WorldWideScience

Sample records for solenoid power saving

  1. Embedded Solenoid Transformer for Power Conversion

    DEFF Research Database (Denmark)

    2015-01-01

    A resonant power converter for operation in the radio frequency range, preferably in the VHF, comprises at least one PCB-embedded transformer. The transformer is configured for radio frequency operation and comprises a printed circuit board defining a horizontal plane, the printed circuit board...... comprising at least two horizontal conductive layers separated by an isolating layer, a first embedded solenoid forming a primary winding of the transformer and a second embedded solenoid being arranged parallel to the first solenoid and forming a secondary winding of the transformer, wherein the first...

  2. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  3. ONU Power Saving Scheme for EPON System

    Science.gov (United States)

    Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki

    PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.

  4. Laser accelerated protons captured and transported by a pulse power solenoid

    OpenAIRE

    Burris-Mog, T.; Harres, K.; Zielbauer, B.; Bagnoud, V.; Herrmannsdoerfer, T.; Roth, M.; Cowan, T. E.; Nürnberg, F.; Busold, S.; Bussmann, M.; Deppert, O.; Hoffmeister, G.; Joost, M.; Sobiella, M.; Tauschwitz, A.

    2011-01-01

    Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we prese...

  5. Way to save nuclear power

    International Nuclear Information System (INIS)

    Brightsen, R.A.

    1979-01-01

    In the opinion of many citizens, including the majority of those who oppose it, nuclear power will never recover from the 1979 accident at Three Mile Island. But some of nuclear power's supporters hope that the accident will shatter past smugness and spur constructive self-criticism on the part of the companies that build reactors, the utilities that buy them, and the Federal regulators who oversee their operation--and that it will usher in an era of truly safe atomic electricity. The article reviews deficiencies of the existing nuclear regulation - industry framework, and what must be done

  6. Laser accelerated protons captured and transported by a pulse power solenoid

    Directory of Open Access Journals (Sweden)

    T. Burris-Mog

    2011-12-01

    Full Text Available Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we present simulation results of the available spectrum after transport through the gantry.

  7. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  8. Electric power production contra electricity savings

    International Nuclear Information System (INIS)

    Schleisner, L.; Grohnheit, P.E.; Soerensen, H.

    1991-01-01

    The expansion of electricity-producing plants has, in Denmark until now, taken place in accordance with the demand for electricity. Recently, it has been suggested that the cost of the further development of such systems is greater than the cost of instigating and carrying out energy conservation efforts. The aim of the project was to evaluate the consequences for power producing plants of a reduction of the electricity consumption of end-users. A method for the analysis of the costs involved in the system and operation of power plants contra the costs that are involved in saving electricity is presented. In developing a model of this kind, consideration is given to the interplay of the individual saving project and the existing or future electricity supply. Thus it can be evaluated to what extent it would be advisable to substitute investments in the development of the capacity of the power plants with investments in the reduction of electricity consumption by the end users. This model is described in considerable detail. It will be tested in representative situations and locations throughout the Nordic countries. (AB) 17 refs

  9. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  10. Preventive maintenance basis: Volume 16 -- Power operated relief valves, solenoid actuated. Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-07-01

    US nuclear plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This report provides an overview of the PM Basis project and describes use of the PM Basis database. This volume 16 of the report provides a program of PM tasks suitable for application to power operated relief valves (PORV's) that are solenoid actuated. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  11. Power saving regulated light emitting diode circuit

    International Nuclear Information System (INIS)

    Haville, G. D.

    1985-01-01

    A power saving regulated light source circuit, comprising a light emitting diode (LED), a direct current source and a switching transistor connected in series with the LED, a control voltage producing resistor connected in series with the LED to produce a control voltage corresponding to the current through the LED, a storage capacitor connected in parallel with the series combination of the LED and the resistor, a comparator having its output connected to the input of the transistor, the comparator having a reference input and a control input, a stabilized biasing source for supplying a stabilized reference voltage to the reference input, the control input of the comparator being connected to the control voltage producing resistor, the comparator having a high output state when the reference voltage exceeds the control voltage while having a low output state when the control voltage exceeds the reference voltage, the transistor being conductive in response to the high state while being nonconductive in response to the low state, the transistor when conductive being effective to charge the capacitor and to increase the control voltage, whereby the comparator is cycled between the high and low output states while the transistor is cycled between conductive and nonconductive states

  12. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  13. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Directory of Open Access Journals (Sweden)

    Shitong Mao

    2018-05-01

    Full Text Available Many medical implants need to be designed in the shape of a cylinder (rod, a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT direction is from the external power transmission pad (a planar coil to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT. The power transfer efficiency (PTE relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  14. LCLS Gun Solenoid Design Considerations

    International Nuclear Information System (INIS)

    Schmerge, John

    2010-01-01

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  15. Money in the bank : Feeling powerful increases saving

    NARCIS (Netherlands)

    Garbinsky, E.; Klesse, A.K.; Aaker, J.

    2014-01-01

    Across five studies, this research reveals that feeling powerful increases saving. This effect is driven by the desire to maintain one’s current state. When the purpose of saving is no longer to accumulate money but to spend it on a status-related product, the basic effect is reversed, and those who

  16. Energy-Saving RAM-Power Tap

    Science.gov (United States)

    Bruner, Alan Roy

    1987-01-01

    Reverse-flow HEXFET(R) minimizes voltage drop and power dissipation. HEXFET(R) scheme reduces voltage drop by approximately 80 percent. Design for power tap for random-access memory (RAM) has potential application in digital systems.

  17. Can global warming save nuclear power?

    International Nuclear Information System (INIS)

    Pearce, D.

    1994-01-01

    Nuclear powered electricity generation in the United Kingdom has an uncertain future. The relative costs of generating electricity by nuclear fission compared to other means and the need for a desirable mixture or ''portfolio'' of energy sources in the electricity industry are identified as the key to this uncertainty. The author argues that Government commitments to reducing Carbon Monoxide (CO) emissions, and hence global warming, may strengthen arguments in favour of a firm commitment to nuclear power, as even modern fossil-fuelled power plants emit nearly 90 times as much CO as nuclear plants. (UK)

  18. Development of Android based Smart Power Saving System

    Science.gov (United States)

    Gupta, Ashutosh; Kumar, Pradeep; Ghosh, Tathagata; Bhawna, Shruthi. S.

    2017-08-01

    An android based smart power saving system has been presented in this paper. For this purpose, an application is developed for controlling the intensity of an AC supply using a dimmer circuit in android platform and to monitor the current flow on different intensity level a current sensor is used in the circuit. Dimmer circuit provides a 16-different intensity level to control the flow of current and help in power saving. The system is very simple and robust as it is based on android platform.

  19. Saving Energy and Money: A Lesson in Computer Power Management

    Science.gov (United States)

    Lazaros, Edward J.; Hua, David

    2012-01-01

    In this activity, students will develop an understanding of the economic impact of technology by estimating the cost savings of power management strategies in the classroom. Students will learn how to adjust computer display settings to influence the impact that the computer has on the financial burden to the school. They will use mathematics to…

  20. Novel power saving architecture for FBG based OCDMA code generation

    Science.gov (United States)

    Osadola, Tolulope B.; Idris, Siti K.; Glesk, Ivan

    2013-10-01

    A novel architecture for generating incoherent, 2-dimensional wavelength hopping-time spreading optical CDMA codes is presented. The architecture is designed to facilitate the reuse of optical source signal that is unused after an OCDMA code has been generated using fiber Bragg grating based encoders. Effective utilization of available optical power is therefore achieved by cascading several OCDMA encoders thereby enabling 3dB savings in optical power.

  1. Intelligent control of energy-saving power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyuan; Zhang, Guoqing; Guo, Zhizhong [Harbin Institute of Technology, Harbin (China). Dept. of Electrical Engineering

    2013-07-01

    Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind of city science and technology innovation, which has the characteristics of environmental protection and sustainable utilization. Making full use of vehicle impact speed control humps, we design a new kind of highway speed control humps combined with solar electric generation system integration. Developing green energy, energy saving and environment protection can be achieved.

  2. How EPRI [Electric Power Research Institute] helps utilities save money

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A number of case studies are presented which illustrate how the work of the Electric Power Research Institute in the USA has enabled nuclear utilities to save money. The areas covered by the examples are: steam generator tube repair; streamlining of reliability centred maintenance; cost effective instrumentation and control maintenance; reducing the frequency of instrument calibration; optimising the engineering change process; detecting and reducing fuel failure; extending the qualified life of equipment. (U.K.)

  3. Evaluation of Different Power Saving Techniques for MBMS Services

    Directory of Open Access Journals (Sweden)

    Antonios Alexiou

    2009-01-01

    Full Text Available Over the last years we have witnessed an explosive growth of multimedia computing, wireless communication and applications. Following the rapid increase in penetration rate of broadband services, the Third Generation Partnership Project (3GPP is currently standardizing the Evolved-Multimedia Broadcast/Multicast Service (E-MBMS framework of Long Term Evolution (LTE, the successor of Universal Mobile Telecommunications System (UMTS. MBMS constitutes a point-to-multipoint downlink bearer service that was designed to significantly decrease the required radio and wired link resources. However, several obstacles regarding the high-power requirements should be overcome for the realization of MBMS. Techniques, such as Macrodiversity Combining and Rate Splitting, could be utilized to reduce the power requirement of delivering multicast traffic to MBMS users. In this paper, we analytically present several power saving techniques and analyze their performance in terms of power consumption. We provide simulation results that reveal the amount of power that is saved and reinforce the need for the usage of such techniques.

  4. Energy saved neon sign lighting power supply for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanitteerapan, T.; Dokpikul, S.; Arunrungrasmi, S. [King Mongkut Univ. of Technology Thonburi, Bangmod, Tungkru, Bangkok (Thailand). Dept. of Electrical Technology Education, Faculty of Industrial Education

    2007-07-01

    Petroleum oil, natural gas and fossil fuels are commonly used in power plants for electrical power generation. However, because of their negative environmental impacts, energy and environmental savings from renewable energy resources are necessary choices. Solar energy can be converted to the electrical voltage by using solar arrays. This process can be used in many electrical applications. This paper introduced a neon sign lighting power supply for a small photovoltaic powered stand-alone commercial advertising board for a remote area in Thailand. The circuit implementation was very simple, consisting of an active switch device, a resonant capacitor and high frequency transformer. The control also operated as a fixed frequency and fixed duty ratio controller. The paper discussed the principle of neon sign lighting, power circuit operation, and control circuit operation. To verify the proposed power supply, the circuit experiment of the proposed power supply for the neon sign lighting was applied to a 10 foot long, 10 millimeter diameter bulb. The neon sign was ignited smoothly with little power consumption. 2 refs., 1 tab., 10 figs.

  5. Solenoid System for PRISM and COMET

    International Nuclear Information System (INIS)

    Yoshida, Makoto

    2008-01-01

    An experiment of searching for coherent neutrino-less conversion of muons to electron conversion in muonic atom, μ - +N(A,Z)→e - +N(A,Z), is powerful probe for new physics phenomena beyond the Standard Model. We offer the experiment at a sensitivity of B(μ - N→e - N) -16 with muon beamline consisting of high-field pion capture solenoids, curved solenoids to select beam momenta, and a curved solenoid spectrometer to detect μ - -e - conversion with low-counting-rate conditions. Design of superconducting solenoid magnets of pion capture and transport beam line has been studied and is described in this paper

  6. Power Balance Modeling of Local Helicity Injection for Non-Solenoidal ST Startup

    Science.gov (United States)

    Weberski, J. D.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.

    2017-10-01

    A zero-dimensional power balance model for predicting Ip(t) for Local Helicity Injection (LHI) discharges has been used to interpret experimental results from recent experimental campaigns using high-field-side (HFS) helicity injection. This model quantifies LHI's effective drive (Veff) through helicity balance while enforcing the Taylor relaxation current limit and tracking inductive effects to determine Ip(t) . Recent analysis of HFS LHI discharges indicate LHI is the dominant source of drive and provides Veff up to 1.3 V while geometric effects and inductive drive provide < 0.1 V throughout much of the discharge. In contrast to previous analysis of low-field-side (LFS) LHI discharges, which were driven by Veff = 0.3 V and 2.0 V from geometric effects and inductive drive. A significant remaining uncertainty in the model is the resistive dissipation of LHI discharges. This requires greater understanding of LHI confinement scaling and impurity content, which are currently under investigation. However, the model and experimental Ip(t) exhibit good agreement for parameters consistent with previous experimental findings. Extrapolation of plasma parameters and shaping from recent experiments allow for the model to project the performance of LHI systems. These projections indicate Ip 0.3 MA can be accessed on Pegasus via HFS LHI through changes to injector geometry to provide more Veff. This regime can be accessed via a LFS system by increasing the Taylor relaxation current limit early in the discharge. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  7. Saving assessment using the PERS in solar power towers

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, M.R.; Sanchez-Gonzalez, A.; Marugan-Cruz, C.; Santana, D.

    2014-01-01

    Highlights: • The lamination of the solar salt is avoided using the PERS and the main energy sink. • The PERS using salt pump as turbine saves 30–50% of the parasitic power. • The most appropriate configuration is a similar turbine three times one salt pump. • The payback period is around two years, and the economical savings from 1 to 4 M$. - Abstract: The improvement of the solar power tower using solar salt is one of the main goals of researchers. Any method or invention to improve the efficiency of this technology contributes to promote the renewable energies. The use of a Potential Energy Recovery System (PERS) in two different solar power tower plants of 20 and 100 MW has been analysed. The PERS is formed, at least, by one turbine, located at the hot salt pipe coming from the receiver. The turbine is engaged to the shaft of the feed pump, which raises the heat transfer fluid from the cold tank to the receiver. It reduces the parasitic power consumption of the plant, and increases its global efficiency. Different PERS configurations have been modelled. Based on an energetic and economic analysis, the optimal configuration is a geometrical similar turbine of three times the volume flow rate of one feed pump. The PERS has been proven to be a cost reductive and clean tool. For a 100 MW power plant of 30-year lifetime the investment cost is 1.26 M$ and the annual cash flow is 0.89 M$, while for a plant of 20 MW these values are 0.26 M$ and 0.19 M$, respectively

  8. Sprag solenoid brake

    Science.gov (United States)

    Dane, P. H.

    1972-01-01

    Operation of solenoid braking mechanism is discussed. Illustrations of construction of the brake are provided. Device is used for braking low or medium speed shaft rotations and produces approximately ten times braking torque of similar solenoid brakes.

  9. Strategies for Power/Energy Saving in Distribution Networks

    Directory of Open Access Journals (Sweden)

    GRIGORAS, G.

    2010-05-01

    Full Text Available The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not only the technical improvement of the network, through its renewal with the introduction of the technological innovations in the equipment and circuit components as well as the optimal planning of the design and development of the network, but also requires the use of the methods and software tools to facilitate the operation process. The paper presents a strategy for power/energy saving which replacement of the 6 kV voltage level with 20 kV voltage level in correlation with the extent of using efficient transformers. In this line, different urban distribution networks were analyzed using fuzzy techniques.

  10. Form factor of some types of toroidal solenoids

    International Nuclear Information System (INIS)

    Koryavko, V.I.; Litvinenko, Yu.A.

    1979-01-01

    Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume

  11. Effects of a power shortage in the Tokyo metropolitan area on awareness of nuclear power generation and power savings behavior

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2004-01-01

    The shutdown of a number of nuclear power stations of the Tokyo Electric Power Company in the summer of 2003 caused a power shortage problem in the Tokyo Metropolitan area. To examine the effects of the power shortage, in September 2003 a survey was conducted in the service areas of the Kansai Electric Power Company (Kansai region) and the Tokyo Electric Power Company (Kanto region). This survey was part of a wider opinion survey begun in 1993 concerning nuclear power generation. The results of the September 2003 survey are as follows: The degree of recognition of the power shortage problem in the Metropolitan area was high, with 40% of respondents in the Kansai region and nearly 70% in the Kanto region understanding that the shortage was caused by the shutdown of several nuclear power station. The overall awareness of nuclear power generation was little affected in both the Kansai and Kanto regions, though the sense of a shortage of the generating capacity had been raised slightly. Once respondents knew about the power shortage problem, they estimated the likelihood of an occurrence of large-scale service interruption to be low, nearly at an even chance, and they had been only slightly worried about it, essentially viewing the problem optimistically. In the Kanto region, where public relations activities for power savings had been actively pursued, the frequency of experiencing exposure to such public relations activities was remarkably higher than in the Kansai region. The relation between exposure to public relations activities for power savings and power savings behavior was analyzed using quantification method II. Analysis results suggest that public relations activities for power savings in the Kanto region had the effect of urging power savings behavior. However, the difference in the rate of putting power savings behavior into practice was small between the Kanto and Kansai regions, indicating that public relation activities for power savings in the Kanto

  12. Electric Power Saving Awareness System at School Using ICT

    Directory of Open Access Journals (Sweden)

    Kuzume Koichi

    2016-01-01

    Full Text Available Nowadays, education on energy saving at schools attracts attention to reduce energy consumption. In this paper we proposed a novel system to promote energy conservation activity at schools using a sensor network. The system consisted of a wall-type clock embedded with several kinds of sensors for temperature and light in the classroom, and wireless devices to connect to a cloud computer network. The system had the following superiorities: offered various services for energy conservation activity, needless of CT (Current Transformer sensor, low price, ease of installation and extension, and visualization of power consumption in conjunction with school timetable in real time. We presented the system and a user study conducted to evaluate its usefulness.

  13. Fast Control Channel Decoding for LTE UE Power Saving

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben

    2012-01-01

    in the current TTI. The cost is that some reference signals are not received leading to a degraded channel estimate. Calculations show that this causes an SINR degradation of approximately 0.5 dB, which will result in maximum 4 % throughput loss. Comparing this with energy saving potentials of 5 %-25...... % it is concluded that the FCCD method is a valuable aid to prolong LTE phones' battery lifetime. The results are generated using a two state Markov chain model to simulate traffic and scheduling, and verified mathematically. The work also includes an examination of various data traffic types' on/off relation...... and an evaluation of how the relation affects power consumption. The FCCD method can complement DRX sleep mode since it is applicable when the signal is too aperiodic or fast switching for DRX....

  14. An Indispensable Truth How Fusion Power Can Save the Planet

    CERN Document Server

    Chen, Francis F

    2011-01-01

    Both global warming and oil shortage can be solved by controlled fusion, a clean power source that will serve mankind for millennia.� The idea of hydrogen fusion as well as its difficulties are presented in non-technical language to dispel the notion that fusion is always 50 years away.� This book also summarizes the evidence for climate change and explains the principles of both fossil and "green" energy sources to show that fusion is the best alternative for central-station power in the near term as well as the far future. Praise for An Indispensable Truth: How Fusion Power Can Save the Planet: "In this study Professor Chen outlines the underlying physics, recent progress in achieving advanced plasmas and magnetic confinement, and hopes for the future. He recognizes the difficulties that remain in engineering a fusion reactor, but he remains optimistic regarding ultimate success, yet fearful of the consequences were we to fail."- James R. Schlesinger, former Chairman, Atomic Energy Commission; Director,...

  15. A study of ISO Solenoid Valve with static and dynamic characteristics

    International Nuclear Information System (INIS)

    Jeon, Y. S.; Ju, M. J.; Oh, Y. C.; Kim, D. S.

    2009-01-01

    The technology of ISO Solenoid Valves is now considered as a core technology in the fields of the production line of semi-conductor chips and the ISO fluid chips for medical applications. And ISO Solenoid Valves, which operate by compressed air, are characterized by high speed response, great repeatability and that the pressure on the cross sectional area of poppet is kept constant regardless of the fluctuation of the pressure exerted on the ports. The primary objective of this study is to compare the optimally designed Solenoid Valve with the actually produced one and to design a power saving circuit which can highly improve the efficiency by providing optimal current according to mechanical load.

  16. Evolution of China's power dispatch principle and the new energy saving power dispatch policy

    International Nuclear Information System (INIS)

    Ciwei, Gao; Yang, Li

    2010-01-01

    With social economic reform in the past decades, the power industry of China is gradually evolving from a highly integrated one toward an electricity market, which can be characterized based on the transition of the power dispatch principle. To attract investment in the power generating industry, China introduced non-state-owned power plants to the original system of a highly vertically integrated power industry with annual power generation quota guarantees, which makes the traditional economic dispatch principle not applicable. The newly debuted energy saving power dispatch (ESPD) is an attempt to fully exploit the maximum energy savings and was implemented by an administrative code. Starting in August 2007, the pilot operation of the ESPD was implemented in five provinces, but after two years, it is still not widely applied all over the country. This paper details the transition of China's power dispatch principle with particular attention to its origin and content. Moreover, the factors that influence the ESPD's actual energy saving effect are discussed, as well as the sustainability of the policy. (author)

  17. Force analysis of magnetic bearings with power-saving controls

    International Nuclear Information System (INIS)

    Johnson, D.; Brown, G.V.; Inman, D.J.

    1992-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods

  18. Energy Saving and Efficient Energy Use By Power Electronic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Wang, Huai; Davari, Pooya

    2017-01-01

    In the development of the modern society, one of the key factors is to save energy in order to become more independent of other energy resources. Two important approaches can be taken—one is to change behavior and thereby save energy—the second one is to develop new technology which is able to sa...

  19. Comparative performance analysis of a dual-solenoid mechanical oscillator

    International Nuclear Information System (INIS)

    Lee, V C C; Lee, H V; Harno, H G; Woo, K C

    2015-01-01

    An innovative dual-solenoid electro-mechanical-vibro-impact system has been constructed and experimentally studied. Comparative studies against a mechanical spring system and a permanent magnet system have been performed, where it is shown that the dual-solenoid system is able to produce oscillations better than the permanent magnet system and more energy efficiently. Comparison with a higher-powered dual solenoid system has also been conducted where a stationary solenoid has shown to be a more dominant parameter. In addition, it is also discovered that a mechanical oscillator in the dual-solenoid system is independent of the angular frequency. (paper)

  20. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  1. Use a renewable energy sources and latest power-saving technologies in the the Republic Kazakstan

    International Nuclear Information System (INIS)

    Gulevich, N.V.

    1996-01-01

    The subject of alternative power in Kazakstan is brought up. Wind-, hydro-, solar power, biogas installation can improve the Republic power base. The main directions of activity of A. Einstein International Power engineering Academy on involving renewable energy sources and latest power-saving technologies to Republic of Kazakstan's fuel-power balance is given. It should be noted that renewable power engineering usually handles reversible energy sources and reserved power cycles. (author)

  2. Ultimate Performance of the ATLAS Superconducting Solenoid

    CERN Document Server

    Ruber, R; Kawai, M; Kondo, Y; Doi, Y; Haruyama, T; Haug, F; Kate, H ten; Kondo, T; Pirotte, O; Metselaar, J; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A

    2007-01-01

    A 2 tesla, 7730 ampere, 39 MJ, 45 mm thin superconducting solenoid with a 2.3 meters warm bore and 5.3 meters length, is installed in the center of the ATLAS detector and successfully commissioned. The solenoid shares its cryostat with one of the detector's calorimeters and provides the magnetic field required for the inner detectors to accurately track collision products from the LHC at CERN. After several years of a stepwise construction and test program, the solenoid integration 100 meters underground in the ATLAS cavern is completed. Following the on-surface acceptance test, the solenoid is now operated with its final cryogenic, powering and control system. A re-validation of all essential operating parameters is completed. The performance and test results of underground operation are reported and compared to those previously measured.

  3. Enersave API: Android-based power-saving framework for mobile devices

    Directory of Open Access Journals (Sweden)

    A.M. Muharum

    2017-06-01

    Full Text Available Power consumption is a major factor to be taken into consideration when using mobile devices in the IoT field. Good Power management requires proper understanding of the way in which it is being consumed by the end-devices. This paper is a continuation of the work in Ref. [1] and proposes an energy saving API for the Android Operating System in order to help developers turn their applications into energy-aware ones. The main features heavily used for building smart applications, greatly impact battery life of Android devices and which have been taken into consideration are: Screen brightness, Colour scheme, CPU frequency, 2G/3G network, Maps, Low power localisation, Bluetooth and Wi-Fi. The assessment of the power-saving API has been performed on real Android devices and also compared to the most powerful power-saving applications – DU Battery Saver and Battery Saver 2016 – currently available on the Android market. Comparisons demonstrate that the Enersave API has a significant impact on power saving when incorporated in android applications. While DU Battery Saver and Battery Saver 2016 help saving 22.2% and 40.5% of the battery power respectively, the incorporation of the Enersave API in android applications can help save 84.6% of battery power.

  4. Vattenfall want to save money: will run Ringhals 3 and 4 with reduced power

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Ringhals 3 and 4 are nuclear power stations which require re-design before full power can be generated. To save money both stations will be running at reduced power during 1982 to generate power and gain running experience. (J.H.)

  5. The CMS superconducting solenoid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The huge solenoid that will generate the magnetic field for the CMS experiment at the LHC is shown stored in the assembly hall above the experimental cavern. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. It weighs 220 tonnes and will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field, storing enough energy to melt 18 tonnes of gold.

  6. Effect of energy saving lights on power supply

    NARCIS (Netherlands)

    Timens, R.B.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2012-01-01

    Weak power supply networks are very sensitive to non-linear low power loads. Electronics in low power loads are non-linear, very basic, and consisting of a rectifier bridge and bulk capacitor, consuming current only in the peak of the supplied voltage. Due to the relative high power supply network

  7. ONU power saving modes in next generation optical access networks: progress, efficiency and challenges.

    Science.gov (United States)

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2012-12-10

    The optical network unit (ONU), installed at a customer's premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep.

  8. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    Amherd, N.A.

    1975-09-01

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  9. Holiday homes - electric power savings; Sommerhuse - elbesparelser her og nu

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed Esbensen, N -U; Roed Rasmussen, E [Esbensen Raadgivende Ingenioerer A/S, Copenhagen (Denmark); Weldingh, P [Lokalenergi, Viby J. (Denmark); Worm, J; Adams Rasmussen, L [Energitjenesten, Aarhus (Denmark); Reuss, M [Elsparefonden, Copenhagen (Denmark); Ellehauge, K; Kjaergaard, C -J [Ellehauge og Kildemoes, Aarhus (Denmark); Jensen, Ole Michael [Aalborg Univ. SBi, Aalborg (Denmark)

    2010-09-15

    A questionnaire survey among 700 holiday home owners was conducted and followed up by interviews with representatives of typical groups of holiday home owners and a number of key persons representing rental, building, electricity supply, regulatory processing and supply of renewable energy facilities to holiday homes. The results of the questionnaire survey and of former surveys on technical savings potential are included in an easy-to-read catalogue of ideas with directions and recommendations for various groups of holiday home users and players. The recommendations are grouped into eight topics of more or less relevance for the various target groups. (LN)

  10. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  11. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO{sub 2} on generation, and awareness of energy environmental concerns. (author)

  12. Energy-saving decomposition and power consumption forecast: The case of liaoning province in China

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.X.; Zhao, Y.S.; Wang, Y.J. [School of Business Administration, North China Electric Power University, Zhu Xin Zhuang, Bei Nong Lu No. 2, Changping District, Beijing (China); Zhang, S.L. [Finance Department, Nanning Power Supply Bureau, Xingguang Street No. 43, Nanning, Guangxi Autonomous Region (China); Li, F.R. [University of Bath, Bath, BA2 7AY (United Kingdom)

    2011-01-15

    To achieve sustainable development of the society, the People's Republic of China (PRC) proposed in its 11th Five-Year Plan for National Economic and Social Development Program a shift in energy-saving target of decreasing energy intensity by 20% in 2010 compared with that of 2005. Liaoning province is one of the oldest industrial bases in China. Policymakers are often confronted with problems relating to adjustment in the development pattern as a means to secure steady economic growth. The power industry is a fundamental energy industry; it plays an important role in realizing of energy-saving targets. Based on the input-output model, this paper sets extensive, planning and 20% energy-saving scenarios in order to analyze energy-saving and power consumption situations for Liaoning by 2010. Through extensive simulations, the levels of energy-saving and power demand under different scenarios are obtained. Results from the analysis show that under the premises of adjusting the ratio of investment and consumption, optimizing products structure, and improving energy use efficiency, it is possible to achieve the proposed energy-saving target. Liaoning's power consumption can maintain a stable growth trend in the future. The percentage of electricity to the total energy use can also increase to 16% in 2010. (author)

  13. Prospects of nuclear power in fossil fuel saving

    International Nuclear Information System (INIS)

    Chernavskij, S.Ya.

    1984-01-01

    Economic aspects of the World energy situation are considered. The growth in the world prices for energy and energy resources has demanded to reconstruct the structure of both consumers and primary energy resources. The nuclear power development is one of the most important aspects of this reconstruction. In connection with its development the acceptability of nuclear power technology and possible spheres of its application in different fields of power engineering are considered. When discussing these problems one pays the main attention to the psychological effect and potential measures for its compensation. A forecast estimate is given of specific capital investments in and expenditures on electric energy production for NPPs and conventional power stations for the considered period of 30 years. The estimates are differentiated for the European and Asian parts of the country. The problems of developing nuclear central heating-and-power plants and nuclear thermal stations are discussed. It is pointed out that presently no sufficient experience has been gained in their commerical operation to discuss for sure the prospects of their wide-scale utilization. Results of calculations are presented showing that in the range of high-temperature processes the use of electric energy based on the nuclear power development is more efficient than direct combustion of fossil fuel as estimated with respect to its export at the world market prices

  14. Power shopping - practical advice and cost-saving alternatives

    International Nuclear Information System (INIS)

    Anthofer, J.

    1999-01-01

    Encore Energy Solutions is a power consulting company which operates in California, Alberta and Ontario. The company manages electricity portfolios, sells risk management instruments and works with end users to lower power costs. It also helps utilities manage the evolution to a competitive energy market. In this presentation, a series of overhead viewgraphs were used to explain the roles of different players in Ontario's electric power industry, including generators, retailers, distributors, wholesale sellers, transmitters, wholesale consumers, independent market operators (IMOs), and consultants. The challenges facing municipal electric utilities regarding the wires business and retail services were also discussed. The trends in today's evolving power market were highlighted. These included price elasticity, load dispatch, granularity, long- and short-term volatility, gas prices, day/night spread, transmission tariffs, congestion and cost of capital. A graph depicting volatility term structures for electricity, natural gas and crude oil suggests that instantaneous volatility of power is almost infinite. Issues regarding risk management in terms of shareholder's portfolio values were also discussed. 17 figs

  15. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. At the start of the New Year the solenoid was moved to the cryostat insertion stand. After a test insertion on 6th February and a few weeks of preparation work it was finally inserted on 27th February. A couple of hectic 24-hours/7-day weeks followed in order to connect all services in the cryostat bulkhead. But last Monday, 15th March, both warm flanges of the cryostat could be closed. In another week's time we expect to finish the connection of the cryogenic cooling lines and the superconducting bus lines with the external services. Then the cool-down and test will commence... ...

  16. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  17. Construction of compact FEM using solenoid-induced helical wiggler

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Fujita, M.; Imasaki, K.; Mima, K.; Nakai, S.

    2003-01-01

    A prototype of compact Free-Electron Maser (FEM) has been designed for the operation in a usual small laboratory which does not have electric source capacity available enough. The electron energy is 60-120 keV. As it is lower, stronger guiding magnetic field is necessary in addition to wiggler field. To fulfil this condition a solenoid-induced helical wiggler is applied from the viewpoint of saving the electric power of restricted source capacity. The wiggler, for example, with the period of 12 mm creates the field of 92 G in the guiding field of 3.2 kG. The whole system of FEM has been just constructed in a small-scale laboratory. It is so small to occupy the area of 0.7x2.9 m 2

  18. AutoPowerOff plug banks - a story with energy saving perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Hjort Jensen, Anders (The Danish Electricity Saving Trust (Denmark)); Fjordbak, Troels (IT Energy ApS (Denmark))

    2009-07-01

    Denmark uses around 35 TWh of electricity per year, with residential dwellings accounting for around 10 TWh of this figure. Standby consumption comprises around 12% of power used in homes. If every Danish home installed AutoPowerOff plug banks, savings exceeding 500 GWh per year would be possible, equivalent to 5% of household electricity consumption, or 1.5% of the total in Denmark. This paper describes the estimated standby consumption in Danish homes in 2006, and possible energy savings through the use of AutoPowerOff plug banks. The estimates were subsequently used as background information for a 2007-2008 campaign to promote the wider use of these devices in Denmark. In order to increase the sale of AutoPowerOff plug banks by 1 million units, it was agreed that retail chains selling consumer electronics would include an AutoPowerOff when selling a TV or PC. A nationwide TV advertising campaign was launched featuring the names of participating retailers. Sales of AutoPowerOff plug banks in the first 7 months of 2008 passed the 515,000 mark, with over 1 million units now installed in 2.5 million Danish households. Annual savings are estimated to be over 80 GWh, equivalent to 40,000 tons of CO{sub 2}. This equates to potential savings on an EU-wide basis of more than 7 TWh, or 3.6 million tons of CO{sub 2} in Denmark.

  19. First Operation of the Central Solenoid

    CERN Multimedia

    Ruber, R.

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. It was cooled down from the 17th to 23th May 2006, and the first kA was put into it the same evening as it was cold and superconductive. That makes our solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas. The Central Solenoid in its final position at the heart of ATLAS. The coil current (red line) and voltage (blue line) showing the operation at nominal current of 7.73 kA for a magnetic field of 2.0 T and the subsequent successful commissioning up to 8 kAT The cool down and powering of the solenoid was a major milestone for all control, cryogenic, power and vacuum systems and was achieved in perfect collaboration with the liquid argon detector with which it shares the Barrel Cryostat. Powering up to nominal current had to wait until the last week of July when the End-Cap Calorimeters were in closed position. The Tile Barrel and E...

  20. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  1. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B approximately equal 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  2. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B = 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  3. Investigations of heat-hydraulic noises in the equipment for creation of power-saving technologies

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.

    2000-01-01

    The results of experimental and theoretical studies on the parameters of vibroacoustic signals, originating in the TPP and NPP thermal energy equipment, are presented. The methods for calculation and identification of the heat-hydraulic perturbation sources, intended for improving the means of early diagnostics of anomalies in the technological process, forecasting their development, increasing the maintenance work efficiency and operational safety, as well as for creating power-saving technologies in the power engineering, are developed [ru

  4. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  5. Variable flow controls of closed system pumps for energy savings in maritime power systems

    OpenAIRE

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu; Chou, Ming-Hung; Guerrero, Josep M.

    2016-01-01

    Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption, and this presents a problem in unique marine environments. Such situations are especially conducive to energy-saving strategies using variable frequency drives (VFDs) in centrifugal load service. This pape...

  6. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  7. SSC detector solenoid

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, E.D.; Wands, R.H.

    1989-01-01

    A detector utilizing a superconducting solenoid is being discussed for the Superconducting Super Collider (SSC). A useful field volume of 8 m diameter x 16 m length at 1.5-2 T (--1 GJ at 2T) is required. It has been decided that all of the particle physics calorimetry will be inside the bore of the solenoid and that there is no need for the coil and cryostat to be ''thin'' in radiation lengths. An iron yoke will reduce the excitation required and will provide muon identification and a redundant momentum measurement of the muons. The authors have developed a conceptual design to meet these requirements. The magnet will use a copper-stabilized Nb-Ti conductor sized for a cryostable pool boiling heat flux --0.025 W/cm/sup 2/. A thermosiphon from a storage vessel above the cryostat will be used to prevent bubble stagnation in the liquid helium bath. The operating current, current density, coil subdivision and dump resistor have been chosen to guarantee that the coil will be undamaged should a quench occur. The axial electromagnetic force will be reacted by metallic support links; the stainless steel coil case will support the radial force. The 5000 metric tons of calorimetry will be supported from the iron yoke through a trussed cylindrical shell structure separate from the cryostat. The coil and case, radiation shield and stainless vacuum vessel would be fabricated and cryogenically tested as two 8-m sections. These would be lowered into the underground experimental hall and installed into the iron flux return yoke to provide the required 16-m length

  8. Offshore wind energy storage concept for cost-of-rated-power savings

    International Nuclear Information System (INIS)

    Qin, Chao; Saunders, Gordon; Loth, Eric

    2017-01-01

    Highlights: •Investigated CAES + HPT system concept for offshore wind energy; •Validated cost model for offshore wind farm including CAPEX and OPEX items; •Quantified cost-of-rated-power savings associated with CAES + HPT concept; •Estimated savings of 21.6% with CAES + HPT for a sample $2.92 billion project. -- Abstract: The size and number of off-shore wind turbines over the next decade is expected to rapidly increase due to the high wind energy potential and the ability of such farms to provide utility-scale energy. In this future, inexpensive and efficient on-site wind energy storage can be critical to address short-time (hourly) mismatches between wind supply and energy demand. This study investigates a compressed air energy storage (CAES) and hydraulic power transmission (HPT) system concept. To assess cost impact, the NREL Cost and Scaling Model was modified to improve accuracy and robustness for offshore wind farms with large turbines. Special attention was paid to the support structure, installation, electrical interface and connections, land leasing, and operations and maintenance cost items as well as specific increased/reduced costs reductions associated with CAES + HPT systems. This cost model was validated and applied to a sample $2.92 billion project Virginia Offshore case It was found that adaption of CAES + HPT can lead to a substantial savings of 21.6% of this 20-year lifetime cost by dramatically reducing capital and operating cost of the generator and power transmission components. However, there are several additional variables that can impact the off-shore energy policy and planning for this new CAES + HPT concept. Furthermore, these cost-savings are only first-order estimates based on linear mass-cost relationships, and thus detailed engineering and economic analysis are recommended.

  9. A Downlink and Uplink Alignment Scheme for Power Saving in IEEE 802.16 Protocol

    Directory of Open Access Journals (Sweden)

    Jenhui Chen

    2014-01-01

    Full Text Available This study shows the problem of power saving mechanism (PSM that sleep intervals of uplink (UL connections do not synchronize with sleep intervals of downlink (DL connections. That is, the energy of a mobile station (MS is not really saved if the DL connections are in the sleep mode while the UL connections are in normal mode, and vice versa. To avoid the asynchronism of power saving (PS between UL and DL connections, we invent a mechanism of DL connections regulating UL connections, called DL and UL Alignment (DUAL scheme, to improve the energy efficiency for PS. Considering that the buffer size of MS is limited, DUAL uses the mean packet arrival rate of UL λu and a relatively safe threshold of buffer size QT as the parameters to estimate the maximum allowable waiting time to align the UL with the DL connections. To analyze the performance of DUAL, a system model of PS is proposed to evaluate the performance of DUAL under different conditions. The correctness of performance analysis of DUAL is validated by using simulation with realistic parameters. Numerical experiments show that DUAL improves the energy conservation significantly when UL traffic is greater than DL traffic.

  10. Variable flow controls of closed system pumps for energy savings in maritime power systems

    DEFF Research Database (Denmark)

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu

    2016-01-01

    and field tests of a practical auxiliary boiler feed water management system on a commercial vessel. It is proved that the proposed method can maintain constant water pressure for closed system pumps and provide an efficient way to measure energy savings and maintenance benefits. The results serve......Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption......, and this presents a problem in unique marine environments. Such situations are especially conducive to energy-saving strategies using variable frequency drives (VFDs) in centrifugal load service. This paper presents the design and results of applying variable frequency constant pressure technology in closed system...

  11. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Kanesue, Takeshi; Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-01-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11 , which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  12. Laser ion source with solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fuwa, Yasuhiro [Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-7501 (Japan); RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  13. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  14. Power Saving Scheduling Scheme for Internet of Things over LTE/LTE-Advanced Networks

    Directory of Open Access Journals (Sweden)

    Yen-Wei Kuo

    2015-01-01

    Full Text Available The devices of Internet of Things (IoT will grow rapidly in the near future, and the power consumption and radio spectrum management will become the most critical issues in the IoT networks. Long Term Evolution (LTE technology will become a promising technology used in IoT networks due to its flat architecture, all-IP network, and greater spectrum efficiency. The 3rd Generation Partnership Project (3GPP specified the Discontinuous Reception (DRX to reduce device’s power consumption. However, the DRX may pose unexpected communication delay due to missing Physical Downlink Control Channel (PDCCH information in sleep mode. Recent studies mainly focus on optimizing DRX parameters to manage the tradeoff between the energy consumption and communication latency. In this paper, we proposed a fuzzy-based power saving scheduling scheme for IoT over the LTE/LTE-Advanced networks to deal with the issues of the radio resource management and power consumption from the scheduling and resource allocation perspective. The proposed scheme considers not only individual IoT device’s real-time requirement but also the overall network performance. The simulation results show that our proposed scheme can meet the requirements of the DRX cycle and scheduling latency and can save about half of energy consumption for IoT devices compared to conventional approaches.

  15. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  16. Solenoidal fusion system

    International Nuclear Information System (INIS)

    Linlor, W.I.

    1980-01-01

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  17. Inauguration of the CMS solenoid

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In early 2005 the final piece of the CMS solenoid magnet arrived, marked by this ceremony held in the CMS assembly hall at Cessy, France. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. Weighing 220 tonnes, it will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field and store enough energy to melt 18 tonnes of gold.

  18. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Directory of Open Access Journals (Sweden)

    Jia Zhao

    2013-01-01

    Full Text Available Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA. This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  19. A location selection policy of live virtual machine migration for power saving and load balancing.

    Science.gov (United States)

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  20. Integrated Power Saving for Multiple Relays and UEs in LTE-TDD

    OpenAIRE

    Chun-Chuan Yang; Jeng-Yueng Chen; Yi-Ting Mai; Chen-Ming Yang

    2017-01-01

    In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe...

  1. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  2. Conceptual design of a 20 Tesla pulsed solenoid for a laser solenoid fusion reactor

    International Nuclear Information System (INIS)

    Nolan, J.J.; Averill, R.J.

    1977-01-01

    Design considerations are described for a strip wound solenoid which is pulsed to 20 tesla while immersed in a 20 tesla bias field so as to achieve within the bore of the pulsed solenoid at net field sequence starting at 20 tesla and going first down to zero, then up to 40 tesla, and finally back to 20 tesla in a period of about 5 x 10 -3 seconds. The important parameters of the solenoid, e.g., aperture, build, turns, stored and dissipated energy, field intensity and powering circuit, are given. A numerical example for a specific design is presented. Mechanical stresses in the solenoid and the subsequent choice of materials for coil construction are discussed. Although several possible design difficulties are not discussed in this preliminary report of a conceptual magnet design, such as uniformity of field, long-term stability of insulation under neutron bombardment and choice of structural materials of appropriate tensile strength and elasticity to withstand magnetic forces developed, these questions are addressed in detail in the complete design report and in part in reference one. Furthermore, the authors feel that the problems encountered in this conceptual design are surmountable and are not a hindrance to the construction of such a magnet system

  3. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating......The paper examines implementation of heat saving measures in buildings in 2050, under the assumption that heat and power supply comes solely from renewable resources in Denmark.Balmorel – a linear optimisation model of heat and power sectors in Denmark is used for investigating economically viable....... A further expansion of district heating network in Denmark is assessed and penetration of heat savings is analysed in this context.If all heat saving measures, included in the model, are implemented, heat demand in Danish buildings in 2050 could be reduced by around 40%. Results show that it is cost...

  4. Heavy Traffic Feasible Hybrid Intracycle and Cyclic Sleep for Power Saving in 10G-EPON

    Directory of Open Access Journals (Sweden)

    Xintian Hu

    2014-01-01

    Full Text Available Energy consumption in optical access networks costs carriers substantial operational expense (OPEX every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON, a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain.

  5. Energy-saving modification on outdoor lighting in the nuclear power plant

    International Nuclear Information System (INIS)

    Yao Bo

    2010-01-01

    The outdoor lighting in the nuclear power plant don't automatically shut down,and cause lights to be long-light. It is proposed to install light-control switches in the electric circuit in order to achieve automatic control. The original outdoor lighting circuit uses the circuit breaker for over-current protection and short circuit fault protection, and use remote circuit breaker to manually operate the lamp on and off.Each circuit branch installs a light-control switch, and set the threshold of 100 lux for the light-control switch. When the natural illumination meet the minimum illumination requirement (> 100lux), the lights shut down the power.When natural illumination doesn't meet the lighting requirement (<100lux), the lighting automatically close.After the modification, it is resolved the outdoor lighting easily becoming a long light,and save energy. (authors)

  6. Flapping wing flight can save aerodynamic power compared to steady flight.

    Science.gov (United States)

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  7. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  8. Class H power amplifier for power saving in fluxgate current transducers

    OpenAIRE

    Velasco Quesada, Guillermo; Román Lumbreras, Manuel; Pérez Delgado, Raul; Conesa Roca, Alfons

    2016-01-01

    This paper presents a new improvement in the design of a fluxgate-based current transducer in order to reduce the power consumption of control electronics. The proposed improvement involves the replacement of the output linear amplifier of the transducer by a class H amplifier. The output amplifier is devoted to the magnetic flux compensation and generates the transducer output current, which is proportional to the current to be measured. In this way, it is possible to reduce significantly th...

  9. Fuel and power resources based on energy-saving technologies and technical means in agriculture

    Directory of Open Access Journals (Sweden)

    A. V. Tikhomirov

    2015-01-01

    Full Text Available The state and efficiency of the use of the energy supply systems in agriculture were analyzed. It is demonstrated that grids and power equipment deterioration exceeds 30 percent, and fuel volume-efficiency ratio is not more than 35 percent in this sector. A considerable part of the country territory (mainly the northern one does not have centralized power supply. Decentralized cogeneration systems with extensive use of renewable energy sources and local energy recourses are highly efficient for this part. A necessity of development of methodology and recommendations for the selection of efficient systems and technical means of power supply to agricultural enterprises was substantiated with due consideration of their location, load intensity and distance from centralized grids. The most important indication of energy efficiency is energy intensity of products and energy inputs share in the production cost. Reserves for energy saving including the development of energy-efficient technologies and technical means, some of which have already been developed (equipment for lighting, microclimate, primary treatment and storage of products, disinfection or are at the completion stage were presented. Their implementation in agricultural production will make it possible to raise considerably the efficiency of the use of fuel and power resources and to reduce energy consumption. The conditions in which the use of decentralized power supply systems is most efficient were educed. The characteristics of related equipment and the specifics of its use at agricultural enterprises are described. The proposal and priority actions for the development and upgrading of power supply systems for agriculture have been elaborated.

  10. A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power

    International Nuclear Information System (INIS)

    Liao, Gwo-Ching

    2011-01-01

    An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research. -- Research highlights: → Quantum Genetic Algorithm can effectively improve the global search ability. → It can achieve the real objective of the global optimal solutions. → The CPU computation time is less than that other algorithms adopted in this paper.

  11. Power and energy saving in buildings by distributed generation based on gas-engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Arghandeh, R.; Amidpour, M.; Ghaffari, A. [Khaje Nasir Toosi Univ. of Technology, Tehran (Iran, Islamic Republic of). Joint Program of Energy Systems Engineering; Manchester Univ., Manchester (United Kingdom)

    2008-07-01

    Buildings consume high amounts of energy and produce high amounts of greenhouse gas (GHG) emissions. This paper discussed the use of gas cogeneration distributed generation (DG) technologies as a means of reducing energy consumption from buildings as well as energy losses from transmission lines in Iran. Energy sources and power generation systems were reviewed, and the economical benefits and energy savings resulting from the use of cogeneration systems were outlined. Actual rates of electricity consumption for Iran were estimated. Building power consumption was divided into the following 6 major sections: (1) lighting, (2) home appliances, (3) restaurant and cooking devices, (4) sports facilities, (5) utilities, and (6) electronics. Energy consumption criteria (ECC) and daily consumption charts (DCC) were used to plan and design the cogeneration systems. Energy balances, capital costs, and investment rates of return (IRR) were then calculated for 2 scenarios for a sample building. Results of the study showed that gas engine combined heat and power (CHP) DG systems are a reliable and economic technology for reducing energy consumption in buildings. The IRR of the CHP DG system for the sample building was achieved in 1 year. 13 refs., 10 tabs., 11 figs.

  12. A Novel Power-Saving Transmission Scheme for Multiple-Component-Carrier Cellular Systems

    Directory of Open Access Journals (Sweden)

    Yao-Liang Chung

    2016-04-01

    Full Text Available As mobile data traffic levels have increased exponentially, resulting in rising energy costs in recent years, the demand for and development of green communication technologies has resulted in various energy-saving designs for cellular systems. At the same time, recent technological advances have allowed multiple component carriers (CCs to be simultaneously utilized in a base station (BS, a development that has made the energy consumption of BSs a matter of increasing concern. To help address this concern, herein we propose a novel scheme aimed at efficiently minimizing the power consumption of BS transceivers during transmission, while still ensuring good service quality and fairness for users. Specifically, the scheme utilizes the dynamic activation/deactivation of CCs during data transmission to increase power usage efficiency. To test its effectiveness, the proposed scheme was applied to a model consisting of a BS with orthogonal frequency division multiple access-based CCs in a downlink transmission environment. The results indicated that, given periods of relatively light traffic loads, the total power consumption of the proposed scheme is significantly lower than that of schemes in which all the CCs of a BS are constantly activated, suggesting the scheme’s potential for reducing both energy costs and carbon dioxide emissions.

  13. Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle

    Directory of Open Access Journals (Sweden)

    P. Tenenbaum

    2003-06-01

    Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.

  14. Detection circuit of solenoid valve operation and control rod drive mechanism utilizing the circuit

    International Nuclear Information System (INIS)

    Ono, Takehiko.

    1976-01-01

    Object: To detect the operation of a plunger and detect opening and closing operations of a solenoid valve driving device due to change in impedance of a coil for driving the solenoid valve to judge normality and abnormality of the solenoid valve, thereby increasing reliance and safety of drive and control apparatus of control rods. Structure: An arrangement comprises a drive and operation detector section wherein the operation of a solenoid driving device for controlling power supply to a coil for driving the solenoid valve to control opening and closing of the solenoid valve, and a plunger operation detector section for detecting change in impedance of the drive coil to detect that the plunger of the solenoid valve is either in the opening direction or closing direction, whereby a predetermined low voltage such as not to activate the solenoid valve even when the solenoid valve is open or closed is applied to detect a current flowing into the coil at that time, thus detecting an operating state of the plunger. (Yoshino, Y.)

  15. Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes

    Directory of Open Access Journals (Sweden)

    Ramesh Daravath

    2017-04-01

    Full Text Available Induction machines are the most commonly used industrial drives for variety of applications. It has been estimated that induction motors consumes approximately 50 of all the electric energy generated. Further in the area of renewable energy sources such as wind or bio-mass energy induction machines have been found suitable for functioning as generators. In this context it may be mentioned that a star-delta switching is common for the starting of three-phase induction motor. Now it is proposed to use this star-delta switching for energy conservation of induction machines i.e. at times of reduced loads the machine switched back to star connection. Using a three-phase 400 V 50 Hz 4-pole induction machine it has been demonstrated that the star-delta switching of stator winding of three-phase induction machine motor generator operations reconnected in star at suitable reduced loads with a switching arrangement can result in improved efficiency and power factor as compared to a fixed delta or star connection. The predetermined values along with the experimental results have also been presented in this report. A simulation program has been developed for the predetermination of performance of the three-phase induction machine using exact equivalent circuit. A case study on a 250 kW 400 V 4-pole three-phase induction machine operated with different load cycles reveals the significant real and reactive power savings that could be obtained in the present proposal.

  16. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    Science.gov (United States)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  17. Superconducting Solenoid for Superfast THz Spectroscopy

    Science.gov (United States)

    Bragin, A. V.; Khrushchev, S. V.; Kubarev, V. V.; Mezencev, N. A.; Tsukanov, V. M.; Sozinov, G. I.; Shkaruba, V. A.

    This project is related to new spectroscopy method in little-developed THz range. The method is founded on using of a free electron laser (NovoFEL) with high spectral power radiation which can be smoothly tuned in desirable range of spectrum. The objects of research of this method are fast processes in physics, chemical and biological reactions. Uniform magnetic field of 6 T value in the research area can considerably increase possibilities of this method. The magnetic field will modulate radiation of free molecules induction on characteristic frequencies of the Zeeman splitting that gives more possibilities of identification of molecules having even weak magnetic momentum. Moreover, the use of magnetic field allows essentially increase sensitivity of this method due to almost complete separation of weak measuring signals from powerful radiation of the laser. A superconducting solenoid was developed for this method. Its design and peculiarities are described in this paper.

  18. Stabilization of superconducting dry solenoids

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.

    1989-01-01

    Premature quenches in superconducting solenoids, wound with Formvar coated NbTi conductors, have been studied. Some model coils were tested wound with various winding tensions. The experimental results are discussed considering the calculated stress distribution for coil winding, cool-down to liquid helium temperature, and energization at 4.2 K. /Some mechanisms of premature quenches are classified by the winding tension. Some stabilization methods are presented based on these quench mechanisms

  19. Efficient use of power. Directory for private households to save power without renunciation of comfort; Strom effizient nutzen. Wegweiser fuer Privathaushalte zur wirtschaftlichen Stromeinsparung ohne Komfortverzicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The contribution under consideration is a guide for private households for an economically efficient conservation of electricity without renunciation of comfort. At first, reasons for saving electricity are presented. The approach to reduce power consumption consists of an inventory of electricity consumers, establishment of measures to save electricity as well as a selection of suitable measures. Tables are presented for the determination of the power consumption and costs for electricity in the actual and target state as well as for the determination of the economic efficiency.

  20. A large superconducting thin solenoid for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Green, M.A.

    1992-06-01

    This Report describes the 4.4 meter, warm bore diameter, thin superconducting solenoid, for the proposed STAR experiment at the Brookhaven National Laboratory. The STAR solenoid will generate a very uniform central magnetic induction of 0.5 T within a space which is 4.0 meters in diameter by 4.2 meters long. The solenoid and its cryostat will be 0.7 radiation lengths thick over a length of 5.45 meters, about the center of the magnet making it the largest solenoid less than one radiation length to be built. This report describes a proposed design for the solenoid and cryostat, its flux return iron, its cryogenic system and its power supply and quench protection system

  1. Design of a Solenoid Magnet for a Microwave Ion Source

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Dae Il

    2011-01-01

    A microwave ion source has many advantages, such as long-life time, low emittance, high brightness, and compactness. Also it is a big merit that 2.45GHz rf systems are easily available and inexpensive. Due to the reasons microwave ion sources are very attractive for industrial applications. But microwave ion sources need a solenoid magnet which is usually an electromagnet with a DC current power supply. The electromagnet solenoids of microwave ion sources can be installed in two methods. The first method is to use isolation transformer to supply electrical power to DC current power supply for the magnets. In this case the magnet is compact because it has the same potential with the extraction voltage. The second method is to put an electrical insulator, such as G10, between ion sources and magnets. In this case the solenoid magnet is bigger than one in the first method, especially for higher extraction voltage, because the space for the insulator is required. Permanent magnets can be a good candidate to make microwave ion source more compact. But it is difficult to control the magnetic field profile and the magnetic flux density for the permanent magnet solenoids. Due to the reason, in the case that the best performances in many operating conditions should be achieved by adjusting the profile and strength of the solenoid, electromagnet is better than permanent magnet. But in the case of industrial applications where operating conditions is usually fixed and the compactness is required, permanent magnet is better choice to build an ion source

  2. Design of SC solenoid with high homogeneity

    International Nuclear Information System (INIS)

    Yang Xiaoliang; Liu Zhong; Luo Min; Luo Guangyao; Kang Qiang; Tan Jie; Wu Wei

    2014-01-01

    A novel kind of SC (superconducting) solenoid coil is designed to satisfy the homogeneity requirement of the magnetic field. In this paper, we first calculate the current density distribution of the solenoid coil section through the linear programming method. Then a traditional solenoid and a nonrectangular section solenoid are designed to produce a central field up to 7 T with a homogeneity to the greatest extent. After comparison of the two solenoid coils designed in magnet field quality, fabrication cost and other aspects, the new design of the nonrectangular section of a solenoid coil can be realized through improving the techniques of framework fabrication and winding. Finally, the outlook and error analysis of this kind of SC magnet coil are also discussed briefly. (authors)

  3. Specifics of energy-saving technologies in electrical power supply systems of operating industrial enterprises

    OpenAIRE

    Кирисов, Игорь Геннадиевич; Овчаренко, Татьяна Ивановна

    2014-01-01

    В статье рассмотрены особенности разных энергосберегающих технологий, которые можно применить в системах электроснабжения промышленных предприятий. Проведены расчеты, подтверждающие целесообразность замены недозагруженных асинхронных двигателей на двигатели меньшей мощности. The paper deals with the speci cs of different energy-saving technologies that can be applied in electrical power supply systems of industrial enterprises. The paper presents calculations that corroborate ...

  4. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  5. Self-supporting power plant. Capturing evaporated water and save energy a new source of water

    Energy Technology Data Exchange (ETDEWEB)

    Daal, Ludwin; Vos, Frank de [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; KEMA Energy Consulting Co.Ltd, Beijing (China); Wageningen Univ. (Netherlands). Environmental Systems Analysis; Heijboer, Rob [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; Bekker, Bert [KEMA Energy Consulting Co.Ltd, Beijing (China); Gao, Xiu Xiu [Wageningen Univ. (Netherlands). Environmental Systems Analysis

    2013-07-01

    One of the major challenges of this century is the provision of water for a growing population and industry. The shortage in water resources in arid areas requires the availability of more efficient and cheaper water production processes. In some arid regions water is even more important than electricity. A large source of water is found in the form of evaporated water emitted from different industrial processes. If for example 20% of the evaporated water from the flue gas stream of a coal fired power plant would be captured, the plant would be self-supporting from a process water point of view. This is about 30m{sup 3} of water per hour. The results of the proof of principle project (2001-2008) show that >40% recovery can be achieved. Also an overall energy efficiency improvement can be achieved for industrial plants that reheat their flue gases. Calculations show that this can be about 1% overall efficiency for a coal fired power plant utilizing flue gas reheating. With an installed capacity of more than 600GWe in China, this energy saving results in a very large economic and fuel (coal) impact. This energy efficiency will most likely be the driving force to implement the technology in both water rich and water poor regions. For the capture of evaporated water no chemicals are used, there is no waste water formed and corrosion attack in stacks is mitigated. These results have led to the set up of a large international project named CapWa which aims to produce a membrane modular system suitable for industrial applications within 2-3years. The produced demin water from this system should be competitive with existing demin water technologies. The starting point will be the water vapour selective composite membranes that are developed in the proof of principle project. The CapWa project started in 2010 and consists of 14 partners of which 9 from the EU, 3 from the African continent and 2 from the Middle East.

  6. Progress in ATLAS central solenoid magnet

    CERN Document Server

    Yamamoto, A; Makida, Y; Tanaka, K; Haruyama, T; Yamaoka, H; Kondo, T; Mizumaki, S; Mine, S; Wada, K; Meguro, S; Sotoki, T; Kikuchi, K; ten Kate, H H J

    2000-01-01

    The ATLAS central solenoid magnet is being developed to provide a magnetic field of 2 Tesla in the central tracking volume of the ATLAS detector under construction at the CERN/LHC project. The solenoid coil design features high-strength aluminum stabilized superconductor to make the coil thinnest while maintaining its stability and the pure-aluminum strip technique for quench protection and safety. The solenoid coil is installed in a common cryostat with the LAr calorimeter in order to minimize the cryostat wall. A transparency of 0.66 radiation length is achieved with these integrated efforts. The progress in the solenoid coil fabrication is reported. (8 refs).

  7. Central Solenoid Insert Technical Specification

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

    2011-09-01

    The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by

  8. Laser-heated solenoid fusion

    International Nuclear Information System (INIS)

    Vlases, G.C.

    1977-01-01

    Since the suggestion by Dawson, Hertzberg, and Kidder that high-energy CO 2 lasers could be used to heat magnetically confined plasma columns to thermonuclear temperatures, a great deal of theoretical and experimental work has been performed. In this paper we first review the experiments on the basic laser-plasma interaction phenomena, in which lasers with energies up to 1 kJ have been used to produce plasmas at n/sub e/ greater than 10 18 and T/sub e/ greater than 200 eV. The second part reviews fusion reactor studies based on the laser solenoid

  9. High field laser heated solenoids

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1979-01-01

    A 10 kJ pulsed CO 2 laser and 3.8 cm bore, 15 T, 8 μs rise time, 1-m long fast solenoid facility has been constructed to demonstrate the feasibility of using long wavelength lasers to heat magnetically confined plasmas. The most critical physics requirement is the necessity of creating and maintaining an on-axis electron density minimum to trap the axially directed laser beam. Satisfaction of this requirement has been demonstrated by heating 1.5 Torr deuterium fill plasmas in 2.7 cm bore plasma tubes to line energies of approximately 1 kJ/m. (Auth.)

  10. Possibilities of using thermal mass in buildings to save energy, cut power consumption peaks and increase the thermal comfort

    OpenAIRE

    Karlsson, Jonathan

    2012-01-01

    The aim of this project was to generate knowledge to enable us to take advantage of heat storage in heavy building structures with regard to as energy savings, better thermal indoor climate, and reduced peak powers. This could include buildings that can function without energy input during cold periods, buildings that give a robust indoor climate without installed cooling, and buildings with good thermal comfort also in case of higher outdoor temperatures resulting from global warming. To rea...

  11. Comprehensive evaluation and study on energy saving and emission reduction of nuclear power based on the osculation value method

    International Nuclear Information System (INIS)

    Liu Zhihui; Wei Fangxin; Liu Xiaomin

    2014-01-01

    By means of osculation value method, several provinces are selected to study the energy saving and emission reduction effect of nuclear power from provincial range according to the statistic data in 2010. Theoretically, nuclear power effect is reducing the consumption of non-renewable energy such as coal and reducing the release of pollutants such as CO 2 . The result shows that the comprehensive evaluation of energy saving and emission reduction effect in Zhejiang and Jiangsu provinces are the best. In comparison, Guangdong province falls behind Hubei and Fujian provinces. Total consumption of coal per unit of GDP in Guangdong, Zhejiang, and Jiangsu provinces is apparently lower than that of Hebei, Shanxi, Liaoning, and Hubei provinces. However, total release of SO 2 and NOx, etc. is apparently reduced in provinces with nuclear power, compared with provinces without nuclear power. But total release of CO 2 from thermal power generation (coal) per unit of GDP is not apparently reduced in provinces with nuclear power than those without. (authors)

  12. Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis

    International Nuclear Information System (INIS)

    Wei, Chu; Löschel, Andreas; Liu, Bing

    2015-01-01

    In the context of soaring demand for electricity, mitigating and controlling greenhouse gas emissions is a great challenge for China's power sector. Increasing attention has been placed on the evaluation of energy efficiency and CO 2 abatement potential in the power sector. However, studies at the micro-level are relatively rare due to serious data limitations. This study uses the 2004 and 2008 Census data of Zhejiang province to construct a non-parametric frontier in order to assess the abatement space of energy and associated CO 2 emission from China's coal-fired power enterprises. A Weighted Russell Directional Distance Function (WRDDF) is applied to construct an energy-saving potential index and a CO 2 emission-abatement potential index. Both indicators depict the inefficiency level in terms of energy utilization and CO 2 emissions of electric power plants. Our results show a substantial variation of energy-saving potential and CO 2 abatement potential among enterprises. We find that large power enterprises are less efficient in 2004, but become more efficient than smaller enterprises in 2008. State-owned enterprises (SOE) are not significantly different in 2008 from 2004, but perform better than their non-SOE counterparts in 2008. This change in performance for large enterprises and SOE might be driven by the “top-1000 Enterprise Energy Conservation Action” that was implemented in 2006. - Highlights: • Energy-saving potential and CO 2 abatement-potential for Chinese power enterprise are evaluated. • The potential to curb energy and emission shows great variation and dynamic changes. • Large enterprise is less efficient than small enterprise in 2004, but more efficient in 2008. • The state-owned enterprise performs better than non-state-owned enterprise in 2008

  13. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  14. Concept design of the CFETR central solenoid

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Song, Yuntao; Liu, Xufeng; Li, Jiangang; Wan, Yuanxi; Wan, Baonian; Ye, Minyou; Wu, Huan

    2015-01-01

    Highlights: • Main concept design work including coil's geometry, superconductor and support structure has been carried out. • The maximum magnetic field of CS coil is 11.9 T which is calculated by the coils’ operation current based on plasma equilibrium configuration. • The stray field in plasma area is less than 20 Gs under the CS coils’ operation currents designed for the plasma-heating phase. - Abstract: China Fusion Engineering Test Reactor (CFETR) superconducting tokamak is a national scientific research project of China with major and minor radius is 5.7 m and 1.6 m respectively. The magnetic field at the center of plasma with radius as R = 5.7 m is set to be 5.0 T. The major objective of the project is to build a fusion engineering tokamak reactor with fusion power in the range of 50–200 MW and should be self-sufficient by blanket. Six central solenoid coils of CFETR with same structure are made of Nb 3 Sn superconductor. Besides, the stray field in plasma area should be less than 20 Gs with the operation current of CS coils for plasma heating phase. The maximum magnetic field of CS coil is 11.9 T. It is calculated by the coils’ operation current based on plasma equilibrium configuration. The central solenoid needs to have enough stability margin under the condition of high magnetic field and strain. This paper discusses the design parameters, electromagnetic distribution, structure and stability analysis of the CS superconducting magnet for CFETR

  15. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  16. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    International Nuclear Information System (INIS)

    Zvingilaite, Erika

    2013-01-01

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy system optimisation model of the Danish heat and power sector. The achieved optimal level of heat savings reaches 11% of projected heat demand in 2025 under the model assumptions. Moreover, the analysis reveals the importance of considering energy conservation options in a system wide perspective. Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. - Highlights: ► Heat savings in buildings are analysed together with a heat and power system. ► Heat savings compete with electricity to heat technologies, mainly heat pumps. ► Cost effective heat-savings bring small decrease in health impacts and CO 2 emissions. ► Cost-effectiveness of heat savings depends on the marginal heat generation technology

  17. Conceptual design of the CMS 4 Tesla solenoid

    International Nuclear Information System (INIS)

    Baze, J.M.; Desportes, H.; Duthil, R.; Lesmond, C.; Lottin, J.C.; Pabot, Y.

    1992-02-01

    A large and important meeting 'Toward the LHC experimental programme' is due to be held at EVIAN-les-BAINS, on 5-8 March 1992. The major goal accurate measurement of muon momenta makes necessary, for the detectors, the use of large and powerful magnetic system producing high bending power. The CMS experiment is based on a solenoidal magnetic configuration. It has been designed to produce a high magnetic induction (4 T) in a 14 m long, 5.9 m bore cylindrical volume surrounding the interaction point. The diameter has been fixed to the maximum dimension compatible with road transportation to CERN. This long solenoid with its 12 500 ton iron yoke is a fully shielded magnet. The paper presents the conceptual design of the superconducting coil and its technical characteristics

  18. Subjective discount rates in the general population and their predictive power for energy saving behavior

    International Nuclear Information System (INIS)

    Bruderer Enzler, Heidi; Diekmann, Andreas; Meyer, Reto

    2014-01-01

    Why do people sometimes refrain from saving energy even if it would pay off in monetary terms? Subjective discount rates present one possible explanation for this lack of foresight, but little is known about their level and reliability in the general population. With regard to behavior, persons with lower discount rates are expected to accept additional costs upfront more readily than those with higher discount rates. Based on a representative nation-wide study, the Swiss Environmental Survey 2007, and a follow-up survey, our analyses reveal that on average subjective discount rates are well above market interest rates and moderately stable over a time interval of four years. Income and education are negatively correlated with discount rates. Contrary to expectations, we did not find convincing support for an impact of discount rates on energy saving behavior. - Highlights: • Results of a large panel study in Switzerland. • Mean subjective discount rates in population are well above market interest rates. • Subjective discount rates are moderately stable over four years. • Theory suggests impact of subjective discount rates on energy saving behavior. • However, subjective discount rates do not contribute to explanation of energy saving behavior

  19. 12 CFR 560.30 - General lending and investment powers of Federal savings associations.

    Science.gov (United States)

    2010-01-01

    .... Commercial paper and corporate debt securities 5(c)(2)(D) Up to 35% of total assets. 2,3 Community...) None. 6 Finance leasing 5(c)(1)(B), 5(c)(2)(A), 5(c)(2)(B), 5(c)(2)(D) Based on purpose and property... corporate debt securities must be aggregated with the Federal savings association's investment in consumer...

  20. ATLAS's superconducting solenoid takes up position

    CERN Multimedia

    2004-01-01

    The ATLAS superconducting solenoid was moved to its final destination on 16 January. It has taken up position opposite the ATLAS liquid argon barrel cryostat, which will house the electromagnetic calorimeter. All that remains to do now is to slide it into the insulation vacuum, this will be done in the next few weeks. Built by Toshiba, under responsibility of KEK in Japan, the central solenoid is 2.4 metres in diameter, 5.3 metres long and weighs 5.5 tonnes. "It will provide an axial magnetic field of 2 Tesla that will deflect particles inside the inner detector," as Roger Ruber, on-site project coordinator, explains. The inner detector, which consists of three sub-detectors, will be installed inside the solenoid later. The solenoid during one of the transport operations. Securely attached to the overhead travelling crane, the solenoid is situated in front of the opening to the liquid argon calorimeter, it will be inserted soon.

  1. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  2. ''Massless gaps'' for solenoid + calorimeter

    International Nuclear Information System (INIS)

    Marraffino, J.; Wu, W.; Beretvas, A.; Green, D.; Denisenko, K.; Para, A.

    1991-11-01

    The necessary existence of material in front of the first active element in a calorimeter will degrade the performance of that device. The question is by what factor. The follow up question is what can be done to minimize the damage. These questions are usually of primary importance for liquid argon calorimetry because of the necessity of containment dewars. However, the problem is universal. For example, the Solenoid Detector Collaboration, SDC, has proposed a superconducting coil which would be placed in front of the EM calorimeter. Although much effort has been made to minimize the depth of material in the coil, still the resolution and linearity must be optimized if the SDC goal of precision electromagnetic (EM) calorimetry is to be realized

  3. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  4. Indirectly cooled large thin superconducting CDF solenoid

    International Nuclear Information System (INIS)

    Kondo, Kunitaka; Mori, Shigeki; Yoshizaki, Ryozo; Saito, Ryusei; Asano, Katsuhiko.

    1985-01-01

    The manufacturing technique of the indirectly cooled large thin superconducting solenoid for the collider detector facility (CDF solenoid) has been studied through cooperation of University of Tsukuba and the National Laboratory for High Energy Physics of the Ministry of Education of Japan, and the Fermi National Accelerator Laboratory in the U.S. Fabrication and testing of the solenoid has recently been completed by Hitachi. The CDF solenoid has a large-sized thin structure for meeting the requirement by experiments to be applied. Hitachi has thus developed a variety of new technologies including the design standard, coil cooling method, material selection, and manufacturing technique in accordance with experimental data, which were confirmed in a series of analyses and tests made on various prototypes. The CDF solenoid, built using Hitachi's new technologies, is of the world's top class among equipment of this type. This paper outlines the design criteria for the major components employed in the CDF solenoid and the test results of the solenoid. (author)

  5. Designing focusing solenoids for superconducting RF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Kashikhin, V.V.; Page, T.; Terechkine, I.; Tompkins, J.; Wokas, T.; /Fermilab

    2006-08-01

    The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.

  6. New York Power Authority`s energy-efficient refigerator program for the New York City Housing Authority - savings evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.G.; Miller, J.D.

    1997-09-01

    The New York Power Authority (NYPA) and the New York City Housing Authority (NYCHA) are replacing refrigerators in New York City public housing with new, highly energy-efficient models over a five-year period. This report describes the analysis of the energy cost savings achieved through the replacement of 20,000 refrigerators in 1996, the first year of the NYPA/NYCHA program. The NYPA/NYCHA project serves as the lynchpin of a larger program designed to offer energy-efficient appliances to housing authorities across the country. The national program is a partnership between the U.S. Department of Energy (DOE) and the Consortium for Energy Efficiency (CEE). Starting with the 1997 refrigerator contract, this program invites other housing authorities to join NYPA in its volume purchase of energy-efficient refrigerators, at the same price and terms available to NYPA. Through these volume purchases, DOE`s ENERGY STAR{reg_sign} Partnerships program hopes to encourage appliance manufacturers to bring more efficient appliances to the market and to provide volume purchasers with the per-unit price savings of a bulk purchaser. DOE asked the Pacific Northwest National Laboratory (PNNL) to establish a protocol for evaluating the savings achieved with the NYPA refrigerators. That protocol is summarized in this report.

  7. Impact of detector solenoid on the Compact Linear Collider luminosity performance

    CERN Document Server

    Inntjore Levinsen, Y.; Tomás, Rogelio; Schulte, Daniel

    2014-05-27

    In order to obtain the necessary luminosity with a reasonable amount of beam power, the Compact Linear Collider (CLIC) design includes an unprecedented collision beam size of {\\sigma} = 1 nm vertically and {\\sigma} = 45 nm horizontally. Given the small and very flat beams, the luminosity can be significantly degraded from the impact of the experimental solenoid field in combination with a large crossing angle. Main effects include y-x'-coupling and increase of vertical dispersion. Additionally, Incoherent Synchrotron Radiation (ISR) from the orbit deflection created by the solenoid field, increases the beam emittance. A detailed study of the impact from a realistic solenoid field and the associated correction techniques for the CLIC Final Focus is presented. In particular, the impact of techniques to compensate the beam optics distortions due to the detector solenoid main field and its overlap with the final focus magnets are shown. The unrecoverable luminosity loss due to ISR has been evaluated, and found to...

  8. Test results of the g-2 superconducting solenoid magnet system

    NARCIS (Netherlands)

    Bunce, G; Morse, WM; Benante, J; Cullen, MH; Danby, GT; Endo, K; Fedotovich, GV; Geller, J; Green, MA; Grossmann, A; GrossePerdckamp, M; Haeberlen, U; Hseuh, H; Hirabayashi, H; Hughes, VW; Jackson, JW; Jia, LX; Jungmann, K; Krienen, F; Larsen, R; Khazin, B; Kawall, D; Meng, W; Pai, C; Polk, T.; Prigl, R; Putlitz, GZ; Redin, S; Roberts, BL; Ryskulov, N; Semertzidas, Y; Shutt, R; Snydstrup, L; Tallerico, T; vonWalter, P; Woodle, K; Yamamoto, A

    The g-2 experiment dipole consists of a single 48 turn, 15.1 meter diameter outer solenoid and a pair of 24 turn inner solenoids, 13.4 meters in diameter. The inner solenoids are hooked in series and are run at a polarity that is opposite that of the outer solenoid, thus creating a dipole field in

  9. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  10. Compact muon solenoid magnet reaches full field

    CERN Multimedia

    2006-01-01

    Scientist of the U.S. Department of Energy in Fermilab and collaborators of the US/CMS project announced that the world's largest superconducting solenoid magnet has reached full field in tests at CERN. (1 apge)

  11. HB+ inserted into the CMS Solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2006-01-01

    The first half of the barrel hadron calorimeter (HB+) has been inserted into the superconducting solenoid of CMS, in preparation for the magnet test and cosmic challenge. The operation went smoothly, lasting a couple of days.

  12. An extra power saving scheme for prolonging lifetime of mobile handset in the 4G mobile networks.

    Science.gov (United States)

    Chen, Jenhui; Tarn, Woei-Hwa; Lee, Jiann-Der

    2014-01-01

    In the fourth generation or next generation networks, services of non-real-time variable bit rate (NRT-VBR) and best effort (BE) will dominate over 85% of the total traffic in the networks. In this paper, we study the power saving mechanism of NRT-VBR and BE services for mobile handsets (MHs) to prolong their battery lifetime (i.e., the sustained operation duration) in the fourth generation networks. Because the priority of NRT-VBR and BE is lower than that of real-time VBR (RT-VBR) or guaranteed bit rate (GBR) services, we investigate an extended sleep mode for lower priority services (e.g., NRT-VBR and BE) in an MH to conserve the energy. The extended sleep mode is used when the MH wakes up from the sleep mode but it cannot obtain the bandwidth from base station (BS). The proposed mechanism, named extra power saving scheme (EPSS), uses the M/M/k/k Markovian queuing model to estimate the extended sleep duration to let MHs conserve their battery energy when the networks traffic is congested. To study the performance of EPSS, an accurate analysis model of energy is presented and validated by taking a series of simulations. Numerical experiments show that EPSS can achieve 43% extra energy conservation at most when downlink resource is saturated. We conclude that the energy of MHs can be conserved further by applying EPSS when the traffic load is saturated. The effect of energy saving becomes more obvious when the portion of NRT-VBR and BE services is greater than that of RT-VBR and GBR services.

  13. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  14. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  15. A Suboptimal Power-Saving Transmission Scheme in Multiple Component Carrier Networks

    Science.gov (United States)

    Chung, Yao-Liang; Tsai, Zsehong

    Power consumption due to transmissions in base stations (BSs) has been a major contributor to communication-related CO2 emissions. A power optimization model is developed in this study with respect to radio resource allocation and activation in a multiple Component Carrier (CC) environment. We formulate and solve the power-minimization problem of the BS transceivers for multiple-CC networks with carrier aggregation, while maintaining the overall system and respective users' utilities above minimum levels. The optimized power consumption based on this model can be viewed as a lower bound of that of other algorithms employed in practice. A suboptimal scheme with low computation complexity is proposed. Numerical results show that the power consumption of our scheme is much better than that of the conventional one in which all CCs are always active, if both schemes maintain the same required utilities.

  16. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  17. Save Energy: Save Money!

    Science.gov (United States)

    Eccli, Eugene; And Others

    This publication is a collection of inexpensive energy saving tips and home improvements for home owners, particularly in low-income areas or in older homes. Section titles are: (1) Keeping Warm; (2) Getting Heat Where You Need It; (3) Using the Sun; (4) Furnaces, Stoves, and Fireplaces; (5) Insulation and Other Energy Needs; (6) Do-It-Yourself…

  18. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  19. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    Science.gov (United States)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  20. Importance of the validation of saving technologies of electric power; Importancia de la validacion de tecnologias ahorradoras de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Valer Negrete, Adrian [Programa de Ahorro de Energia del Sector Electrico (PAESE), Comision Federal de Electricidad (Mexico)

    2003-07-01

    Within the Programs of Energy Saving it is fundamental the search and application of new technologies, with which this saving can be obtained, selected with base in their technical characteristics that allow to reduce to the consumptions and demands of power, without damaging the electric networks nor the transformers of the Comision Federal de Electricidad. It is important that the investments which are made count on attractive periods of capital recovery, in comparison with the useful life of the product, reason why the knowledge and price of the new technologies will be parameters to consider in an important manner, creating the need of conducting tests that verify the veracity of the information of the supplier, resulting in certain cases, the change of design of these technologies, so that thus they fulfill the engaged characteristics. This paper indicates the characteristics that the new saving technologies of electrical energy must fulfill and the tests and parameters to consider their evaluation. [Spanish] Dentro de los Programas de Ahorro de Energia es fundamental la busqueda y aplicacion de nuevas tecnologias, con las que se pueda obtener dicho ahorro, seleccionadas con base en sus caracteristicas tecnicas que permitan reducir los consumos y demandas de potencia, sin danar las redes ni transformadores de la Comision Federal de Electricidad. Es importante que las inversiones que se realicen cuenten con periodos de recuperacion de capital atractivos, comparados con la vida util del producto, por lo que el conocimiento y precio de las nuevas tecnologias seran parametros a considerar de manera importante, creandose la necesidad de realizar pruebas que verifiquen la veracidad de la informacion del proveedor, resultando en determinados casos, el cambio de diseno de dichas tecnologias, para que asi cumplan las caracteristicas prometidas. Este trabajo indica las caracteristicas que deben cumplir las nuevas tecnologias ahorradoras de energia electrica y las

  1. Experiments with a double solenoid system

    Energy Technology Data Exchange (ETDEWEB)

    Pampa Condori, R.; Lichtenthaeler Filho, R.; Faria, P.N. de; Lepine-Szily, A.; Mendes Junior, D.R.; Pires, K.C.C.; Assuncao, M.; Scarduelli, V.B.; Leistenschneider, E.; Morais, M.C.; Shorto, J.M.B.; Gasques, L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: RIBRAS [1] is presently the only experimental equipment in South America capable of producing secondary beams of rare isotopes. It consists of two superconducting solenoids, installed in one of the beam lines of the 8 MV Pelletron Tandem accelerator of the University of Sao Paulo. The exotic nuclei are produced in the collision between the primary beam of the Pelletron Accelerator and the primary target. The secondary beam is selected by the in-flight technique and is usually contaminated with particles coming from scattering and reactions in the primary target such as {sup 7}Li, alpha and other light particles as protons, deuterons and tritons. Solenoids are selectors with large acceptance and the double solenoid system provides ways to improve the quality of the secondary beam by using a degrador in the midst of the two solenoids. The main contamination of the secondary beam comes from {sup 7}Li{sup 2+} particles coming from the primary beam. A degrador placed between the two solenoids is able to separate those particles from the {sup 6}He beam providing an additional charge exchange {sup 7}Li{sup 2+-→}3{sup +}. In addition, the differential energy loss in the degrador provides further selection of the light particles as protons, deuterons, tritons and and alpha particles by the second solenoid. Here we present the results of the first experiment performed at RIBRAS using both solenoids. A pure {sup 6}He beam was produced and the reaction {sup 6}He+p was measured using a thick CH{sub 2} target. 1. R. Lichtenthaeler et al., Eur. Phys. J. A 25,s01,733 (2005) and Nucl. Phys. News 15, 25 (2005). (author)

  2. Integrated power-saving motor for power-demands of less than one kilowatt; Integral-Sparmotor im Leistungsbereich < 1 kW

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.; Kreuzer, H.H.; Lischer, G.

    2005-10-15

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the results of the second phase of a project concerning the development of integrated energy-saving electrical motors in the power range less than one kilowatt. The search for industrial partners is commented on and the publishing of an initial functional prototype on the Internet is mentioned. Participation at various fairs and the publication of articles in the technical press are mentioned. Further work on the motor is described, as is development work done on the drive electronics and the associated software. Further work planned is described.

  3. Design verification methodology for a solenoid valve for industrial applications

    International Nuclear Information System (INIS)

    Park, Chang Dae; Lim, Byung Ju; Chun, Kyung Yul

    2015-01-01

    Solenoid operated valves (SOV) are widely used in many applications due to their fast dynamic responses, cost effectiveness, and less contamination sensitive characteristics. In this paper, we tried to provide a convenient method of design verification of SOV to design engineers who depend on their experiences and experiment during design and development process of SOV. First, we summarize a detailed procedure for designing SOVs for industrial applications. All of the design constraints are defined in the first step of the design, and then the detail design procedure is presented based on design experiences as well as various physical and electromagnetic relationships. Secondly, we have suggested a verification method of this design using theoretical relationships, which enables optimal design of SOV from a point of view of safety factor of design attraction force. Lastly, experimental performance tests using several prototypes manufactured based on this design method show that the suggested design verification methodology is appropriate for designing new models of solenoids. We believe that this verification process is novel logic and useful to save time and expenses during development of SOV because verification tests with manufactured specimen may be substituted partly by this verification methodology.

  4. Resource-Saving Cleaning Technologies for Power Plant Waste-Water Cooling Ponds

    Directory of Open Access Journals (Sweden)

    Zakonnova Lyudmila

    2017-01-01

    Full Text Available One of the frequently encountered problems of power plant small cooling ponds is rapid eutrophication and related intensified development of phytoplankton (“hyperflow” and overgrowing of ponds by higher aquatic vegetation. As a result of hyper-flowering, an enormous amount of detritus settles on the condenser tubes, reducing the efficiency of the power plant operation. The development of higher aquatic vegetation contributes to the appearing of the shoals. As a result the volume, area and other characteristics of the cooling ponds are getting changed. The article describes the environmental problems of small manmade ponds of power plants and coal mines in mining regions. Two approaches to the problem of eutrophication are considered: technological and ecological. The negative effects of herbicides application to aquatic organisms are experimentally proved. An ecological approach to solving the problem by fish-land reclamation method is shown.

  5. Power Saving Scheduling Scheme for Internet of Things over LTE/LTE-Advanced Networks

    OpenAIRE

    Kuo, Yen-Wei; Chou, Li-Der

    2015-01-01

    The devices of Internet of Things (IoT) will grow rapidly in the near future, and the power consumption and radio spectrum management will become the most critical issues in the IoT networks. Long Term Evolution (LTE) technology will become a promising technology used in IoT networks due to its flat architecture, all-IP network, and greater spectrum efficiency. The 3rd Generation Partnership Project (3GPP) specified the Discontinuous Reception (DRX) to reduce device’s power consumption. Howev...

  6. Power saving control for the mobile DVB-H receivers based on H.264/SVC standard

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Grinko, Vitaly; Ukhanova, Ann

    2009-01-01

    This paper discusses the utilization of scalable extension of H.264/AVC standard in digital video broadcasting for handheld devices. In this area the problem of mobile receiver power consumption is critically important. This paper amplifies the well-known idea of the time-slicing and allows...

  7. Linear Programming Approaches for Power Savings in Software-defined Networks

    NARCIS (Netherlands)

    Moghaddam, F.A.; Grosso, P.

    2016-01-01

    Software-defined networks have been proposed as a viable solution to decrease the power consumption of the networking component in data center networks. Still the question remains on which scheduling algorithms are most suited to achieve this goal. We propose 4 different linear programming

  8. How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings

    International Nuclear Information System (INIS)

    Glasgo, Brock; Azevedo, Inês Lima; Hendrickson, Chris

    2016-01-01

    Highlights: • DC distribution systems are analyzed using monitored appliance and solar PV data. • DC-distributed PV energy generates savings under real-world load and solar profiles. • Savings from direct-DC are generally not cost-effective in current markets. • Non-technical hurdles remain before DC can be widely adopted in US homes. - Abstract: Advances in semiconductor-based power electronics and growing direct current loads in buildings have led researchers to reconsider whether buildings should be wired with DC circuits to reduce power conversions and facilitate a transition to efficient DC appliances. The feasibility, energy savings, and economics of such systems have been assessed and proven in data centers and commercial buildings, but the outcomes are still uncertain for the residential sector. In this work, we assess the technical and economic feasibility of DC circuits using data for 120 traditionally-wired AC homes in Austin, Texas to understand the effect of highly variable demand profiles on DC-powered residences, using appliance-level use and solar generation data, and performing a Monte Carlo simulation to quantify costs and benefits. Results show site energy savings between 9% and 20% when solar PV is distributed to all home appliances. When battery storage for excess solar energy is considered, these savings increase to 14–25%. At present DC equipment prices, converting all equipment to DC causes levelized annual costs of electricity to homeowners to roughly double. However, by converting only homes’ air conditioning condensing units to DC, the costs of direct-DC are greatly reduced and home site energy savings of 7–16% are generated. In addition to quantifying savings, we find major nontechnical barriers to implementing direct-DC in homes. These include a lack of standards for such systems, a relatively small market for DC appliances and components, utility programs designed for AC power, and a workforce unfamiliar with DC

  9. Central Solenoid On-surface Test

    CERN Multimedia

    Ruber, R

    2004-01-01

    A full scale on-surface test of the central solenoid has been performed before its final installation in the ATLAS cavern starting in November. The successful integration of the central solenoid into the barrel cryostat, as reported in the March 2004 ATLAS eNews, was hardly finished when testing started. After a six-week period to cool down the LAr calorimeter, the solenoid underwent a similar procedure. Cooling it down to 4.6 Kelvin from room temperature took just over five and a half days. Cold and superconducting, it was time to validate the functionality of the control and safety systems. These systems were largely the same as the systems to be used in the final underground installation, and will be used not only for the solenoid and toroid magnets, but parts of it also for other LHC experiments. This solenoid test was the first occasion to test the system functionality in a real working environment. Several days were spent to fine tune the systems, especially the critical safety system, which turned out...

  10. Saving energy and money at choice of power transformers, v. 16(63)

    International Nuclear Information System (INIS)

    Jankoski, Dimitar

    2008-01-01

    When power transformers work at regular conditions, besides they exert theirs principal function, they constantly spend electrical energy that is, always work with losses. Depending od performances, sometimes those losses can be drastically different, although the transformers can equal power and some voltages of transformation. Considering that the loss of energy has its own price, a dilemma whether it is better economic reason to purchase new expensive transformer with smaller losses or one cheaper with more losses during its work-comes out. This paper analysis such case. The presented access can usefully serve in practice, in making the right decision in replacing the old transformer with the new one, or choosing the new transformer. (Author)

  11. Saving energy and money at choice of power transformers, v. 16(62)

    International Nuclear Information System (INIS)

    Jankoski, Dimitar

    2008-01-01

    When power transformers work at regular conditions, besides they exert theirs principal function, they constantly spend electrical energy that is, always work with losses. Depending od performances, sometimes those losses can be drastically different, although the transformers can equal power and some voltages of transformation. Considering that the loss of energy has its own price, a dilemma whether it is better economic reason to purchase new expensive transformer with smaller losses or one cheaper with more losses during its work-comes out. This paper analysis such case. The presented access can usefully serve in practice, in making the right decision in replacing the old transformer with the new one, or choosing the new transformer. (Author)

  12. Power consumption of lifts and potential for energy savings; Elektrizitaetsverbrauch und Einspar-Potenziale bei Aufzuegen

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the results of a study made on the electricity consumption of lifts, which estimates that around 0.5% of Swiss power consumption is caused by lift installations. The results of measurements made on 33 various lift installations and their power consumption are presented. The SIA 380/4 model used to determine energy consumption on the basis of the number of movements is described. Stand-by and lighting consumption is examined, which, according to the authors' conclusions, offer considerable room for improvement, especially for lifts in residential buildings. A further significant potential for improvement is also noted which can be achieved when renewing older systems. The avoidance of inefficient concepts by the use of guidelines for architects, planners and customers is recommended.

  13. Energy and Resource-Saving Sources of Energy in Small Power Engineering of Siberia

    Directory of Open Access Journals (Sweden)

    Baranova Marina

    2017-01-01

    Full Text Available The sustainable development of distant areas of Siberia is associated with the structures of energy demand and supply, the implementation and promotion of the process of environmentally safe restructuring of the energy supply system. It has been established that suspension coal fuels derived from brown coal, coal mining, coal processing wastes can be used as fuel. The results of experimental and industrial boilers on suspension water coal fuel are presented. The designs of vortex combustion chambers of various powers are developed and tested. The possibility of using coal-enrichment wastes and substandard coals for the production of manure-coal fuel briquettes was studied. It is shown that the strength and thermal power characteristics of briquettes depend on the moisture content and degree of metamorphism of the raw materials. The most effective percentage of the solid phase and manure, as a binder, was determined.

  14. Adaptive Power Saving Method for Mobile Walking Guidance Device Using Motion Context

    Directory of Open Access Journals (Sweden)

    Jin-Hee Lee

    2015-01-01

    Full Text Available It is important to recognize the motion of the user and the surrounding environment with multiple sensors. We developed a guidance system based on mobile device for visually impaired person that helps the user to walk safely to the destination in the previous study. However, a mobile device having multiple sensors spends more power when the sensors are activated simultaneously and continuously. We propose a method for reducing the power consumption of a mobile device by considering the motion context of the user. We analyze and classify the user’s motion accurately by means of a decision tree and HMM (Hidden Markov Model that exploit the data from a triaxial accelerometer sensor and a tilt sensor. We can reduce battery power consumption by controlling the number of active ultrasonic sensors and the frame rate of the camera used to acquire spatial context around the user. This helps us to extend the operating time of the device and reduce the weight of the device’s built-in battery.

  15. New cost saving technologies: microturbines - a new way to generate power

    International Nuclear Information System (INIS)

    Kline, R.

    1999-01-01

    The use of microturbines for power distribution was discussed and illustrated by a series of overhead viewgraphs which accompanied this presentation. The paper presented an explanation of how microturbines work and how they can be used for onsite distributed generation. Microturbines were described as being portable and compact gas turbines of less than 100 kW, with high speed single shaft design. One of their main advantages are their capability for remote monitoring and operation. Results of microturbine testing at Suncor's Joffre Plant were presented. Some of the advantages of using Mercury Electric's IPP and TurboGenerator Distributor were also discussed. The operating modes for the unit include: (1) peak shaving for larger load customers, (2) cogeneration for base load applications, (3) emergency/standby/UPS applications, and (4) portable generation for temporary power. The unit can be used in commercial and industrial buildings and is also ideal for remote locations. The environmental benefits associated with the unit is that it can be used for cogeneration power and can utilize waste gas flares which have been associated with harmful emissions to the atmosphere. 7 figs

  16. An objective decision model of power grid environmental protection based on environmental influence index and energy-saving and emission-reducing index

    Science.gov (United States)

    Feng, Jun-shu; Jin, Yan-ming; Hao, Wei-hua

    2017-01-01

    Based on modelling the environmental influence index of power transmission and transformation project and energy-saving and emission-reducing index of source-grid-load of power system, this paper establishes an objective decision model of power grid environmental protection, with constraints of power grid environmental protection objectives being legal and economical, and considering both positive and negative influences of grid on the environmental in all-life grid cycle. This model can be used to guide the programming work of power grid environmental protection. A numerical simulation of Jiangsu province’s power grid environmental protection objective decision model has been operated, and the results shows that the maximum goal of energy-saving and emission-reducing benefits would be reached firstly as investment increasing, and then the minimum goal of environmental influence.

  17. Effects of social participation and the emergence of voluntary social interactions on household power-saving practices in post-disaster Kanagawa, Japan

    International Nuclear Information System (INIS)

    Nakamura, Hidenori

    2013-01-01

    An online social survey was conducted to reveal household electricity-saving behaviour and its relationship with participation in social group activities, as well as face-to-face and online social interactions, i.e., information sources used and information dissemination through personal networks, in a disaster-affected region of Kanagawa, Japan, during the summer of 2011. The study confirms the positive contribution of respondents’ participation in social group activities to the number of power-saving practices conducted. It also reveals the emergence of voluntary social face-to-face and/or online interactions for power-saving. The study suggests it would be useful to provide effective information to proactive individuals who are closely engaged in power-saving in households and who are proactively disseminating power-saving information practices to others. Such individuals include (1) women who have school-children and who are proactively engaging in the social interactions of their children’s schools, other parents, neighbours, as well as their own parents and relatives; and (2) men and women who are using various kinds of online interaction tools and are also engaged in face-to-face social interactions

  18. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  19. Apparatus and method for implementing power saving techniques when processing floating point values

    Science.gov (United States)

    Kim, Young Moon; Park, Sang Phill

    2017-10-03

    An apparatus and method are described for reducing power when reading and writing graphics data. For example, one embodiment of an apparatus comprises: a graphics processor unit (GPU) to process graphics data including floating point data; a set of registers, at least one of the registers of the set partitioned to store the floating point data; and encode/decode logic to reduce a number of binary 1 values being read from the at least one register by causing a specified set of bit positions within the floating point data to be read out as 0s rather than 1s.

  20. The French nuclear power plant reactor building containment contributions of prestressing and concrete performances in reliability improvements and cost savings

    International Nuclear Information System (INIS)

    Rouelle, P.; Roy, F.

    1998-01-01

    The Electricite de France's N4 CHOOZ B nuclear power plant, two units of the world's largest PWR model (1450 Mwe each), has earned the Electric Power International's 1997 Powerplant Award. This lead NPP for EDF's N4 series has been improved notably in terms of civil works. The presentation will focus on the Reactor Building's inner containment wall which is one of the main civil structures on a technical and safety point of view. In order to take into account the necessary evolution of the concrete technical specification such as compressive strength low creep and shrinkage, the HSC/HPC has been used on the last N4 Civaux 2 NPP. As a result of the use of this type of professional concrete, the containment withstands an higher internal pressure related to severe accident and ensures higher level of leak-tightness, thus improving the overall safety of the NPP. On that occasion, a new type of prestressing has been tested locally through 55 C 15 S tendons using a new C 1500 FE Jack. These updated civil works techniques shall allow EDF to ensure a Reactor Containment lifespan for more than 50 years. The gains in terms of reliability and cost saving of these improved techniques will be developed hereafter

  1. Some options for the muon collider capture and decay solenoids

    International Nuclear Information System (INIS)

    Green, M.A.

    1995-11-01

    This report discusses some of the problems associated with using solenoid magnets to capture the secondary particles that are created when an intense beam of 8 to 10 GeV protons interacts with the target at the center of the capture region. Hybrid capture solenoids with inductions of 28 T and a 22T are described. The first 14 to 15 T of the solenoid induction will be generated by a superconducting magnet. The remainder of the field will be generated by a Bitter type of water cooled solenoid. The capture solenoids include a transition section from the high field solenoid to a 7 T decay channel where pions and kaons that come off of the target decay into muons. A short 7 T solenoidal decay channel between the capture solenoid system and the phase rotation system is described. A concept for separation of negative and positive pions and kaons is briefly discussed

  2. Power Saving MAC Protocols for WSNs and Optimization of S-MAC Protocol

    Directory of Open Access Journals (Sweden)

    Simarpreet Kaur

    2012-11-01

    Full Text Available Low power MAC protocols have received a lot of consideration in the last few years because of their influence on the lifetime of wireless sensor networks. Since, sensors typically operate on batteries, replacement of which is often difficult. A lot of work has been done to minimize the energy expenditure and prolong the sensor lifetime through energy efficient designs, across layers. Meanwhile, the sensor network should be able to maintain a certain throughput in order to fulfill the QoS requirements of the end user, and to ensure the constancy of the network. This paper introduces different types of MAC protocols used for WSNs and proposes S‐MAC, a Medium‐Access Control protocol designed for Wireless Sensor Networks. S‐MAC uses a few innovative techniques to reduce energy consumption and support selfconfiguration. A new protocol is suggested to improve the energy efficiency, latency and throughput of existing MAC protocol for WSNs. A modification of the protocol is then proposed to eliminate the need for some nodes to stay awake longer than the other nodes which improves the energy efficiency, latency and throughput and hence increases the life span of a wireless sensor network.

  3. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  4. Compensation of oscillation coupling induced by solenoids

    International Nuclear Information System (INIS)

    Zelinskij, A.Yu.; Karnaukhov, I.M.; Shcherbakov, A.A.

    1988-01-01

    Methods for construction of various schemes of oscillation coupling compensation, induced by solenoids in charged particle storage rings, are described. Peculiarities of magnetic structure, enabling to localize oscillation coupling in wide energy range are discussed. Results of calculation of compensation schemes for design of NR-2000 storage ring spin rotation are presented

  5. Successful mapping of the solenoid magnet

    CERN Multimedia

    Aleksa, M.

    The ATLAS solenoid coil is about 5.3m long, has a diameter of 2.5m and is designed to deliver a magnetic field of approximately 2T for the ATLAS inner detector. The superconducting solenoid coil has been integrated inside the LAr barrel cryostat and was installed at its final position inside the cavern in November 2005. This summer - after completion of the extended barrel calorimeters and before the installation of the inner detector - the end cap calorimeters (LAr end caps and Tile extended barrels) were moved for the first time into their final position in order to create conditions as close as possible to final for the solenoid tests and for mapping the field inside the solenoid bore. Design and construction of the mapping machine The requirement on the absolute precision of the field measurements are 0.05% on the field integrals seen by particles; if this is achieved the momentum error coming from insufficient knowledge of the magnetic field will be negligible compared to the error stemming from the inn...

  6. Error field generation of solenoid magnets

    International Nuclear Information System (INIS)

    Saunders, J.L.

    1982-01-01

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10 -4 , the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  7. Flowfield Analysis of a Pneumatic Solenoid Valve

    Directory of Open Access Journals (Sweden)

    Sheam-Chyun Lin

    2018-07-01

    Full Text Available Pneumatic solenoid valve has been widely used in the vehicle control systems for meeting the rapid-reaction demand triggered by the dynamic conditions encountered during the driving course of vehicle. For ensuring the safety of human being, the reliable and effective solenoid valve is in great demand to shorten the reaction time and thus becomes the topic of this research. This numerical study chooses a commercial 3/2-way solenoid valve as the reference valve for analysing its performance. At first, CFD software Fluent is adopted to simulate the flow field associated with the valve configuration. Then, the comprehensive flow visualization is implemented to identify the locations of adverse flow patterns. Accordingly, it is found that a high-pressure region exists in the zone between the nozzle exit and the top of iron core. Thereafter, the nozzle diameter and the distance between nozzle and spool are identified as the important design parameters for improving the pressure response characteristics of valve. In conclusion, this work establishes a rigorous and systematic CFD scheme to evaluate the performance of pneumatic solenoid valve.

  8. Growth techniques for monolithic YBCO solenoidal magnets

    International Nuclear Information System (INIS)

    Scruggs, S.J.; Putman, P.T.; Fang, H.; Alessandrini, M.; Salama, K.

    2006-01-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample

  9. Growth techniques for monolithic YBCO solenoidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scruggs, S.J. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)]. E-mail: Sscruggs2@uh.edu; Putman, P.T. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Fang, H. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Alessandrini, M. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Salama, K. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)

    2006-10-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample.

  10. First experiment with the double solenoid RIBRAS system

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenthaeler, R.; Condori, R. Pampa; Lepine-Szily, A.; Pires, K. C. C.; Morais, M. C.; Leistenschneider, E.; Scarduelli, V. B.; Gasques, L. R. [Instituto de Fisica da USP, Sao Paulo, Brazil, C.P. 66318, 05314-970 (Brazil); Faria, P. N. de; Mendes, D. R. Jr. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ, 24210-340 (Brazil); Shorto, J. M. B. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Lineu Prestes, 2242, 05508-000, Sao Paulo, SP (Brazil); Assuncao, M. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Campus Diadema, Sao Paulo (Brazil)

    2013-05-06

    A description of the double solenoid system (RIBRAS) operating since 2004 in one of the beam lines of the Pelletron Laboratory of the Institute of Physics of the University of Sao Paulo is presented. The recent installation of the secondary scattering chamber after the second solenoid is reported and the first experiment in RIBRAS using both solenoids is described.

  11. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-01-01

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  12. Alternative connections for the large MFTF-B solenoids

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    The MFTF-B central-cell solenoids are a set of twelve closely coupled, large superconducting magnets with similar but not exactly equal currents. Alternative methods of connecting them to their power supplies and dump resistors are investigated. The circuits are evaluated for operating conditions and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the current induced in coils that remain superconducting when one or more coils quench. The alternative connections include separate power supplies, combined power supplies, individual dump resistors, series dump resistors and combinations of these. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed in detail

  13. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    Energy Technology Data Exchange (ETDEWEB)

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  14. ASME XI stroke time testing of solenoid valves at Connecticut Yankee Station

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.W.

    1996-12-01

    Connecticut Yankee Atomic Power Company has developed the capability of measuring the stroke times of AC and DC solenoid valves. This allows the station to measure the stroke time of any solenoid valve in the plant, even those valves which do not have valve stem position indicators. Connecticut Yankee has adapted the ITI MOVATS Checkmate 3 system, using a signal input from a Bruel and Kjaer (B&K) Model 4382 acoustic accelerometer and the Schaumberg Campbell Associates (SCA) Model SCA-1148 dual sensor, which is a combined accelerometer and gaussmeter.

  15. ASME XI stroke time testing of solenoid valves at Connecticut Yankee Station

    International Nuclear Information System (INIS)

    Martin, C.W.

    1996-01-01

    Connecticut Yankee Atomic Power Company has developed the capability of measuring the stroke times of AC and DC solenoid valves. This allows the station to measure the stroke time of any solenoid valve in the plant, even those valves which do not have valve stem position indicators. Connecticut Yankee has adapted the ITI MOVATS Checkmate 3 system, using a signal input from a Bruel and Kjaer (B ampersand K) Model 4382 acoustic accelerometer and the Schaumberg Campbell Associates (SCA) Model SCA-1148 dual sensor, which is a combined accelerometer and gaussmeter

  16. Novel MEMS-based fabrication technology of micro solenoid-type inductor

    International Nuclear Information System (INIS)

    Uchiyama, S; Yang, Z Q; Takagi, H; Itoh, T; Maeda, R; Zhang, Y; Toda, A; Hayase, M

    2013-01-01

    Solenoid configuration of micro inductor, which has advantages of high quality factor and low loss, is needed in micro energy and power electronics applications but it is difficult to prepare using conventional microfabrication processes. In this work, we present a new microelectromechanical systems-based technology of micro solenoid-type inductor by a newly developed cylindrical projection photolithography method. Direct electroplating process of copper film on coil patterns was also successfully developed for achieving thick windings so that thick photoresist-based electroplating molds are not needed. Micro solenoid-type inductor prototypes of the winding pitch of about 40 µm, the winding number of 20 and 50, and the winding thickness of about 14 µm, were successfully fabricated on a 1 mm diameter glass capillary. The prepared 20-turn and 50-turn micro inductors were of inductance of 69 and 205 nH at 30 MHz, respectively. (paper)

  17. A feasibility study of a linear laser heated solenoid fusion reactor. Final report

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-02-01

    This report examines the feasibility of a laser heated solenoid as a fusion or fusion-fission reactor system. The objective of this study, was an assessment of the laser heated solenoid reactor concept in terms of its plasma physics, engineering design, and commercial feasibility. Within the study many pertinent reactor aspects were treated including: physics of the laser-plasma interaction; thermonuclear behavior of a slender plasma column; end-losses under reactor conditions; design of a modular first wall, a hybrid (both superconducting and normal) magnet, a large CO 2 laser system; reactor blanket; electrical storage elements; neutronics; radiation damage, and tritium processing. Self-consistent reactor configurations were developed for both pure fusion and fusion-fission designs, with the latter designed both to produce power and/or fissile fuels for conventional fission reactors. Appendix A is a bibliography with commentary of theoretical and experimental studies that have been directed at the laser heated solenoid

  18. Thermal and Mechanical Performance of the First MICE Coupling Coil and the Fermilab Solenoid Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, Roger [Fermilab; Carcagno, Ruben [Fermilab; Caspi, Shlomo [LBNL, Berkeley; DeMello, Allan [LBNL, Berkeley; Kokoska, Lidija [Fermilab; Orris, D. [Fermilab; Pan, Heng [LBNL, Berkeley; Sylvester, Cosmore [Fermilab; Tartaglia, Michael

    2014-11-06

    The first coupling coil for the Muon Ionization Cooling Experiment (MICE) has been tested in a conduction-cooled environment at the Solenoid Test Facility at Fermilab. An overview of the thermal and mechanical performance of the magnet and the test stand during cool-down and power testing of the magnet is presented.

  19. Investigation, development and verification of printed circuit board embedded air-core solenoid transformers

    DEFF Research Database (Denmark)

    Mønster, Jakob Døllner; Madsen, Mickey Pierre; Pedersen, Jeppe Arnsdorf

    2015-01-01

    A new printed circuit board embedded air-core transformer/coupled inductor is proposed and presented. The transformer is intended for use in power converter applications operating at very high frequency between 30 MHz to 300 MHz. The transformer is based on two or more solenoid structures...

  20. Bent solenoids for spectrometers and emittance exchange sections

    International Nuclear Information System (INIS)

    Norem, J.

    1999-01-01

    Bent solenoids can be used to transport low energy beams as they provide both confinement and dispersion of particle orbits. Solenoids are being considered both as emittance exchange sections and spectrometers in the muon cooling system as part of the study of the muon collider. They present the results of a study of bent solenoids which considers the design of coupling sections between bent solenoids to straight solenoids, drift compensation fields, aberrations, and factors relating to the construction, such as field ripple, stored energy, coil forces and field errors

  1. Reference Design of the Mu2e Detector Solenoid

    CERN Document Server

    Feher, S; Brandt,, J; Cheban, S; Coleman, R; Dhanaraj, N; Fang, I; Lamm, M; Lombardo, V; Lopes, M; Miller, J; Ostojic, R ,; Orris, D; Page, T; Peterson, T; Tang, Z; Wands, R

    2014-01-01

    The Mu2e experiment at Fermilab has been approved by the Department of Energy to proceed developing the preliminary design. Integral to the success of Mu2e is the superconducting solenoid system. One of the three major solenoids is the Detector Solenoid that houses the stopping target and the detectors. The goal of the Detector Solenoid team is to produce detailed design specifications that are sufficient for vendors to produce the final design drawings, tooling and fabrication procedures and proceed to production. In this paper we summarize the Reference Design of the Detector Solenoid.

  2. Household Savings

    DEFF Research Database (Denmark)

    Browning, Martin; Lusardi, Annamaria

    suggested in the informal saving literature can be captured in the standard optimizing model. Particular attention is given to recent work on the precautionary motive and its implications for saving and consumption behavior. We also discuss the "behavioral" or "psychological" approach that eschews the use......In this survey, we review the recent theoretical and empirical literature on household saving and consumption. The discussion is structured around a list of motives for saving and how well the standard theory captures these motives. We show that almost all of the motives for saving that have been...

  3. D0 Superconducting Solenoid Quench Data and Slow Dump Data Acquisition

    International Nuclear Information System (INIS)

    Markley, D.

    1998-01-01

    This Dzero Engineering note describes the method for which the 2 Tesla Superconducting Solenoid Fast Dump and Slow Dump data are accumulated, tracked and stored. The 2 Tesla Solenoid has eleven data points that need to be tracked and then stored when a fast dump or a slow dump occur. The TI555(Texas Instruments) PLC(Programmable Logic Controller) which controls the DC power circuit that powers the Solenoid, also has access to all the voltage taps and other equipment in the circuit. The TI555 constantly logs these eleven points in a rotating memory buffer. When either a fast dump(dump switch opens) or a slow dump (power supply turns off) occurs, the TI555 organizes the respective data and will down load the data to a file on DO-CCRS2. This data in this file is moved over ethernet and is stored in a CSV (comma separated format) file which can easily be examined by Microsoft Excel or any other spreadsheet. The 2 Tesla solenoid control system also locks in first fault information. The TI555 decodes the first fault and passes it along to the program collecting the data and storing it on DO-CCRS2. This first fault information is then part of the file.

  4. Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shao Qing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2015-06-15

    Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone. Several models for ECR ion source were and will be constructed depending on their operating conditions. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

  5. Analysis of an adjustable field permanent magnet solenoid

    Science.gov (United States)

    Burris-Mog, T.; Burns, M.; Chavez, A.; Schillig, J.

    2017-10-01

    A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fields ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.

  6. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Rose, P.H.

    1975-01-01

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 10 13 to 10 14 neutrons/cm 2 -sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  7. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  8. ATLAS superconducting solenoid on-surface test

    CERN Document Server

    Ruber, Roger J M Y; Doi, Y; Haruyama, T; Haug, F; ten Kate, H H J; Kawai, M; Kondo, T; Kondo, Y; Makida, Y; Mizumaki, S; Olesen, G; Pavlov, O V; Pezzetti, M; Pirotte, O; Sbrissa, E; Yamamoto, A

    2005-01-01

    The ATLAS detector is presently under construction as one of the five LHC experiment set-ups. It relies on a sophisticated magnet system for the momentum measurement of charged particle tracks. The superconducting solenoid is at the center of the detector, the magnet system part nearest to the proton-proton collision point. It is designed for a 2 Tesla strong axial magnetic field at the collision point, while its thin-walled construction of 0.66 radiation lengths avoids degradation of energy measurements in the outer calorimeters. The solenoid and calorimeter have been integrated in their common cryostat, cooled down and tested on-surface. We review the on-surface set-up and report the performance test results.

  9. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  10. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  11. DCS upgrades for nuclear power plants: Saving money and reducing risk through virtual-stimulation control system checkout

    International Nuclear Information System (INIS)

    McKim, G.; Yeager, M.; Weirich, C.

    2006-01-01

    Nuclear power plant control systems of 1970's vintage have reached the end of their life: reliability is poor and spare parts are hard to come by. At First Energy Perry station, two costly feedwater system trips caused by an ailing analog control system led to the decision to replace it with a modern Foxboro I/A-series Distributed Control System. The simulator was also upgraded using the Virtual-Stim simulation of I/A, called FSIM. Virtual-Stim simulation allows the configuration and graphics from the plant to be downloaded onto the simulator as-is, using the same tools and operator interface as the plant, without imprecise translations, conversions, or other emulation. Advances in simulation technology and market forces have led to an open architecture design, allowing FSIM to be 'bridged' to Perry's existing Opensim simulator process model. This appears to be an industry-wide trend as more control system vendors offer Virtual Stimulation solutions for connection to third-party simulation products. Taking a cue from First Energy's Sammis Station FSIM simulator projects, the Perry simulator was used for dedicated control verification and tuning. Preventing forced outages caused by control configuration errors can result in enormous savings, and the simulator is now required to precede any plant modifications rather than just a training tool that lags the plant. This testing revealed several surprising results for a relatively straightforward control strategy, showing that simulator-based testing will be even more crucial in the future as the remain-der of the balance of plant is migrated to digital control. (author)

  12. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.

    Science.gov (United States)

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-10-12

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.

  13. Power load leveling and energy saving measures for office buildings. Power load leveling and energy saving technology for the new building of the Kobe branch of the Kansai Electric Power Co., and its effect; Office biru no denryoku fuka heijunka sho energy hosaku. Kobe shiten shinshaoku ni okeru denryoku fuka heijunka sho energy gijutsu to sono koka

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, M. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1999-06-10

    This paper presents power load leveling and energy saving measures for heat source, air conditioning and lighting of the new Kobe branch building. The low-temperature hot-air system adopts an ice storage system, and reduces blowing power by 12 degreesC blowing in place of normal 16 degreesC blowing, and an initial cost by duct size reduction. The continuous air conditioning system levels an initial peak load of air conditioning as compared with normal air conditioning only for working hours for buildings with large heat capacity. In addition, as power load leveling measures for the whole building, the complete heat storage system using an underground internal melting type ice storage tank is adopted. Energy saving for lighting is achieved with a dimming lighting controlling its lighting output by inverter. The following effects are expected by these new technologies: Load leveling effect of 30%, energy saving effect of 20.2% and CO{sub 2} reduction effect of 24.1%. (NEDO)

  14. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000MW coal-fired power plant.

    Science.gov (United States)

    Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S

    2018-05-10

    The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.

  15. Stable particle motion in a linear accelerator with solenoid focusing

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1979-01-01

    The equation governing stable particle motion in a linear ion accelerator containing discrete rf and either discrete or continuous solenoid focusing was derived. It was found for discrete solenoid focusing that: cos μ = (1 + dΔ) cos theta/2 + (lΔ/theta - dtheta/2l - thetaΔd 2 /4l) sin theta/2, Δ = 1/f and l + 2d = βlambda, where μ, theta, f, l, and d are the phase advance per cell, precession angle in the solenoid, focal length of the rf lens, length of the solenoid in one cell, and the drift distance between the center of the rf gap and the effective edge of the solenoid. The relation for a continuous solenoid is found by setting d equal to zero. The boundaries of the stability region for theta vs Δ with fixed l and d are obtained when cos μ =+-1

  16. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  17. Functional and genomic analyses of alpha-solenoid proteins.

    Science.gov (United States)

    Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  18. Approximate theory the electromagnetic energy of solenoid in special relativity

    International Nuclear Information System (INIS)

    Prastyaningrum, I; Kartikaningsih, S.

    2017-01-01

    Solenoid is a device that is often used in electronic devices. A solenoid is electrified will cause a magnetic field. In our analysis, we just focus on the electromagnetic energy for solenoid form. We purpose to analyze by the theoretical approach in special relativity. Our approach is begun on the Biot Savart law and Lorentz force. Special theory relativity can be derived from the Biot Savart law, and for the energy can be derived from Lorentz for, by first determining the momentum equation. We choose the solenoid form with the goal of the future can be used to improve the efficiency of the electrical motor. (paper)

  19. Calculus of the Cryebis 2 supraconductor solenoid

    International Nuclear Information System (INIS)

    Levy, G.

    1985-01-01

    This report describes the design of the superconducting solenoid CRYEBIS 2. With the prescribed parameters (5 Teslas central field, 120mm for inner diameter, 1600 mm for length), one determinates the dimensions of coil, its energy, the conductor, the working point of the magnet with its critical limits (intensity, field, temperature). The superconducting switch is calculated in the same manner. The study of a quench shows the good behaviour of the coil which is always safe even the detection system is in failure. In final, the mechanical stresses are verified lower than yield strength [fr

  20. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  1. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  2. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jay Jayakumar, R.; Tsuji, H.; Ohsaki, O.

    2001-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  3. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Tsuji, H.; Ohsaki, O.

    1999-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  4. Optimal laser heating of plasmas confined in strong solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Vitela, J.; Akcasu, A.Z.

    1987-01-01

    Optimal Control Theory is used to analyze the laser-heating of plasmas confined in strong solenoidal magnetic fields. Heating strategies that minimize a linear combination of heating time and total energy spent by the laser system are found. A numerical example is used to illustrate the theory. Results of this example show that by an appropriate modulation of the laser intensity, significant savings in the laser energy are possible with only slight increases in the heating time. However, results may depend strongly on the initial state of the plasma and on the final ion temperature. (orig.)

  5. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    Science.gov (United States)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  6. Optimization of the Mu2e Production Solenoid Heat and Radiation Shield

    Science.gov (United States)

    Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.

    2014-03-01

    The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.

  7. Design of sensor energy-saving controller for photovoltaic power generation%光伏发电中的传感器节能控制器设计

    Institute of Scientific and Technical Information of China (English)

    云彩霞; 李丽芬; 蔡小庆; 刘晨

    2017-01-01

    传感器储能性能较弱,导致设计出的光伏发电中的传感器节能控制器网络延迟较长、节能效果不理想。因而,设计一种新型光伏发电中的传感器节能控制器,其对供电电路、无线通信芯片和太阳光传感器芯片进行重点设计。nRF905无线通信芯片对控制器中各设备、电路、元件之间的数据通信进行监控,保障节能效果、缩短网络延迟。供电电路为控制器的节能工作供应电能、优化太阳光光强的能量转化。优化后的太阳光能量,将通过太阳光传感器中的TSL2678芯片太阳光进行参数提取和分析,输出太阳能最佳采集方位和该方位的太阳光光强,实现光伏发电的最优节能。控制器软件设计部分给出了控制器的节能控制流程。分析实验结果可知,所设计的控制器具有网络延迟短、节能效果好的特点。%Since the sensor energy⁃saving controller for the photovoltaic power generation has long network latency and un⁃satisfied energy⁃saving effect due to the poor energy storage performance of the sensor,a new sensor energy⁃saving controller for the photovoltaic power generation was designed,and its power supply circuit,wireless communication chip and solar sensor chip were designed emphatically. The wireless communication chip NRF905 is used to monitor the data communication among each device,circuit and component in the controller to ensure the energy⁃saving effect and shorten the network latency. The power supply circuit supplies the electric energy for the energy⁃saving work of the controller,and optimizes the energy conversion of so⁃lar light. The parameters of the optimized solar light energy are extracted and analyzed through the chip TSL2678 in the solar light sensor,which outputs the optimal acquisition orientation of the solar energy and its intensity to realize the optimal energy saving of the photovoltaic power generation. The energy⁃saving

  8. A hybrid method of incorporating extended priority list into equal incremental principle for energy-saving generation dispatch of thermal power systems

    International Nuclear Information System (INIS)

    Cheng, Chuntian; Li, Shushan; Li, Gang

    2014-01-01

    The energy-saving generation dispatch (ESGD) policy released by Chinese Government in 2007 is a new code for optimally dispatching electric power generation portfolio in the country with the dual objectives of improving energy efficiency and reducing environmental pollution. The ESGD is substantially different from the competitive market in the developed economies, the traditional economic dispatching or the rational dispatching principle implemented in China prior to the new policy. This paper develops a hybrid method that integrates the extended priority list (EPL), the equal incremental principle (EIP) and a heuristic method to optimize daily generation schedules under ESGD. The EPL is presented to search desirable units set that satisfies the complicated duration period requirements based on thermal unit generation priority list. The EIP is developed to allocate load among the committed units within the combined set. A heuristic method is proposed to deal with inequality constraints, which usually result in difficulty for power allocation, and used to improve these results. The algorithm has been embedded into a newly developed decision support system that is currently being used by operators of the Guizhou Province Power Grid to make day-ahead quarter-hourly generation schedules. - Highlights: • Electric power industry is one of key and important fields for energy conservation and emission reduction in China. • The energy-saving generation dispatch policy was released by Chinese government in 2007. • A Hybrid algorithm for energy-saving generation dispatch scheduling of thermal power system is presented. • The algorithm has been embedded into a newly developed decision support system

  9. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  10. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim

    2013-10-15

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  11. Report of the large solenoid detector group

    International Nuclear Information System (INIS)

    Hanson, G.G.; Mori, S.; Pondrom, L.G.

    1987-09-01

    This report presents a conceptual design of a large solenoid for studying physics at the SSC. The parameters and nature of the detector have been chosen based on present estimates of what is required to allow the study of heavy quarks, supersymmetry, heavy Higgs particles, WW scattering at large invariant masses, new W and Z bosons, and very large momentum transfer parton-parton scattering. Simply stated, the goal is to obtain optimum detection and identification of electrons, muons, neutrinos, jets, W's and Z's over a large rapidity region. The primary region of interest extends over +-3 units of rapidity, although the calorimetry must extend to +-5.5 units if optimal missing energy resolution is to be obtained. A magnetic field was incorporated because of the importance of identifying the signs of the charges for both electrons and muons and because of the added possibility of identifying tau leptons and secondary vertices. In addition, the existence of a magnetic field may prove useful for studying new physics processes about which we currently have no knowledge. Since hermeticity of the calorimetry is extremely important, the entire central and endcap calorimeters were located inside the solenoid. This does not at the moment seem to produce significant problems (although many issues remain to be resolved) and in fact leads to a very effective muon detector in the central region

  12. The D0 solenoid NMR magnetometer

    International Nuclear Information System (INIS)

    Sten Uldall Hansen; Terry Kiper; Tom Regan; John Lofgren

    2002-01-01

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10 5 . To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV

  13. Design of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Gehrke, Tim

    2013-10-01

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  14. Save energy - for industry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article is an interview with Glenn Bjorklund, Vice President of SCalEd (Southern California Edison). The variations in Californian power demand and public electricity consumption habits are explained, together with types of power source used in electricity production. Questions are posed concerning SCalEd's energy saving strategy. The political implications of electricity charge changes are discussed. The planned energy resources for 1982-1992 are given with nuclear power being the largest contributor. (H.J.P./G.T.H.)

  15. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    Fowler, T.K.; Condit, W.C.

    1979-01-01

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  16. Plasma confinement apparatus using solenoidal and mirror coils

    Science.gov (United States)

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  17. From rationing to energy saving certificates. Four decades of power demand control in France and United Kingdom

    International Nuclear Information System (INIS)

    Pautard, Eric

    2012-01-01

    From 'saving energy' awareness campaign to financial incentives for efficient technologies, from rationing to energy efficiency commitment, from monopolistic public management to compelling involvement of the electricity-supply market, from economic stakes to ecological issues, Demand-Side Management policies have changed over time. This paper analyzes this historical background in order to examine the effects of the electricity market deregulation in France and United Kingdom

  18. The Design Parameters for the MICE Tracker Solenoid

    International Nuclear Information System (INIS)

    Green, Michael A.; Chen, C.Y.; Juang, Tiki; Lau, Wing W.; Taylor, Clyde; Virostek, Steve P.; Wahrer, Robert; Wang, S.T.; Witte, Holger; Yang, Stephanie Q.

    2006-01-01

    The first superconducting magnets to be installed in the muon ionization cooling experiment (MICE) will be the tracker solenoids. The tracker solenoid module is a five coil superconducting solenoid with a 400 mm diameter warm bore that is used to provide a 4 T magnetic field for the experiment tracker module. Three of the coils are used to produce a uniform field (up to 4 T with better than 1 percent uniformity) in a region that is 300 mm in diameter and 1000 mm long. The other two coils are used to match the muon beam into the MICE cooling channel. Two 2.94-meter long superconducting tracker solenoid modules have been ordered for MICE. The tracker solenoid will be cooled using two-coolers that produce 1.5 W each at 4.2 K. The magnet system is described. The decisions that drive the magnet design will be discussed in this report

  19. Pressure control valve using proportional electro-magnetic solenoid actuator

    International Nuclear Information System (INIS)

    Yun, So Nam; Ham, Young Bog; Park, Pyoung Won

    2006-01-01

    This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed

  20. Chapter 23: Combined Heat and Power Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simons, George [Itron, Davis, CA (United States); Barsun, Stephan [Itron, Davis, CA (United States)

    2017-11-06

    The main focus of most evaluations is to determine the energy-savings impacts of the installed measure. This protocol defines a combined heat and power (CHP) measure as a system that sequentially generates both electrical energy and useful thermal energy from one fuel source at a host customer's facility or residence. This protocol is aimed primarily at regulators and administrators of ratepayer-funded CHP programs; however, project developers may find the protocol useful to understand how CHP projects are evaluated.

  1. Savings serving energy transition Green finance: a powerful and citizen-oriented tool. Working paper no. 11

    International Nuclear Information System (INIS)

    Vergne, Frederique; Kerhoas, Mailys; Lety, Benoit; Lutzky, Ana

    2015-06-01

    The lack of funding is often considered, especially by public decision-makers, as one of the major reasons for the slow-down of implementation of energy transition. However, savings and cash flow have never been so abundant. With exclusive money creation, facilitated by very accommodating monetary policies implemented by central banks, financial markets are over-flown with cash flow. This paradox underlines that the issue is not caused by the lack of financial means but rather on the lack of tools favouring the allocation of such means to energy transition. Investments needs are considerable, ranging from 60 to 70 billion Euros each year, which represents approximately 3% of the European GDP. On the European level, expenses supposed to be dedicated to energy transition are valued around 350 to 400 billion Euros each year during 10 years, or, once again, around 3% of the European GDP. The issue is mainly to allocate investments differently rather than increasing their global volume. Public authorities are not able to manage such investments directly and on their own. However, while private players from the financial sector haven taken initiatives and commitments, these have so far proven insufficient in comparison with the scope of the challenge. It is true that public authorities have often avoided acting directly on financial players. However, finance is not a neutral tool and its players, being part of the economy, have a specific role to play. Beyond the necessary development of local and public funding mechanisms favouring sustainable development projects? Which were not dealt with by the working group? This memo focuses on essential tools to create an efficient mechanism which supports huge allocation of savings on energy transition. Thus, it stresses out a global and innovative proposal with strong potential consequences, involving the implementation and the generalization of an 'energy transition' label for financial products, in order to enable

  2. C.A.P. plasma physics summer school, Banff, June 1975. I. Experiments on laser-heated solenoids and pinches

    International Nuclear Information System (INIS)

    Vlases, G.C.

    1975-01-01

    A review is given of experimental progress on the use of long wavelength lasers (CO 2 or CO) to heat long, magnetically confined plasma columns to thermonuclear temperatures. Theoretical studies of the feasibility of the concept for controlled fusion power are reviewed. The laser-heated solenoid concept is reviewed in particular

  3. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  4. Quench protection and safety of the ATLAS central solenoid

    CERN Document Server

    Makida, Y; Haruyama, T; ten Kate, H H J; Kawai, M; Kobayashi, T; Kondo, T; Kondo, Y; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A; Yamaoka, H

    2002-01-01

    Fabrication of the ATLAS central solenoid was completed and the performance test has been carried out. The solenoid was successfully charged up to 8.4 kA, which is 10% higher than the normal operational current of 7.6 kA. Two methods for quench protection, pure aluminum strips accelerating quench propagation and quench protection heaters distributing normal zones, are applied in order to safely dissipate the stored energy. In this paper, quench characteristics and protection methods of the ATLAS central solenoid are described. (14 refs).

  5. A superconducting focusing solenoid for the neutrino factory linear accelerator

    International Nuclear Information System (INIS)

    Green, Michael A.; Lebedev, V.; Strauss, B.P.

    2001-01-01

    The proposed linear Accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can produce large stray fields. This report describes the 201.25 MHz acceleration system for the neutrino factory. This report also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity

  6. Static stress analysis of coupling superconducting solenoid coil assembly for muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Pan Heng; Wang Li; Wu Hong; Guo Xinglong; Xu Fengyu

    2010-01-01

    The stresses in the coupling superconducting solenoid coil assembly, which is applied in the Muon Ionization Cooling Experiment (MICE), are critical for the structure design and mechanical stability because of a large diameter and relative high magnetic field. This paper presents an analytical stress solution for the MICE coupling coil assembly. The stress due to winding tension is calculated by assuming the coil package as a set of combined cylinders. The thermal and electromechanical stresses are obtained by solving the partial differential equations of displacement based on the power series expansion method. The analytical stress solution is proved to be feasible by calculating stresses in a tested superconducting solenoid with 2.58 m bore at room temperature. The analytical result of the MICE coupling coil is in good agreement with that of the finite element which shows that the transverse shear stress induced by Lorentz force is principally dominant to magnet instability. (authors)

  7. Research design and improvement of high temperature high pressure solenoid valve

    International Nuclear Information System (INIS)

    Luo Yongtang

    1987-12-01

    A process for development of the pilot type high temperature high pressure solenoid valve used in a PWR power plant is described. The whole development process might be divided into two phases: research design and improvement. In the former phase the questions had chiefly been approached in the following several aspects: the principle construction design, the determination of values for the constructionally key elements, the valve seal design and the solenoid actuator design, and made such valve's successful design in the main. In the latter phase an improvement had been made upon such valve against the problems during the testing use of the valve for a period of time, i.e. the unsatisfactory leak tightness, and achieved satisfactory results. The consummate success in this development not only has met the needs of the engineering project, but also made us obtain a valuable experience useful to design the similar valves

  8. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    Science.gov (United States)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  9. Development of methods for evaluation of electricity saving and load levelling measures. Part 2: The planning and implementation of a power conservation campaign

    Energy Technology Data Exchange (ETDEWEB)

    Storm Soerensen, M.; Madsen, P.K. [NESA A/S, Research and Development Dept. (Denmark)

    1997-12-01

    In recent years many campaigns and projects have been carried out with the purpose of reducing the energy consumption. Simultaneously a lot of economic and structural changes are taking place in society in general; changes which also affect the size of the electricity consumption. Furthermore, there is a trend towards increased use of wind mills and decentral combined heating and power plants, which affects the electricity load of the local area. It is difficult to identify and separate the effect of each of these attitude-adjusting activities. The project `Development of methods for evaluation of the effect of electricity saving and load levelling measures` focuses on two different methods which, on different levels, can be used to determine the impact of different different activities on the electricity consumption. Both methods are based on mathematical statistics, and they consist of an analysis of historical data and a test campaign which will make it possible to test specific activities in a comparatively small scale. The historical part covers the years 1974 to 1994 and include such variables as: demography, economic factors, climatic conditions, periods of electricity saving campaigns, the start of billing according to time of day tariff etc. The wish to be able to measure the extent of these energy saving and load reducing initiatives resulted in a test campaign which was carried out under very restricted conditions starting in the fall of 1996. If the effect of the test campaign can be measured and as a consequence of this a method can be estimated, it will be possible to place models which can measure the effect of future campaigns. The primary object of the campaign is not the size of the electricity savings of the individual customer, but rather to obtain total savings for the entire group of customers. The test has been structured in a way which makes it possible to perform an analysis of the effect of the campaign by use of analysis of intervention

  10. Solenoid hammer valve developed for quick-opening requirements

    Science.gov (United States)

    Wrench, E. H.

    1967-01-01

    Quick-opening lightweight solenoid hammer valve requires a low amount of electrical energy to open, and closes by the restoring action of the mechanical springs. This design should be applicable to many quick-opening requirements in fluid systems.

  11. Low-energy nuclear reactions with double-solenoid- based ...

    Indian Academy of Sciences (India)

    solenoids to produce low-energy radioactive nuclear beams. In these systems the ... For many years, the disadvantage in these investigations ... fusion or breakup reaction, preferred with large forward-peaked cross-sections. To transfer the ...

  12. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  13. The Compact Muon Solenoid Detector Control System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  14. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  15. Detailed design of the ITER central solenoid

    International Nuclear Information System (INIS)

    Libeyre, P.; Mitchell, N.; Bessette, D.; Gribov, Y.; Jong, C.; Lyraud, C.

    2009-01-01

    The central solenoid (CS) of the ITER tokamak contributes to the inductive flux to drive the plasma, to the shaping of the field lines in the divertor region and to vertical stability control. It is made of 6 independent coils, using a Nb3Sn cable-in-conduit superconducting conductor, held together by a vertical precompression structure. This design enables ITER to access a wide operating window of plasma parameters, up to 17 MA and covering inductive and non-inductive operation. Each coil is based on a stack of multiple pancake winding units to minimise joints. A glass-polyimide electrical insulation, impregnated with epoxy resin, is giving a high voltage operating capability, tested up to 29 kV. The CS performance is fatigue driven mainly by the stress levels in the conductor jacket and in the precompression structure needed to keep the modules in contact during the repulsive forces which can arise in operation. A rigid connection to the TF coils provided at one end and a centering support at the other end allow to resist net vertical forces as well as unbalanced radial forces while avoiding torsion transmission from the TF Coils to the CS assembly.

  16. A solenoidal and monocusp ion source (SAMIS) (abstract)ab

    International Nuclear Information System (INIS)

    Burns, E.J.; Brainard, J.P.; Draper, C.H.; Ney, R.H.; Leung, K.N.; Perkins, L.T.; Williams, M.D.; Wilde, S.B.

    1996-01-01

    We have developed a new magnetic monocusp ion source for single aperture applications such as neutron generators. Coupling solenoidal magnetic fields on both sides of a monocusp magnetic field has generated over 70% atomic deuterium ions at pressures as low as 0.4 Pa (3 mTorr). This article describes the performance and characteristics of the solenoidal and monocusp ion source. copyright 1996 American Institute of Physics

  17. An Inexpensive Toroidal Solenoid for an Investigative Student Lab

    Science.gov (United States)

    Ferstl, Andrew; Broberg, John

    2008-09-01

    Magnetism and Ampère's law is a common subject in most calculus-based introductory physics courses. Many textbooks offer examples to calculate the magnetic field produced by a symmetric current by using Ampère's law. These examples include the solenoid and the toroidal solenoid (sometimes called a torus; see Fig. 1), which are used in many applications, including the study of plasmas.

  18. A Single-Stage LED Tube Lamp Driver with Power-Factor Corrections and Soft Switching for Energy-Saving Indoor Lighting Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-01-01

    Full Text Available This paper presents a single-stage alternating current (AC/direct current (DC light-emitting diode (LED tube lamp driver for energy-saving indoor lighting applications; this driver features power-factor corrections and soft switching, and also integrates a dual buck-boost converter with coupled inductors and a half-bridge series resonant converter cascaded with a bridge rectifier into a single-stage power-conversion topology. The features of the presented driver are high efficiency (>91%, satisfying power factor (PF > 0.96, low input-current total-harmonic distortion (THD < 10%, low output voltage ripple factor (<7.5%, low output current ripple factor (<8%, and zero-voltage switching (ZVS obtained on both power switches. Operational principles are described in detail, and experimental results obtained from an 18 W-rated LED tube lamp for T8/T10 fluorescent lamp replacements with input utility-line voltages ranging from 100 V to 120 V have demonstrated the functionality of the presented driver suitable for indoor lighting applications.

  19. Solenoid for Laser Induced Plasma Experiments at Janus

    Science.gov (United States)

    Klein, Sallee; Leferve, Heath; Kemp, Gregory; Mariscal, Derek; Rasmus, Alex; Williams, Jackson; Gillespie, Robb; Manuel, Mario; Kuranz, Carolyn; Keiter, Paul; Drake, R.

    2017-10-01

    Creating invariant magnetic fields for experiments involving laser induced plasmas is particularly challenging due to the high voltages at which the solenoid must be pulsed. Creating a solenoid resilient enough to survive through large numbers of voltage discharges, enabling it to endure a campaign lasting several weeks, is exceptionally difficult. Here we present a solenoid that is robust through 40 μs pulses at a 13 kV potential. This solenoid is a vast improvement over our previously fielded designs in peak magnetic field capabilities and robustness. Designed to be operated at small-scale laser facilities, the solenoid housing allows for versatility of experimental set-ups among diagnostic and target positions. Within the perpendicular field axis at the center there is 300 degrees of clearance which can be easily modified to meet the needs of a specific experiment, as well as an f/3 cone for transmitted or backscattered light. After initial design efforts, these solenoids are relatively inexpensive to manufacture.

  20. Electric power saving potential due to domestic refrigerators replacement; Potencial de ahorro de energia electrica por el reemplazo de refrigeradores domesticos

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Solorio, Jose Luis [Fideicomiso para el Ahorro de Energia Electrica (Mexico)]. E-mail: jose.peralta@cfe.gob.mx

    2006-04-15

    In Mexico the second most used electrical appliance is: refrigerator. Owing to its use, it would be a promising option for electric power saving. In Guadalajara, Reynosa and Tampico it was performed a study with the aim of launching a project to replace the old refrigerators with new ones which are more effective and less expensive. Since the refrigerators cost and the electrical invoicing saving, the electric appliance change is profitable. To expect with this replacement more than eight million of refrigerators manufactured before 1997 will be changed. [Spanish] El refrigerador es el segundo electrodomestico mas utilizado a nivel nacional, esto permite que debido a su uso sea una opcion prometedora para el ahorro de energia electrica. Se hizo un estudio en Guadalajara, Reynosa y Tampico con el fin de lanzar un proyecto para sustituir los refrigeradores viejos por unos nuevos que sean mas eficaces y menos costosos. Por el costo de los refrigeradores y el ahorro en la facturacion electrica, el cambio de electrodomestico es rentable, de esta manera se espera que los mas de ocho millones de refrigeradores fabricados antes de 1997 que existen en el pais sean cambiados.

  1. A nonintrusive method for measuring the operating temperature of a solenoid-operated valve

    International Nuclear Information System (INIS)

    Kryter, R.C.

    1990-01-01

    Experimental data are presented to show that the in-service operating temperature of a solenoid-operated valve (SOV) can be interred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include (a) there is no need for an add-on temperature sensor, (b) the true temperature of a critical --- and likely the hottest --- part of the SOV (namely, the electrical coil) is measured directly, (c) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (d) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (e) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40 degree C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system. 5 refs., 7 figs

  2. Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays.

    Science.gov (United States)

    Wen, Long; Chen, Qin; Song, Shichao; Yu, Yan; Jin, Lin; Hu, Xin

    2015-07-03

    We describe the integral electro-optical strategies that combine the functionalities of photovoltaic (PV) electricity generation and color filtering as well as polarizing to realize more efficient energy routing in display technology. Unlike the conventional pigment-based filters and polarizers, which absorb substantial amounts of unwanted spectral components and dissipate them in the form of heat, we propose converting the energy of those photons into electricity by constructing PV cell-integrated color filters based on a selectively transmitting aluminum (Al) rear electrode perforated with nanoholes (NHs). Combining with a dielectric-metal-dielectric (DMD) front electrode, the devices were optimized to enable efficient cavity-enhanced photon recycling in the PV functional layers. We perform a comprehensive theoretical and numerical analysis to explore the extraordinary optical transmission (EOT) through the Al NHs and identify basic design rules for achieving structural coloring or polarizing in our PV color filters. We show that the addition of thin photoactive polymer layers on the symmetrically configured Al NH electrode narrows the bandwidth of the EOT-assisted high-pass light filtering due to the strongly damped anti-symmetric coupling of the surface modes excited on the front and rear surface of the Al NHs, which facilitates the whole visible coloring with relatively high purity for the devices. By engineering the cut-off characteristics of the plasmonic waveguide mode supported by the circular or ellipsoidal Al NHs, beyond the photon recycling capacity, PV color filters and PV polarizing color filters that allow polarization-insensitive and strong polarization-anisotropic color filtering were demonstrated. The findings presented here may shed some light on expanding the utilization of PV electricity generation across new-generation energy-saving electrical display devices.

  3. Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications – SiC, GaN, Ga2O3, and Diamond

    Science.gov (United States)

    2017-01-01

    Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530

  4. Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications - SiC, GaN, Ga2O3, and Diamond.

    Science.gov (United States)

    Wellmann, Peter J

    2017-11-17

    Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.

  5. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Barnett, B.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K + and K - interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K - p interactions during 1977 and 1978, which is also described briefly

  6. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  7. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  8. Fuel saving and emissions cut through shore-side power concept for high-speed crafts at the red sea in egypt

    Science.gov (United States)

    Seddiek, Ibrahim S.; Mosleh, Mosaad A.; Banawan, Adel A.

    2013-12-01

    The progress of economic globalization, the rapid growth of international trade, and the maritime transportation has played an increasingly significant role in the international supply chain. As a result, worldwide seaports have suffered from a central problem, which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed. Many ports have taken the necessary precautions to overcome this problem, while others still suffer due to the presence of technical and financial constraints. In this paper, the barriers, interconnection standards, rules, regulations, power sources, and economic and environmental analysis related to ships, shore-side power were studied in efforts to find a solution to overcome his problem. As a case study, this paper investigates the practicability, costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga, Egypt. The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving. Moreover, environmentally, it could achieve an annual reduction in exhaust gas emissions of CO2, CO, NO x , P.M, and SO2 by 276, 2.32, 18.87, 0.825 and 3.84 tons, respectively.

  9. An Energy-Saving Concept of the Smart Building Power Grid with Separated Lines for Standby Devices

    Directory of Open Access Journals (Sweden)

    Dmytro Zubov

    2016-09-01

    Full Text Available Standby power takes 5-10 % of the residential electricity around the world. Some countries lose more than 14 % of the total electricity used in the residential sector. Hence, a new energysaving concept that could help to decrease the power losses is discussed in this paper. Firstly, the two power lines of infrastructure for continuously connected equipment and for standby devices is proposed for new smart buildings. Secondly, the segmented infrastructure with unified hardwareunits is proposed for existing smart buildings (the new one can apply this principle as well. The contactors (i.e. unified hardware units consist of the NodeMcu Lua ESP8266 WiFi IoTdevelopment board, ACS712T ELC-30A current sensor, and the Songle relay. The automatic mode is based on three steps: measurement of the current using ACS712T ELC-30A sensor in all segments except the root; switching off the relays with the current less than or equal to any number in the historical data; switching off the root contactor if all the descendent relays (i.e. contactors are switched off. Second step represents the linear classification with sliding window in machine learning. The software consists of two parts, low-level Arduino sketches and high-level C# Windows form app. They are connected by MQTT broker Mosquitto. The proposed concept was successfully tested using a prototype with three segments, one of which includes smart lighting. The payback period is of approximately one month and a half for the whole-building switch concept.

  10. LITERATURE SURVEY ON EXISTING POWER SAVING ROUTING METHODS AND TECHNIQUES FOR INCREASING NETWORK LIFE TIME IN MANET

    Directory of Open Access Journals (Sweden)

    K Mariyappan

    2017-06-01

    Full Text Available Mobile ad hoc network (MANET is a special type of wireless network in which a collection of wireless mobile devices (called also nodes dynamically forming a temporary network without the need of any pre-existing network infrastructure or centralized administration. Currently, Mobile ad hoc networks (MANETs play a significant role in university campus, advertisement, emergency response, disaster recovery, military use in battle fields, disaster management scenarios, in sensor network, and so on. However, wireless network devices, especially in ad hoc networks, are typically battery-powered. Thus, energy efficiency is a critical issue for battery-powered mobile devices in ad hoc networks. This is due to the fact that failure of node or link allows re-routing and establishing a new path from source to destination which creates extra energy consumption of nodes and sparse network connectivity, leading to a more likelihood occurrences of network partition. Routing based on energy related parameters is one of the important solutions to extend the lifetime of the node and reduce energy consumption of the network. In this paper detail literature survey on existing energy efficient routing method are studied and compared for their performance under different condition. The result has shown that both the broadcast schemes and energy aware metrics have great potential in overcoming the broadcast storm problem associated with flooding. However, the performances of these approaches rely on either the appropriate selection of the broadcast decision parameter or an energy efficient path. In the earlier proposed broadcast methods, the forwarding probability is selected based on fixed probability or number of neighbors regardless of nodes battery capacity whereas in energy aware schemes energy inefficient node could be part of an established path. Therefore, in an attempt to remedy the paucity of research and to address the gaps identified in this area, a study

  11. Locomotive energy savings possibilities

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available Economic indicators of electrodynamic braking have not been properly estimated. Vehicles with alternative power trains are transitional stage between development of pollution- free vehicles. According to these aspects the investigation on conventional hybrids drives and their control system is carried out in the article. The equation that allows evaluating effectiveness of regenerative braking for different variants of hybrid drive are given. Presenting different types of locomotive energy savings power systems, which are using regenerative braking energy any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  12. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S.Y.; Zheng, S.X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-01-01

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  13. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Orris, D. [Fermilab; Soyars, W. [Fermilab; Sylvester, C. [Fermilab

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  14. Dispersion in a bent-solenoid channel with symmetric focusing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-xi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2001-08-21

    Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the lattice functions, in particular, the dispersion functions.

  15. Operating experience feedback report - Solenoid-operated valve problems

    International Nuclear Information System (INIS)

    Ornstein, H.L.

    1991-02-01

    This report highlights significant operating events involving observed or potential common-mode failures of solenoid-operated valves (SOVs) in US plants. These events resulted in degradation or malfunction of multiple trains of safety systems as well as of multiple safety systems. On the basis of the evaluation of these events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the US Nuclear Regulatory Commission (NRC) concludes that the problems with solenoid-operated valves are an important issue that needs additional NRC and industry attention. This report also provides AEOD's recommendations for actions to reduce the occurrence of SOV common-mode failures. 115 refs., 7 figs., 2 tabs

  16. The Compact Muon Solenoid Heavy Ion program

    International Nuclear Information System (INIS)

    Yepes, Pablo

    2005-01-01

    The Pb-Pb center of mass energy at the LHC will exceed that of Au-Au collisions at RHIC (Relativistic Heavy Ion Collider) by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. The interest of the Heavy Ion (HI) Physics at LHC is discussed in more detail in the LHC-USA white paper and the Compact Muon Solenoid (CMS) Heavy Ion proposal. A few highlights are presented in this document. Heavy ion collisions at LHC energies will explore regions of energy and particle density significantly beyond those reachable at RHIC. The energy density of the thermalized matter created at the LHC is estimated to be 20 times higher than at RHIC, implying an initial temperature, which is greater than at RHIC by more than a factor of two. The higher density of produced partons also allows a faster thermalization. As a consequence, the ratio of the quark-gluon plasma lifetime to the thermalization time increases by a factor of 10 over RHIC. Thus the hot, dense systems created in HI collisions at the LHC spend most of the time in a purely partonic state. The longer lifetime of the quark-gluon plasma state widens significantly the time window available to probe it experimentally. RHIC experiments have reported evidence for jet production in HI collisions and for suppression of high p T particle production. Those results open a new field of exploration of hot and dense nuclear matter. Even though RHIC has already broken ground, the production rates for jets with p T > 30 GeV are several orders of magnitude larger at the LHC than at RHIC, allowing for systematic studies with high statistics in a clean kinematic region. High p T quark and gluon jets can be used to study the hot hadronic medium produced in HI interactions. The larger Q 2 causes jets to materialize very soon after the collision. They are thus embedded in and propagate through the dense environment as it forms and evolves. Through their interactions

  17. Net savings

    International Nuclear Information System (INIS)

    Roche, P.

    2001-01-01

    The state of e-commerce in the Canadian upstream oil and natural gas sector is examined in an effort to discover the extent to which the .com economy has penetrated the marketplace. The overall assessment is that although the situation varies from producer to producer and process to process, a bustling digital marketplace in the Canadian oil business has yet to emerge. Nevertheless, there are several examples of companies using e-business tools to minimize technology staffing and to eliminate wasteful practices. Initiatives cited include streamlining of supply chains to cut handling costs, using application service providers to trim information technology budgets, and adopting electronic joint interest billing to save on printing, postage and re-entering data. Most notable efforts have been made by companies such as BXL Energy Limited and Genesis Exploration Limited, both of which are boosting efficiency on the inside by contracting out data storage and software applications. For example, BXL has replaced its microfilm log library occupying six cabinets, and totalling about 9,000 lbs., by a fibre optic line. All applications can now be run from a laptop which weighs three to four pounds. In a similar vein, Genesis Exploration started using application service providers (ASPs) to avoid the cost and hassle of buying and maintaining major software applications in-house. By accessing the ASPs, Genesis staff can run software without buying or installing it on their own computers. In yet another example of cutting information technology costs, Pengrowth Corporation has its network administration done remotely over the Internet by Northwest Digital Systems (NWD). As far as the industry at large is concerned, the answer appears to be in a digital marketplace specifically tailored to the upstream sector's unique profile. As a start, a study is underway by Deloitte Consulting to explore producer interest in joining or founding an upstream digital marketplace. The study was

  18. Net savings

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2001-02-01

    The state of e-commerce in the Canadian upstream oil and natural gas sector is examined in an effort to discover the extent to which the .com economy has penetrated the marketplace. The overall assessment is that although the situation varies from producer to producer and process to process, a bustling digital marketplace in the Canadian oil business has yet to emerge. Nevertheless, there are several examples of companies using e-business tools to minimize technology staffing and to eliminate wasteful practices. Initiatives cited include streamlining of supply chains to cut handling costs, using application service providers to trim information technology budgets, and adopting electronic joint interest billing to save on printing, postage and re-entering data. Most notable efforts have been made by companies such as BXL Energy Limited and Genesis Exploration Limited, both of which are boosting efficiency on the inside by contracting out data storage and software applications. For example, BXL has replaced its microfilm log library occupying six cabinets, and totalling about 9,000 lbs., by a fibre optic line. All applications can now be run from a laptop which weighs three to four pounds. In a similar vein, Genesis Exploration started using application service providers (ASPs) to avoid the cost and hassle of buying and maintaining major software applications in-house. By accessing the ASPs, Genesis staff can run software without buying or installing it on their own computers. In yet another example of cutting information technology costs, Pengrowth Corporation has its network administration done remotely over the Internet by Northwest Digital Systems (NWD). As far as the industry at large is concerned, the answer appears to be in a digital marketplace specifically tailored to the upstream sector's unique profile. As a start, a study is underway by Deloitte Consulting to explore producer interest in joining or founding an upstream digital marketplace. The study

  19. Energy losses in the D0 β solenoid cryostat caused by current changes

    International Nuclear Information System (INIS)

    Visser, A.T.

    1993-11-01

    The proposed D0 β solenoid is a superconducting solenoid mounted inside an aluminum tube which supports the solenoid winding over it's full length. This aluminum support tube, also called bobbin, is therefore very tightly coupled to magnetic flux changes caused by solenoid current variations. These current changes in the solenoid, will cause answer currents to flow in the resistive bobbin wall and therefore cause heat losses. The insertion of an external dump resistor in the solenoid current loop reduces energy dissipation inside the cryostat during a quench and will shorten the discharge time constant. This note presents a simple electrical model for the coupled bobbin and solenoid and makes it easier to understand the circuit behavior and losses. Estimates for the maximum allowable rate of solenoid current changes, based on the maximum permissible rate of losses can be made using this model

  20. 2 T superconducting detector solenoid for the PANDA target spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, A.A.; Koshurnikov, E.K. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation); Lobanov, Y.Y. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation)], E-mail: lobanov@jinr.ru; Makarov, A.F. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation); Orth, H. [Gesellschaft fuer Schwerionenforschung, Planckstrasse 1, D-64291, Darmstadt (Germany); Sissakian, A.N.; Vodopianov, A.S. [Joint Institute for Nuclear Research, High Energy Physics Laboratory, Joliot-Curie, 6, 141980 Dubna, Moscow Region (Russian Federation)

    2008-02-01

    This paper describes the JINR design of the large 2 T superconducting solenoid for the target spectrometer of the PANDA experiment at HESR (FAIR, GSI, Darmstadt, Germany). The solenoid coil has an inner radius of 1.08 m and a length of 2.90 m. This solenoid is non-centrally split providing a warm bore of 100 mm in diameter through the coil to accommodate sufficient space for the internal target installations. Maximally stored energy in the windings is 22.3 MJ. All tracking and calorimetric detectors surrounding the target point, with exception of a forward cone of 5{sup 0} opening, are placed inside the lqHe-cryostat. The main features of the design and technique are as follows: a copper stabilizer and soldering technique for the superconducting cable; a stainless steel cryostat; winding technique over a mandrel; coreless type of the coil; low operational current. The details of the PANDA solenoid design including the magnetic field and stress-strain calculations are covered.

  1. Structure design of the central solenoid in JT-60SA

    International Nuclear Information System (INIS)

    Asakawa, Shuji; Tsuchiya, Katsuhiko; Kuramochi, Masaya; Yoshida, Kiyoshi

    2009-09-01

    The upgrade of JT-60U magnet system to superconducting coils (JT-60SA: JT-60 Super Advanced) has been decided by parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of a central solenoid (CS), equilibrium field(EF) coils, toroidal field(TF) coils. The central solenoid consists the four winding pack modules. In order to counteract the thermal contraction as well as the electric magnetic repulsion and attraction together with other forces generated in each module, it is necessary to apply pre-loading to the support structure of the solenoid and to pursue a structure which is capable of sustaining such loading. In the present report, the structural design of the supporting structure of the solenoid and the jackets of the modules is verified analytically, and the results indicate that the structural design satisfies the 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure -'. (author)

  2. Improved focus solenoid design for linear induction accelerators

    International Nuclear Information System (INIS)

    Zentler, J.M.; Van Maren, R.D.; Nexsen, W.E.

    1992-08-01

    Our FXR linear induction accelerator produces a 2 KA, 17 MeV electron beam of 60 ns duration. The beam is focused on a tantalum target to produce x-rays for radiography. The FWHM spot size of the focused beam is currently 2.2 mm. We strive to reduce the spot size by 30% by improving the field characteristics of focusing solenoids housed in each of 50 induction cells along the beamline. Tilts in the magnetic axis of the existing solenoids range up to 12 mrad (0.7 degrees). We are building new solenoid assemblies which include ferromagnetic homogenizer rings. These dramatically reduce field errors. A field tilt of under 0.5 mrad has been achieved. Mechanical alignment of the rings is critical. We developed a novel construction method in which the rings are wound with 4 mil thick Si-Fe ribbon into grooves on an aluminum cylinder. The cylinder then becomes the winding mandrel for the focus solenoids. This forms a more accurate and compact assembly than the standard practice of pressing individual solid rings onto a tube

  3. Modeling plasma flow in straight and curved solenoids

    International Nuclear Information System (INIS)

    Boercker, D.B.; Sanders, D.M.; Storer, J.; Falabella, S.

    1991-01-01

    The ''flux-tube'' model originated by Morozov is a very simple and numerically efficient method for simulating ion motion in plasma filters. In order to test its utility as a design tool, we compare the predictions of the model to recent experimental measurements of plasma flow in both straight and curved solenoids

  4. Completion of the ITER central solenoid model coils installation

    International Nuclear Information System (INIS)

    Tsuji, H.

    1999-01-01

    The short article details how dozens of problems, regarding the central solenoid model coils installation, were faced and successfully overcome one by one at JAERI-Naga. A black and white photograph shows K. Kwano, a staff member of the JAERI superconducting magnet laboratory, to be still inside the vacuum tank while the lid is already being brought down..

  5. Low-energy nuclear reactions with double-solenoid

    Indian Academy of Sciences (India)

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems ...

  6. Insulating process for HT-7U central solenoid model coils

    International Nuclear Information System (INIS)

    Cui Yimin; Pan Wanjiang; Wu Songtao; Wan Yuanxi

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the super-conducting experiment condition

  7. Electromagnetic behaviour of the shield in turbogenerators with superconducting solenoids

    International Nuclear Information System (INIS)

    Del Vecchio, P.; Veca, G.M.; Sacerdoti, G.

    1975-11-01

    The structure of turbogenerators with superconducting solenoids is analyzed and the investigation of electromagnetic behaviour of the rotating shield is presented. The cases considered are: (a) An hypothetical operation with a single phase with nominal current; (b) Steady-state operation in inverse sequence with 10% of the nominal current; (c) A step variation of the magnetic field intensity in the shield

  8. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok

    2013-01-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  9. Design of 9 tesla superconducting solenoid for VECC RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chiranjib; Ghosh, Siddhartha; Fatma, Tabassum; Dey, Malay Kanti; Bhunia, Uttam; Bandyopadhyay, Arup; Chakrabarti, Alok [Variable Energy Cyclotron Centre, Kolkata (India)

    2013-07-01

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  10. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-01-01

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  11. Design, fabrication, and characterization of a solenoid system to ...

    Indian Academy of Sciences (India)

    system to generate magnetic field for an ECR proton source. S K JAIN .... The bore of the solenoid coils was fabricated using high voltage glass epoxy. Each ... sure drop and flow, the inlet and outlet connections were provided. ... stability of an ECR plasma source, as any small change in the distribution of the axial magnetic.

  12. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  13. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2013-01-01

    . Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. © 2012Elsevier Ltd. All rights reserved.......A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers...... and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy...

  14. Method to reduce non-specific tissue heating of small animals in solenoid coils.

    Science.gov (United States)

    Kumar, Ananda; Attaluri, Anilchandra; Mallipudi, Rajiv; Cornejo, Christine; Bordelon, David; Armour, Michael; Morua, Katherine; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.

  15. ORPUS 1: a pulsed superconducting solenoid

    International Nuclear Information System (INIS)

    Schwall, R.E.

    1976-01-01

    A recent series of reference designs for Tokamak Experimental Power Reactors (EPR's) has indicated that superconducting poloidal field (PF) coils will be necessary for successful operation of these devices. It would also be desirable to use superconducting PF coils in earlier tokamak fusion devices if such coils could be developed quickly enough. The PF coil performance requirements are briefly reviewed and some implications for the coil design are developed. A small coil (stored energy 14 kJ) has been built using construction techniques similar to those which could be employed for PF coils. The coil has been charged at rates up to 2 T/sec. Both maximum field and charging rate were limited by available power supplies. Loss measurements were carried out during pulsed operation and data for hysteretic and eddy current loss are presented. The loss measurement system used allows considerable insight into the effects of conductor motion and training

  16. Taxation and the household saving rate: evidence from OECD countries

    Directory of Open Access Journals (Sweden)

    Vito Tanzi

    2000-03-01

    Full Text Available This paper analyzes anew the relationship between taxation and the household saving rate. On the basis of standard savings and tax revenue data from a sample of OECD countries, it provides compelling empirical evidence of a powerful impact of taxes on household savings. In particular, income taxes are shown to affect negatively the household saving rate much more than consumption taxes.

  17. The large superconducting solenoids for the g-2 muon storage ring

    International Nuclear Information System (INIS)

    Bunce, G.; Cullen, J.; Danby, G.

    1994-01-01

    The g-2 muon storage ring at Brookhaven National Laboratory consists of four large superconducting solenoids. The two outer solenoids, which are 15.1 meters in diameter, share a common cryostat. The two inner solenoids, which are 13.4 meters in diameter, are in separate cryostats. The two 24 turn inner solenoids are operated at an opposite polarity from the two 24 turn outer solenoids. This generates a dipole field between the inner and outer solenoids. The flux between the solenoids is returned through a C shaped iron return yoke that also shapes the dipole field. The integrated field around the 14 meter diameter storage ring must be good to about 1 part in one million over the 90 mm dia. circular cross section where the muons are stored, averaged over the azimuth. When the four solenoids carry their 5300 A design current, the field in the 18 centimeter gap between the poles is 1.45 T. When the solenoid operates at its design current 5.5 MJ is stored between the poles. The solenoids were wound on site at Brookhaven National Laboratory. The cryostats were built around the solenoid windings which are indirectly cooled using two-phase helium

  18. IE Information Notice No. 85-17, Supplement 1: Possible sticking of ASCO solenoid valves

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    This notice is to inform recipients of the results of follow up investigations regarding the reasons for sticking of Automatic Switch Company (ASCO) solenoid valves used to shut main steam isolation valves (MSIVs) under accident conditions. GE has recommend that the licensee replace the potentially contaminated MSIV solenoid valves and institute a periodic examination and cleaning of the MSIV solenoid valves. Grand Gulf has replaced the eight MSIV HTX832320V dual solenoid valves with fully environmentally qualified ASCO Model NP 8323A20E dual solenoid valves. The environmentally qualified valve Model NP 8323A20E was included in a control sample placed in the test ovens with the solenoid valves that stuck at Grand Gulf. The environmentally qualified model did not stick under the test conditions that cause sticking in the other solenoid valves

  19. Focusing solenoid for the front end of a linear RF accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Terechkine, I.; Kashikhin, V.V.; Page, T.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2007-06-01

    A prototype of a superconducting focusing solenoid for use in an RF linac has been built and tested at Fermi National Accelerator Laboratory (FNAL). The solenoid is comprised of the main coil, two bucking coils, two dipole corrector windings, and a low carbon steel flux return. At the excitation current of 250 A, the magnetic field reaches 7.2 T in the center of the solenoid and is less than 5 G on the axis at a distance of 150 mm from the center. The length of the solenoid is 150 mm; the length of a cryovessel for the solenoid with a 20 mm diameter 'warm' bore is 270 mm. This paper presents the main design features of the focusing solenoid and discusses results from tests of the solenoid.

  20. Completeness for coherent states in a magnetic–solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Górska, K

    2012-01-01

    This paper completes our study of coherent states in the so-called magnetic–solenoid field (a collinear combination of a constant uniform magnetic field and Aharonov–Bohm solenoid field) presented in Bagrov et al (2010 J. Phys. A: Math. Theor. 43 354016, 2011 J. Phys. A: Math. Theor. 44 055301). Here, we succeeded in proving nontrivial completeness relations for non-relativistic and relativistic coherent states in such a field. In addition, we solve here the relevant Stieltjes moment problem and present a comparative analysis of our coherent states and the well-known, in the case of pure uniform magnetic field, Malkin–Man’ko coherent states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  1. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  2. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-01-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  3. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  4. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  5. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  6. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max

    2012-12-15

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  7. Effect of solenoidal magnetic field on drifting laser plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-01-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  8. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  9. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  10. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    International Nuclear Information System (INIS)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-01-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  11. Worchester Solenoid Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air in-leakage or loss of He. The valves have couplings for transverse actuator mounting

  12. System of cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Camilleri, L.; Blumenfeld, B.J.; Dimcovski, Z.

    1978-01-01

    A superconducting solenoid at the CERN ISR was equipped with a system of high accuracy cylindrical drift chambers. This detector consists of eight layers of field shaped drift cells with a delay line opposite each sense wire to provide coupled two dimensional readout. The design, construction, and operation of this system are discussed. The resolution and performance of the delay lines and sense wires under ISR running conditions are shown

  13. HIE-ISOLDE CRYO-MODULE Assembly - Superconducting Solenoid

    CERN Multimedia

    Leclercq, Yann

    2016-01-01

    Assembly of the cryo-module components in SM18 cleanroom. The superconducting solenoid (housed inside its helium vessel) is cleaned, prepared then installed on the supporting frame of the cryo-module and connected to the helium tank, prior to the assembly of the RF cavities on the structure. The completed first 2 cryo-modules installed inside the HIE-ISOLDE-LINAC ready for beam operation is also shown.

  14. Synchrotron oscillation effects on an rf-solenoid spin resonance

    Science.gov (United States)

    Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.

    2012-12-01

    New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.

  15. Sprag solenoid brake. [development and operations of electrically controlled brake

    Science.gov (United States)

    Dane, D. H. (Inventor)

    1974-01-01

    The development and characteristics of an electrically operated brake are discussed. The action of the brake depends on energizing a solenoid which causes internally spaced sprockets to contact the inner surface of the housing. A spring forces the control member to move to the braking position when the electrical function is interrupted. A diagram of the device is provided and detailed operating principles are explained.

  16. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  17. Worcester Solenoid-Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as Integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air in leakage or loss of He. All valves have coupling for transverse actuator mounting

  18. Superconducting solenoids for an international muon cooling experiment

    International Nuclear Information System (INIS)

    Green, M.A.; Rey, J.M.

    2002-01-01

    The international muon ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the muons to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the muons putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the muon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about 1 part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling

  19. Design and characterization of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Hachmann, M.; Flöttmann, K.; Gehrke, T.; Mayet, F.

    2016-01-01

    REGAE is a small electron linear accelerator at DESY. In order to focus short and low charged electron bunches down to a few μm permanent magnetic solenoids were designed, assembled and field measurements were done. Due to a shortage of space close to the operation area an in-vacuum solution has been chosen. Furthermore a two-ring design made of wedges has been preferred in terms of beam dynamic issues. To keep the field quality of a piecewise built magnet still high a sorting algorithm for the wedge arrangement including a simple magnetic field model has been developed and used for the construction of the magnets. The magnetic field of these solenoids has been measured with high precision and compared to simulations. - Highlights: • presenting a two-ring radially magnetized permanent magnetic solenoid design. • development of a analytical field description and field quality factor. • development of a sorting algorithm for permanent magnetic pieces to form a magnet. • performing a high-precision field measurement of a high gradient field.

  20. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  1. Design of a Percussion and Electric Primer Gun Firing Power Supply

    Science.gov (United States)

    2014-07-01

    solenoid failure. As new instrumentation techniques such as high-speed video and laser interferometry have been introduced into our gun testing...to drive a solenoid into a percussion primer or ignite the M52A3B1 electric primer. To reduce power requirements, it uses charged capacitor banks to...drive the solenoid or ignite the primer. This report details the design and construction of the power supplies. 15. SUBJECT TERMS power supply

  2. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie

    2016-01-01

    Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.

  3. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  4. Structural analysis of a superconducting central solenoid for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Heim, J.R.

    1993-01-01

    The Tokamak Physics Experiment (TPX) concept design uses superconducting coils to accomplish magnetic confinement. The central solenoid (CS) magnet is divided vertically into 8 equal segments which are powered independently. The eddy current heating from the pulsed operation is too high for a case type construction; therefore, a open-quotes no caseclose quotes design has been chosen. This open-quotes no caseclose quotes design uses the conductor conduit as the primary structure and the electrical insulation as a structural adhesive. This electrical insulation is the open-quotes weak linkclose quotes in the coil winding pack structure and needs to be modeled in detail. A global finite element model with smeared winding pack properties was used to study the CS magnet structural behavior. The structural analysis results and peak stresses will be presented

  5. A 4.7 tesla metre solenoid for a partial Siberian snake

    International Nuclear Information System (INIS)

    Ratner, L.; Leonhardt, W.; Otter, A.; Ellstrom, L.

    1993-11-01

    We describe the engineering design of a 4.7 T-m solenoid magnet which will be installed at the Brookhaven National Laboratory AGS for a partial Siberian Snake Experiment which is an interlaboratory collaboration. The magnet has an overall length of 2.5 m, a clear bore of 15 cm and operates at a peak field of 2 T. It is pulsed at 3 second intervals with a peak current of 9500 A dc driven from a 150 V power supply. The construction uses conventional hollow copper coils but the return flux yokes are made from 1/8 inch plates bolted together. On assembly the flux yokes and endplates are clamped tightly to the coil to prevent any movement during the current pulse. The fabrication experience and test data will be presented. The magnet was installed in the summer of 1993. (author). 3 refs., 1 tab., 1 fig

  6. A 4.7 tesla metre solenoid for a partial Siberian snake

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, L; Leonhardt, W [Brookhaven National Lab., Upton, NY (United States); Otter, A; Ellstrom, L

    1993-11-01

    We describe the engineering design of a 4.7 T-m solenoid magnet which will be installed at the Brookhaven National Laboratory AGS for a partial Siberian Snake Experiment which is an interlaboratory collaboration. The magnet has an overall length of 2.5 m, a clear bore of 15 cm and operates at a peak field of 2 T. It is pulsed at 3 second intervals with a peak current of 9500 A dc driven from a 150 V power supply. The construction uses conventional hollow copper coils but the return flux yokes are made from 1/8 inch plates bolted together. On assembly the flux yokes and endplates are clamped tightly to the coil to prevent any movement during the current pulse. The fabrication experience and test data will be presented. The magnet was installed in the summer of 1993. (author). 3 refs., 1 tab., 1 fig.

  7. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  8. Design of high-energy high-current linac with focusing by superconducting solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  9. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Operating Procedures

    International Nuclear Information System (INIS)

    Hance, R.

    1998-01-01

    This procedure is used when it is necessary to operate the solenoid energization, controls, interlocks and quench detection system. Note that a separate procedure exists for operating the solenoid 'cryogenic' systems. Only D0 Control Room Operators or the Project Electrical Engineer are qualified to execute these procedures or operate the solenoid system. This procedure assumes that the operator is familiar with using the Distributed Manufacturing Automation and Control Software (DMACS).

  10. A simple formula for emittance growth due to spherical aberration in a solenoid lens

    International Nuclear Information System (INIS)

    Kumar, V.; Phadte, D.; Patidar, C.B.

    2011-01-01

    We analyse the beam dynamics in a solenoid without the paraxial approximation, including up to the fifth order term in the radial displacement. We use this analysis to derive expressions for the coefficients of spherical aberration in terms of the on-axis field profile of the solenoid. Under the thin lens approximation, a simple formula is derived for the growth of rms emittance resulting due to spherical aberration in a solenoid. (author)

  11. Generation of ten kilotesla longitudinal magnetic fields in ultraintense laser-solenoid target interactions

    OpenAIRE

    Xiao, K. D.; Zhou, C. T.; Zhang, H.; Huang, T. W.; Li, R.; Qiao, B.; Cao, J. M.; Cai, T. X.; Ruan, S. C.; He, X. T.

    2018-01-01

    Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten kilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of impo...

  12. Design of an elliptical solenoid magnet for transverse beam matching to the spiral inflector

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V.S.

    2013-01-01

    In this work, we present the design study of an elliptical solenoid magnet to be used for transverse beam matching at the input of a spiral inflector for efficient transmission. We have studied the dependence of axial field and gradients in the transverse directions of the elliptical solenoid magnet with ellipticity of the aperture. Using the beam envelope equations we have studied the feasibility of using an elliptical solenoid for transverse beam matching to the acceptance of a spiral inflector. (author)

  13. Solenoidal Fields for Ion Beam Transport and Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some

  14. Solenoidal Fields for Ion Beam Transport and Focusing

    International Nuclear Information System (INIS)

    Lee, Edward P.; Leitner, Matthaeus

    2007-01-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries (1-1), but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations (1-2) provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools (1-3) contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field (1-4). Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy (1-5) and Warm Dense Matter experiments (1-6), although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca(copyright) code (1-7) and some numerical

  15. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  16. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Liu Qianfeng; Bo Hanliang; Qin Benke

    2009-01-01

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  17. What caused the failures of the solenoid valve screws

    International Nuclear Information System (INIS)

    Vassallo, T.P.; Mumford, J.R.; Hossain, F.

    2001-01-01

    At Seabrook Station on May 5,1998 following a lengthy purge of the pressurizer steam space through Containment isolation sample valve 1-RC-FV-2830, the UL status light associated with this solenoid valve did not come on when the valve was closed from the plant's main control board. The UL status light is used to confirm valve closure position to satisfy the plant's Technical Specification requirements. The incorrect valve position indication on the main control board was initially believed to have resulted from excessive heat from a failed voltage control module that did not reduce the voltage to the valve's solenoid coil. This conclusion was based on a similar event that occurred in November of 1996. Follow-up in-plant testing of the valve determined that the voltage control module had not failed and was functioning satisfactorily. Subsequent investigations determined the root cause of the event to be excessive heat-up of the valve caused by high process fluid temperature and an excessively long purge of the pressurizer. The excessive heat-up of the valve from the high temperature process fluid weakened the magnetic field strength of the valve stem magnet to the extent that the UL status light reed switch would not actuate when the valve was closed. Since the voltage control module was tested and found to be functioning properly it was not replaced. Only the UL status light reed switch was replaced with a more sensitive reed that would respond better to a reduced magnetic field strength that results from a hot magnet. During reed switch replacement, three terminal block screws in the valve housing were found fractured and three other terminal block screws fractured during determination of the electrical conductors. This paper describes the initial plant event and ensuing laboratory tests and examinations that were performed to determine the root cause of the failure of the terminal block screws from the Containment isolation sample solenoid valve. (author)

  18. Gas-mixing system for drift chambers using solenoid valves

    International Nuclear Information System (INIS)

    Cooper, W.E.; Sugano, K.; Trentlage, D.B.

    1983-04-01

    We describe an inexpensive system for mixing argon and ethane drift chamber gas which is used for the E-605 experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow rate independent. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running

  19. Test Results for HINS Focusing Solenoids at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, M.A.; Orris, D.F.; Terechkine, I.; Tompkins, J.C.; /Fermilab

    2008-08-01

    A focusing lens R&D program is close to completion and industrial production of magnets has begun. Two types of magnets are being built for use in the room temperature RF section at the front end of a superconducting H-minus linac of a High Intensity Neutrino Source. All of the magnets are designed as a solenoid with bucking coils to cancel the field in the vicinity of adjacent RF cavities, and one type incorporates steering dipole corrector coils. We present a summary of the predicted and measured quench and magnetic properties for both R&D and production device samples that have been tested at Fermilab.

  20. Solenoid fringe field compensation for the Cluster Klystron

    International Nuclear Information System (INIS)

    Wang, H.; Fernow, R.C.; Kirk, H.G.; Palmer, R.B.; Zhao, Y.

    1996-04-01

    Optimization of the solenoid pancake currents so as to have a uniform axial magnetic field over an extended volume, is very important for the successful operation of the Cluster Klystron. By boosting the first and the last pancake currents by 35%, a uniform field Br/Bz ≤ 0.1% at radius R ≤ 2 cm can be extended from ± 7 cm to ± 16 cm. The result confirms simulations and the requirements for a 3-beam Cluster Klystron Experiment are achieved

  1. A spectrometer using one or two superconducting coaxial solenoids

    International Nuclear Information System (INIS)

    Schapira, J.P.; Gales, S.; Laurent, J.P.

    1979-06-01

    A set of two superconducting solenoidal coils which are presently under construction at the Orsay I.P.N. is described. Because of its optical properties, the system can be used as spectrometer: focusing properties with small geometrical aberrations allowing large solid angles to be used together with good transmission and isochronism. Various types of experiments can be envisaged with such a device: angular correlation at zero degree, study of rare events like exotic reactions, time of flight for mass identification and rapid (much less than 1 μs) and efficient collection of radioactive nuclei for subsequent spectroscopy measurements [fr

  2. Mechanical design of a 250 kilogauss solenoidal magnet

    International Nuclear Information System (INIS)

    Bonanos, P.

    1975-12-01

    The mechanical design and construction of a 5 cm bore, 23 cm long solenoidal magnet operated at 250 kilogauss is described. The magnet provides confining field for a plasma heated by a CO 2 laser. Radial diagnostic ports with a clear aperture of 0.41 cm allow viewing access near the magnet midplane. The on-axis field homogeneity is within 5 percent over a central length of 12 cm. The magnet sustained 500 to 1000 pulses at the highest field levels before catastrophic failure

  3. The Mechanical Design Optimization of a High Field HTS Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, SL; Gupta, RC

    2015-06-01

    This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.

  4. An earthworm-like actuator using segmented solenoids

    International Nuclear Information System (INIS)

    Shin, Bu Hyun; Choi, Seung-Wook; Lee, Seung-Yop; Bang, Young-Bong

    2011-01-01

    A biomimetic actuator is developed using four segmented solenoids mimicking earthworm locomotion. The proposed actuator not only has a simple structure composed of cores and coils, but also enables bi-directional actuation and high speed locomotion regardless of friction conditions. We have implemented theoretical analysis to design the optimal profiles of input current signal for maximum speed and predict the output force and stroke. Experiments using a prototype show that the earthworm-like actuator travels with a speed above 60 mm s −1 regardless of friction conditions

  5. HB+ prepares for insertion into the CMS solenoid

    CERN Multimedia

    Dave Barney, CERN

    2006-01-01

    With calibration of the first half of the barrel Hadron Calorimeter (HB+) complete (using a radioactive source), preparations begin for its insertion into the solenoid for the Magnet Test and Cosmic Challenge (MTCC). It was moved out of its alcove at the beginning of March - a non-trivial (but completely successful) operation due to the proximity of one of the barrel yoke rings (YB+1). The other half of the barrel Hadron Calorimeter (HB-) and one of the endcaps (HE+) should also be calibrated before the MTCC.

  6. Private Sector Savings

    Directory of Open Access Journals (Sweden)

    Pitonáková Renáta

    2018-03-01

    Full Text Available The majority of household savings are in the form of bank deposits. It is therefore of interest for credit institutions to tailor their deposit policy for getting finances from non-banking entities and to provide the private sector with the loans that are necessary for investment activities and consumption. This paper deals with the determinants of the saving rate of the private sector of Slovakia. Economic, financial and demographic variables influence savings. Growth of income per capita, private disposable income, elderly dependency ratio, real interest rate and inflation have a positive impact on savings, while increases in public savings indicate a crowding out effect. The inflation rate implies precautionary savings, and dependency ratio savings for bequest. There are also implications for governing institutions deciding on the implementation of appropriate fiscal and monetary operations.

  7. Derivation of magnetic Coulomb's law for thin, semi-infinite solenoids

    OpenAIRE

    Kitano, Masao

    2006-01-01

    It is shown that the magnetic force between thin, semi-infinite solenoids obeys a Coulomb-type law, which corresponds to that for magnetic monopoles placed at the end points of each solenoid. We derive the magnetic Coulomb law from the basic principles of electromagnetism, namely from the Maxwell equations and the Lorentz force.

  8. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-01-01

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  9. 76 FR 20459 - Savings and Loan Holding Company Application

    Science.gov (United States)

    2011-04-12

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Savings and Loan Holding Company... concerning the following information collection. Title of Proposal: Savings and Loan Holding Company... officer of a savings and loan holding company, or any individual who owns, controls, or holds with power...

  10. Public-opinion poll on energy saving

    International Nuclear Information System (INIS)

    1982-01-01

    A public-opinion poll was carried out on energy saving from November 26 to December 2, 1981, across the country. The number of persons participated in the survey was 5,000, whose age was 20 and above. The recovery ratio was 4,007 persons (80.1 %). The results of the survey and also the question-answer form are given with respective percentages. The questions were in the following three categories: (1) cognizance of energy saving - space-heating temperature, energy saving conscience use of private cars, purchase of highenergy consumption appliances; (2) energy for future - energy consumption, energy consumption trend, new types of energy, main sources of power generation, nuclear power in the overall electric power, apprehension toward nuclear power plants, safety measures in nuclear power plants; (3) governmental energy policy measures. (J.P.N.)

  11. Energy saving certificates

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministry of economy, finances and industry and the French agency of environment and energy mastery (Ademe) have organized on November 8, 2005, a colloquium for the presentation of the energy saving certificates, a new tool to oblige the energy suppliers to encourage their clients to make energy savings. This document gathers the transparencies presented at this colloquium about the following topics: state-of-the-art and presentation of the energy saving certificates system: presentation of the EEC system, presentation of the EEC standard operations; the energy saving certificates in Europe today: energy efficiency commitment in UK, Italian white certificate scheme, perspectives of the different European systems. (J.S.)

  12. Spending to save

    DEFF Research Database (Denmark)

    Larsen, Anders

    2013-01-01

    the energy distribution companies meet their overall saving obligation, the net savings impact are about a third of the savings reported by the obligated parties. Further it was found that while energy savings in the public and business sector have a high net impact, some subsidies given under the EEO...... perspective. The evaluation has resulted in noticeable adjustments of the design of the Danish EEO, e.g. introduction of a 1 year payback-time limit for projects receiving subsidies, a minimum baseline for insulation products, and specification of documentation requirements....

  13. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  14. Detector solenoid compensation in the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Cai, Y.; Irwin, J.; Sullivan, M.

    1995-01-01

    The PEP-II experimental detector includes a strong 1.5 T solenoid field in the interaction region (IR). With the fringe fields, the solenoid extends over a range of 6 m. Additional complications are that (1) it is displaced longitudinally from the interaction point (IP) by about 40 cm, (2) neither beam is parallel to the solenoid axis, and (3) the solenoid overlaps a dipole and a quadrupole on either side of the IP. In each half IR the correction system includes a set of skew quadrupoles, dipole correctors and normal quadrupoles to independently compensate the coupling, orbit perturbation, dispersion and focusing effect produced by the solenoid. The correction schemes for the Low Energy Ring (LER) and for the High Energy Ring (HER) are described, and the impact on the dynamic aperture is evaluated

  15. Energy Savings Lifetimes and Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  16. Performance of Nb3Sn multifilamentary superconductors in solenoidal magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.; Suenaga, M.; Robins, K.E.

    High current Nb 3 Sn multifilamentary conductors have been formed by heat treating cables braided from three types of composite wire. In the simplest configuration, these wires contain niobium filaments in a pure copper matrix. After braiding the conductor is coated with a layer of tin which diffuses through the copper during heat treatment to form Nb 3 S n filaments. The second configuration is made from wires containing niobium filaments in a copper-tin alloy and requires only heat treatment to form the Nb 3 Sn filaments. The third type of braid has wires which consist of groups of niobium filaments in the bronze matrix which are in turn in a copper matrix. Tantalum barriers surround each group of filaments to prevent the tin from contaminating the pure copper matrix. The cables have been wound into solenoids after heat treatment and the effect of mechanical handling was studied by monitoring the resistive voltage distribution in the coils. (U.S.)

  17. submitter Starting Manufacture of the ITER Central Solenoid

    CERN Document Server

    Libeyre, P; Dolgetta, N; Gaxiola, E; Jong, C; Lyraud, C; Mitchell, N; Journeaux, J Y; Vollmann, T; Evans, D; Sgobba, S; Langeslag, S; Reiersen, W; Martovetsky, N; Everitt, D; Hatfield, D; Rosenblad, P; Litherland, S; Freudenberg, K; Myatt, L; Smith, J; Brazelton, C; Abbott, R; Daubert, J; Rackers, K; Nentwich, T

    2016-01-01

    The central solenoid (CS) is a key component of the ITER magnet system to provide the magnetic flux swing required to drive induced plasma current up to 15 MA. The manufacture of its different subcomponents has now started, following completion of the design analyses and achievement of the qualification of the manufacturing procedures. A comprehensive set of analyses has been produced to demonstrate that the CS final design meets all requirements. This includes in particular structural analyses carried out with different finite-element models and addressing normal and fault conditions. Following the Final Design Review, held in November 2013, and the subsequent design modifications, the analyses were updated for consistency with the final design details and provide evidence that the Magnet Structural Design Criteria are fully met. Before starting any manufacturing activity of a CS component, a corresponding dedicated qualification program has been carried out. This includes manufacture of mockups using the re...

  18. Quench protection analysis of the Mu2e production solenoid

    International Nuclear Information System (INIS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions

  19. Quench protection analysis of the Mu2e production solenoid

    Science.gov (United States)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  20. Testing of the superconducting solenoid for the Fermilab collider detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Holmes, C.N.; Kephart, R.D.

    1985-07-01

    The 3 m phi x 5 m long x 1.5 T superconducting solenoid for the Fermilab Collider Detector has been installed at Fermilab and was tested in early 1985 with a dedicated refrigeration system. The refrigerator and 5.6-Mg magnet cold mass were cooled to 5 K in 210 hours. After testing at low currents, the magnet was charged to the design current of 5 kA in 5-MJ steps. During a 390 A/min charge a spontaneous quench occurred at 4.5 kA due to insufficient liquid helium flow. Three other quenches occurred during ''slow'' discharges which were nevertheless fast enough to cause high eddy current heating in the outer support cylinder. Quench behavior is well understood and the magnet is now quite reliable

  1. Start-up of spherical tokamak without a center solenoid

    International Nuclear Information System (INIS)

    Maekawa, Takashi; Nagata, Masayoshi

    2012-01-01

    For low-aspect tokamak reactors, spherical tokamak reactors, ST-type FESF/CTFs, it is essential to remove or minimize a central solenoid (CS). Even with the minimized CS, non-inductive start up of the plasma current is required. Rapid increase in the spontaneous plasma current at the final stage of current start-up drives ignition. At the initial stage, formation of plasma and magnetic surfaces are required. As non-inductive plasma start-up scenarios, ECH/ECCD, LHCD, HHFW, DC HELICITY injection, plasma merging and NBI have been studied. In the present article, the present status and future prospect of experimental and theoretical works on these subjects. (author)

  2. Behaviour of large cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Boer, W. de; Fues, W.; Grindhammer, G.; Kotthaus, R.; Lierl, H.; Moss, L.

    1980-04-01

    We describe the construction and behaviour of a set of cylindrical drift chambers operating inside a superconducting solenoid with a central magnetic field of 1.3 T. The chambers are part of the 4 π detector CELLO at the e + e - storage ring PETRA in Hamburg. The chambers were designed without field shaping to keep them as simple as possible. In order to parametrize accurately the nonlinear space-time relation, we used a computer simulation of the drift process in inhomogenous electric and magnetic fields. With such a parametrization we achieved a resolution of 210 μm, averaged over the whole drift cell and angles of incidence up to 30 0 . (orig.)

  3. Design of the pancake-winding central solenoid coil

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Nishi, Masataka; Tsuji, Hirosi

    1995-01-01

    There was a debate over whether a pancake-winding or layer-winding technique is more appropriate for the Central Solenoid (CS) coil for ITER superconducting magnet. The layer-winding CS has the advantage of homogeneous winding supporting the TF centering force without weak joints, but has many difficulties during manufacturing and quality control. On other hand, the pancake-winding has the advantage of better quality control during manufacturing and module testing but has difficulties with joints and feeders, and pipes located in the load path of the bucking force from the toroidal field coils. The compact joints, reinforcement by preformed amour, sharp bending, and double seals are applied to the design of pancake-winding CS coil and demonstrated by hardware developments. The pancake-winding CS coil by using modified existing technology is compatible with the bucking concept of the ITER magnet system. (author)

  4. Contract saving schemes

    NARCIS (Netherlands)

    Ronald, R.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O'Mahony, L.; Wachter, S.

    2012-01-01

    Contractual saving schemes for housing are institutionalised savings programmes normally linked to rights to loans for home purchase. They are diverse types as they have been developed differently in each national context, but normally fall into categories of open, closed, compulsory, and ‘free

  5. Numerical analysis of modified Central Solenoid insert design

    Energy Technology Data Exchange (ETDEWEB)

    Khodak, Andrei, E-mail: akhodak@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Martovetsky, Nicolai; Smirnov, Aleksandre [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Titus, Peter [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2015-10-15

    Highlights: • Modified design of coil for testing ITER superconducting cable is presented. • Numerical analysis allowed design verification. • Three-dimensional current sharing temperature distributions are obtained from the results. - Abstract: The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design three-dimensional numerical simulations were performed using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4 K, no current, (3) temperature 4 K, current 60 kA direct charge, and (4) temperature 4 K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4 K, no current, and temperature 4 K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor

  6. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  7. Who's in the business of saving lives?

    Science.gov (United States)

    Lee Chang, Pepe

    2006-10-01

    There are individuals, including children, dying needlessly in poverty-stricken third world countries. Many of these deaths could be prevented if pharmaceutical companies provided the drugs needed to save their lives. Some believe that because pharmaceutical companies have the power to save lives, and because they can do so with little effort, they have a special obligation. I argue that there is no distinction, with respect to obligations and responsibilities, between pharmaceutical companies and other types of companies. As a result, to hold pharmaceutical companies especially responsible for saving lives in third world countries is unjustified.

  8. Plasma current start-up experiments without the central solenoid in the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Takase, Y.; Ejiri, A.; Shiraiwa, S.; Adachi, Y.; Ishii, N.; Kasahara, H.; Nuga, H.; Ono, Y.; Oosako, T.; Sasaki, M.; Shimada, Y.; Sumitomo, N.; Taguchi, I.; Tojo, H.; Tsujimura, J.; Ushigome, M.; Yamada, T.; Hanada, K.; Hasegawa, M.; Idei, H.; Nakamura, K.; Sakamoto, M.; Sasaki, K.; Sato, K.N.; Zushi, H.; Nishino, N.; Mitarai, O.

    2006-01-01

    Several techniques for initiating the plasma current without the use of the central solenoid are being developed in TST-2. While TST-2 was temporarily located at Kyushu University, two types of start-up scenarios were demonstrated. (1) A plasma current of 4 kA was generated and sustained for 0.28 s by either electron cyclotron wave or electron Bernstein wave, without induction. (2) A plasma current of 10 kA was obtained transiently by induction using only outboard poloidal field coils. In the second scenario, it is important to supply sufficient power for ionization (100 kW of EC power was sufficient in this case), since the vertical field during start-up is not adequate to maintain plasma equilibrium. In addition, electron heating experiments using the X-B mode conversion scenario were performed, and a heating efficiency of 60% was observed at a 100 kW RF power level. TST-2 is now located at the Kashiwa Campus of the University of Tokyo. Significant upgrades were made in both magnetic coil power supplies and RF systems, and plasma experiments have restarted. RF power of up to 400 kW is available in the high-harmonic fast wave frequency range around 20 MHz. Four 200 MHz transmitters are now being prepared for plasma current start-up experiments using RF power in the lower-hybrid frequency range. Preparations are in progress for a new plasma merging experiment (UTST) aimed at the formation and sustainment of ultra-high β ST plasmas

  9. Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.

    Science.gov (United States)

    Lu, Xi; McElroy, Michael B; Chen, Xinyu; Kang, Chongqing

    2014-12-16

    Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a nondispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton.

  10. Saving 2,000 tons of CO{sub 2}. Optimal management of power; 2.000 Tonnen CO{sub 2} gespart. Optimales Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Becker-Ullmann, Siegfried; Selig, Ruediger [Siemens AG (Germany); Gaerisch, Stephan

    2008-09-15

    In the year 1989, Hela Gewuerzwerk Hermann Laue GmbH and Co. KG (Ahrensburg, Federal republic of Germany) adopted the former BAT tobacco goods factory Ahrensburg inclusive large parts of the infrastructure of the building, under it the supply of steam and warmth. Due to the constantly rising energy prices, Hela Gewuerzwerk Hermann Laue GmbH and Co. KG decided in the year 2006 to renew the entire supply of gas, warmth and coldness. On basis of a detailed analysis of the energetic requirement of all production departments and energy sectors, a concept was developed which is based on three factors: (a) Uncoupling of production of steam, warmth and coldness; (b) Decentralization: Steam, warmth and coldness are produced according to the user's demand; (c) Scaling: At least, for the generation of steam, warmth and coldness there are two identically constructed systems which are redundantly switched. By means of this concept, in the year 2007, approximately 8 millions kWh gas, 600,000 kWh electricity and 2,000 tons of carbon dioxide were saved.

  11. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  12. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  13. Computer simulations of quench properties of thin, large superconducting solenoid magnets

    International Nuclear Information System (INIS)

    Kishimoto, Takeshi; Mori, Shigeki; Noguchi, Masaharu

    1983-01-01

    Measured quench data of a 1 m diameter x 1 m thin superconducting solenoid magnet with a single layer aluminum-stabilized NbTi/Cu superconductor of 269 turns were fitted by computer simulations using the one-dimensional approximation. Parameters obtained were used to study quench properties of a 3 m diameter x 5 m (1.5 Tesla) thin superconducting solenoid magnet with a stored magnetic energy of 30 x 10 6 J. Conductor dimensions with which the solenoid could be built substantially safe for the full field quench were optimized. (author)

  14. LIL-W: Positron conversion target and solenoid (pictures 01 and 04).

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    In the direction of the beam, from right to left: a steering dipole (DHZ.25); the arm, at 45 deg, of a wire scanner which measures beam size; the conversion target, housed in the small tank with a window, where positrons are produced; immediately afterwards, invisible inside the vacuum chamber, is a pulsed solenoid to focus the emerging positrons; finally, a large solenoid, consisting of 3 pancakes, further focuses the positrons. Towards the left, the linac LIL-W, its accelerating structure hidden under a continuous outer solenoid mantle.

  15. NUMERICAL ESTIMATES OF ELECTRODYNAMICS PROCESSES IN THE INDUCTOR SYSTEM WITH AN ATTRACTIVE SCREEN AND A FLAT RECTANGULAR SOLENOID

    Directory of Open Access Journals (Sweden)

    E. A. Chaplygin

    2018-04-01

    Full Text Available Purpose. To carry out numerical estimates of currents and forces in the investigated inductor system with an attractive screen (ISAS and determine the effectiveness of the force attraction. Methodology. The calculated relationships and graphical constructions were obtained using the initial data of the system: induced current in the screen and sheet metal; the distributed force of attraction (Ampère force; the repulsive force acting on the sheet metal (Lorentz force; amplitude values of the force of attraction and repulsion; phase dependence of the force of attraction, the repulsive force and the total resulting force. Results. The results of calculations in the form of graphical dependencies of electrodynamic processes in the region under the conductors of a rectangular solenoid of inductor system with an attracting screen are presented. The graphs of forces and currents in region of dent are obtained. In the paper the analysis of electrodynamics processes for whole area under the winding of inductor system with an attractive screen is shown. The flowing this processes in the region of dent a given geometry is presented. Originality. The considered inductor system with an attractive screen and a rectangular solenoid is improved, in comparison with the previous developed ISAS. It has a working area under the lines of parallel conductors in the cross section of a rectangular solenoid, and this allows to place a predetermined portion of the sheet metal anywhere within the working region. Comparison of the indicators of electrodynamics processes in the considered variants of calculation shows an approximate growth of almost 1.5 times the power indicators in the area of the accepted dent in comparison with similar values for the entire area under the winding of the ISAS. Practical value. The results obtained are important for the practice of real estimates of the excited forces of attraction. With a decrease in the dent, the amplitude of the

  16. Electric power saving in the drinkable water, sewage and sanitation system, La Piedad; Ahorro de energia electrica en el sistema de agua potable, alcantarillado y saneamiento de La Piedad

    Energy Technology Data Exchange (ETDEWEB)

    Sistema de Agua Potable, Alcantarillado y Saneamiento de la Piedad (Mexico). E-mail: sapaslapiedad@prodigy.net.mx

    2006-04-15

    In Michoacan, Mexico, a project who seeks to benefice the Municipal public resources was crated in 1994. It would be achieved trough the electric power saving in the public lighting system, and drinkable water pumping and black water, since those activities required the budget biggest part. The program could be developed recently and the saving was significant. In addition the electromechanical efficiency increased in the equipment installation. This work is an example for other States to do something similar that can improve their conditions. [Spanish] En el estado de Michoacan, Mexico se creo un proyecto en el ano de 1994, el cual buscaba beneficiar los recursos publicos municipales, a traves del ahorro de la energia electrica en los sistemas de alumbrado publico y bombeo de agua potable y aguas negras, ya que estas actividades son las que requieren la mayor parte del presupuesto. El programa pudo llevarse a cabo en anos recientes y el ahorro fue significativo, ademas de que aumento la eficiencia electromecanica en los equipos que se instalaron, y esta obra ha servido de ejemplo a otros estados para que realicen algo similar que pueda mejorar su situacion.

  17. Invisible costs, visible savings.

    Science.gov (United States)

    Lefever, G

    1999-08-01

    By identifying hidden inventory costs, nurse managers can save money for the organization. Some measures include tracking and standardizing supplies, accurately evaluating patients' needs, and making informed purchasing decisions.

  18. Realized Cost Savings 2016

    Data.gov (United States)

    Department of Veterans Affairs — This dataset is provided as a requirement of OMB’s Integrated Data Collection (IDC) and links to VA’s Realized Cost Savings and Avoidances data in JSON format. Cost...

  19. Design of new central solenoid for SST-1

    Science.gov (United States)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V. L.; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A. N.; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-04-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  20. Design of new central solenoid for SST-1

    International Nuclear Information System (INIS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V L; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A N; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-01-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively

  1. Design of new superconducting central solenoid of SST-1 tokamak

    International Nuclear Information System (INIS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh

    2015-01-01

    The key role of the central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current for longer duration. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼655 mm. The physics basis of the design includes volt-sec storage capacity of ∼0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼0.3 volt/m.The engineering design of new CS consists of Nb 3 Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The inter-layer low resistance (∼1 nΩ) at 14 kA @ 4.5 K terminal praying hand joints has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K

  2. Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid

    Science.gov (United States)

    Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.

    2016-10-01

    We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  3. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  4. The influence of the iron shield of the solenoid on spin tracking

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2005-01-01

    Full Text Available The influence of the iron shield of the solenoid on spin tracking is studied in this paper. In the case of the 200 MeV proton, the study has been numerically done in the ZGOUBI code. The distribution of the magnetic field was done by POISSON. We have come to the conclusion that the influence of the solenoid’s shielding on spin tracking is the same at its entrance and exit and that is directly proportional to the intensity of the magnetic induction B on the axis of the solenoid. We have also determined that the influence of the solenoid’s shielding is much stronger on transversal components of the spin than on its longitudinal component. The differences between components of the spin for the shielded and not-shielded solenoid diminish with the in crease in the distance from the solenoid.

  5. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Bielick, E.; Dawson, J.W. [Argonne National Lab., IL (United States)] [and others; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  6. Proceedings of the international workshop on solenoidal detectors for the SSC

    International Nuclear Information System (INIS)

    Abe, Fumio; Hasegawa, Katsuo

    1990-07-01

    This issue is the collection of the papers presented at the International Workshop on solenoidal detectors for the Superconducting Super Collider (SSC). The 48 of the presented papers are indexed individually. (J.P.N.)

  7. Applications of a superconducting solenoidal separator in the experimental investigation of nuclear reactions

    International Nuclear Information System (INIS)

    Hinde, D J; Carter, I P; Dasgupta, M; Simpson, E C; Cook, K J; Kalkal, Sunil; Luong, D H; Williams, E

    2017-01-01

    This paper describes applications of a novel superconducting solenoidal separator, with magnetic fields up to 8 Tesla, for studies of nuclear reactions using the Heavy Ion Accelerator Facility at the Australian National University. (paper)

  8. Design features of the solenoid magnets for the central cell of the MFTF-B

    International Nuclear Information System (INIS)

    Wohlwend, J.W.; Tatro, R.E.; Ring, D.S.

    1981-01-01

    The 14 superconducting solenoid magnets which form the central cell of the MFTF-B are being designed and fabricated by General Dynamics for the Lawrence Livermore National Laboratory. Each solenoid coil has a mean diameter of five meters and contains 600 turns of a proven conductor type. Structural loading resulting from credible fault events, cooldown and warmup requirements, and manufacturing processes consistent with other MFTF-B magnets have been considered in the selection of 304 LN as the structural material for the magnet. The solenoid magnets are connected by 24 intercoil beams and 20 solid struts which resist the longitudinal seismic and electromagnetic attractive forces and by 24 hanger/side supports which react magnet dead weight and seismic loads. A modular arrangement of two solenoid coils within a vacuum vessel segment allow for sequential checkout and installation

  9. Beam collimation and transport of laser-accelerated protons by a solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Tauschwitz, A; Bagnoud, V [GSI - Hemholtzzentrum fur Schwerionenforschung GmbH, Plasmaphysik and PHELIX, Planckstrasse 1, 64291 Darmstadt (Germany); Daido, H; Tampo, M [Photo Medical Research Center, JAEA, 8-1 Umemidai, Kizugawa-city, Kyoto, 619-0215 (Japan); Schollmeier, M, E-mail: k.harres@gsi.d [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2010-08-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10{sup 12} particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  10. Beam collimation and transport of laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M; Tauschwitz, A; Bagnoud, V; Daido, H; Tampo, M; Schollmeier, M

    2010-01-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10 12 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  11. Confinement of laser plasma by solenoidal field for laser ion source

    International Nuclear Information System (INIS)

    Okamura, M.; Kanesue, T.; Kondo, K.; Dabrowski, R.

    2010-01-01

    A laser ion source can provide high current, highly charged ions with a simple structure. However, it was not easy to control the ion pulse width. To provide a longer ion beam pulse, the plasma drift length, which is the distance between laser target and extraction point, has to be extended and as a result the plasma is diluted severely. Previously, we applied a solenoid field to prevent reduction of ion density at the extraction point. Although a current enhancement by a solenoid field was observed, plasma behavior after a solenoid magnet was unclear because plasma behavior can be different from usual ion beam dynamics. We measured a transverse ion distribution along the beam axis to understand plasma motion in the presence of a solenoid field.

  12. Non-inductive Solenoid-less Plasma Current Start-up in NSTX Using Transient CHI

    International Nuclear Information System (INIS)

    Raman, R.; Mueller, D.; Jarboe, T.R.; Nelson, B.A.; Bell, M.G.; Ono, M.; Bigelow, T.; Kaita, R.; LeBlanc, B.; Lee, K.C.; Maqueda, R.; Menard, J.; Paul, S.; Roquemore, L.

    2007-01-01

    Coaxial Helicity Injection (CHI) has been successfully used in the National Spherical Torus Experiment (NSTX) for a demonstration of closed flux current generation without the use of the central solenoid. The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. CHI is a promising candidate for solenoid-free plasma startup in a ST. The method has now produced closed flux current up to 160 kA verifying the high current capability of this method in a large ST built with conventional tokamak components.

  13. Solenoid-free plasma startup in NSTX using transient CHI

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Mueller, D.; Bell, M.G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Maingi, R.; Maqueda, R.; Nagata, M.; Sabbagh, S.

    2009-01-01

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  14. Testing of ITER central solenoid coil insulation in an array

    International Nuclear Information System (INIS)

    Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.

    1995-01-01

    A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete. It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations

  15. Conceptual design report for the Solenoidal Tracker at RHIC

    International Nuclear Information System (INIS)

    1992-01-01

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of Δp/p ∼ 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,Δp/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets

  16. A superconducting solenoid and press for permanent magnet fabrication

    International Nuclear Information System (INIS)

    Mulcahy, T. M.; Hull, J. R.

    2002-01-01

    For the first time, a superconducting solenoid (SCM) was used to increase the remnant magnetization of sintered NdFeB permanent magnets (PMs). In particular, improved magnetic alignment of commercial-grade PM powder was achieved, as it was axial die pressed into 12.7-mm diameter cylindrical compacts in the 76.2-mm warm bore of a 9-T SCM. The press used to compact the powder is unique and was specifically designed for use with the SCM. Although the press was operated in the batch mode for this proof of concept study, its design is intended to enable automated production. In operation, a simple die and punch set made of nonmagnetic materials was filled with powder and loaded into a nonmagnetic press tube. The cantilevered press tube was inserted horizontally, on a carrier manually advanced along a track, into the SCM. The robustness of the mechanical components and the SCM, in its liquid helium dewar, were specifically designed to allow for insertion and extraction of the magnetic powder and compacts, while operating at 9 T. Compaction was achieved by pressing the punches between the closed end of the press tube and the hydraulic cylinder mounted on the opposite end. Improvements up to 10% in magnetization and 20% in energy products of the permanent magnets were obtained, as the alignment fields were increased above the 2-T maximum field of the electromagnets used in industry. Increases in magnetization of 3% are significant in the mature sintered magnet industry

  17. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  18. Inservice diagnostic methods for solenoid-operated valves

    International Nuclear Information System (INIS)

    Kryter, R.C.

    1993-01-01

    Solenoid-operated valves (SOVs) were studied at Oak Ridge National Laboratory as part of the USNRC Nuclear Plant Aging Research (NPAR) Program. The primary objective of the study was to identify, evaluate, and recommend methods for inspection, surveillance, monitoring, and maintenance of SOVs that can help ensure their operational readiness-that is, their ability to perform required safety functions under all anticipated operating conditions, since failure of one of these small and relatively inexpensive devices could have serious consequences under certain circumstances. An earlier (Phase 1) NPAR program study described SOV failure modes and causes and had identified measurable parameters thought to be linked to the progression of everpresent degradation mechanisms that may ultimately result in functional failure of the valve. Using this earlier work as a guide, the present (Phase 11) study focused on devising and then demonstrating the effectiveness of techniques and equipment with which to measure performance parameters that show promise for detecting the presence and trending the progress of such degradations before they reach a critical stage. Intrusive techniques requiring the addition of magnetic or acoustic sensors or the application of special test signals were investigated briefly, but major emphasis was placed on the examination of condition-indicating techniques that can be applied with minimal cost and impact on plant operation. Experimental results are presented that demonstrate the technical feasibility and practicality of the monitoring techniques assessed in the study, and recommendations for further work are provided

  19. A solenoidal and monocusp ion source (SAMIS) (abstract){sup a}{sup b}

    Energy Technology Data Exchange (ETDEWEB)

    Burns, E.J.; Brainard, J.P.; Draper, C.H.; Ney, R.H. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0516 (United States); Leung, K.N.; Perkins, L.T.; Williams, M.D.; Wilde, S.B. [Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1996-03-01

    We have developed a new magnetic monocusp ion source for single aperture applications such as neutron generators. Coupling solenoidal magnetic fields on both sides of a monocusp magnetic field has generated over 70{percent} atomic deuterium ions at pressures as low as 0.4 Pa (3 mTorr). This article describes the performance and characteristics of the solenoidal and monocusp ion source. {copyright} {ital 1996 American Institute of Physics.}

  20. Fourier Bessel transform method for efficiently calculating the magnetic field of solenoids

    International Nuclear Information System (INIS)

    Nachamkin, J.; Maggiore, C.J.

    1980-01-01

    A numerical procedure for calculating the magnetic field of a selenoid is derived. Based on the properties of Bessel functions, the procedure is shown to be convergent everywhere, including within the windings of the solenoid. The most critical part of the procedure is detailed in the main text. A simple method is used to ensure numerical significance while allowing economical computational times. In the appendix the procedure is generalized to universal convergence by appropriate partitioning of the solenoid windings

  1. A new scheme for critical current measurements on straight superconducting cables in a large solenoid

    International Nuclear Information System (INIS)

    Rossi, L.; Volpini, G.

    1991-01-01

    The precision of I c measurement of straight superconducting cables in solenoids can be limited by the magnetic field inhomogeneity. A solution in order to improve the field homogeneity based on iron shims is presented here. A conceptual design for the experimental lay-out of a test station to be used in connection with the SOLEMI-I solenoid at the Milan INFN Section (LASA Laboratory) is given

  2. Short-circuited coil in a solenoid circuit of a pulse magnetic field

    International Nuclear Information System (INIS)

    Kivshik, A.F.; Dubrovin, V.Yu.

    1976-01-01

    A short-circuited coil at the end of a long pulse solenoid attenuates the dissipation field by 3-5 times. A plug-configuration field is set up in the middle portion of the pulse solenoid incorporating the short-circuited coils. Shunting of the coils with the induction current by resistor Rsub(shunt) provides for the adjustment of the plug ratio γ

  3. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    OpenAIRE

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length ap...

  4. Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment

    Science.gov (United States)

    Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.

    2013-10-01

    Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.

  5. Direct Fuel Injector Power Drive System Optimization

    Science.gov (United States)

    2014-04-01

    solenoid coil to create magnetic field in the stator. Then, the stator pulls the pintle to open the injector nozzle . This pintle movement occurs when the...that typically deal with power strategies to the injector solenoid coil. Numerical simulation codes for diesel injection systems were developed by...Laboratory) for providing the JP-8 test fuel. REFERENCES 1. Digesu, P. and Laforgia D., “ Diesel electro- injector : A numerical simulation code”. Journal of

  6. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    International Nuclear Information System (INIS)

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-01-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0 degrees C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0 degrees C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length

  7. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  8. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C. [and others

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  9. Experimental study of a laser-heated solenoid

    International Nuclear Information System (INIS)

    Rutkowski, H.L.

    1975-01-01

    An experimental investigation was made of the interaction of an intense CO 2 laser beam with a column of initially uv-ionized hydrogen immersed in a steady magnetic field of up to 100 kG. Under the intense laser radiation, the gas becomes ionized and heated to temperatures as high as 150 eV (1.6 x 10 6 0 K). The primary purpose of the investigation was to determine the properties of the dense, hot plasma formed in this manner. Time and space resolved measurements of the plasma electron density were made using holographic interferometry along the axis and Mach--Zehnder interferometry across the column. The temperature was determined by measuring the decay rate of a line from CV in the quartz uv. These measurements were supplemented by streak photography to provide data on the development of the luminosity of the plasma column, radially and axially, as a function of time. From these various diagnostic techniques, it was possible to determine that a density minimum is formed on-axis within a few tens of nanoseconds after initiation of the laser pulse. This effectively produces a light pipe which traps the beam, and suggests that long columns can be formed by laser irradiation. The beam energy was efficiently absorbed and plasma loss rates appeared to be those expected from classical MHD modelling. While a completely unambiguous answer as to the mode of laser discharge propagation occurring in the experiment was not obtained, the bulk of the evidence suggests a ''bleaching wave'' rather than a laser driven detonator. In summary, the experiment was successful in demonstrating the creation of dense, slender columns by laser breakdown, in support of the ''laser-heated solenoid'' fusion concept

  10. Operation management and network control in interconnected power supply companies - saving potentials, concepts, solutions; Betriebsfuehrung und Netzleittechnik in Querverbundunternehmen - Einsparpotentiale, Konzepte, Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, W.

    1997-12-31

    Most municipal power supply companies in Germany are horizontally integrated. To enhance their economic efficiency these companies are currently reorganising their traditional business sectors and preparing and developing new ones in the area of communal services. In this process every effort is made being made to introduce and use the full instrumentarium of modern information technology throughout the company as soon as possible. The restructuring process necessitates effectively reducing whatever objectively inevitable risks it entails and reliably solving arising conflicts. The present contribution relates some experiences from work on this project. [Deutsch] Kommunale Versorgungsunternehmen sind in Deutschland mehrheitlich Querverbundunternehmen. Aktuell werden in diesen Unternehmen die herkoemmlichen Geschaeftsbereiche zur Steigerung der wirtschaftlichen Effizienz reorganisiert und neue Geschaeftsfelder fuer kommunale Dienstleistungen vorbereitet und erschlossen. Dieser Prozess ist zugleich durch das Bemuehen gekennzeichnet, alle Moeglichkeiten der modernen Informationstechnik moeglichst schnell unternehmensweit einzufuehren und zu nutzen. Hierbei muessen objektiv gegebene Risiken wirksam begrenzt und auftretende Konflikte zuverlaessig geloest werden. Der vorliegende Beitrag vermittelt einige Erfahrungen aus der Projektarbeit. (orig./RHM)

  11. A new perspective about recovering SO{sub 2} offgas in coal power plants: Energy saving. Part I. Regenerable wet methods

    Energy Technology Data Exchange (ETDEWEB)

    Tomas-Alonso, F. [University of Murcia, Murcia (Spain). Dept. of Chemical Engineering

    2005-08-01

    The removal of SO{sub 2} from coal gas combustion in power plants has become a compulsory process with stricter emission limits in order to preserve the environment and the human health (EC 96/62 Directive, 2000). This article is the first of a series of three devoted to the analyses of the current methods for SO{sub 2} removal. These methods are traditionally classified as wet and dry methods. The comparative testing of them is done from the point of view of the energy demand associated with the sorbent regeneration system used for hot coal gas desulfurisation. Although it is clear that this energy related comparison could not be applied to the wet methods, they have been included in the study because of their broad industrial implementation. A total of five processes were analyzed. One of the most promising is the well-established Wellman-Lord process, although the Linde-Solinox process also has good advantages, such as no environmental impact, reduced costs and higher simplicity.

  12. Sign Up for Savings.

    Science.gov (United States)

    Kennedy, Mike

    2002-01-01

    Discusses performance service contracts between educational facilities and energy services companies, in which the company provides the money for energy-efficiency improvements and the school pays the company an annual fee. The company guarantees the savings will meet or exceed the fee. (EV)

  13. Saving Malta's music memory

    OpenAIRE

    Sant, Toni

    2013-01-01

    Maltese music is being lost. Along with it Malta loses its culture, way of life, and memories. Dr Toni Sant is trying to change this trend through the Malta Music Memory Project (M3P) http://www.um.edu.mt/think/saving-maltas-music-memory-2/

  14. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  15. Gun control saves lives

    African Journals Online (AJOL)

    gun control legislation. One study estimated that more than 4 500 lives were saved across five SA cities from 2001 to 2005.[5] Pro-gun interest groups seeking to promote gun ownership and diffusion have attacked these findings, suggesting that stricter gun control was only enacted in 2004 following the publication of ...

  16. Acquiring energy savings in manufactured housing

    International Nuclear Information System (INIS)

    Davey, D.

    1993-01-01

    In 1991, the Northwest utilities faced a complex situation. They needed new sources of electrical power to avoid future deficits. A significant block of energy savings was available in the manufactured housing sector in the form of energy savings from increased insulation to new manufactured homes. The manufacturers were interested in saving the electricity in the homes, but would only deal with the utility sector as a whole. Half of the homes targeted were sited in investor-owned utility (IOU) service territories, and half in the public sector made up of utilities that purchased some or all of their electricity from the Bonneville Power Administration. Utilities agreed to acquire energy from manufacturers In the form of thermal efficiency measures specified by the Bonneville Power Administration. The program that resulted from over one year of negotiations was called the Manufactured Housing Acquisition Program, or MAP. Manufacturers, the utilities, State Energy Offices, the Northwest Power Planning Council and Bonneville all worked closely and with tenacity to build the program that went into effect on April 1, 1992, and should save the region between 7 and 9 megawatts, enough energy to supply 11,000 homes in the Northwest

  17. C. h. p. saves fuel in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Daugas, C F

    1979-04-01

    A combined heat and power plant based on a diesel generator to produce 12MW of electricity and 12MW of heat has successfully supplied the town of Skultuna in Sweden during the winter and has saved 3,700t of oil annually.

  18. ANALYSIS OF THE PROCESSES IN AN INDUCTOR SYSTEM WITH AN ATTRACTING SCREEN EXCITED BY THE EXTERNAL CIRCULAR SOLENOID

    Directory of Open Access Journals (Sweden)

    E.A. Chaplygin

    2015-12-01

    Full Text Available Introduction. Developments in the field of magnetic-pulse treatment of metals (MPTM are increasingly used in the modern technologies of production and repair of the aviation, automotive and other machinery, as they are environmentally friendly and energy-efficient in comparison with classical approaches. One of the main components of the device MPTM is a tool – inductor or the inductor system with an attractive screen (ISAS. The calculated dependences to calculate the inductor system with an attractive screen were taken from previous works. The ratios were obtained for the low-frequency mode of the excited fields, when is place their significant penetration through a thin-walled metal screen and a deformed workpiece. As it was shown earlier this mode is the most efficient from point of view of a force action on the object of a processing. Purpose. The theoretical analysis of the spatial-temporal distributions of the induced currents and forces of an attraction in the inductor system with an attractive screen excited by a flat circular solenoid located on the outside of the auxiliary screen. Methodology. The calculations are shown that the induced currents both in the screen and the workpiece are unidirectional and their interaction, in accordance with the law of Ampere determines the amplitudes of excited forces of attraction. Let’s note the effective validity of the considered inductor system excited by an external circular solenoid. With sufficient simplicity of the design take place rather high values of the developed forces of attraction and their averages. Results. Physically, a higher power efficiency of the system with an «external» coil in comparison with a system where coil is located in the internal cavity, can be accounted for lade of «failure» in the radial distribution of the excited forces. This «failure» in the design with a coil between the sheet metal is caused by its screening action against the forces of attraction

  19. Results in energy saving obtained with the application of speed variator in fossil power stations; Resultados de ahorro de energia obtenidos con la aplicacion de variadores de velocidad en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Merlos Rueda, Rosa Maria [Programa de Ahorro de Energia del Sector Electrico (PAESE), Mexico, D. F. (Mexico)

    1999-07-01

    The project of installation of speed variator in fossil power stations (CT's) of Comision Federal de Electricidad (CFE), as an energy saving measure, is a pilot project that began with the support of the Subdivision de Generacion, and promoted by the Energy Saving Program of the Electric Sector (PAESE), with the putting in operation of an equipment in the condensate pump of the Punta Prieta II C. T. U3. The energy saving observed was substantial, fluctuating between the 19.4% at high loads (at 90% load) and the 71.1% at low loads (at 40% load) of the generating unit. With these results, it was decided to extend the scope of the project with the installation of 6 more equipment for equal number of fossil power stations, located in 4 of the 5 Regions of Generation. The fossil power stations, selected for this stage of the project were: C. T. Felipe Carrillo Puerto U1, C.T. Lerma U4, C.T. Salamanca U1, C.T. Monterrey U6, C.T. Francisco Villa U3 and the C.T. Punta Prieta II-U1. The equipment was in operation during the first quarter of 1998, and the first results indicate an energy savings average per equipment, between 39% and 52%. The recovery of the investment fluctuates between the 48.4% and the 87.6% in less than two years of operation, with which a maximum period of recovery of 3 years is expected. The estimated potential of energy saving, considering the application of these devices in condensate pumps, feedwater pumps (where no speed variator is installed) forced draft fans, induced draft fans and gas recirculation fans, as well as circulation water pumps, of the existing Generating Power stations, ascends to an annual total of 830,000, which represents an approximate 9.4% of the National consumption of self services. [Spanish] El proyecto de instalacion de variadores de velocidad en Centrales Termoelectricas (CT's) de la Comision Federal de Electricidad (CFE), como medida de ahorro de energia, es un proyecto piloto que se inicio con el apoyo de la

  20. A general method, a la Transport, for evaluation of the perturbing effects of solenoidal inserts in storage ring interaction regions

    International Nuclear Information System (INIS)

    Murray, J.J.

    1976-07-01

    It may be expected that solenoid magnets will be used in many storage ring experiments. Typically an insert would consist of a main solenoid at the interaction point with a symmetrical pair of compensating solenoids located somewhere between the main solenoid and the ends of the interaction region. The magnetic fields of such an insert may significantly affect storage ring performance. We suggest here a simple, systematic method for evaluation of the effects, which together with adequate design supervision and field measurements will help to prevent any serious operational problems that might result if significant perturbations went unnoticed. 5 refs

  1. Manufacture and Test of a Small Ceramic-Insulated Nb$_{3}$Sn Split Solenoid

    CERN Document Server

    Bordini, B; Rossi, L; Tommasini, D

    2008-01-01

    A small split solenoid wound with high-Jc Nb$_{3}$Sn conductor, constituted by a 0.8 mm Rod Re-stack Process (RRP®) strand, was built and tested at CERN in order to study the applicability of: 1) ceramic wet glass braid insulation without epoxy impregnation of the magnet; 2) a new heat treatment devised at CERN and particularly suitable for reacting RRP® Nb$_{3}$Sn strands. This paper briefly describes the solenoid and the experimental results obtained during 4.4 K and 1.9 K tests. The split solenoid consists of two coils (25 mm inner diameter, 51.1 mm outer diameter, 12.9 mm height). The coils were initially separately tested, in an iron mirror configuration, and then tested together in split solenoid configuration. In all the tests at 4.4 K the coils reached a current higher than 95 % of their short sample limits at the first quench; in split solenoid configuration the maximum field values in the coils and in the aperture were respectively 10.7 T and 12.5 T. At 1.9 K the coils had premature quenches due ...

  2. Hybrid design method for air-core solenoid with axial homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-03-15

    In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million)

  3. Limits on the field of ohmic heating solenoids, applied to a tokamak TNS

    International Nuclear Information System (INIS)

    Turner, L.R.

    1977-01-01

    If the ohmic heating solenoid for the TNS or other large tokamak is an ungraded cryostable superconducting solenoid, with NbTi at 4.2 K as the superconductor, then the smallest outer diameter is not achieved at the highest attainable field. There is a lower optimum field which minimizes the outer diameter for a given volt-second requirement. At higher fields the mean diameter decreases; but the high fields require more superconductor, more copper stabilizer, more stainless steel for support, and more liquid helium coolant. For the GA-ANL design for TNS, the optimum field is 7.55 T and the minimum outside diameter for the solenoid is 2.15 m. If, on the other hand, the solenoid is graded, with more NbTi, copper, and stainless steel on the inner turns where the field is higher, than the volt-seconds can always be increased, for a given outer diameter, by adding more turns at a higher field inside until either the critical field is reached or the solenoid bore is filled. However, the material and money required to add a few more volt-seconds increases rapidly with field

  4. Limits on the field of ohmic heating solenoids, applied to a tokamak TNS

    International Nuclear Information System (INIS)

    Turner, L.R.

    1978-01-01

    If the ohmic heating solenoid for the TNS or other large tokamak is an ungraded cryostable superconducting solenoid, with NbTi at 4.2 K as the superconductor, then the smallest outer diameter is not achieved at the highest attainable field. There is a lower optimum field which minimizes the outer diameter for a given volt-second requirement. At higher fields the mean diameter decreases; but the high fields require more superconductor, more copper stabilizer, more stainless steel for support, and more liquid helium coolant. For the GA-ANL design for TNS, the optimum field is 7.55 T and the minimum outside diameter for the solenoid is 2.15 m. If, on the other hand, the solenoid is graded, with more NbTi, copper, and stainless steel on the inner turns where the field is higher, then the volt-seconds can always be increased, for a given outer diameter, by adding more turns at a higher field inside until either the critical field is reached or the solenoid bore is filled. However, the material and money required to add a few more volt-seconds increases rapidly with field

  5. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Science.gov (United States)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-02-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  6. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-01-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL

  7. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 216-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-02-15

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  8. Solenoidal magnetic field influences the beam neutralization by a background plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.

    2004-01-01

    An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when ω ce > βω pe . Here, ω ce is the electron gyrofrequency, ω pe is the electron plasma frequency, and β = V b /c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit ω ce >> βω pe , the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse

  9. Experimental study on coil of direct action solenoid valve with temperature increasing

    International Nuclear Information System (INIS)

    Wang Lu; Liu Qianfeng; Bo Hanliang

    2012-01-01

    Hydraulic control rod drive technology (HCRDT) is a newly invented patent and Institute of Nuclear and New Energy Technology of Tsinghua University owns HCRDT's independent intellectual property rights. The integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. Based on the conditions occurring in the operation of the control rod hydraulic drive system, the coil of the direct action solenoid valve with temperature increasing was studied by the experiment and analyzed by ANSYS code. The result shows that the temperature of the coil for the solenoid valve increases with the current increasing firstly. The temperature of the inner wall of the coil is higher than that of the exterior wall. The temperature of the middle coil is higher than that of the edge of the coil. The design of the direct action solenoid valve can be optimized. (authors)

  10. Performance evaluation of power transmission coils for powering endoscopic wireless capsules.

    Science.gov (United States)

    Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah

    2015-01-01

    This paper presents an analysis of H-field generated by a simple solenoid, pair of solenoids, pair of double-layer solenoids, segmented-solenoid, and Helmholtz power transmission coils (PTCs) to power an endoscopic wireless capsule (WC). The H-fields were computed using finite element analysis based on partial differential equations. Three parameters were considered in the analysis: i) the maximum level of H-field (Hmax) to which the patient's body would be exposed, ii) the minimum level of H-field (Hmin) effective for power transmission, and iii) uniformity of H-field. We validated our analysis by comparing the computed data with data measured from a fabricated Helmholtz PTC. This analysis disclosed that at the same excitation power, all the PTCs are able to transfer same amount of minimum usable power since they generated almost equal value of Hmin. The level of electromagnetic exposure and power transfer stability across all the PTCs would vary significantly which is mainly due to the different level of Hmax and H-field uniformity. The segmented solenoid PTC would cause the lowest exposure and this PTC can transfer the maximum amount of power. The Helmholtz PTC would be able to transfer the most stable power with a moderate level of exposure.

  11. Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide

    International Nuclear Information System (INIS)

    Halmann, M.; Steinfeld, A.

    2006-01-01

    Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO 2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO 2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H 2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO 2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases

  12. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    International Nuclear Information System (INIS)

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-01-01

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  13. Coherent states of non-relativistic electron in the magnetic-solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Filho, D P Meira; Gitman, D M

    2010-01-01

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  14. Coherent states of non-relativistic electron in the magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050, Tomsk (Russian Federation); Gavrilov, S P; Filho, D P Meira [Institute of Physics, University of Sao Paulo (Brazil); Gitman, D M, E-mail: bagrov@phys.tsu.r, E-mail: gavrilovsergeyp@yahoo.co, E-mail: gitman@dfn.if.usp.b, E-mail: dmeira@dfn.if.usp.b [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo (Brazil)

    2010-09-03

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  15. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Rabehl, R. [Fermilab; Sylvester, C. [Fermilab; Tartaglia, M. [Fermilab

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  16. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    International Nuclear Information System (INIS)

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-01-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam

  17. Dynamic analysis of fast-acting solenoid valves using finite element method

    International Nuclear Information System (INIS)

    Kwon, Ki Tae; Han, Hwa Taik

    2001-01-01

    It is intended to develop an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the finite element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well the experimental results including bouncing effects

  18. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    International Nuclear Information System (INIS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-01-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons

  19. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Takahashi, K. [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137 (Japan); Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Horioka, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan)

    2016-02-15

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  20. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    Science.gov (United States)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  1. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Science.gov (United States)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  2. Energy Saving Scheme Based On Traffic Forwarding For Optical Fiber Access Networks

    DEFF Research Database (Denmark)

    Lopez, G. Arturo Rodes; Estaran Tolosa, Jose Manuel; Vegas Olmos, Juan José

    2013-01-01

    We report on an energy saving block that regroups and powers off OLTs during low traffic periods, resulting in energy savings up to 87,5% in the central office of optical access networks.......We report on an energy saving block that regroups and powers off OLTs during low traffic periods, resulting in energy savings up to 87,5% in the central office of optical access networks....

  3. A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings

    OpenAIRE

    Tseng, Yen-Chieh; Lee, Da-Sheng; Lin, Cheng-Fang; Chang, Ching-Yuan

    2013-01-01

    It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be...

  4. Development of a permanent magnet alternative for a solenoidal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.; Fahy, A.; Barr, M. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Jardine, A.; Allison, W. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dastoor, P.C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-12-01

    The most sensitive desktop-sized ionizer utilising electron bombardment is currently the solenoidal ion source. We present an alternate design for such an ion source whereby the solenoidal windings of the electromagnet are replaced by a shaped cylindrical permanent magnet in order to reduce the complexity and running costs of the instrument. Through finite element modelling of the magnetic field in COMSOL and experimental measurements on a small-scale prototype magnet stack, we demonstrate the required shape of the permanent magnet in order to generate the needed field, and the necessity of soft iron collars to smooth fluctuations along the central axis.

  5. Conceptual design of the Mu2e production solenoid cold mass

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Lamm, M.; Mokhov, N.V.; Nicol, T.H.; Page, T.M.; Pronskikh, V.; /Fermilab

    2011-06-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The required magnetic field is produced by a series of superconducting solenoids of various apertures and lengths. This paper describes the conceptual design of the 5 T, 4 m long solenoid cold mass with 1.67 m bore with the emphasis on the magnetic, radiation and thermal analyses.

  6. Fabrication of a solenoid-type inductor with Fe-based soft magnetic core

    International Nuclear Information System (INIS)

    Lei Chong; Zhou Yong; Gao Xiaoyu; Ding Wen; Cao Ying; Choi, Hyung; Won, Jonghwa

    2007-01-01

    A solenoid-type inductor was fabricated by MEMS (Microelectromechanical systems) technique. The fabrication process uses UV-LIGA, dry etching, fine polishing, and electroplating technique to achieve high performance of the solenoid-type inductor. Fe-based soft magnetic thin film was sputtered as the magnetic core, and polyimide was used as the insulation materials. The inductor was in size of 4x4 mm with coil width of 20 μm and space of 35 μm. The inductance is 1.61 μH at a frequency of 5 MHz with the maximum quality factor of 1.42

  7. Design of wide flat-topped low transverse field solenoid magnet

    International Nuclear Information System (INIS)

    Jing Xiaobing; Chen Nan; Li Qin

    2010-01-01

    A wide flat-topped low transverse error field solenoid magnet design for linear induction accelerator is presented. The design features non-uniform winding to reduce field fluctuation due to the magnets' gap, and homogenizer rings within the solenoid to greatly reduce the effects of winding errors. Numerical modeling of several designs for 12 MeV linear induction accelerator (LIA) in China Academy of Engineering Physics has demonstrated that by using these two techniques the magnetic field fluctuations in the accelerator gap can be reduced by 70% and the transverse error field can be reduced by 96.5%. (authors)

  8. Force characteristics of solenoid electromagnet with ferromagnetic disc in the coil

    International Nuclear Information System (INIS)

    Gueorgiev, Vultchan; Yatchev, Ivan; Alexandrov, Alexander

    2002-01-01

    The paper presents the construction and characteristics of a solenoid electromagnet with ferromagnetic disc placed in the coil. The presence if the disc leads to change of the force characteristic compared with conventional solenoid electromagnets - increasing the force at large air gaps and decreasing the force at small air gaps. This could be very useful for some actuators. It has been studied how the force characteristic depend on disc size, position and material. Finite element method has been used for field and force calculations of the electromagnet. (Author)

  9. Development of solenoid-induced helical wiggler with four poles per period

    International Nuclear Information System (INIS)

    Ohigashi, N.; Tsunawaki, Y.; Kiyochi, M.; Nakao, N.; Fujita, M.; Imasaki, K.; Nakai, S.; Mima, K.

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field

  10. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.

    1976-01-01

    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  11. Development of solenoid-induced helical wiggler with four poles per period

    CERN Document Server

    Ohigashi, N; Kiyochi, M; Nakao, N; Fujita, M; Imasaki, K; Nakai, S; Mima, K

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field.

  12. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  13. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    Kondo, K.; Okamura, M.; Yamamoto, T.; Sekine, M.

    2012-01-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  14. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  15. Fuel saving type power plant for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Endo, N; Katsumoto, T; Shimizu, T; Hiramatsu, T; Fujita, Y

    1982-10-01

    Mitsubishi Motors Corporation has developed a modulated displacement engine named ''Orion MD'' and an electronically controlled damper clutch automatic transmission named ''ELC Automatic'' and has installed them on the new ''Mirage'' series and ''Cordia'' series, respectively, which were put on sale in February, 1982. They improve fuel economy to a great extent especially at low vehicle speed, and provide good driveability and high reliability. An outline of the ''Orion MD'' and ''ELC Automatic'' is presented.

  16. Entrepreneurial Saving Practices and Reinvestment

    NARCIS (Netherlands)

    Beck, Thorsten; Pamuk, Haki; Uras, Burak R.

    2017-01-01

    We use a novel enterprise survey to gauge the relationship between saving instruments and entrepreneurial reinvestment. We show that while most informal saving practices are not associated with a lower likelihood of reinvestment when compared with formal saving practices, there is a significantly

  17. Social Capital and Savings Behavior

    DEFF Research Database (Denmark)

    Newman, Carol; Tarp, Finn; Khai, Luu Duc

    In this paper, we analyze household savings in rural Vietnam paying particular attention to the factors that determine the proportion of savings held as formal deposits. Our aim is to explore the extent to which social capital can play a role in promoting formal savings behavior. Social capital...

  18. Saving water through global trade

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.

    2005-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water

  19. Assessment of women savings and credit cooperative services in ...

    African Journals Online (AJOL)

    Assessment of women savings and credit cooperative services in Zuway Dugda District, south east Ethiopia. ... Journal of Business and Administrative Studies ... and to the improvement of decision making power of members at family level.

  20. Energy. Saving 'Private' Areva

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2015-01-01

    While Areva keeps on loosing money (billions of euros for 2014), the saving of this company is at stake. Staff is already planned to be reduced in La Hague, and other staff reductions might occur after the failure of a previous strategic plan. Various activities could be sold (dismantling, mining). The article outlines the difficult relationships between Areva and EDF and the problems also faced by EDF. Some actors think that Areva should remain independent from EDF in order to be free to compete on international bidding. The rapprochement between these two companies is said to be necessary for the Ministry but seems very difficult to achieve

  1. Water Saving for Development

    Science.gov (United States)

    Zacharias, Ierotheos

    2013-04-01

    The project "Water Saving for Development (WaS4D)" is financed by European Territorial Cooperational Programme, Greece-Italy 2007-2013, and aims at developing issues on water saving related to improvement of individual behaviors and implementing innovative actions and facilities in order to harmonize policies and start concrete actions for a sustainable water management, making also people and stakeholders awake to water as a vital resource, strategic for quality of life and territory competitiveness. Drinkable water saving culture & behavior, limited water resources, water supply optimization, water resources and demand management, water e-service & educational e-tools are the key words of WaS4D. In this frame the project objectives are: • Definition of water need for domestic and other than domestic purposes: regional and territorial hydro-balance; • promotion of locally available resources not currently being used - water recycling or reuse and rainwater harvesting; • scientific data implementation into Informative Territorial System and publication of geo-referred maps into the institutional web sites, to share information for water protection; • participated review of the regulatory framework for the promotion of water-efficient devices and practices by means of the definition of Action Plans, with defined targets up to brief (2015) and medium (2020) term; • building up water e-services, front-office for all the water issues in building agricultural, industrial and touristic sectors, to share information, procedures and instruments for the water management; • creation and publication of a user friendly software, a game, to promote sustainability for houses also addressed to young people; • creation of water info point into physical spaces called "Water House" to promote education, training, events and new advisory services to assist professionals involved in water uses and consumers; • implementation of participatory approach & networking for a

  2. Savings for the Poor

    OpenAIRE

    Ignacio Mas

    2010-01-01

    This paper reviews the relevance of formal financial services – in particular, savings – to poor people, the economic factors that have hindered the mass-scale delivery of such services in developing countries, and the technology-based opportunities that exist today to make massive gains in financial inclusion. It also highlights the benefits to government from universal financial access, as well as the key policy enablers that would need to be put in place to allow the necessary innovati...

  3. Learning to save lives!

    CERN Document Server

    2003-01-01

    They're all around you and watch over you, but you won't be aware of them unless you look closely at their office doors. There are 308 of them and they have all been given 12 hours of training with the CERN Fire Brigade. Who are they? Quite simply, those who could one day save your life at work, the CERN first-aiders. First-aiders are recruited on a volunteer basis. "Training is in groups of 10 to 12 people and a lot of emphasis is placed on the practical to ensure that they remember the life-saving techniques we show them", explains Patrick Berlinghi, a CERN first-aid instructor from TIS Division. He is looking forward to the arrival of four new instructors, which will bring the total number to twelve (eleven firemen and one member of the Medical Service). "The new instructors were trained at CERN from 16 to 24 May by Marie-Christine Boucher Da Ros (a member of the Commission Pédagogie de l'Observatoire National Français du Secourisme, the education commission of France's national first-aid body). This in...

  4. Manufacturing of Nb3Sn Sample Conductor for CFETR Central Solenoid Model Coil

    NARCIS (Netherlands)

    Qin, Jing Gang; Wu, Yu; Xiang, Bing Lun; Dai, Chao; Mao, Zhe Hua; Jin, Huan; Liao, Guo Jun; Liu, Fang; Xue, Tianjun; Wei, Zhou Rong; Devred, Arnaud; Nijhuis, Arend; Zhou, Chao

    2017-01-01

    China fusion engineering test reactor (CFETR) is a new tokamak device, whose magnet system includes the toroidal field, central solenoid (CS), and poloidal field coils. In order to develop the manufacturing process for the full-size CS coil, the CS model coil (CSMC) project was launched first. The

  5. Analysing the control software of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    NARCIS (Netherlands)

    Hwong, Y.L.; Kusters, V.J.J.; Willemse, T.A.C.; Arbab, F.; Sirjani, M.

    2012-01-01

    The control software of the CERN Compact Muon Solenoid experiment contains over 30,000 finite state machines. These state machines are organised hierarchically: commands are sent down the hierarchy and state changes are sent upwards. The sheer size of the system makes it virtually impossible to

  6. TESTING OF FRAMED STRUCTURE PARTS OF COMPACT MUON SOLENOID BY NONDESTRUCTIVE METHOD

    Directory of Open Access Journals (Sweden)

    L. V. Larchenkov

    2013-01-01

    Full Text Available Suspension parts of a compact muon solenoid for Large Hadron Collider have been tested in the paper. The paper describes a steady-state and cyclic “tension-compression” load created by superconducting electromagnet with energy of 3 GJ and magnetic induction of 4 tesla. A nondestructive testing method has been applied in the paper.

  7. Evolution of solenoidal and dilatational perturbations in transitional supersonic and hypersonic boundary layers

    Science.gov (United States)

    Kamal, Omar; Hickey, Jean-Pierre; Scalo, Carlo; Hussain, Fazle

    2017-11-01

    We have investigated the interaction between the dilatational and solenoidal components of instability waves relying on DNS simulations of temporally-evolving compressible boundary layers ranging from Mach numbers of 2.0 to 10.0. For idealized flow conditions at subsonic-to-moderate supersonic speeds, transition to turbulence occurs due to amplification of Tollmien-Schlichting (T-S) waves (first Mack mode) exponentially amplified until nonlinear breakdown and transition to turbulence occurs. Under the same conditions, at hypersonic speeds, transition is governed by acoustically resonating trapped waves (second Mack mode). While the former are expected to be solenoidal in nature and the latter predominantly dilatational, we demonstrate that, in general, they always coexist and that, even at Mach=10 there is an appreciable energy transfer from the dilatational to the solenoidal at limit-cycle amplitude conditions in 2D simulations. In three-dimensional simulations very rapid breakdown is observed. Mechanisms of energy exchange between the dilatational and solenoidal components during the transition will be discussed.

  8. Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities

    International Nuclear Information System (INIS)

    Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; Norem, J.; Li, D.; Zisman, M.; Torun, Y.; Rimmer, R.; Errede, D.

    2005-01-01

    There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity

  9. Compact Muon Solenoid: largest physics experiment to be held in 2007

    CERN Multimedia

    Atkins, William

    2007-01-01

    "over the last fifteen years about 2'300 engineers and scientists from over 150 scientific institutions in 37 countries around the world have worked together to design and build a gigantic general-purpose particle detector, what is called the Compact Muon Solenoid (CMS)." (1 page)

  10. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Science.gov (United States)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  11. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Directory of Open Access Journals (Sweden)

    Ingo Hofmann

    2013-04-01

    Full Text Available Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  12. Evaluation results of TMI-2 solenoids AH-V6 and AH-V74

    International Nuclear Information System (INIS)

    Soberano, F.T.

    1984-01-01

    Two Class 1E solenoid operators were removed from the Three Mile Island unit 2 Reactor Building and examined to determine whether they had degraded as a result of accident and post-accident conditions. Both units were functional during post-accident operation. This report discusses the examination, findings, causes of the anomalies, and recommendations for system improvement

  13. Explicit representation of roots on p-adic solenoids and non ...

    Indian Academy of Sciences (India)

    This note generalizes known results concerning the existence of roots and embedding one-parameter subgroups on -adic solenoids. An explicit representation of the roots leads to the construction of two distinct rational embedding one-parameter subgroups. The results contribute to enlighten the group structure of ...

  14. ITER central solenoid model coil heat treatment complete and assembly started

    International Nuclear Information System (INIS)

    Thome, R.J.; Okuno, K.

    1998-01-01

    A major R and D task in the ITER program is to fabricate a Superconducting Model Coil for the Central Solenoid to establish the design and fabrication methods for ITER size coils and to demonstrate conductor performance. Completion of its components is expected in 1998, to be followed by assembly with structural components and testing in a facility at JAERI

  15. Worcester 1 Inch Solenoid-Actuated Gas-Operated VPS System Ball Valve

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valve incorporates a solenoid and limit switches as integral parts of the actuator. The valve is normally open and fails safe to the closed position. The associated valve position switch is class GS

  16. Does Daylight Saving Save Energy? A Meta-Analysis

    OpenAIRE

    Havránek, Tomáš; Herman, Dominik; Irsova, Zuzana

    2016-01-01

    The original rationale for adopting daylight saving time (DST) was energy savings. Modern research studies, however, question the magnitude and even direction of the effect of DST on energy consumption. Representing the first meta-analysis in this literature, we collect 162 estimates from 44 studies and find that the mean reported estimate indicates modest energy savings: 0.34% during the days when DST applies. The literature is not affected by publication bias, but the results vary systemati...

  17. When financiers are concerned with energy saving

    International Nuclear Information System (INIS)

    Chauveau, J.

    2005-01-01

    Innovative financial systems allow to finance investments for the energy efficiency improvement of public or residential buildings. Such solutions are implemented in Belgium and Germany. They are based on the association between a financial company, an energy supplier who makes an energy audit and the building owner who refunds the investments with the saving made on the space heating and power consumption of the building. Short paper. (J.S.)

  18. Can lean save lives?

    Science.gov (United States)

    Fillingham, David

    2007-01-01

    The purpose of this paper is to show how over the last 18 months Bolton Hospitals NHS Trust have been exploring whether or not lean methodologies, often known as the Toyota Production System, can indeed be applied to healthcare. This paper is a viewpoint. One's early experience is that lean really can save lives. The Toyota Production System is an amazingly successful way of manufacturing cars. It cannot be simply translated unthinkingly into a hospital but lessons can be learned from it and the method can be adapted and developed so that it becomes owned by healthcare staff and focused towards the goal of improved patient care. Working in healthcare is a stressful and difficult thing. Everyone needs a touch of inspiration and encouragement. Applying lean to healthcare in Bolton seems to be achieving just that for those who work there.

  19. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable...

  20. CROSS LAYER COORDINATED ENERGY SAVING STRATEGY IN MANET

    Institute of Scientific and Technical Information of China (English)

    Xu Li; Zheng Baoyu

    2003-01-01

    Mobile Ad hoc NETwork (MANET) consists of a set of mobile hosts which can operate independently without infrastructure base stations. Energy saving is a critical issue for MANET since most mobile hosts will operate on battery powers. A cross layer coordinated framework for energy saving is proposed in this letter. On-demand power management, physical layer and medium access control layer dialogue based multi-packet reception, mobile agent based topology discovery and topology control based transmit power-aware and battery power-aware dynamic source routing are some of new ideas in this framework.

  1. 12 CFR 583.21 - Savings association.

    Science.gov (United States)

    2010-01-01

    ... AFFECTING SAVINGS AND LOAN HOLDING COMPANIES § 583.21 Savings association. The term savings association means a Federal savings and loan association or a Federal savings bank chartered under section 5 of the Home Owners' Loan Act, a building and loan, savings and loan or homestead association or a cooperative...

  2. Reinforcement Learning and Savings Behavior.

    Science.gov (United States)

    Choi, James J; Laibson, David; Madrian, Brigitte C; Metrick, Andrew

    2009-12-01

    We show that individual investors over-extrapolate from their personal experience when making savings decisions. Investors who experience particularly rewarding outcomes from saving in their 401(k)-a high average and/or low variance return-increase their 401(k) savings rate more than investors who have less rewarding experiences with saving. This finding is not driven by aggregate time-series shocks, income effects, rational learning about investing skill, investor fixed effects, or time-varying investor-level heterogeneity that is correlated with portfolio allocations to stock, bond, and cash asset classes. We discuss implications for the equity premium puzzle and interventions aimed at improving household financial outcomes.

  3. Saving gas project

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, Maria Anunciacao S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Garantizado, Maria Auxiliadora G. [CONCREMAT Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The work presented was implemented in municipalities around the construction of the pipeline project Urucu-Coari-Manaus, the Engineering / IETEG-IENOR, because of the constant release of workers, consequently the finishing stages of this work and its future completion. The Project aims to guide saving gas with the workforce, their families and communities to the enterprise of small business cooperatives and solidarity within the potential of the site. This project is developed through the workshops: entrepreneur ship, tourism, use, reuse and recycling of products, and hortifruiti culture, agroecology, agribusiness (cooperativism solidarity) and forestry. Its execution took place in two phases, the first called 'pilot' of 12/12/2007 to 27/03/2008 in sections A and B1, in the municipality of Coari stretch and B2 in Caapiranga. The second phase occurred from 30/06 to 27/09/08, in the words B1, in the municipalities of Codajas and Anori words and B2 in Iranduba, Manacapuru and Anama. The workshops were held in state and municipal schools and administered by the Institute of Social and Environmental Amazon - ISAM, which had a team of coordinators, teachers, experts and masters of the time until the nineteen twenty-two hours to implement the project. (author)

  4. Save energy, without entropy

    International Nuclear Information System (INIS)

    Steinmeyer, D.

    1992-01-01

    When we talk about saving energy what we usually mean is not wasting work. What we try to do when we design a process, is to use work as effectively as possible. It's hard to do that if we can't see it clearly. This paper illustrates how work can be seen (or calculated) without imposing entropy as a screen in front of it. We've all heard that the second law tells us that the entropy of the universe is increasing, and we are left with the feeling that the universe is ultimately headed for chaos, but receive little other information from this statement. A slightly more useful statement of the second law is the work potential of the universe is decreasing. However, this statement carries a needlessly negative ring. A simplified definition of the second law is: It takes work to change things. With these two corollaries: We can calculate the theoretical minimum work needed for a given change; and We can express the value of all changes in terms of work

  5. Saving-Based Asset Pricing

    DEFF Research Database (Denmark)

    Dreyer, Johannes Kabderian; Schneider, Johannes; T. Smith, William

    2013-01-01

    This paper explores the implications of a novel class of preferences for the behavior of asset prices. Following a suggestion by Marshall (1920), we entertain the possibility that people derive utility not only from consumption, but also from the very act of saving. These ‘‘saving-based’’ prefere...

  6. Geology of Woman Saving Concept

    Directory of Open Access Journals (Sweden)

    Shayesteh Madani

    2014-09-01

    Full Text Available Money is lubricant and an instrument for economic transaction. Money social dimension has increased over time, transforming it from a sole economic instrument to a device for various transactions. Money economic value in society is indicated through different forms, one of which is saving, in the sense of money accumulation and its use under specific future circumstances. Women, who form half of the society, take specific approaches to money and savings. The current research aims to investigate the perspectives and changing attitude strategy to money and saving among married women. The participants of this study include 20 to 70 year-old employed household married women who were observed phenomenologically and interviewed qualitatively on saving through.   The findings of this study demonstrated women perspectives on various types of saving, ways of saving, transfer methods, saving consumption forms and their mechanism. It also revealed that while money is an economic instrument and possess the economic material; attitudes and acts related to money are influenced by social conditions that has consequently turned saving into a social phenomenon.

  7. Prescription Program Provides Significant Savings

    Science.gov (United States)

    Rowan, James M.

    2010-01-01

    Most school districts today are looking for ways to save money without decreasing services to its staff. Retired pharmacist Tim Sylvester, a lifelong resident of Alpena Public Schools in Alpena, Michigan, presented the district with a pharmaceuticals plan that would save the district money without raising employee co-pays for prescriptions. The…

  8. An improved billet on billet extrusion process of continuous aluminium alloy shapes for cryogenic applications in the Compact Muon Solenoid experiment

    CERN Document Server

    Tavares, S S

    2003-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments being designed in the framework of the Large Hadron Collider accelerator at CERN. CMS will contain the largest and the most powerful superconducting solenoid magnet ever built in terms of stored energy. It will work at 4.2 K, will have a magnetic length of 12.5 m, with a free bore of 6m and will be manufactured as a layered and modular structure of NbTi cables embedded in a high purity (99.998%) Al- stabiliser. Each layer consists of a wound continuous length of 2.55 km. In order to withstand the high electromagnetic forces, two external aluminium alloy reinforcing sections are foreseen. These reinforcements, of 24 mm multiplied by 18 mm cross-section, will be continuously electron beam (EB) welded to the pure Al-stabiliser. The alloy EN AW-6082 has been selected for the reinforcements due to its excellent extrudability, high strength in the precipitation hardened state, high toughness and strength at cryogenic temperatures and ready EB weldability. Ea...

  9. Energy saving in refineries and petrochemical complexes

    Energy Technology Data Exchange (ETDEWEB)

    Verde, L

    1975-01-01

    Possible measures applicable in the design of refineries and petrochemical complexes, to effect energy savings were investigated. This was not limited to the single process unit problems, on the contrary the attention is mainly addressed to the identification of the interrelations between different units, emphasizing possible integrations. Particularly, the optimization of the pressure levels and number of the utility networks for steam distribution inside plant facilities, is considered, in order to maximize heat recovery in the process units, and electric power production in the central steampower generation plant. A computer program of general application, based on profitability evaluation at various fuel oil prices and different project configurations, has been developed for these purposes. The general measures applicable within certain limits are then briefly examined. The task of the process engineer is discussed in the perspective of the ''energy saving'' goal.

  10. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  11. Saving, efficiency and management of electric sector demand

    International Nuclear Information System (INIS)

    Sanchez de Tembleque, L. J.

    2007-01-01

    Spanish economic model of development is based on energy consumption, and its main source is imported fossil fuels, which have some environmental and scarcity consequences in the mid term, among others. These problems could be reduced in two ways: economic activity reduction or energy efficiency improvement. In the presence of these possibilities, It may be desirable to bet for saving and energy efficiency, to maintain the economic development. This assignment analyzes the main available regulatory and social mechanisms to promote saving and energy efficiency in the power sector, like systems to internalize social costs in the electricity price, efficiency standards, and encourage the new saving culture. (Author) 15 refs

  12. Effect Of The LEBT Solenoid Magnetic Field On The Beam Generation For Particle Tracking

    CERN Document Server

    Yarmohammadi Satri, M; CERN. Geneva. ATS Department

    2013-01-01

    Linac4 is a 160 MeV H- linear accelerator which will replace the 50 MeV proton Linac2 for upgrade of the LHC injectors with higher intensity and eventually an increase of the LHC luminosity. Linac4 structure is a source, a 45 keV low energy beam transport line (LEBT) with two solenoids, a 3 MeV Radiofrequency Quadrupole (RFQ), a Medium Energy Beam Transport line (MEBT), a 50 Mev DTL, a 100 Mev CCDTL and PIMS up to 160 Mev. We use Travel v4.07 and PathManager code for simulation. Firstly, we need to a file as a source and defining the beginning point (last point in tracking back) of simulation. We recognise the starting point base on the solenoid magnetic property of LEBT.

  13. Fabrication of solenoid-type inductor with electroplated NiFe magnetic core

    International Nuclear Information System (INIS)

    Gao Xiaoyu; Cao Ying; Zhou Yong; Ding Wen; Lei Chong; Chen Jian

    2006-01-01

    Solenoid-type inductor with ultra-low profile was fabricated by MEMS (Microelectromechanical systems) technique. NiFe film was electroplated as the magnetic core, and polyimide with a low relative permittivity was used as the insulation material. In the fabrication process, UV-LIGA, dry etching, fine polishing and electroplating technique have been adopted to achieve high performance of the solenoid-type inductor. The inductor was in size of 1.5 mmx0.9 mmx0.1 mm with coil width of 20 μm and aspect ratio of 5:1. The inductance and the quality factor were 0.42-0.345 μH and 1.8-5.3 in the frequency range of 1-10 MHz, respectively

  14. A harmonic expansion for the magnetic field of the helical solenoid

    International Nuclear Information System (INIS)

    Dewar, R.L.; Gardner, H.J.

    1987-03-01

    We discuss the boundary value problem for calculating the scalar magnetic potentials inside and outside of a helically symmetric solenoid. Under some circumstances the potentials can be expanded in infinite series of cylindrical harmonics. For a circular cross-section solenoid, we derive a Green's function integral representation of the series coefficients and calculate the radii of convergence of the series by a saddle point method. In some cases the cylinders of convergence can intersect the coil, so that there are physically accessible regions where the series fail to converge. Numerical evidence is presented to show that, even in some of these cases, the potentials can be accurately approximated by finite sums of cylindrical harmonics using boundary collocation

  15. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  16. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    International Nuclear Information System (INIS)

    Wibowo,; Zakaria,; Lambang, Lullus; Triyono,; Muhayat, Nurul

    2016-01-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  17. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  18. On the Suitability of a Solenoid Horn for the ESS Neutrino Superbeam

    CERN Document Server

    Olvegård, Maja; Ruber, R; Ziemann, R; Koutchouk, J -P

    2015-01-01

    The European Spallation Source (ESS), now under construction in Lund, Sweden, offers unique opportunities for experimental physics, not only in neutron science but potentially in particle physics. The ESS neutrino superbeam project plans to use a 5 MW proton beam from the ESS linac to generate a high intensity neutrino superbeam, with the final goal of detecting leptonic CP-violation in an underground megaton Cherenkov water detector. The neutrino production requires a second target station and a complex focusing system for the pions emerging from the target. The normal-conducting magnetic horns that are normally used for these applications cannot accept the 2.86 ms long proton pulses of the ESS linac, which means that pulse shortening in an accumulator ring would be required. That, in turn, requires H- operation in the linac to accommodate the high intensity. As an attractive alternative, we investigate the possibility of using superconducting solenoids for the pion focusing. This solenoid horn system needs ...

  19. The cryogenic system for the superconducting solenoid magnet of the CMS experiment

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Lottin, J C; Lottin, J P; Lyraud, C

    1998-01-01

    The design concept of the CMS experiment, foreseen for the Large Hadron Collider (LHC) project at CERN, is based on a superconducting solenoid magnet. The large coil will be made of a four layers winding generating the 4 T uniform magnetic induction required by the detector. The length of the solenoid is 13 m with an inner diameter of 5.9 m. The mass kept at liquid helium temperature totals 220 t and the electromagnetic stored energy is 2.7 GJ. The windings are indirectly cooled with a liquid helium flow driven by a thermosyphon effect. The external cryogenic system consists of a 1.5 kW at 4.5 K (entropy equivalent) cryoplant including an additional liquid nitrogen precooling unit and a 5000 litre liquid helium buffer. The whole magnet and cryogenic system will be tested at the surface by 2003 before final installation in the underground area of LHC.

  20. Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler

    CERN Document Server

    Tsunawaki, Y

    2005-01-01

    We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.

  1. Requirements for qualification of manufacture of the ITER Central Solenoid and Correction Coils

    Energy Technology Data Exchange (ETDEWEB)

    Libeyre, Paul, E-mail: paul.libeyre@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Li, Hongwei [ITER China, 15B Fuxing Road, Beijing 100862 (China); Reiersen, Wayne [US ITER Project Office, 1055 Commerce Park Dr., Oak Ridge, TN 37831 (United States); Dolgetta, Nello; Jong, Cornelis; Lyraud, Charles; Mitchell, Neil; Laurenti, Adamo [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Sgobba, Stefano [CERN, CH-1211 Genève 23 (Switzerland); Turck, Bernard [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Martovetsky, Nicolai; Everitt, David; Freudenberg, K.; Litherland, Steve; Rosenblad, Peter [US ITER Project Office, 1055 Commerce Park Dr., Oak Ridge, TN 37831 (United States); Smith, John; Spitzer, Jeff [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Wei, Jing; Dong, Xiaoyu; Fang, Chao [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); and others

    2015-10-15

    Highlights: • A manufacturing line is installed for the ITER Correction Coils. • A manufacturing line is under installation for the ITER Central Solenoid. • Qualification of the manufacturing procedures has started for both manufacturing lines and acceptance criteria set. • Winding procedure of Correction Coils is qualified. - Abstract: The manufacturing line of the ITER Correction Coils (CC) at ASIPP in Hefei (China) was completed in 2013 and the manufacturing line of the ITER Central Solenoid (CS) modules is under installation at General Atomic premises in Poway (USA). In both cases, before starting production of the first coils, qualification of the manufacturing procedures is achieved by the construction of a set of mock-ups and prototypes to demonstrate that design requirements defined by the ITER Organization are effectively met. For each qualification item, the corresponding mock-ups are presented with the tests to be performed and the related acceptance criteria. The first qualification results are discussed.

  2. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  3. D0 Central Tracking Solenoid Energization, Controls, Interlocks and Quench Protection Initial Validation Procedures

    International Nuclear Information System (INIS)

    Jaskierny, W.; Hance, R.

    1998-01-01

    This note presents the inspection and tests to be performed on the DZERO solenoid energization, controls, interlocks and quench protection system before it is energized for the first time. This test is to be performed with a 5000A jumper at the end of the bus instead of the solenoid. This system is based in DZERO room 511. A copy of this note shall be annotated, signed and dated by the person coordinating the procedure; and filed with the system maintenance records. Annotations shall include comments about any aspect of the procedure that is abnormal or unsuccessful. The following inspections and tests shall be performed by persons knowledgeable about the system. Each individual test step should be reviewed and understood before proceeding with that step.

  4. Defining a standard metric for electricity savings

    International Nuclear Information System (INIS)

    Koomey, Jonathan; Akbari, Hashem; Blumstein, Carl; Brown, Marilyn; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B; Greenberg, Steve

    2010-01-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70% capacity factor with 7% T and D losses. Displacing such a plant for one year would save 3 billion kWh/year at the meter and reduce emissions by 3 million metric tons of CO 2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question-Dr Arthur H Rosenfeld.

  5. Defining a standard metric for electricity savings

    Energy Technology Data Exchange (ETDEWEB)

    Koomey, Jonathan [Lawrence Berkeley National Laboratory and Stanford University, PO Box 20313, Oakland, CA 94620-0313 (United States); Akbari, Hashem; Blumstein, Carl; Brown, Marilyn; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B; Greenberg, Steve, E-mail: JGKoomey@stanford.ed

    2010-01-15

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70% capacity factor with 7% T and D losses. Displacing such a plant for one year would save 3 billion kWh/year at the meter and reduce emissions by 3 million metric tons of CO{sub 2} per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question-Dr Arthur H Rosenfeld.

  6. Defining a Standard Metric for Electricity Savings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  7. Plans for longitudinal and transverse neutralized beam compression experiments, and initial results from solenoid transport experiments

    International Nuclear Information System (INIS)

    Seidl, P.A.; Armijo, J.; Baca, D.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grote, D.; Haber, I.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Molvik, A.W.; Rose, D.V.; Roy, P.K.; Sefkow, A.B.; Sharp, W.M.; Vay, J.L.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2007-01-01

    This paper presents plans for neutralized drift compression experiments, precursors to future target heating experiments. The target-physics objective is to study warm dense matter (WDM) using short-duration (∼1 ns) ion beams that enter the targets at energies just above that at which dE/dx is maximal. High intensity on target is to be achieved by a combination of longitudinal compression and transverse focusing. This work will build upon recent success in longitudinal compression, where the ion beam was compressed lengthwise by a factor of more than 50 by first applying a linear head-to-tail velocity tilt to the beam, and then allowing the beam to drift through a dense, neutralizing background plasma. Studies on a novel pulse line ion accelerator were also carried out. It is planned to demonstrate simultaneous transverse focusing and longitudinal compression in a series of future experiments, thereby achieving conditions suitable for future WDM target experiments. Future experiments may use solenoids for transverse focusing of un-neutralized ion beams during acceleration. Recent results are reported in the transport of a high-perveance heavy ion beam in a solenoid transport channel. The principal objectives of this solenoid transport experiment are to match and transport a space-charge-dominated ion beam, and to study associated electron-cloud and gas effects that may limit the beam quality in a solenoid transport system. Ideally, the beam will establish a Brillouin-flow condition (rotation at one-half the cyclotron frequency). Other mechanisms that potentially degrade beam quality are being studied, such as focusing-field aberrations, beam halo, and separation of lattice focusing elements

  8. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  9. Engineering design solutions of flux swing with structural requirements for ohmic heating solenoids

    International Nuclear Information System (INIS)

    Smith, R.A.

    1977-01-01

    Here a more detailed publication is summarized which presents analytical methods with solutions that describe the structural behavior of ohmic heating solenoids to achieve a better understanding of the relationships between the functional variables that can provide the basis for recommended design improvements. The solutions relate the requirements imposed by structural integrity to the need for producing sufficient flux swing to initiate a plasma current in the tokamak fusion machine. A method is provided to perform a detailed structural analysis of every conducting turn in the radial build of the solenoid, and computer programmed listings for the closed form solutions are made available as part of the reference document. Distinction is made in deriving separate models for the regions of the solenoid where turn-to-turn radial contact is maintained with radial compression or with a bond in the presence of radial tension, and also where there is turn-to-turn radial separation due to the absence or the loss of bonding in the presence of would be radial tension. The derivations follow the theory of elasticity for a body possessing cylindrical anisotropy where the material properties are different in the radial and tangential directions. The formulations are made practical by presenting the methods for reducing stress and for relocating the relative position for potential turn-to-turn radial delamination by permitting an arbitrary traction at the outer radial surface of the solenoid in the form of pressure or displacement such as may be applied by a containment or a shrink fit structural cylinder

  10. CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM

    International Nuclear Information System (INIS)

    GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

    2001-01-01

    A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II

  11. View through the CMS detector during the cooldown of the solenoid on February 2006

    CERN Multimedia

    Richard Breedon, UC Davis

    2006-01-01

    Image looking along the beam direction through CMS. One can see, from the inside out: the patch panels and cables for the Preshower and ECAL; the front of the endcap HCAL; some cathode strip chambers (CSCs) for detecting muons; the sealed solenoid (the first circular silver-coloured ring) currently being cooled to operating temperature and held by the central barrel yoke ring (red and orange); one of the other barrel yoke rings installed with many muon chambers (silver rectangular boxes).

  12. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    International Nuclear Information System (INIS)

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable open-quotes Integrated Research Experimentclose quotes (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, open-quotes the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenologyclose quotes. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well

  13. Worcester 1 Inch Solenoid-Actuated Gas Operated SCHe System Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated

  14. Study on the energy performance of an energy producing and saving house. Part 3. Measurement results of the connecting system to the power grid and prediction of the PV system electric generation residence in Kyushu; So sho energy seino ni kansuru kenkyu. 3. Gyakuchoryu keito renkei system no nenkan jisseki to Kyushu ni okeru jutaku deno hatsudenryo yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, O.; Sakai, K.; Hirakawa, M. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1997-11-25

    Two-year study of an energy-producing/-saving house equipped with a 5kWp photovoltaic power generation system is described, in which the track records of this system capable of back-flow and system interconnection and inverter performance are analyzed, and the power expected to be obtained when photovoltaic power generation systems are installed in some residential houses in the Kyushu area is predicted. In the analysis of the yearly variance in the demand/supply of electric power, it turns out that more is generated in spring than in summer, which is thanks to the good weather in spring, typhoons in summer, and power generation efficiency degraded due to temperature rise in the modules. The amount of photovoltaic cell module-generated power is estimated by performing a multiple regression analysis involving the amount of insolation, outside air temperature, and wind speeds. Furthermore, available power is calculated using a relational expression involving inverter performance. On the assumption of 3kW-capacity photovoltaic power generation systems installed at residential houses at various locations across Kyushu, the expected amount of power to be generated is calculated, which proves to be approximately 3000kWh a year, confirming the effectiveness of the photovoltaic power generation system. 6 refs., 9 figs., 3 tabs.

  15. Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Roger Raman; Jarboe, Thomas R.; Bell, Michael G.; Dennis Mueller; Nelson, Brian A.; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

    2005-01-01

    The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX

  16. Superconducting solenoids for suspension of high-speed overhead transportation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Omel' yanenko, V I [Kharkov Polytechnical Inst., USSR; Bocharov, V I; Dolgosheev, E A; Usichenko, Y G

    1977-08-01

    A superconducting solenoid is the most important component of a suspension for overhead transportation facilities operating on the repulsion principle. Its design is aimed at producing an adequate magnetic field within the active zone, to ensure a high ratio of lifting force to braking force, the necessary speed dependence of both forces, and a high ratio of lifting force to solenoid mass. The design must also be both technologically and economically feasible. For safety considerations, the magnetic field intensity inside the passenger compartment must be minimum. A survey of existing designs indicates a preference for race track solenoids of quasi-rectangular shape. While all designers already agree on a coil width within 0.25 to 0.6 m, the optimum coil length has not yet been established. Intrinsic stabilization of superconductors by stranding and twisting has pushed the maximum allowable current density to 200 A/mm/sup 2/ and the energy storing capacity of magnets to 100 kJ, a capacity of 1 MJ being within reach. The recommended coil dimensions for laboratory models are 1 m length and 0.3 m width, to carry magnetizing currents up to 0.3 MA.

  17. The Cold Mass Support System and the Helium Cooling System for the MICE Focusing Solenoid

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake, Rohan S.; Witte, Holger

    2006-01-01

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed

  18. Effect of High Solenoidal Magnetic Fields on Breakdown Voltages of High Vacuum 805 MHz Cavities

    CERN Document Server

    Moretti, A; Geer, S; Qian, Z

    2004-01-01

    The demonstration of muon ionization cooling by a large factor is necessary to demonstrate the feasilibility of a collider or neutrino factory. An important cooling experiment, MICE [1], has been proposed to demonstrate 10 % cooling which will validate the technology. Ionization cooling is accomplished by passing a high-emittance beam in a multi-Tesla solenoidal channel alternately through regions of low Z material and very high accelerating RF Cavities. To determine the effect of very large solenoidal magnetic fields on the generations of Dark current, X-Rays and breakdown Voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station, and a large bore 5 T solenoidal superconducting magnet containing a pill box type Cavity with thin removable window apertures allowing dark current studies and breakdown studies of different materials. The results of this study will be presented. The study has shown that the peak achievab...

  19. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  20. Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop

    Directory of Open Access Journals (Sweden)

    Myung-Hwan Yoon

    2017-05-01

    Full Text Available Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.