (author)

  9. Ectopic pregnancy: pictorial essay focusing on computed tomography and magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Febronio, Eduardo Miguel; Rosas, George de Queiroz; D' Ippolito, Giuseppe [Escola Paulista de Medicina - Universidade Federal de Sao Paulo (EPM-Unifesp), Sao Paulo, SP (Brazil). Dept. of Imaging Diagnosis; Cardia, Patricia Prando, E-mail: giuseppe_dr@uol.com.br [Centro Radiologico Campinas, Campinas, SP (Brazil)

    2012-09-15

    The objective of the present study is to describe key computed tomography and magnetic resonance imaging findings in patients with acute abdominal pain caused by ectopic pregnancy. For this purpose, two radiologists consensually selected and analyzed computed tomography and magnetic resonance imaging studies performed in female patients with acute abdominal pain caused by proven ectopic pregnancy in the period between January 2010 and December 2011. The imaging diagnosis of ectopic pregnancy is usually obtained by ultrasonography, however, with the increasing use of computed tomography and magnetic resonance imaging in the assessment of patients with acute abdomen of gynecological origin it is necessary that the radiologist becomes familiar with the main findings observed at these diagnostic methods. (author)

  10. Ectopic pregnancy: pictorial essay focusing on computed tomography and magnetic resonance imaging findings

    International Nuclear Information System (INIS)

    Febronio, Eduardo Miguel; Rosas, George de Queiroz; D'Ippolito, Giuseppe

    2012-01-01

    The objective of the present study is to describe key computed tomography and magnetic resonance imaging findings in patients with acute abdominal pain caused by ectopic pregnancy. For this purpose, two radiologists consensually selected and analyzed computed tomography and magnetic resonance imaging studies performed in female patients with acute abdominal pain caused by proven ectopic pregnancy in the period between January 2010 and December 2011. The imaging diagnosis of ectopic pregnancy is usually obtained by ultrasonography, however, with the increasing use of computed tomography and magnetic resonance imaging in the assessment of patients with acute abdomen of gynecological origin it is necessary that the radiologist becomes familiar with the main findings observed at these diagnostic methods. (author)

  11. Current leads for superconducting solenoids in a transportable Dewar flask for currents up to 1kA

    International Nuclear Information System (INIS)

    Shirshov, L.S.

    1981-01-01

    A simple design of the current lead for currents up to 1 kA into a transportable helium dewar with 22 mm neck diameter is described. The lead characteristics have been studied at various conditions. Examples of pulse superconducting solenoid usage, parmitting to achieve the magnetic field up to 3.3 T are given. The 1% field homogeneity has been obtained on a length of 90 mm [ru

  12. Structural analysis of a superconducting central solenoid for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Heim, J.R.

    1993-01-01

    The Tokamak Physics Experiment (TPX) concept design uses superconducting coils to accomplish magnetic confinement. The central solenoid (CS) magnet is divided vertically into 8 equal segments which are powered independently. The eddy current heating from the pulsed operation is too high for a case type construction; therefore, a open-quotes no caseclose quotes design has been chosen. This open-quotes no caseclose quotes design uses the conductor conduit as the primary structure and the electrical insulation as a structural adhesive. This electrical insulation is the open-quotes weak linkclose quotes in the coil winding pack structure and needs to be modeled in detail. A global finite element model with smeared winding pack properties was used to study the CS magnet structural behavior. The structural analysis results and peak stresses will be presented

  13. A 4.7 tesla metre solenoid for a partial Siberian snake

    International Nuclear Information System (INIS)

    Ratner, L.; Leonhardt, W.; Otter, A.; Ellstrom, L.

    1993-11-01

    We describe the engineering design of a 4.7 T-m solenoid magnet which will be installed at the Brookhaven National Laboratory AGS for a partial Siberian Snake Experiment which is an interlaboratory collaboration. The magnet has an overall length of 2.5 m, a clear bore of 15 cm and operates at a peak field of 2 T. It is pulsed at 3 second intervals with a peak current of 9500 A dc driven from a 150 V power supply. The construction uses conventional hollow copper coils but the return flux yokes are made from 1/8 inch plates bolted together. On assembly the flux yokes and endplates are clamped tightly to the coil to prevent any movement during the current pulse. The fabrication experience and test data will be presented. The magnet was installed in the summer of 1993. (author). 3 refs., 1 tab., 1 fig

  14. A 4.7 tesla metre solenoid for a partial Siberian snake

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, L; Leonhardt, W [Brookhaven National Lab., Upton, NY (United States); Otter, A; Ellstrom, L

    1993-11-01

    We describe the engineering design of a 4.7 T-m solenoid magnet which will be installed at the Brookhaven National Laboratory AGS for a partial Siberian Snake Experiment which is an interlaboratory collaboration. The magnet has an overall length of 2.5 m, a clear bore of 15 cm and operates at a peak field of 2 T. It is pulsed at 3 second intervals with a peak current of 9500 A dc driven from a 150 V power supply. The construction uses conventional hollow copper coils but the return flux yokes are made from 1/8 inch plates bolted together. On assembly the flux yokes and endplates are clamped tightly to the coil to prevent any movement during the current pulse. The fabrication experience and test data will be presented. The magnet was installed in the summer of 1993. (author). 3 refs., 1 tab., 1 fig.

  15. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    International Nuclear Information System (INIS)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-01-01

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  16. Experimental study of a laser-heated solenoid

    International Nuclear Information System (INIS)

    Rutkowski, H.L.

    1975-01-01

    An experimental investigation was made of the interaction of an intense CO 2 laser beam with a column of initially uv-ionized hydrogen immersed in a steady magnetic field of up to 100 kG. Under the intense laser radiation, the gas becomes ionized and heated to temperatures as high as 150 eV (1.6 x 10 6 0 K). The primary purpose of the investigation was to determine the properties of the dense, hot plasma formed in this manner. Time and space resolved measurements of the plasma electron density were made using holographic interferometry along the axis and Mach--Zehnder interferometry across the column. The temperature was determined by measuring the decay rate of a line from CV in the quartz uv. These measurements were supplemented by streak photography to provide data on the development of the luminosity of the plasma column, radially and axially, as a function of time. From these various diagnostic techniques, it was possible to determine that a density minimum is formed on-axis within a few tens of nanoseconds after initiation of the laser pulse. This effectively produces a light pipe which traps the beam, and suggests that long columns can be formed by laser irradiation. The beam energy was efficiently absorbed and plasma loss rates appeared to be those expected from classical MHD modelling. While a completely unambiguous answer as to the mode of laser discharge propagation occurring in the experiment was not obtained, the bulk of the evidence suggests a ''bleaching wave'' rather than a laser driven detonator. In summary, the experiment was successful in demonstrating the creation of dense, slender columns by laser breakdown, in support of the ''laser-heated solenoid'' fusion concept

  17. Analytical study of envelope modes for a fully depressed beam in solenoidal and quadrupole periodic transport channels

    International Nuclear Information System (INIS)

    Bukh, Boris; Lund, Steven M.

    2003-01-01

    We present an analysis of envelope perturbations evolving in the limit of a fully space-charge depressed (zero emittance) beam in periodic, thin-lens focusing channels. Both periodic solenoidal and FODO quadrupole focusing channels are analyzed. The phase advance and growth rate of normal mode perturbations are analytically calculated as a function of the undepressed particle phase advance to characterize the evolution of envelope perturbations

  18. A Magnetic Set-Up to Help Teach Newton's Laws

    Science.gov (United States)

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  19. Estimation of Threshold for the Signals of the BLMs around the LHC Final Focus Triplet Magnets

    CERN Document Server

    Cerutti, F; Ferrari, A; Hoa, C; Mauri, M; Mereghetti, A; Sapinski, M; Wildner, E; CERN. Geneva. ATS Department

    2012-01-01

    The Interaction Points of the Large Hadron Collider are the regions where the two circulating beams collide. Hence, the magnets the closest to any Interaction Point are exposed to an elevated radiation field due to the collision debris. In this study the signal in the Beam Loss Monitors due to the debris is estimated. In addition, for three different scenarios of beam losses, the energy density in the coils and the signal in the Beam Loss Monitors at quench are computed. It is shown that the Beam Loss Monitors, as presently installed on the vacuum vessel of the magnets, cannot disentangle the signal due to a localised loss from the constant signal due to the debris in case of steady-state losses.

  20. Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations.

    Science.gov (United States)

    Tan, Say Hwa; Nguyen, Nam-Trung

    2011-09-01

    This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.

  1. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie

    2016-01-01

    Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.

  2. Localized spin-wave modes in a triangular magnetic element studied by micro-focused Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.; Kwon, J.-H. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Grünberg, P. [Grünberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Cho, B.K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of)

    2017-09-01

    Highlights: • Direct evidence of localized mode in a triangular nano-magnet using μ-BLS. • Localized regions are identified by the internal field distribution. • The spatially resolved measurement was performed to obtain 2-D intensity map. • Spin modes in same positions can be distinguish comparing with simulated spectrum. • Localized modes were identified by comparing with the simulated spatial profiles. - Abstract: Localized spin-wave modes, which were thermally excited at a specific position in a triangular magnetic element, were investigated using micro-focused Brillouin light scattering in two saturated states, the buckle and Y-states, with an applied magnetic field of 0.24 T parallel and perpendicular to the basal edge, respectively. The measured frequency spectrum at a specific beam spot position, rather than an integrated spectrum, was analyzed by comparing it with the simulation data at a precisely selected position within the beam spot area. The analyzed results were used to plot a two-dimensional intensity map and simulation spatial profile to verify the validity of the analysis. From the analysis process, two localized spin-wave modes in a triangular magnetic element were successfully identified near the apex region in the buckle state and near the basal edge region in the Y-state.

  3. Operating experience feedback report - Solenoid-operated valve problems

    International Nuclear Information System (INIS)

    Ornstein, H.L.

    1991-02-01

    This report highlights significant operating events involving observed or potential common-mode failures of solenoid-operated valves (SOVs) in US plants. These events resulted in degradation or malfunction of multiple trains of safety systems as well as of multiple safety systems. On the basis of the evaluation of these events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the US Nuclear Regulatory Commission (NRC) concludes that the problems with solenoid-operated valves are an important issue that needs additional NRC and industry attention. This report also provides AEOD's recommendations for actions to reduce the occurrence of SOV common-mode failures. 115 refs., 7 figs., 2 tabs

  4. The Compact Muon Solenoid Heavy Ion program

    International Nuclear Information System (INIS)

    Yepes, Pablo

    2005-01-01

    The Pb-Pb center of mass energy at the LHC will exceed that of Au-Au collisions at RHIC (Relativistic Heavy Ion Collider) by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. The interest of the Heavy Ion (HI) Physics at LHC is discussed in more detail in the LHC-USA white paper and the Compact Muon Solenoid (CMS) Heavy Ion proposal. A few highlights are presented in this document. Heavy ion collisions at LHC energies will explore regions of energy and particle density significantly beyond those reachable at RHIC. The energy density of the thermalized matter created at the LHC is estimated to be 20 times higher than at RHIC, implying an initial temperature, which is greater than at RHIC by more than a factor of two. The higher density of produced partons also allows a faster thermalization. As a consequence, the ratio of the quark-gluon plasma lifetime to the thermalization time increases by a factor of 10 over RHIC. Thus the hot, dense systems created in HI collisions at the LHC spend most of the time in a purely partonic state. The longer lifetime of the quark-gluon plasma state widens significantly the time window available to probe it experimentally. RHIC experiments have reported evidence for jet production in HI collisions and for suppression of high p T particle production. Those results open a new field of exploration of hot and dense nuclear matter. Even though RHIC has already broken ground, the production rates for jets with p T > 30 GeV are several orders of magnitude larger at the LHC than at RHIC, allowing for systematic studies with high statistics in a clean kinematic region. High p T quark and gluon jets can be used to study the hot hadronic medium produced in HI interactions. The larger Q 2 causes jets to materialize very soon after the collision. They are thus embedded in and propagate through the dense environment as it forms and evolves. Through their interactions

  5. Dense Plasma Focus: A question in search of answers, a technology in search of applications

    International Nuclear Information System (INIS)

    Auluck, S.K.H.

    2014-01-01

    Diagnostic information accumulated over four decades of research suggests a directionality of toroidal motion for energetic ions responsible for fusion neutron production in the Dense Plasma Focus (DPF) and existence of an axial component of magnetic field even under conditions of azimuthal symmetry. This is at variance with the traditional view of Dense Plasma Focus as a purely irrotational compressive flow. The difficulty in understanding the experimental situation from a theoretical standpoint arises from polarity of the observed solenoidal state: three independent experiments confirm existence of a fixed polarity of the axial magnetic field or related azimuthal current. Since the equations governing plasma dynamics do not have a built-in direction, the fixed polarity must be related with initial conditions: the plasma dynamics must interact with an external physical vector in order to generate a solenoidal state of fixed polarity. Only four such external physical vectors can be identified: the earth's magnetic field, earth's angular momentum, direction of current flow and the direction of the plasma accelerator. How interaction of plasma dynamics with these fields can generate observed solenoidal state is a question still in search of answers; this paper outlines one possible answer. The importance of this question goes beyond scientific curiosity into technological uses of the energetic ions and the high-power-density plasma environment. However, commercial utilization of such technologies faces reliability concerns, which can be met only by first-principles integrated design of globally-optimized industrial-quality DPF hardware. Issues involved in the emergence of the Dense Plasma Focus as a technology platform for commercial applications in the not-too-distant future are discussed. (author)

  6. Correlation of the neutron yield from the plasma focus upon variations in the magnetic field energy of the discharge circuit

    Science.gov (United States)

    Ablesimov, V. E.; Dolin, Yu. N.; Kalinychev, A. E.; Tsibikov, Z. S.

    2017-10-01

    The relation between neutron yield Y and magnetic field energy variations Δ W in the discharge circuit has been studied for a Mather-type plasma-focus camera. The activation technique (activation of silver isotopes) has been used to measure the integral yield of DD neutrons from the source. The time dependence of the neutron yield has been recorded by scintillation detectors. For the device used in the investigations, the neutron yield exhibits a linear dependence on variations in the magnetic field energy Δ W in the discharge circuit at the instant of neutron generation. It is also found that this dependence is related to the initial deuteron pressure in the discharge chamber.

  7. Thermal analysis of the cold mass of the 2T solenoid for the PANDA detector at FAIR

    CERN Document Server

    Rolando, G; Dudarev, A; Pais Da Silva, H; Vodopyanov, A; Schmitt, L

    2015-01-01

    The superconducting solenoid of the PANDA experiment at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt (Germany) is designed to provide a magnetic field of 2 T over a length of about 4 m in a bore of 1.9 m. To allow a warm target feed pipe oriented transversely to the solenoid axis and penetrating through the cryostat and solenoid cold mass, the magnet is split into 3 inter-connected coils fitted in a common support cylinder. During normal operation, cooling of the cold mass to the working temperature of 4.5 K will be achieved through the circulation by natural convection of two-phase helium in cooling pipes attached to the Al-alloy support cylinder. Pure aluminium strips acting as heat drains and glued to the inner surface of the three coils and thermally bonded to the cooling pipes allow minimizing the temperature gradient across the 6-layers coils. In this paper the thermal design of the cold mass during normal operation and current ramps up and down is validated using an analytical appro...

  8. Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Voogt, Marianne J., E-mail: m.voogt@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Ikink, Marlijne E. [University Medical Center Utrecht, Department of Radiology (Netherlands); Deckers, Roel; Vincken, Koen L.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2012-10-15

    Purpose: To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. Methods: Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding branches to the fibroids. A three-dimensional overlay of the magnetic resonance angiography images was registered on 3D T2-weighted pretreatment imaging data. Treatment was focused primarily on locations where supplying vessels entered the fibroid. Patients were followed 6 months after treatment with a questionnaire to assess symptoms and quality of life (Uterine Fibroid Symptom and Quality of Life) and magnetic resonance imaging to quantify shrinkage of fibroid volumes. Results: In two patients, three fibroids were treated with targeted vessel ablation during MR-HIFU. The treatments resulted in almost total fibroid devascularization with nonperfused volume to total fibroid volume ratios of 84, 68, and 86%, respectively, of treated fibroids. The predicted ablated volumes during MR-HIFU in patients 1 and 2 were 45, 40, and 82 ml, respectively, while the nonperfused volumes determined immediately after treatment were 195, 92, and 190 ml respectively, which is 4.3 (patient 1) and 2.3 (patient 2) times higher than expected based on the thermal dose distribution. Fibroid-related symptoms reduced after treatment, and quality of life improved. Fibroid volume reduction ranged 31-59% at 6 months after treatment. Conclusion: Targeted vessel ablation during MR-HIFU allowed nearly complete fibroid ablation in both patients. This technique may enhance the use of MR-HIFU for fibroid treatment in clinical practice.

  9. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  10. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    Science.gov (United States)

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

  11. Magnetic spectrograph with a semicircular focusing for studies on the energy distribution of a high-current relativistic electron beam

    International Nuclear Information System (INIS)

    Gosteva, T.S.; Zablotskaya, G.R.; Ivanov, B.A.; Kolyubakin, S.A.; Chernobrovin, V.I.

    1975-01-01

    Specific features of a magnetic spectrograph with a semicircular focusing are described; the spectrograph has been designed to study, using the REP-5 pulsed accelerator, the energy spectra of electrons with a current of 50 kA, pulse duration of 20 ns in the energy range 0.2 to 3 MeV. The beam has been transported in a drift chamber where the air pressure varies from 10 -3 to 40 torr. The chamber is 50 cm long and 12 cm in diameter. The spectrograph vacuum chamber is made in the form of a plane rectangular box with a degassing fitting. The uniform magnetic field in the spectrograph gap is provided with permanent magnets (ferrite-barium plates). The collimator and the chamber walls on which the magnets are located, are made of low-carbon electrotechnical steel. The diameters of the collimator entrance and exit windows are 2 and 0.2 mm, respectively. To screen the photofilm in the spectrograph chamber from x-radiation, there are three disks on the spectrograph flange on the part of the drift chamber, they are made of lead, steel, and aluminium. The steel disk, besides, screens the space in front of the collimator entrance window from the scattered magnetic field. During the experiments the pressure in the spectrograph chamber has varied from 7x10 -3 to 10 -1 torr. Electrons are registered using the RT-1 and RT-5 x-ray films 1x18 cm in size. The spectrograph described makes it possible to have well-resolved electron spectrum during a pulse. The electron spectra obtained by means of the spectrograph at a pressure of 4.10 -1 torr in the drift chamber and a charge voltage of 3.2 MV in the line, are shown [ru

  12. Competition of electron-cyclotron maser and free-electron laser modes with combined solenoidal and longitudinal wiggler fields

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.

    1986-01-01

    A relativistic electron beam with a finite transverse dc momentum (β/sub perpendicular/ = 1/γ 0 ) passing through a region of combined uniform solenoidal and longitudinal wiggler magnetic fields is observed to convert 25% of its kinetic energy into coherent radiation at frequency ω = γ 2 0 (k/sub w/V 0 +Ω/sub c//γ 0 ) if the phase velocity of the generated wave is slightly above the speed of light. In this situation, the bunchings of the slow electron-cyclotron mode and free-electron laser modes with combined solenoidal and longitudinal wiggler fields (lowbitron) are observed to compensate each other, which gives rise to a finite threshold for lowbitron operation. In order to attain high efficiency, the wiggler strength of a lowbitron must substantially exceed the threshold

  13. Performance of a shallow-focus applied-magnetic-field diode for ion-beam-transport experiments

    Energy Technology Data Exchange (ETDEWEB)

    Young, F.C.; Neri, J.M.; Ottinger, P.F. [Naval Research Lab., Washington, DC (United States); Rose, D.V. [JAYCOR, Vienna (Vatican City State, Holy See); Jones, T.G.; Oliver, B.V.

    1997-12-31

    An applied-magnetic-field ion diode to study the transport of intense ion beams for light-ion inertial confinement fusion is being operated on the Gamble II generator at NRL. A Large-area (145-cm{sup 2}), shallow-focusing diode is used to provide the ion beam required for self-pinched transport (SPT) experiments. Experiments have demonstrated focusing at 70 cm for 1.2-MV, 40-kA protons. Beyond the focus, the beam hollows out consistent with 20--30 mrad microdivergence. The effect of the counter-pulse B-field on altering the ion-beam trajectories and improving the focus has been diagnosed with a multiple-pinhole-camera using radiachromic film. This diagnostic is also used to determine the radial and azimuthal uniformity of ion emission at the anode for different B-field conditions. Increasing the diode voltage to 1.5 MV and optimizing the ion current are planned before initiating SPT experiments. Experiments to measure the spatial beam profile at focus, i.e., the SPT channel entrance, are in progress. Results are presented.

  14. The Compact Muon Solenoid (CMS) hadron calorimeter

    International Nuclear Information System (INIS)

    Hagopian, Vasken

    1999-01-01

    The Hadron Calorimeter of the CMS detector for the CERN LHC accelerator is designed to measure hadron jets as well as single hadrons. It has six segments. The central barrel made of brass and scintillators covers the vertical bar η vertical bar range of about 0 to 1.3. Two End Caps, also made of brass and scintillators extends the vertical bar η vertical bar range to 3.0. Two Forward calorimeters made of iron and quartz fibers cover the range 3.0 to 5.0. Since the barrel portion of the calorimeter is only 6.5 interaction lengths, the outer barrel will sample, by scintillators, outside the magnet coil and cryostat. Progress has been made on all subsystems and prototypes have been built. We now have a better understanding of magnetic field effects on calorimeters

  15. Modeling plasma flow in straight and curved solenoids

    International Nuclear Information System (INIS)

    Boercker, D.B.; Sanders, D.M.; Storer, J.; Falabella, S.

    1991-01-01

    The ''flux-tube'' model originated by Morozov is a very simple and numerically efficient method for simulating ion motion in plasma filters. In order to test its utility as a design tool, we compare the predictions of the model to recent experimental measurements of plasma flow in both straight and curved solenoids

  16. Low-energy nuclear reactions with double-solenoid

    Indian Academy of Sciences (India)

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems ...

  17. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok

    2013-01-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  18. Design of 9 tesla superconducting solenoid for VECC RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-07-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  19. Self-magnetically-insulated 'plasma-focus diode' as a new source of an intence pulsed light-ion beam

    International Nuclear Information System (INIS)

    Takahashi, Akira; Aga, Keigo; Masugata, Katsumi; Ito, Michiaki; Yatsui, Kiyoshi

    1986-01-01

    A new and simple type of self-magnetically-insulated diode named ''Plasma-Focus Diode'' has been successfully developed, where anode and cathode are constituted by a pair of coaxial cylindrical electrodes similarly to a Mather-type plasma-focus device. Operating conditions are typically as follows: inductively-calibrated diode voltage ∼ 660 kV, diode current ∼ 142 kA, total ion current ∼ 32 kA, pulse width ∼ 90 ns and diode efficiency ∼ 22 %. Multiple-shots operation more than 50 shots has been possible without changing flashboard. Local divergence angle has been observed to be 0.9 deg ∼ 1.6 deg. Using such a simple ion diode, we have demonstrated a possibility of high concentration of beam-power density onto a target placed at the center. (author)

  20. Mechanical design of a pre-isolator for the CLIC final focusing magnets

    CERN Document Server

    Gaddi, A; Ramos, F; Siegrist, N

    2012-01-01

    Due to the very small vertical beam sizes, the final focusing elements at the future CLIC linear collider need to be stable against vibrations to below 0.15 nanometres at frequencies above about 4 Hz. One of the key elements in the strategy to achieve such a stable environment is a passive, heavy pre-isolator. In this report, the results from the dynamic finite element analyses of the proposed design for such a passive preisolator are summarized. Furthermore, the results from a low frequency, heavy mass passive vibration isolation test set-up used to validate the calculations are shown.

  1. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation

    Science.gov (United States)

    MacDonell, Jacquelyn; Patel, Niravkumar; Rubino, Sebastian; Ghoshal, Goutam; Fischer, Gregory; Burdette, E. Clif; Hwang, Roy; Pilitsis, Julie G.

    2018-01-01

    Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors’ interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery. PMID:29385926

  2. Role of cardiac magnetic resonance imaging focusing on QOL and preventive medicine

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Ito, Hirotoshi; Kubota, Takao

    2003-01-01

    Cardiac magnetic resonance imaging (MRI) using fast imaging techniques has been developing quickly recently. Left ventricular function with pharmacological intervention can be evaluated using True fast imaging with steady-state precession (FISP) method. In addition, left ventricular diastolic function can be evaluated by retrospective gating with a high frame rate. Myocardial perfusion and viability can also be evaluated by first-pass imaging and delayed enhancement with Gd-DTPA. Data concerning myocardial ischemia, viability, and left ventricular function is now almost equivalent to that of myocardial SPECT and contrast echo. Additionally, coronary arterial narrowing and coronary vessel wall can be visualized with both the bright-blood and black-blood method. These methods are still currently in the research stage. The prognostic value of myocardial perfusion and ventricular function in ischemic heart disease should be established using large numbers of patients. Multi-center trials using cardiac MRI should be recommended for this purpose. Furthermore, detecting acute coronary syndrome in the emergency department can be performed with safety and accuracy. MR coronary angiography should be used not only for flow-limiting coronary stenosis but also the atherosclerotic wall region. This provides information that may predict cardiovascular risk, and facilitate further study of artherothrombosis, progression and response to therapy. It may also provide for the assessment of subclinical disease. (author)

  3. Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces

    CERN Document Server

    Falub, C V; Mijnarends, P E; Schut, H; Veen, A V

    2002-01-01

    The intense reactor-based slow positron beam (POSH) at the Delft research reactor has been coupled to a Two-Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) setup. The design is discussed with a new target chamber for the 2D-ACAR setup based on Monte Carlo simulations of the positron trajectories, beam energy distribution and beam transmission in an increasing magnetic field gradient. Numerical simulations and experiment show that when the slow positron beam with a FWHM of 11.6 mm travels in an increasing axial magnetic field created by a strong NdFeB permanent magnet, the intensity loss is negligible above approx 6 keV and a focusing factor of 5 in diameter is achieved. Monte Carlo simulations and Doppler broadening experiments in the target region show that in this configuration the 2D-ACAR setup can be used to perform depth sensitive studies of defects in thin films with a high resolution. The positron implantation energy can be varied from 0 to 25 keV before entering the non-uniform mag...

  4. Investigation of shape, position, and permeability of shielding material in quadruple butterfly coil for focused transcranial magnetic stimulation

    Science.gov (United States)

    Rastogi, Priyam; Zhang, Bowen; Tang, Yalun; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    2018-05-01

    Transcranial magnetic stimulation has been gaining popularity in the therapy for several neurological disorders. A time-varying magnetic field is used to generate electric field in the brain. As the development of TMS methods takes place, emphasis on the coil design increases in order to improve focal stimulation. Ideally reduction of stimulation of neighboring regions of the target area is desired. This study, focused on the improvement of the focality of the Quadruple Butterfly Coil (QBC) with supplemental use of different passive shields. Parameters such as shape, position and permeability of the shields have been explored to improve the focus of stimulation. Results have been obtained with the help of computer modelling of a MRI derived heterogeneous head model over the vertex position and the dorsolateral prefrontal cortex position using a finite element tool. Variables such as maximum electric field induced on the grey matter and scalp, volume and area of stimulation above half of the maximum value of electric field on the grey matter, and ratio of the maximum electric field in the brain versus the scalp have been investigated.

  5. Non-invasive treatment efficacy evaluation for high-intensity focused ultrasound therapy using magnetically induced magnetoacoustic measurement

    Science.gov (United States)

    Guo, Gepu; Wang, Jiawei; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2018-04-01

    Although the application of high intensity focused ultrasound (HIFU) has been demonstrated to be a non-invasive treatment technology for tumor therapy, the real-time temperature monitoring is still a key issue in the practical application. Based on the temperature-impedance relation, a fixed-point magnetically induced magnetoacoustic measurement technology of treatment efficacy evaluation for tissue thermocoagulation during HIFU therapy is developed with a sensitive indicator of critical temperature monitoring in this study. With the acoustic excitation of a focused transducer in the magnetoacoustic tomography with the magnetic induction system, the distributions of acoustic pressure, temperature, electrical conductivity, and acoustic source strength in the focal region are simulated, and the treatment time dependences of the peak amplitude and the corresponding amplitude derivative under various acoustic powers are also achieved. It is proved that the strength peak of acoustic sources is generated by tissue thermocoagulation with a sharp conductivity variation. The peak amplitude of the transducer collected magnetoacoustic signal increases accordingly along with the increase in the treatment time under a fixed acoustic power. When the temperature in the range with the radial and axial widths of about ±0.46 mm and ±2.2 mm reaches 69 °C, an obvious peak of the amplitude derivative can be achieved and used as a sensitive indicator of the critical status of treatment efficacy. The favorable results prove the feasibility of real-time non-invasive temperature monitoring and treatment efficacy evaluation for HIFU ablation using the magnetically induced magnetoacoustic measurement, and might provide a new strategy for accurate dose control during HIFU therapy.

  6. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  7. Construction of a stable and homogeneous magnetic field at 10 milligauss for neutron electric dipole moment measurements: preparatory phase

    Energy Technology Data Exchange (ETDEWEB)

    Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)

    1996-08-01

    A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)

  8. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  9. Design report for a cryostable 3m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    International Nuclear Information System (INIS)

    Fast, R.; Grimson, J.; Kephart, R.; Leung, E.; Mruzek, M.; Theriot, D.; Wands, R.; Yamada, R.

    1981-10-01

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed td study anti pp collisions at very high center of mass energies. The central detector for the CDF employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 4 m long and 3 m in diameter. To provide the desired Δp/sub T//p/sub T/ less than or equal to 15% at 50 GeV/c using drift chambers with approx. 200μ resolution the field inside this volume should be 1.5 T. This field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10 6 A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe a design for a cryostable superconducting solenoid intended to meet the requirements of the Fermilab ies TDF

  10. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  11. Investigation on Electromagnetic Models of High-Speed Solenoid Valve for Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Jianhui Zhao

    2017-01-01

    Full Text Available A novel formula easily applied with high precision is proposed in this paper to fit the B-H curve of soft magnetic materials, and it is validated by comparison with predicted and experimental results. It can accurately describe the nonlinear magnetization process and magnetic saturation characteristics of soft magnetic materials. Based on the electromagnetic transient coupling principle, an electromagnetic mathematical model of a high-speed solenoid valve (HSV is developed in Fortran language that takes the saturation phenomena of the electromagnetic force into consideration. The accuracy of the model is validated by the comparison of the simulated and experimental static electromagnetic forces. Through experiment, it is concluded that the increase of the drive current is conducive to improving the electromagnetic energy conversion efficiency of the HSV at a low drive current, but it has little effect at a high drive current. Through simulation, it is discovered that the electromagnetic energy conversion characteristics of the HSV are affected by the drive current and the total reluctance, consisting of the gap reluctance and the reluctance of the iron core and armature soft magnetic materials. These two influence factors, within the scope of the different drive currents, have different contribution rates to the electromagnetic energy conversion efficiency.

  12. The large superconducting solenoids for the g-2 muon storage ring

    International Nuclear Information System (INIS)

    Bunce, G.; Cullen, J.; Danby, G.

    1994-01-01

    The g-2 muon storage ring at Brookhaven National Laboratory consists of four large superconducting solenoids. The two outer solenoids, which are 15.1 meters in diameter, share a common cryostat. The two inner solenoids, which are 13.4 meters in diameter, are in separate cryostats. The two 24 turn inner solenoids are operated at an opposite polarity from the two 24 turn outer solenoids. This generates a dipole field between the inner and outer solenoids. The flux between the solenoids is returned through a C shaped iron return yoke that also shapes the dipole field. The integrated field around the 14 meter diameter storage ring must be good to about 1 part in one million over the 90 mm dia. circular cross section where the muons are stored, averaged over the azimuth. When the four solenoids carry their 5300 A design current, the field in the 18 centimeter gap between the poles is 1.45 T. When the solenoid operates at its design current 5.5 MJ is stored between the poles. The solenoids were wound on site at Brookhaven National Laboratory. The cryostats were built around the solenoid windings which are indirectly cooled using two-phase helium

  13. IE Information Notice No. 85-17, Supplement 1: Possible sticking of ASCO solenoid valves

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    This notice is to inform recipients of the results of follow up investigations regarding the reasons for sticking of Automatic Switch Company (ASCO) solenoid valves used to shut main steam isolation valves (MSIVs) under accident conditions. GE has recommend that the licensee replace the potentially contaminated MSIV solenoid valves and institute a periodic examination and cleaning of the MSIV solenoid valves. Grand Gulf has replaced the eight MSIV HTX832320V dual solenoid valves with fully environmentally qualified ASCO Model NP 8323A20E dual solenoid valves. The environmentally qualified valve Model NP 8323A20E was included in a control sample placed in the test ovens with the solenoid valves that stuck at Grand Gulf. The environmentally qualified model did not stick under the test conditions that cause sticking in the other solenoid valves

  14. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    Science.gov (United States)

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM

  15. Size-dependent magnetization dynamics in individual Ni80Fe20 disk using micro-focused Brillouin Light Scattering spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Shimon

    2015-09-01

    Full Text Available A direct and systematic investigation of the magnetization dynamics in individual circular Ni80Fe20 disk of diameter (D in the range from 300 nm to 1 μm measured using micro-focused Brillouin Light Scattering (μ-BLS spectroscopy is presented. At high field, when the disks are in a single domain state, the resonance frequency of the uniform center mode is observed to reduce with reducing disk’s diameter. For D = 300 nm, additional edge and end-domains resonant modes are observed due to size effects. At low field, when the disks are in a vortex state, a systematic increase of resonant frequency of magnetostatic modes in a vortex state with the square root of the disks’ aspect ratio (thickness divided by radius is observed. Such dependence diminishes for disks with larger aspect ratio due to an increasing exchange energy contribution. Micromagnetic simulations are in excellent agreement with the experiments.

  16. INTERSTELLAR PICKUP ION ACCELERATION IN THE TURBULENT MAGNETIC FIELD AT THE SOLAR WIND TERMINATION SHOCK USING A FOCUSED TRANSPORT APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Junye; Roux, Jakobus A. le; Arthur, Aaron D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q -Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape ( q -value) and the standard deviation ( σ -value) of the q -Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  17. Successful Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for Recurrent Uterine Fibroid Previously Treated with Uterine Artery Embolization

    Directory of Open Access Journals (Sweden)

    Sang-Wook Yoon

    2010-01-01

    Full Text Available A 45-year-old premenopausal woman was referred to our clinic due to recurring symptoms of uterine fibroids, nine years after a uterine artery embolization (UAE. At the time of screening, the patient presented with bilateral impairment and narrowing of the uterine arteries, which increased the risk of arterial perforation during repeated UAE procedures. The patient was subsequently referred for magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS treatment. Following the treatment, the patient experienced a significant improvement in symptoms (symptom severity score was reduced from 47 to 12 by 1 year post-treatment. MR images at 3 months showed a 49% decrease in fibroid volume. There were no adverse events during the treatment or the follow-up period. This case suggests that MRgFUS can be an effective treatment option for patients with recurrent fibroids following previous UAE treatment.

  18. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source

    International Nuclear Information System (INIS)

    Walder, A.J.; Freedman, P.A.

    1992-01-01

    An inductively coupled plasma source was coupled to a magnetic sector mass analyser equipped with seven Faraday detectors. An electrostatic filter located between the plasma source and the magnetic sector was used to create a double focusing system. Isotopic ratio measurements of uranium and lead standards revealed levels of internal and external precision comparable to those obtained using thermal inonization mass spectrometry. An external precision of 0.014% was obtained from the 235 U: 238 U measurement of six samples of a National Bureau of Standards (NBS) Standard Reference Material (SRM) U-500, while an RSD of 0.022% was obtained from the 206 Pb: 204 Pb measurement of six samples of NBS SRM Pb-981. Measured isotopic ratios deviated from the NBS value by approximately 0.9% per atomic mass unit. This deviation approximates to a linear function of mass bias and can therefore be corrected for by the analysis of standards. The analysis of NBS SRM Sr-987 revealed superior levels of internal and external precision. The normalization of the 87 Sr: 86 Sr ratio to the 86 Sr: 88 Sr ratio reduced the RSD to approximately 0.008%. The measured ratio was within 0.01% of the NBS value and the day-to-day reproducibility was consistent within one standard deviation. (author)

  19. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  20. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max

    2012-12-15

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  1. Extensive characterisation of advanced manufacturing solutions for the ITER Central Solenoid pre-compression system

    CERN Document Server

    Langeslag, S.A.E.; Libeyre, P.; Marcinek, D.J.; Zhang, Z.

    2015-01-01

    The ITER Central Solenoid (CS), positioned in the center of the ITER tokamak, will provide a magnetic field, contributing to the confinement of the plasma. The 13 m high CS consists of a vertical stack of 6 independently driven modules, dynamically activated. Resulting opposing currents can lead to high separation forces. A pre-compression structure is implemented to counteract these opposing forces, by realising a continuous 180 MN coil-to-coil contact loading. Preload is applied by mechanical fastening via 9 subunits, positioned along the coil stack, each consisting of 2 outer and 1 inner tie plate. The tie plates therefore need to feature outstanding mechanical behaviour in a large temperature range. High strength, Nitronic®-50 type F XM-19 austenitic stainless steel is selected as candidate material. The linearised stress distribution reaches approximately 250 MPa, leading to a required yield strength of 380 MPa at room temperature. Two different manufacturing methods are being studied for the procuremen...

  2. Worchester Solenoid Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air in-leakage or loss of He. The valves have couplings for transverse actuator mounting

  3. System of cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Camilleri, L.; Blumenfeld, B.J.; Dimcovski, Z.

    1978-01-01

    A superconducting solenoid at the CERN ISR was equipped with a system of high accuracy cylindrical drift chambers. This detector consists of eight layers of field shaped drift cells with a delay line opposite each sense wire to provide coupled two dimensional readout. The design, construction, and operation of this system are discussed. The resolution and performance of the delay lines and sense wires under ISR running conditions are shown

  4. HIE-ISOLDE CRYO-MODULE Assembly - Superconducting Solenoid

    CERN Multimedia

    Leclercq, Yann

    2016-01-01

    Assembly of the cryo-module components in SM18 cleanroom. The superconducting solenoid (housed inside its helium vessel) is cleaned, prepared then installed on the supporting frame of the cryo-module and connected to the helium tank, prior to the assembly of the RF cavities on the structure. The completed first 2 cryo-modules installed inside the HIE-ISOLDE-LINAC ready for beam operation is also shown.

  5. Synchrotron oscillation effects on an rf-solenoid spin resonance

    Science.gov (United States)

    Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.

    2012-12-01

    New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.

  6. Sprag solenoid brake. [development and operations of electrically controlled brake

    Science.gov (United States)

    Dane, D. H. (Inventor)

    1974-01-01

    The development and characteristics of an electrically operated brake are discussed. The action of the brake depends on energizing a solenoid which causes internally spaced sprockets to contact the inner surface of the housing. A spring forces the control member to move to the braking position when the electrical function is interrupted. A diagram of the device is provided and detailed operating principles are explained.

  7. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  8. Worcester Solenoid-Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as Integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air in leakage or loss of He. All valves have coupling for transverse actuator mounting

  9. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    Science.gov (United States)

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  10. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    Science.gov (United States)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  11. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    Science.gov (United States)

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  12. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    Directory of Open Access Journals (Sweden)

    Xiaochun Song

    2017-11-01

    Full Text Available Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs, two shear (SH waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  13. SAFE AND FAST QUENCH RECOVERY OF LARGE SUPERCONDUCTING SOLENOIDS COOLED BY FORCED TWO-PHASE HELIUM FLOW

    International Nuclear Information System (INIS)

    Jia, L.X.

    1999-01-01

    The cryogenic characteristics in energy extraction of the four fifteen-meter-diameter superconducting solenoids of the g-2 magnet are reported in this paper. The energy extraction tests at full-current and half-current of its operating value were deliberately carried out for the quench analyses and evaluation of the cryogenic system. The temperature profiles of each coil mandrel and pressure profiles in its helium cooling tube during the energy extraction are discussed. The low peak temperature and pressure as well as the short recovery time indicated the desirable characteristics of the cryogenic system

  14. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    International Nuclear Information System (INIS)

    Kim, S.B.; Ikegami, T.; Matsunaga, J.; Fujii, Y.; Onodera, H.

    2013-01-01

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method

  15. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

    2012-11-28

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  16. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  17. Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms

    OpenAIRE

    Muniz, Sérgio R.; Bhattacharya, M.; Bagnato, Vanderlei S.

    2010-01-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite so...

  18. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni, Pejman; Halpern, Casey H.; Pauly, Kim Butts [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Elias, Jeff [Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2016-09-15

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses

  19. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Operating Procedures

    International Nuclear Information System (INIS)

    Hance, R.

    1998-01-01

    This procedure is used when it is necessary to operate the solenoid energization, controls, interlocks and quench detection system. Note that a separate procedure exists for operating the solenoid 'cryogenic' systems. Only D0 Control Room Operators or the Project Electrical Engineer are qualified to execute these procedures or operate the solenoid system. This procedure assumes that the operator is familiar with using the Distributed Manufacturing Automation and Control Software (DMACS).

  20. A simple formula for emittance growth due to spherical aberration in a solenoid lens

    International Nuclear Information System (INIS)

    Kumar, V.; Phadte, D.; Patidar, C.B.

    2011-01-01

    We analyse the beam dynamics in a solenoid without the paraxial approximation, including up to the fifth order term in the radial displacement. We use this analysis to derive expressions for the coefficients of spherical aberration in terms of the on-axis field profile of the solenoid. Under the thin lens approximation, a simple formula is derived for the growth of rms emittance resulting due to spherical aberration in a solenoid. (author)

  1. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Madami, M., E-mail: marco.madami@fisica.unipg.it; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Moriyama, T.; Tanaka, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Siracusano, G.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, Bari (Italy)

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.

  2. Controlled fabrication of nano-scale double barrier magnetic tunnel junctions using focused ion beam milling method

    International Nuclear Information System (INIS)

    Wei, H.X.; Wang, T.X.; Zeng, Z.M.; Zhang, X.Q.; Zhao, J.; Han, X.F.

    2006-01-01

    The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni 79 Fe 21 (5)/Ir 22 Mn 78 (12)/Co 6 Fe 2 B 2 (4)/Al(1) -oxide/Co 6 Fe 2 B 2 (6)/Al (1)-oxide/Co 6 Fe 2 B 2 (4)/Ir 22 Mn 78 (12)/Ni 79 Fe 21 (5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nmx400 nm, 200 nmx200 nm nano-scale were prepared and their R-H, I-V characteristics were measured.

  3. [Neuroprotective subthalamotomy in Parkinson's disease. The role of magnetic resonance-guided focused ultrasound in early surgery].

    Science.gov (United States)

    Guridi, Jorge; Marigil, Miguel; Becerra, Victoria; Parras, Olga

    Subthalamic nucleus hyperactivity in Parkinson's disease may be a very early phenomenon. Its start is not well known, and it may occur during the pre-symptomatic disease stage. Glutamatergic hyperactivity may be neurotoxic over the substantia nigra compacta dopaminergic neurons. If this occurred, the excitatory neurotransmitter, glutamate, should affect the neurons that maintain a high turnover as a compensatory mechanism. Would a subthalamic nucleus lesion decrease this hyperactivity and thus be considered as a neuroprotective mechanism for dopaminergic neurons? The authors hypothesise about the possibility to perform surgery on a subthalamic nucleus lesion at a very early stage in order to avoid the neurotoxic glutamatergic effect over the dopaminergic neurons, and therefore be considered as a neuroprotective surgery able to alter the progress of the disease during early motor symptoms. In this regard, magnetic resonance-guided focused ultrasound techniques open a new window in the stereotactic armamentarium. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Effects of Slip Planes on Stresses in MICE Coupling Solenoid Coil Assembly

    International Nuclear Information System (INIS)

    Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Cheng, Y.; Green, Michael A.

    2010-01-01

    The MICE superconducting coupling solenoid magnet is made from copper matrix Nb-Ti conductors with inner radius of 750 mm, length of 285 mm and thickness of 110.4 mm at room temperature. The coil is to be wound on a mandrel made of aluminum. The peak magnetic field on the conductor is about 7.3 T when fully charged at 210 A. High magnetic field and large size make the stress inside the coupling coil assembly relatively high during cool down and full energizing. The shear stress between coil winding and aluminum casing may cause premature quench. To avoid quench potential induced by stress, slip planes were designed for the coil assembly. In this paper, FE models with and without slip planes for it have been developed to simulate the stresses during the process including winding, cooling down and charging. The stress distribution in the coil assembly with and without slip planes was investigated. The results show that slip planes with low friction coefficients can improve the stress condition in the coil, especially reduce the shear stress largely so that improve the stability.

  5. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  6. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Directory of Open Access Journals (Sweden)

    Shitong Mao

    2018-05-01

    Full Text Available Many medical implants need to be designed in the shape of a cylinder (rod, a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT direction is from the external power transmission pad (a planar coil to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT. The power transfer efficiency (PTE relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  7. Proton beam transport experiments with pulsed high-field magnets at the Dresden laser acceleration source Draco

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Kraft, Stephan; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2016-07-01

    Compact laser-driven ion accelerators are a potential alternative to large and expensive conventional accelerators. High-power short-pulse lasers, impinging on e.g. thin metal foils, enable multi-MeV ion acceleration on μm length and fs to ps time scale. The generated ion bunches (typically protons) show unique beam properties, like ultra-high pulse dose. Nevertheless, laser accelerators still require substantial development in reliable beam generation and transport. Recently developed pulsed magnets meet the demands of laser acceleration and open up new research opportunities: We present a pulsed solenoid for effective collection and focusing of laser-accelerated protons that acts as link between fundamental research and application. The solenoid is powered by a capacitor-based pulse generator and can reach a maximum magnetic field of 20 T. It was installed in the target chamber of the Draco laser at HZDR. The transported beam was detected by means of radiochromic film, scintillator and Thomson parabola spectrometer. We present the characterization of the solenoid with regard to future application in radiobiological irradiation studies. Furthermore, a detailed comparison to previous experiments with a similar magnet at the PHELIX laser at GSI, Darmstadt is provided.

  8. Comparing superconducting and permanent magnets for magnetic refrigeration

    Directory of Open Access Journals (Sweden)

    R. Bjørk

    2016-05-01

    Full Text Available We compare the cost of a high temperature superconducting (SC tape-based solenoid with a permanent magnet (PM Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  9. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  10. Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle

    Directory of Open Access Journals (Sweden)

    P. Tenenbaum

    2003-06-01

    Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.

  11. Detection circuit of solenoid valve operation and control rod drive mechanism utilizing the circuit

    International Nuclear Information System (INIS)

    Ono, Takehiko.

    1976-01-01

    Object: To detect the operation of a plunger and detect opening and closing operations of a solenoid valve driving device due to change in impedance of a coil for driving the solenoid valve to judge normality and abnormality of the solenoid valve, thereby increasing reliance and safety of drive and control apparatus of control rods. Structure: An arrangement comprises a drive and operation detector section wherein the operation of a solenoid driving device for controlling power supply to a coil for driving the solenoid valve to control opening and closing of the solenoid valve, and a plunger operation detector section for detecting change in impedance of the drive coil to detect that the plunger of the solenoid valve is either in the opening direction or closing direction, whereby a predetermined low voltage such as not to activate the solenoid valve even when the solenoid valve is open or closed is applied to detect a current flowing into the coil at that time, thus detecting an operating state of the plunger. (Yoshino, Y.)

  12. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Liu Qianfeng; Bo Hanliang; Qin Benke

    2009-01-01

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  13. Assessment of nonintrusive methods for monitoring the operational readiness of solenoid-operated valves

    International Nuclear Information System (INIS)

    Kryter, R.C.

    1988-01-01

    Solenoid-operated valves (SOVs) are being studied at Oak Ridge National Laboratory as part of the USNRC Nuclear Plant Aging Research (NPAR) Program. The primary objective of the study is to identify and recommend methods for inspection, surveillance, and maintenance of SOVs that can ensure their operational readiness-- that is, their ability to perform required safety functions under all anticipated operating conditions. An earlier (Phase I) study described SOV failure modes and causes and identified measurable parameters that might be used to monitor the various degradations that lead to functional failure. The present (Phase II) study focuses on devising and then demonstrating the effectiveness of techniques and/or equipment with which to measure the previously identified performance parameters and thus detect and trend the progress of any degradation. Several nonintrusive techniques are currently under investigation. Recent experimental results which demonstrate the feasibility and practicality of the techniques being studied are presented. 4 refs., 6 figs., 2 tabs

  14. Gas-mixing system for drift chambers using solenoid valves

    International Nuclear Information System (INIS)

    Cooper, W.E.; Sugano, K.; Trentlage, D.B.

    1983-04-01

    We describe an inexpensive system for mixing argon and ethane drift chamber gas which is used for the E-605 experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow rate independent. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running

  15. An earthworm-like actuator using segmented solenoids

    International Nuclear Information System (INIS)

    Shin, Bu Hyun; Choi, Seung-Wook; Lee, Seung-Yop; Bang, Young-Bong

    2011-01-01

    A biomimetic actuator is developed using four segmented solenoids mimicking earthworm locomotion. The proposed actuator not only has a simple structure composed of cores and coils, but also enables bi-directional actuation and high speed locomotion regardless of friction conditions. We have implemented theoretical analysis to design the optimal profiles of input current signal for maximum speed and predict the output force and stroke. Experiments using a prototype show that the earthworm-like actuator travels with a speed above 60 mm s −1 regardless of friction conditions

  16. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  17. Rectal cancer staging: focus on the prognostic significance of the findings described by high-resolution magnetic resonance imaging

    Science.gov (United States)

    2013-01-01

    Abstract High-resolution (HR) magnetic resonance imaging (MRI) has become an indispensable tool for multidisciplinary teams (MDTs) addressing rectal cancer. It provides anatomic information for surgical planning and allows patients to be stratified into different groups according to the risk of local and distant recurrence. One of the objectives of the MDT is the preoperative identification of high-risk patients who will benefit from neoadjuvant treatment. For this reason, the correct evaluation of the circumferential resection margin (CRM), the depth of tumor spread beyond the muscularis propria, extramural vascular invasion and nodal status is of the utmost importance. Low rectal tumors represent a special challenge for the MDT, because decisions seek a balance between oncologic safety, in the pursuit of free resection margins, and the patient’s quality of life, in order to preserve sphincter function. At present, the exchange of information between the different specialties involved in dealing with patients with rectal cancer can rank the contribution of colleagues, auditing their work and incorporating knowledge that will lead to a better understanding of the pathology. Thus, beyond the anatomic description of the images, the radiologist’s role in the MDT makes it necessary to know the prognostic value of the findings that we describe, in terms of recurrence and survival, because these findings affect decision making and, therefore, the patients’ life. In this review, the usefulness of HR MRI in the initial staging of rectal cancer and in the evaluation of neoadjuvant treatment, with a focus on the prognostic value of the findings, is described as well as the contribution of HR MRI in assessing patients with suspected or confirmed recurrence of rectal cancer. PMID:23876415

  18. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for subinsular metastatic adenocarcinoma: technical case report.

    Science.gov (United States)

    Hawasli, Ammar H; Ray, Wilson Z; Murphy, Rory K J; Dacey, Ralph G; Leuthardt, Eric C

    2012-06-01

    To describe the novel use of the AutoLITT System (Monteris Medical, Winnipeg, Manitoba, Canada) for focused laser interstitial thermal therapy (LITT) with intraoperative magnetic resonance imaging (MRI) and stereotactic image guidance for the treatment of metastatic adenocarcinoma in the left insula. The patient was a 61-year-old right-handed man with a history of metastatic adenocarcinoma of the colon. He had previously undergone resection of multiple lesions, Gamma Knife radiosurgery, and whole-brain radiation. Despite treatment of a left insular tumor, serial imaging revealed that the lesion continued to enlarge. Given the refractory nature of this tumor to radiation and the deep-seated location, the patient elected to undergo LITT treatment. The center of the lesion and entry point on the scalp were identified with STEALTH (Medtronic, Memphis, Tennessee) image-guided navigation. The AXiiiS Stereotactic Miniframe (Monteris Medical) for the LITT system was secured onto the skull, and a trajectory was defined to achieve access to the centroid of the tumor. After a burr hole was made, a gadolinium template probe was inserted into the AXiiiS base. The trajectory was confirmed via an intraoperative MRI, and the LITT probe driver was attached to the base and CO2-cooled, side-firing laser LITT probe. The laser was activated and thermometry images were obtained. Two trajectories, posteromedial and anterolateral, produced satisfactory tumor ablation. LITT with intraoperative MRI and stereotactic image guidance is a newly available, minimally invasive, and therapeutically viable technique for the treatment of deep seated brain tumors.

  19. Rectal cancer staging: focus on the prognostic significance of the findings described by high-resolution magnetic resonance imaging.

    Science.gov (United States)

    Dieguez, Adriana

    2013-07-22

    High-resolution (HR) magnetic resonance imaging (MRI) has become an indispensable tool for multidisciplinary teams (MDTs) addressing rectal cancer. It provides anatomic information for surgical planning and allows patients to be stratified into different groups according to the risk of local and distant recurrence. One of the objectives of the MDT is the preoperative identification of high-risk patients who will benefit from neoadjuvant treatment. For this reason, the correct evaluation of the circumferential resection margin (CRM), the depth of tumor spread beyond the muscularis propria, extramural vascular invasion and nodal status is of the utmost importance. Low rectal tumors represent a special challenge for the MDT, because decisions seek a balance between oncologic safety, in the pursuit of free resection margins, and the patient's quality of life, in order to preserve sphincter function. At present, the exchange of information between the different specialties involved in dealing with patients with rectal cancer can rank the contribution of colleagues, auditing their work and incorporating knowledge that will lead to a better understanding of the pathology. Thus, beyond the anatomic description of the images, the radiologist's role in the MDT makes it necessary to know the prognostic value of the findings that we describe, in terms of recurrence and survival, because these findings affect decision making and, therefore, the patients' life. In this review, the usefulness of HR MRI in the initial staging of rectal cancer and in the evaluation of neoadjuvant treatment, with a focus on the prognostic value of the findings, is described as well as the contribution of HR MRI in assessing patients with suspected or confirmed recurrence of rectal cancer.

  20. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull.

    Science.gov (United States)

    Chang, Won Seok; Jung, Hyun Ho; Zadicario, Eyal; Rachmilevitch, Itay; Tlusty, Tal; Vitek, Shuki; Chang, Jin Woo

    2016-02-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) was recently introduced as treatment for movement disorders such as essential tremor and advanced Parkinson's disease (PD). Although deep brain target lesions are successfully generated in most patients, the target area temperature fails to increase in some cases. The skull is one of the greatest barriers to ultrasonic energy transmission. The authors analyzed the skull-related factors that may have prevented an increase in target area temperatures in patients who underwent MRgFUS. The authors retrospectively reviewed data from clinical trials that involved MRgFUS for essential tremor, idiopathic PD, and obsessive-compulsive disorder. Data from 25 patients were included. The relationships between the maximal temperature during treatment and other factors, including sex, age, skull area of the sonication field, number of elements used, skull volume of the sonication field, and skull density ratio (SDR), were determined. Among the various factors, skull volume and SDR exhibited relationships with the maximum temperature. Skull volume was negatively correlated with maximal temperature (p = 0.023, r(2) = 0.206, y = 64.156 - 0.028x, whereas SDR was positively correlated with maximal temperature (p = 0.009, r(2) = 0.263, y = 49.643 + 11.832x). The other factors correlate with the maximal temperature, although some factors showed a tendency to correlate. Some skull-related factors correlated with the maximal target area temperature. Although the number of patients in the present study was relatively small, the results offer information that could guide the selection of MRgFUS candidates.

  1. Design verification methodology for a solenoid valve for industrial applications

    International Nuclear Information System (INIS)

    Park, Chang Dae; Lim, Byung Ju; Chun, Kyung Yul

    2015-01-01

    Solenoid operated valves (SOV) are widely used in many applications due to their fast dynamic responses, cost effectiveness, and less contamination sensitive characteristics. In this paper, we tried to provide a convenient method of design verification of SOV to design engineers who depend on their experiences and experiment during design and development process of SOV. First, we summarize a detailed procedure for designing SOVs for industrial applications. All of the design constraints are defined in the first step of the design, and then the detail design procedure is presented based on design experiences as well as various physical and electromagnetic relationships. Secondly, we have suggested a verification method of this design using theoretical relationships, which enables optimal design of SOV from a point of view of safety factor of design attraction force. Lastly, experimental performance tests using several prototypes manufactured based on this design method show that the suggested design verification methodology is appropriate for designing new models of solenoids. We believe that this verification process is novel logic and useful to save time and expenses during development of SOV because verification tests with manufactured specimen may be substituted partly by this verification methodology.

  2. Focusing electrode and coaxial reflector used for reducing the guiding magnetic field of the Ku-band foilless transit-time oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Junpu; Zhang, Jiande; He, Juntao, E-mail: hejuntao12@163.com; Wang, Lei; Deng, Bingfang [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-08-15

    Based on the theoretical analysis of the intense relativistic electron beam propagation in the coaxial drift-tube, a focusing electrode and a coaxial reflector is proposed to lessen the demand of the coaxial Ku-band foilless transit-time oscillator (TTO) for the guiding magnetic field. Moreover, a Ku-band TTO with the focusing electrode and the coaxial reflector is designed and studied by particle in cell simulation. When the diode voltage is 390 kV, the beam current 7.8 kA, and the guiding magnetic field is only 0.3 T, the device can output 820 MW microwave pulse at 14.25 GHz by means of the simulation. However, for the device without them, the output power is only 320 MW. The primary experiments are also carried out. When the guiding magnetic field is 0.3 T, the output power of the device with the focusing electrode and the coaxial reflector is double that of the one without them. The simulation and experimental results prove that the focusing electrode and the coaxial reflector are effective on reducing the guiding magnetic field of the device.

  3. Analysis of transverse RMS emittance growth of a beam induced by spherical and chromatic aberration in a solenoidal field

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Radhakanta, E-mail: radhakanta.physics@gmail.com [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nayak, Biswaranjan [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Sharma, Archana; Mittal, Kailash C. [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-01-21

    In a medium energy beam transport line transverse rms emittance growth associated with spherical aberration is analysed. An analytical expression is derived for beam optics in a solenoid field considering terms up to the third order in the radial displacement. Two important phenomena: effect of spherical aberrations in axial-symmetric focusing lens and influence of nonlinear space charge forces on beam emittance growth are discussed for different beam distributions. In the second part nonlinear effect associated with chromatic aberration that describes the growth of emittance and distortion of phase space area is discussed.

  4. Study of a microstrip gas detector for the Compact Muon Solenoid experiment; Etude d`un detecteur a micropistes pour l`experience Compact Muon Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Clergeau, J F [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-06-19

    The micro-strip gas chambers (MSGC) were realized due to the technological advances in the field of micro-electronics. The wire of usual gas counters is replaced in these detectors by metallic stripes as a periodic sequence of electrodes (anodes and cathodes) spaced by around 200 {mu}m. At a distance of 3 mm above the strip containing substrate, a metallic plane is placed, thus defining the gaseous room where the passage of a charged particle produces by ionization a primary electron signal collected by the detector anodes. Due to its granularity a MSGC can operate under very high particle fluxes since charge can be collected very rapidly. Also, the impact parameters can be determined with high accuracy due to the high space and time resolutions. The Compact Muon Solenoid (CMS) or the MSGC detectors planned to equip one of the experiments proposed for LHC should detect, in extreme operational conditions, the particle impacts in a 4 Tesla magnetic field, for around ten years and for a particle flux of around 10{sup 4} Hz/mm{sup 2}. The CMS detector is described in chapter 2. The operation principle and the problems encountered in the development of MSGC detectors are summarized in chapter 3. The chapter 4 is dedicated to the study of the performances of MSGCs in magnetic fields. In the chapters 5 to 7 the processing of the signal from detectors of this type is described, particularly, the performances of various ways of treat the signal in terms of detection efficiency and counting loads are presented.The chapter 8 presents the results obtained with the prototype obtained at IPNL while the chapter 9 gives the conclusions of the performed works. (author) 55 refs.

  5. A conceptual design of the International Thermonuclear Experimental Reactor for the Central Solenoid

    International Nuclear Information System (INIS)

    Heim, J.R.; Parker, J.M.

    1990-01-01

    Conceptual design of the International Thermonuclear Experimental Reactor (ITER) superconducting magnet system is nearing completion by the ITER Design Team, and one of the Central Solenoid (CS) designs is presented. The CS part of this magnet system will be a vertical stack of eight modules, approximately 16 m high, each having a approximate dimensions of: 4.1-m o.d., 2.8-m i.d., 1.9-m h. The peak field at the bore is approximately 13.5 T. Cable-in-conduit conductor with Nb 3 Sn composite wire will be used to wind the coils. The overall coil fabrication will use the insulate-wind-react-impregnate method. Coil modules will be fabricated using double-pancake coils with all splice joints located in the low-field region on the outside of the coils. All coils will be structurally graded with high-strength steel reinforcement which is co-wound with the conductor. We describe details of the CS coil design and analysis

  6. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-01-01

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  7. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-01-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  8. Plasma column development in the CO2 laser-heated solenoid

    International Nuclear Information System (INIS)

    Tighe, W.; Offenberger, A.A.; Capjack, C.E.

    1987-01-01

    Axial and radial plasma dynamics in the CO 2 laser-heated solenoid have been studied experimentally and numerically. The axial behavior is found to be well described by a self-regulated bleaching wave model. The radial expansion is found to be strongly dependent on the focusing ratio of the input laser beam. With a fast focus ( f/5), the early radial expansion rate is twice that found with a slower focusing arrangement ( f/15). The faster focusing ratio also results in a significantly wider plasma column. On the other hand, no significant dependence of f/number on the axial propagation was found. A finite ionization time and the rapid formation of a density minimum on axis are observed and verify earlier experimental results. Detailed comparisons are made with a 2-D magnetohydrodynamic (MHD) and laser propagation code. The axial and radial plasma behavior and, in particular, the dependence of the radial behavior on the focal ratio of the laser are reasonably well supported by the simulation results. Computational results are also in good agreement with experimental measurements of temperature and density using stimulated scattering (Brillouin, Raman) and interferometry diagnostic techniques

  9. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  10. Magnetic Resonance–Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William, E-mail: William.Chu@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Staruch, Robert M. [Clinical Sites Research Program, Philips Research, Cambridge, Massachusetts (United States); Pichardo, Samuel [Thunder Bay Regional Research Institute, Thunder Bay, Ontario (Canada); Physics and Electrical Engineering, Lakehead University, Thunder Bay, Ontario (Canada); Tillander, Matti; Köhler, Max O. [MR Therapy, Philips Healthcare, Vantaa (Finland); Huang, Yuexi [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Ylihautala, Mika [MR Therapy, Philips Healthcare, Vantaa (Finland); McGuffin, Merrylee [Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario (Canada); Czarnota, Gregory [Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Hynynen, Kullervo [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada)

    2016-07-15

    Purpose: To evaluate the feasibility of magnetic resonance–guided high-intensity focused ultrasound (MR-HIFU) mild hyperthermia in deep tissue targets for enhancing radiation therapy and chemotherapy in the context of recurrent rectal cancer. A preclinical study was performed to evaluate the safety and performance of MR-HIFU mild hyperthermia. A prospective imaging study was performed in volunteers with rectal cancer to evaluate MR thermometry quality near the rectum and accessibility of rectal tumors using MR-HIFU. Methods and Materials: Mild hyperthermia was performed in pig thigh (9 sonications, 6 pigs) using a clinical MR-HIFU system. Targets near the rectal wall and deep thigh were evaluated. Thermal maps obtained in 6 planes every 3.2 seconds were used to control sonications in 18-mm diameter treatment regions at temperatures of 42°C to 42.5°C for 10 to 60 minutes. Volunteer imaging-only studies to assess the quality of MR thermometry (without heating) were approved by the institutional research ethics board. Anatomic and MR thermometry images were acquired in consenting volunteers with rectal cancer. In 3 of 6 study participants, rectal filling with saline was used to reduce motion-related MR thermometry artifacts near the tumor. Results: In pigs, mean target temperature matched the desired hyperthermia temperature within 0.2°C; temporal standard deviation ≤0.5°C. With optimized control thresholds, no undesired tissue damage was observed. In human volunteers, MR temperature measurements had adequate precision and stability, especially when rectal filling was used to reduce bowel motion. Conclusions: In pigs, MR-HIFU can safely deliver mild hyperthermia (41°C-43°C) to a targeted volume for 30 minutes. In humans, careful patient selection and preparation will enable adequate targeting for recurrent rectal cancers and sufficient MR temperature mapping stability to control mild hyperthermia. These results enable human trials of MR-HIFU hyperthermia.

  11. Clinical outcome of magnetic-resonance-guided focused ultrasound surgery (MRgFUS) in the treatment of symptomatic uterine fibroids

    International Nuclear Information System (INIS)

    Kamp, J.E.K.; Scheurig-Muenkler, C.; Beck, A.; David, M.; Hengst, S.

    2013-01-01

    Purpose: To investigate the clinical outcome of magnetic-resonance-guided focused ultrasound surgery (MRgFUS) treatment for symptomatic uterine fibroids in premenopausal women using the validated USF-QOL (Uterine Fibroid Symptom and Quality of Life) Questionnaire. Materials and Methods: 54 patients with symptomatic uterine fibroids were enrolled in this prospective study. The patients completed the UFS-QOL Questionnaire prior to MRgFUS treatment as well as after 3, 6, and 12 months. Results: The rate of technical success was 91.5 % (95.2 % after subtraction of screening errors). 6/54 patients (11 %) had other treatments (surgery, n = 4; UAE, n = 2), 8/54 (15 %) dropped out due to pregnancy, and 8/54 were lost to follow-up. The remaining group showed considerable symptom relief as early as after 3 months. The median overall quality of life score increased from 64.7 (quartile range QR: 49.8 - 77.6) before treatment to 77.6 (QR: 61.4 - 87.1) (p < 0.001), 78.4 (QR: 66.4 - 89.7) (p < 0.001), and 82.8 (QR: 69.8 - 92.2) (p < 0.001) at 3, 6, and 12 months, respectively. The corresponding median symptom severity score decreased from 46.9 (QR: 28.1 - 56.2) to 34.4 (QR: 21.9 - 43.7) at 3 months (p = 0.003) and 28.1 at 6 and 12 months (QR: 18.7 - 38.3, QR: 15.6 - 34.4) (p < 0.001, p = 0.002). The rate of complications requiring treatment was 9 %, and the rate of overall complications was 39 %. No major complications occurred. Conclusion: Our results indicate significant alleviation of fibroid-related symptoms within 12 months of MRgFUS with improvement beginning as early as 3 months after treatment. We observed no major complications, and some women became pregnant after MRgFUS. There was a low treatment failure rate of 11 %. (orig.)

  12. Magnetic Resonance–Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation

    International Nuclear Information System (INIS)

    Chu, William; Staruch, Robert M.; Pichardo, Samuel; Tillander, Matti; Köhler, Max O.; Huang, Yuexi; Ylihautala, Mika; McGuffin, Merrylee; Czarnota, Gregory; Hynynen, Kullervo

    2016-01-01

    Purpose: To evaluate the feasibility of magnetic resonance–guided high-intensity focused ultrasound (MR-HIFU) mild hyperthermia in deep tissue targets for enhancing radiation therapy and chemotherapy in the context of recurrent rectal cancer. A preclinical study was performed to evaluate the safety and performance of MR-HIFU mild hyperthermia. A prospective imaging study was performed in volunteers with rectal cancer to evaluate MR thermometry quality near the rectum and accessibility of rectal tumors using MR-HIFU. Methods and Materials: Mild hyperthermia was performed in pig thigh (9 sonications, 6 pigs) using a clinical MR-HIFU system. Targets near the rectal wall and deep thigh were evaluated. Thermal maps obtained in 6 planes every 3.2 seconds were used to control sonications in 18-mm diameter treatment regions at temperatures of 42°C to 42.5°C for 10 to 60 minutes. Volunteer imaging-only studies to assess the quality of MR thermometry (without heating) were approved by the institutional research ethics board. Anatomic and MR thermometry images were acquired in consenting volunteers with rectal cancer. In 3 of 6 study participants, rectal filling with saline was used to reduce motion-related MR thermometry artifacts near the tumor. Results: In pigs, mean target temperature matched the desired hyperthermia temperature within 0.2°C; temporal standard deviation ≤0.5°C. With optimized control thresholds, no undesired tissue damage was observed. In human volunteers, MR temperature measurements had adequate precision and stability, especially when rectal filling was used to reduce bowel motion. Conclusions: In pigs, MR-HIFU can safely deliver mild hyperthermia (41°C-43°C) to a targeted volume for 30 minutes. In humans, careful patient selection and preparation will enable adequate targeting for recurrent rectal cancers and sufficient MR temperature mapping stability to control mild hyperthermia. These results enable human trials of MR-HIFU hyperthermia.

  13. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling.

    Science.gov (United States)

    Yeo, Sin Yuin; Arias Moreno, Andrés J; van Rietbergen, Bert; Ter Hoeve, Natalie D; van Diest, Paul J; Grüll, Holger

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. A total of 12 healthy rat femurs were ablated using 10 W for 46 ± 4 s per sonication with 4 sonications for each femur. At 7 days after treatments, all animals underwent MR and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Then, six animals were euthanized. At 1 month following ablations, the remaining six animals were scanned again with MR and SPECT/CT prior to euthanization. Thereafter, both the HIFU-treated and contralateral control bones of three animals from each time interval were processed for histology, whereas the remaining bones were subjected to micro-CT (μCT), three-point bending tests, and micro-finite element (micro-FE) analyses. At 7 days after HIFU ablations, edema formation around the treated bones coupled with bone marrow and cortical bone necrosis was observed on MRI and histological images. SPECT/CT and μCT images revealed presence of bone modeling through an increased uptake of (99m)Tc-MDP and formation of woven bone, respectively. At 31 days after ablations, as illustrated by imaging and histology, healing of the treated bone and the surrounding soft tissue was noted, marked by decreased in amount of tissue damage, formation of scar tissue, and sub-periosteal reaction. The results of three-point bending tests showed no significant differences in elastic stiffness, ultimate load, and yield load between the HIFU-treated and contralateral control bones at 7 days and 1 month after treatments. Similarly, the elastic stiffness and Young's moduli determined by micro-FE analyses at both time intervals were not statistically different. Multimodality imaging and histological data illustrated the presence of HIFU-induced bone damage at the cellular level, which activated the

  14. [Magnetic resonance guided focused ultrasound surgery for pain palliation of bone metastases: early experience of clinical application in China].

    Science.gov (United States)

    Gu, Jianjun; Wang, Han; Tang, Na; Hua, Yingqi; Yang, Haiyan; Qiu, Yimin; Ge, Renbin; Zhou, Ying; Wang, Wenwen; Zhang, Guixiang

    2015-11-03

    To evaluate the safety and efficacy of magnetic resonance guided focused ultrasound surgery (MRgFUS) in treatment for pain palliation of bone metastases. Eighty-one patients of painful bone metastases were volunteered to screen for this study in Shanghai General Hospital from June 2014 to February 2015. Twenty-three patients among them were treated by MRgFUS, who was more than 18-years old, having the ability to fully understand the informed consent of the research, suffering with pain of numeric rating scale (NRS) ≥ 4, non-received radiotherapy or chemotherapy for pain palliation of bone metastases in the past two weeks. The NRS, the standard question of Brief Pain Inventory (BPI-QoL), and the standard question of Europe Organization for Research and Treatment of Cancer Quality of Life Questionnaire- Bone Metastases 22 (EORTC QLQ-BM22) were respectively recorded before and 1-week, 1-month, 3-month after the treatment. The related adverse events of MRgFUS were observed and recorded in 3 months after the treatment as well. (1)Twenty-three metastatic bone tumor lesions of 23 patients were treated by MRgFUS, the treatment data was as follows: the mean treatment time was (88 ± 33) minutes, the mean sonication number was 13 ± 8. (2) Adverse events included: pain in therapy area 3/23, which spontaneous relieving within one week; numbness in lower limb (1/23), which relieved after physiotherapy. (3) The NRS of before treatment and at 1-week, 1-month, and 3-month after treatment respectively was 6.0 ± 1.5, 3.7 ± 1.7,3.1 ± 2.0, and 2.2 ± 1.0,which significantly decreased after the treatment (P<0.01). (4) The BPI-QoL score of before treatment and at 1-week, 1-month, and 3-month after treatment respectively was 39 ± 16, 27 ± 18, 26 ± 18, and 21 ± 18, which significantly decreased after the treatment (P<0.01). (5) The EORTC QLQ-BM22 score of before treatment and at 1-week, 1-month, and 3-month after treatment respectively was 52 ± 13, 44 ± 12, 42 ± 12, and 39

  15. Influence of external magnetic field on parameters of surface two-focus spin-wave ferromagnetic lens

    International Nuclear Information System (INIS)

    Reshetnyak, S.A.; Berezhinskij, A.S.

    2012-01-01

    The influence of external magnetic field on refraction of surface spin wave propagating through inhomogeneity created in the form of a lens, that is a biaxial ferromagnet placed into uniaxial ferromagnetic medium, is studied.

  16. Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    International Nuclear Information System (INIS)

    Fast, R.; Grimson, J.; Kephart, R.

    1982-01-01

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired δp/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200μ resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10 6 A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A

  17. Detecting the position of the moving-iron solenoid by non-displacement sensor based on parameter identification of flux linkage characteristics

    Science.gov (United States)

    Wang, Xuping; Quan, Long; Xiong, Guangyu

    2013-11-01

    Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.

  18. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  19. Theoretical validation for changing magnetic fields of systems of permanent magnets of drum separators

    Science.gov (United States)

    Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.

    2018-03-01

    This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.

  20. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method