WorldWideScience

Sample records for solar-type magnetic cycles

  1. North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23

    International Nuclear Information System (INIS)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Oliver, Ramon; Ballester, Jose Luis; Dikpati, Mausumi; McIntosh, Scott W.

    2017-01-01

    Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 days in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.

  2. North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Dikpati, Mausumi; McIntosh, Scott W., E-mail: Eka.gurgenashvili.1@iliauni.edu.ge [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-08-20

    Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 days in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.

  3. Deciphering Solar Magnetic Activity: Spotting Solar Cycle 25

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Astronomy, University of Maryland, College Park, MD (United States)

    2017-06-26

    We present observational signatures of solar cycle 25 onset. Those signatures are visibly following a migratory path from high to low latitudes. They had starting points that are asymmetrically offset in each hemisphere at times that are 21–22 years after the corresponding, same polarity, activity bands of solar cycle 23 started their migration. Those bands define the so-called “extended solar cycle.” The four magnetic bands currently present in the system are approaching a mutually cancelling configuration, and solar minimum conditions are imminent. Further, using a tuned analysis of the daily band latitude-time diagnostics, we are able to utilize the longitudinal wave number (m = 1) variation in the data to more clearly reveal the presence of the solar cycle 25 bands. This clarification illustrates that prevalently active longitudes (different in each hemisphere) exist at mid-latitudes presently, lasting many solar rotations, that can be used for detailed study over the next several years with instruments like the Spectrograph on IRIS, the Spectropolarimeter on Hinode, and, when they come online, similar instruments on the Daniel K. Inouye Solar Telescope (DKIST) as we watch those bands evolve following the cancellation of the solar cycle 24 activity bands at the equator late in 2019.

  4. RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14–24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Ramishvili, Giorgi; Shergelashvili, Bidzina [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Hanslmeier, Arnold [IGAM, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Poedts, Stefaan, E-mail: teimuraz.zaqarashvili@uni-graz.at [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001, Leuven (Belgium)

    2016-07-20

    Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14–24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185–195 days during the weak cycles 14–15 and 24 and a periodicity of 155–165 days during the stronger cycles 16–23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m ( n ) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14–24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.

  5. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Soumitra; Nandy, Dibyendu [Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata (India)

    2016-11-20

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  6. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    International Nuclear Information System (INIS)

    Hazra, Soumitra; Nandy, Dibyendu

    2016-01-01

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  7. THE SUN'S SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Jin, C. L.; Wang, J. X.; Song, Q.; Zhao, H.

    2011-01-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and the following results are found. (1) The quiet regions dominated the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23. They contributed (0.94-1.44) x10 23 Mx flux to the Sun from the solar minimum to maximum. The monthly average magnetic flux of the quiet regions is 1.12 times that of the active regions in the cycle. (2) The ratio of quiet region flux to that of the total Sun equally characterizes the course of a solar cycle. The 6 month running average flux ratio of the quiet regions was larger than 90.0% for 28 continuous months from July 2007 to October 2009, which very well characterizes the grand solar minima of cycles 23-24. (3) From the small to the large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)x10 18 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. These results provide insight into the reason for anti-correlations of small-scale magnetic activity during the solar cycle.

  8. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shangbin; Zhang Hongqi, E-mail: yangshb@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  9. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Yang Shangbin; Zhang Hongqi

    2012-01-01

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  10. MAGNETIC ROSSBY WAVES IN THE SOLAR TACHOCLINE AND RIEGER-TYPE PERIODICITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Apart from the eleven-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high-energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where a strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give rise to a magnetic flux emergence leading to observed periodicities in solar activity indicators related to magnetic flux.

  11. Update on a Solar Magnetic Catalog Spanning Four Solar Cycles

    Science.gov (United States)

    Vargas-Acosta, Juan Pablo; Munoz-Jaramillo, Andres; Vargas Dominguez, Santiago; Werginz, Zachary; DeLuca, Michael D.; Longcope, Dana; Harvey, J. W.; Windmueller, John; Zhang, Jie; Martens, Petrus C.

    2017-08-01

    Bipolar magnetic regions (BMRs) are the cornerstone of solar cycle propagation, the building blocks that give structure to the solar atmosphere, and the origin of the majority of space weather events. However, in spite of their importance, there is no homogeneous BMR catalog spanning the era of systematic solar magnetic field measurements. Here we present the results of an ongoing project to address this deficiency applying the Bipolar Active Region Detection (BARD) code to magnetograms from the 512 Channel of the Kitt Peak Vaccum Telescope, SOHO/MDI, and SDO/HMI.The BARD code automatically identifies BMRs and tracks them as they are rotated by differential rotation. The output of the automatic detection is supervised by a human observer to correct possible mistakes made by the automatic algorithm (like incorrect pairings and tracking mislabels). Extra passes are made to integrate fragmented regions as well as to balance the flux between BMR polarities. At the moment, our BMR database includes nearly 10,000 unique objects (detected and tracked) belonging to four separate solar cycles (21-24).

  12. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    International Nuclear Information System (INIS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-01-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  13. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    tribpo

    solar dynamo mechanism that generates electric current and magnetic field by plasma flows ... rotating body in the Universe. We also mention a list ... verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, ...

  14. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  15. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  16. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    International Nuclear Information System (INIS)

    Muñoz-Jaramillo, Andrés; DeLuca, Edward E.; Dasi-Espuig, María; Balmaceda, Laura A.

    2013-01-01

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.

  17. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Jaramillo, Andres; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dasi-Espuig, Maria [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany); Balmaceda, Laura A., E-mail: amunoz@cfa.harvard.edu, E-mail: edeluca@cfa.harvard.edu, E-mail: dasi@mps.mpg.de, E-mail: lbalmaceda@icate-conicet.gob.ar [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina)

    2013-04-20

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.

  18. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    International Nuclear Information System (INIS)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui

    2012-01-01

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  19. DISTRIBUTION OF MAGNETIC BIPOLES ON THE SUN OVER THREE SOLAR CYCLES

    International Nuclear Information System (INIS)

    Tlatov, Andrey G.; Vasil'eva, Valerya V.; Pevtsov, Alexei A.

    2010-01-01

    We employ synoptic full disk longitudinal magnetograms to study latitudinal distribution and orientation (tilt) of magnetic bipoles in the course of sunspot activity during cycles 21, 22, and 23. The data set includes daily observations from the National Solar Observatory at Kitt Peak (1975-2002) and Michelson Doppler Imager on board the Solar and Heliospheric Observatory (MDI/SOHO, 1996-2009). Bipole pairs were selected on the basis of proximity and flux balance of two neighboring flux elements of opposite polarity. Using the area of the bipoles, we have separated them into small quiet-Sun bipoles (QSBs), ephemeral regions (ERs), and active regions (ARs). We find that in their orientation, ERs and ARs follow Hale-Nicholson polarity rule. As expected, AR tilts follow Joy's law. ERs, however, show significantly larger tilts of opposite sign for a given hemisphere. QSBs are randomly oriented. Unlike ARs, ERs also show a preference in their orientation depending on the polarity of the large-scale magnetic field. These orientation properties may indicate that some ERs may form at or near the photosphere via the random encounter of opposite polarity elements, while others may originate in the convection zone at about the same location as ARs. The combined latitudinal distribution of ERs and ARs exhibits a clear presence of Spoerer's butterfly diagram (equatorward drift in the course of a solar cycle). ERs extend the ARs' 'wing' of the butterfly diagram to higher latitudes. This high latitude extension of ERs suggests an extended solar cycle with the first magnetic elements of the next cycle developing shortly after the maximum of the previous cycle. The polarity orientation and tilt of ERs may suggest the presence of poloidal fields of two configurations (new cycle and old cycle) in the convection zone at the declining phase of the sunspot cycle.

  20. Solar Proton Events in Six Solar Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  1. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui, E-mail: quweizhe@ouc.edu.cn [College of Environment Oceanography, Ocean University of China, Qingdao 266100 (China)

    2012-07-15

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  2. Open magnetic fields and the solar cycle. Pt. 1

    International Nuclear Information System (INIS)

    Levine, R.H.

    1982-01-01

    Models of open magnetic structures on the Sun are presented for periods near solar minimum (CR 1626-1634) and near solar maximum (CR 1668-1678). Together with previous models of open magnetic structures during the declining phase (CR 1601-1611) these calculations provide clues to the relations between open structures, coronal holes, and active regions at different times of the solar cycle. Near solar minimum the close relation between active regions and open structures does not exist. It is suggested that near solar minimum the systematic emergence of new flux with the proper polarity imbalance to maintain open magnetic structures may occur primarily at very small spatial scales. Near solar maximum the role of active regions in maintaining open structures and coronal holes is strong, with large active regions emerging in the proper location and orientation to maintain open structures longer than typical active region lifetimes. Although the use of He I 10830 A spectroheliograms as a coronal hole indicator is shown to be subject to significant ambiguity, the agreement between calculated open structures and coronal holes determined from He I 10830 A spectroheliograms is very good. The rotation properties of calculated open structures near solar maximum strongly suggest two classes of features: one that rotates differentially similar to sunspots and active regions and a separate class that rotates more rigidly, as was the case for single large coronal holes during Skylab. (orig.)

  3. Magnetic solar and economic cycles: mechanism of close connection

    Directory of Open Access Journals (Sweden)

    Vladimir Alekseyevich Belkin

    2013-03-01

    Full Text Available In the article on extensivestatistical material over long periods of timeshows therelationship of the magneticradiation from thesun cycles and cycles of key macroeconomic indicators, namely, GDP, the level of stagflation (an index print including seasonal cycles, the cycles Kuznets and Kondratieff cycles. The authorexplains this relationship on the basis of theresults of scientificexperimentsconducted by the Institute of Space Research of the Russian Academy of Sciences. As a result of these experiments a negative effect of magnetic storms on the mental and physical well-being, which, as the author shows, leads to decrease in labor productivity and gross domestic product has been proved. Therefore, cyclic geomagnetic disturbances are the main cause of cyclicity of main economic indicators. Thus, it is possible to develop economic forecasts based on astrophysical predictions of solar activity and geomagnetic disturbances. The author has developed some of them. Identifying strong direct relationship of long waves of stagflation in the U.S. and long (large cycles of solar activity, and the identification of a strong geomagnetic feedback seasonal and economic cycles in the U.S. economy, and Russia are considered to be the scientific innovation of the article.

  4. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    International Nuclear Information System (INIS)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence

  5. Solar magnetism: a new look

    International Nuclear Information System (INIS)

    Golub, L.

    1981-01-01

    With the growing evidence for the ubiquity of magnetic fields, researchers feel a growing need for an adequate theory for the generation of such fields in nature. This article looks at the sun and its magnetic fields. The fundamental property that must be explained aside from the existence of magnetic fields is the solar cycle. The traditional picture of the solar cycle has three primary components: (1) solar activity; (2) latitude migration; and (3) Hale's law and reversal of polarity. The aspects of internal motion which can generate magnetic fields and cycles of activity like those observed are discussed. There are two major elements to the flow patterns of the sun. More important than the visible differential rotation of solar surface is the belief that the sun's interior rotates faster than the surface. It is this mechanism which probably produces the magnetic fields which bubble up from interior. It's also possible to show that this mechanism can produce the migration of solar activity. The reversal of polarity is explained by convection zones and sun's rotation. Due to x-ray imaging and improved magnetic field measurements, it has been observed that enormous quantities of magnetic flux emerge from solar interior in form of very small regions. This data along with rocket data show that the rate of generation of magnetic flux does not change during a solar cycle - instead, the observed cycle represents a shift from large emerging regions to numerous small regions and back again

  6. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    International Nuclear Information System (INIS)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Choudhuri, Arnab Rai

    2014-01-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century

  7. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev [Indian Institute of Astrophysics,Koramangala, Bengaluru 560034 (India); Karak, Bidya Binay [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Muñoz-Jaramillo, Andrés [Montana State University, Bozeman, MT 59717 (United States); Choudhuri, Arnab Rai, E-mail: mpriya@iiap.res.in, E-mail: dipu@iiap.res.in [Indian Institute of Science, Bangalore (India)

    2014-09-20

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

  8. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Science.gov (United States)

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  9. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  10. Erratum to "Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23-Paper 1" [J. Atmos. Sol.-Terr. Phys. 70(2-4) (2008) 245-253

    Science.gov (United States)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2009-01-01

    One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.

  11. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  12. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    Science.gov (United States)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  13. TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Gibson, S. E., E-mail: lzh@umich.edu [NCAR/HAO, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2013-08-20

    Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make it timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier

  14. A study of north-south asymmetry of interplanetary magnetic field plasma and some solar indices throughout four solar cycles

    International Nuclear Information System (INIS)

    El-Borie, M A; Bishara, A A; Abdel-halim, A A; El-Monier, S Y

    2017-01-01

    We provide a long epoch study of a set of solar and plasma parameters (sunspot number Rz, total solar irradiance TSI, solar radio flux SF, solar wind speed V , ion density n, dynamic pressure n V 2 , and ion temperature T) covering a temporal range of several decades corresponding to almost four solar cycles. Such data have been organized accordingly with the interplanetary magnetic field (IMF) polarity, i.e. away (A) if the azimuthal component of the IMF points away from the Sun and T if it points towards, to examine the N-S asymmetries between the northern and southern hemispheres. Our results displayed the sign of the N-S asymmetry in solar activity depends on the solar magnetic polarity state (qA>0 or qA<0). The solar flux component of toward field vector was larger in magnitude than those of away field vector during the negative polarity epochs (1986-88 and 2001-08). In addition, the solar wind speeds (SWS) are faster by about 22.11±4.5 km/s for away polarity days than for toward polarity days during the qA<0 epoch (2001-08), where the IMF points away from the Sun. Moreover, during solar cycles 21 st and 24 th the solar plasma is more dense, hotter, and faster south of the HCS. (paper)

  15. Sun in the Epoch ``LOWERED'' Solar Activity: the Comparative Analysis of the Current 24 Solar Cycle and Past Authentic Low Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    A reliable series of the relative numbers of sunspots (14 solar cycles ‒ 165 years) it leads to the only scenario of solar activity cycles - to the alternation of epochs of “increased” (18 ‒ 22 cycles of solar activity) and “lowered” (12 ‒ 16 and 24 ‒ ...) solar activity with the periods of solar magnetic field reconstruction in solar zone of the sunspots formation (11, 12, 23) from one epoch to another. The regime of the produce of magnetic field significantly changes in these periods, providing to the subsequent 5 cycles the stable conditions of solar activity. Space solar research made it possible to sufficiently fully investigate characteristics and parameters of the solar cycles for the epoch of “increased” (20 ‒ 22 cycles) solar activity and period of the reconstruction (22 ‒ 23 cycles) to the epoch of “lowered” solar activity (24 ‒ ... cycles). In this scenario 24 solar cycle is the first solar cycle of the second epoch of “lowered” solar activity. Therefore his development and characteristics roughly must be described in the context of the low solar cycles development (12, 14, and 16). In the current solar cycle the sunspot-forming activity is lowered, the average areas of the sunspot groups correspond to values for epoch of “lowered “solar activity, average magnetic field in the umbra of sunspots was reduced approximately to 700 gauss, and for this time was observed only 4 very large sunspot groups (≥1500 mvh). Flare activity substantially was lowered: for the time of the current solar cycle development it was occurrence of M-class flares M - 368, class X - 32, from which only 2 solar flares of class X> 5. Solar proton events are observed predominantly small intensity; but only 5 from them were the intensity of ≥100 pfu (S2) and 4 - ≥1000 pfu (S3). The first five years of the 24 cycle evolution confirm this assumption and the possibility to give the qualitative forecast of his evolution and development of the

  16. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  17. Possible influence of the polarity reversal of the solar magnetic field on the various types of arrhythmias

    International Nuclear Information System (INIS)

    Giannaropoulou, E; Papailiou, M; Mavromichalaki, H; Preka-Papadema, P; Gigolashvili, M; Tvildiani, L; Janashia, K; Papadima, Th

    2013-01-01

    Over the last few years various researches have reached the conclusion that cosmic ray variations and geomagnetic disturbances are related to the condition of the human physiological state. In this study medical data concerning the number of incidents of different types of cardiac arrhythmias for the time period 1983 – 1992 which refer to 1902 patients in Tbilisi, Georgia were used. The smoothing method and the Pearson r-coefficients were used to examine the possible effect of different solar and geomagnetic activity parameters and cosmic ray intensity variations on the different types of arrhythmias. The time interval under examination was separated into two different time periods which coincided with the polarity reversal of the solar magnetic field that occurred in the years 1989-1990 and as a result a different behavior of all the above mentioned parameters as well as of the different types of arrhythmias was noticed during the two time intervals. In addition, changing of polarity sign of the solar magnetic field was found to affect the sign of correlation between the incidence of arrhythmias and the aforementioned parameters. The primary and secondary maxima observed in the solar parameters during the solar cycle 22, also appeared in several types of arrhythmias with a time lag of about five months.

  18. MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    2011-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.

  19. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2005-02-01

    Full Text Available The magnetic structure and geomagnetic response of 73 magnetic clouds (MC observed by the WIND and ACE satellites in solar cycle 23 are examined. The results have been compared with the surveys from the previous solar cycles. The preselected candidate MC events were investigated using the minimum variance analysis to determine if they have a flux-rope structure and to obtain the estimation for the axial orientation (θC, φC. Depending on the calculated inclination relative to the ecliptic we divided MCs into "bipolar" (θC<45° and "unipolar" (θC>45°. The number of observed MCs was largest in the early rising phase, although the halo CME rate was still low. It is likely that near solar maximum we did not identify all MCs at 1AU, as they were crossed far from the axis or they had interacted strongly with the ambient solar wind or with other CMEs. The occurrence rate of MCs at 1AU is also modified by the migration of the filament sites on the Sun towards the poles near solar maximum and by the deflection of CMEs towards the equator due to the fast solar wind flow from large polar coronal holes near solar minimum. In the rising phase nearly all bipolar MCs were associated with the rotation of the magnetic field from the south at the leading edge to the north at the trailing edge. The results for solar cycles 21-22 showed that the direction of the magnetic field in the leading portion of the MC starts to reverse at solar maximum. At solar maximum and in the declining phase (2000-2003 we observed several MCs with the rotation from the north to the south. We observed unipolar (i.e. highly inclined MCs frequently during the whole investigated period. For solar cycles 21-22 the majority of MCs identified in the rising phase were bipolar while in the declining phase most MCs were unipolar. The geomagnetic response of a given MC depends greatly on its magnetic structure and the orientation of the sheath fields. For each event we distinguished the

  20. Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint

    Science.gov (United States)

    Nerney, Steven; Suess, S. T.; Schmahl, E. J.

    1995-01-01

    The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.

  1. COMPARING CORONAL AND HELIOSPHERIC MAGNETIC FIELDS OVER SEVERAL SOLAR CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K., E-mail: jennimari.koskela@oulu.fi [University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland)

    2017-01-20

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO /MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p , of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 R{sub S} gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 R{sub S}) during solar minima and lowest values (2.6 R{sub S}–2.7 R{sub S}) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  2. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  3. Empirical solar/stellar cycle simulations

    Directory of Open Access Journals (Sweden)

    Santos Ângela R. G.

    2015-01-01

    Full Text Available As a result of the magnetic cycle, the properties of the solar oscillations vary periodically. With the recent discovery of manifestations of activity cycles in the seismic data of other stars, the understanding of the different contributions to such variations becomes even more important. With this in mind, we built an empirical parameterised model able to reproduce the properties of the sunspot cycle. The resulting simulations can be used to estimate the magnetic-induced frequency shifts.

  4. Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles

    Directory of Open Access Journals (Sweden)

    Sara F. Martin

    2018-05-01

    Full Text Available Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3–4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42–75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of

  5. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  6. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  7. SOLAR SOURCES OF 3He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-01-01

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 3 He-rich solar energetic particle events at ≲1 MeV nucleon −1 that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of 3 He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, 3 He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the 3 He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed

  8. Plasma physical aspects of the solar cycle

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    Mass motions below the photosphere drive the solar cycle which is association with variations in the magnetic field structure and accompanying phenomena. In addition to semi-empirical models, dynamo theories have been used to explain the solar cycle. The emergence of magnetic field generated by these mechanisms and its expansions into the corona involves many plasma physical processes. Magnetic buoyancy aids the expulsion of magnetic flux. The corona may respond dynamically or by continually adjusting to a quasi-static force-free or pressure-balanced equilibrium. The formation and disruption of current sheets is significant for the overall structure of the coronal magnetic field and the physics of quiescent prominences. The corona has a fine structure consisting of magnetic loops. The structure and stability of these are important as they are one of the underlying elements which make up the corona. (Author)

  9. The north-south asymmetry of solar filaments separately at low and high latitudes in solar cycle 23

    International Nuclear Information System (INIS)

    Kong De-Fang; Qu Zhi-Ning; Guo Qiao-Ling

    2015-01-01

    We present the results of a study on the north-south asymmetry of solar filaments at low (<50°) and high (>60°) latitudes using daily filament numbers from January 1998 to November 2008 (solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes. (research papers)

  10. SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 4648601 (Japan)

    2017-01-20

    Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.

  11. EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts

    Science.gov (United States)

    Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.

    2017-06-01

    Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).

  12. Convection and magnetism of solar-type stars (G and K)

    International Nuclear Information System (INIS)

    Do-Cao, Olivier Long

    2013-01-01

    This thesis aims at understanding the internal dynamics of solar-type stars and the origin of their magnetism. We will explore the complex nonlinear interactions between convection, rotation and magnetism conducting both 2D (STELEM code) and 3D (ASH code) numerical simulations. This dual approach will unveil the mechanisms and key parameters behind those physical processes. While the Sun has played a central role in previous studies, this work extends our knowledge to G and K stars. This manuscript is divided into 4 parts. The first one introduces the concepts behind internal stellar dynamics, and emphasizes the dynamo effect. Accurate observations of the Sun will be compared to stellar data, allowing us to determine what is specific to the Sun and what is generic for all stars. The second part reports the results obtained with the 2D STELEM code. This code allows us to study the generation and evolution of the large scale magnetic fields on a timescale comparable to the solar cycle period (11 years), giving us insight into the underlying dynamo processes at work. We show that the current solar models cannot reproduce the observations, when applied to rapidly rotating stars, unless we consider a turbulent pumping mechanism under specific conditions. Then, we have improved these kinematic models by taking into account the large scale magnetic field feedback on the longitudinal velocity component, called the Malkus Proctor effect. The models are now able to reproduce the solar torsional oscillations and can predict how their properties evolve with rotation rate. The third part focuses on 3D numerical simulations running on massively parallel supercomputers, using the ASH code. In contrast with the previously described code, ASH explicitly resolves the full MHD equations. We have studied (hydrodynamically) how the convective properties of G and K stars change as function of mass and rotation rate, first by considering the convective envelope alone, then by taking into

  13. The Effect of "Rogue" Active Regions on the Solar Cycle

    Science.gov (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  14. The Origin and Dynamics of Solar Magnetism

    CERN Document Server

    Thompson, M. J; Culhane, J. L; Nordlund, Å; Solanki, S. K; Zahn, J.-P

    2009-01-01

    The articles collected in this volume present all aspects of solar magnetism: from its origin in the solar dynamo to its evolution and dynamics that create the variability of solar phenomena, its well-known 11-year activity cycle that leads to the ever-changing pattern of sunspots and active regions on the Sun. Several contributions deal with the solar dynamo, the driver of many solar phenomena. Other contributions treat the transport and emergence of the magnetic flux through the outer layers of the Sun. The coupling of magnetic fields from the surface to the solar corona and beyond is also described, together with current studies on the predictability of solar activity. This book is aimed at researchers and graduate students working in solar physics and space science. It provides a full review of our current understanding of solar magnetism by the foremost experts in the field.

  15. Solar cycle variations in IMF intensity

    International Nuclear Information System (INIS)

    King, J.H.

    1979-01-01

    Annual averages of logarithms of hourly interplanetary magnetic field (IMF) intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2--3 years at each solar minimum period, the IMF intensity is depressed by 10--15% relative to its mean value realized during a broad 9-year period contered at solar maximum. No systematic variations occur during this 9-year period. The solar minimum decrease, although small in relation to variations in some other solar wind parameters, is both statistically and physically significant

  16. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    Science.gov (United States)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR

  17. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  18. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  19. Solar photospheric network properties and their cycle variation

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, K.; Charbonneau, P.; Béland, M., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: michel.beland@calculquebec.ca-c [Département de Physique et Calcul Québec, Université de Montréal, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4 (Canada)

    2014-11-20

    We present a numerical simulation of the formation and evolution of the solar photospheric magnetic network over a full solar cycle. The model exhibits realistic behavior as it produces large, unipolar concentrations of flux in the polar caps, a power-law flux distribution with index –1.69, a flux replacement timescale of 19.3 hr, and supergranule diameters of 20 Mm. The polar behavior is especially telling of model accuracy, as it results from lower-latitude activity, and accumulates the residues of any potential modeling inaccuracy and oversimplification. In this case, the main oversimplification is the absence of a polar sink for the flux, causing an amount of polar cap unsigned flux larger than expected by almost one order of magnitude. Nonetheless, our simulated polar caps carry the proper signed flux and dipole moment, and also show a spatial distribution of flux in good qualitative agreement with recent high-latitude magnetographic observations by Hinode. After the last cycle emergence, the simulation is extended until the network has recovered its quiet Sun initial condition. This permits an estimate of the network relaxation time toward the baseline state characterizing extended periods of suppressed activity, such as the Maunder Grand Minimum. Our simulation results indicate a network relaxation time of 2.9 yr, setting 2011 October as the soonest the time after which the last solar activity minimum could have qualified as a Maunder-type Minimum. This suggests that photospheric magnetism did not reach its baseline state during the recent extended minimum between cycles 23 and 24.

  20. Predicting the La Niña of 2020-21: Termination of Solar Cycles and Correlated Variance in Solar and Atmospheric Variability

    Science.gov (United States)

    Leamon, R. J.; McIntosh, S. W.

    2017-12-01

    Establishing a solid physical connection between solar and tropospheric variability has posed a considerable challenge across the spectrum of Earth-system science. Over the past few years a new picture to describe solar variability has developed, based on observing, understanding and tracing the progression, interaction and intrinsic variability of the magnetized activity bands that belong to the Sun's 22-year magnetic activity cycle. The intra- and extra-hemispheric interaction of these magnetic bands appear to explain the occurrence of decadal scale variability that primarily manifests itself in the sunspot cycle. However, on timescales of ten months or so, those bands posses their own internal variability with an amplitude of the same order of magnitude as the decadal scale. The latter have been tied to the existence of magnetized Rossby waves in the solar convection zone that result in surges of magnetic flux emergence that correspondingly modulate our star's radiative and particulate output. One of the most important events in the progression of these bands is their (apparent) termination at the solar equator that signals a global increase in magnetic flux emergence that becomes the new solar cycle. We look at the particulate and radiative implications of these termination points, their temporal recurrence and signature, from the Sun to the Earth, and show the correlated signature of solar cycle termination events and major oceanic oscillations that extend back many decades. A combined one-two punch of reduced particulate forcing and increased radiative forcing that result from the termination of one solar cycle and rapid blossoming of another correlates strongly with a shift from El Niño to La Niña conditions in the Pacific Ocean. This shift does not occur at solar minima, nor solar maxima, but at a particular, non-periodic, time in between. The failure to identify these termination points, and their relative irregularity, have inhibited a correlation to be

  1. NUMERICAL SIMULATION OF SOLAR MICROFLARES IN A CANOPY-TYPE MAGNETIC CONFIGURATION

    International Nuclear Information System (INIS)

    Jiang, R.-L.; Fang, C.; Chen, P.-F.

    2012-01-01

    Microflares are small activities in the solar low atmosphere; some are in the low corona while others are in the chromosphere. Observations show that some of the microflares are triggered by magnetic reconnection between the emerging flux and a pre-existing background magnetic field. We perform 2.5-dimensional, compressible, resistive magnetohydrodynamic simulations of the magnetic reconnection with gravity considered. The background magnetic field is a canopy-type configuration that is rooted at the boundary of the solar supergranule. By changing the bottom boundary conditions in the simulation, a new magnetic flux emerges at the center of the supergranule and reconnects with the canopy-type magnetic field. We successfully simulate the coronal and chromospheric microflares whose current sheets are located at the corona and the chromosphere, respectively. The microflare with a coronal origin has a larger size and a higher temperature enhancement than the microflare with a chromospheric origin. In the microflares with coronal origins, we also found a hot jet (∼1.8 × 10 6 K), which is probably related to the observational extreme ultraviolet or soft X-ray jets, and a cold jet (∼10 4 K), which is similar to the observational Hα/Ca surges. However, there is only a Hα/Ca bright point in the microflares that have chromospheric origins. The study of parameter dependence shows that the size and strength of the emerging magnetic flux are the key parameters that determine the height of the reconnection location, and they further determine the different observational features of the microflares.

  2. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Directory of Open Access Journals (Sweden)

    Scott William Mcintosh

    2015-07-01

    Full Text Available The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a grand minimum? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish year solar activity cycle.

  3. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Science.gov (United States)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  4. Characteristic studies on solar x-ray flares and solar radio bursts during descending phases of solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Bhattacharya, J.; De, B.K.; Guha, A.

    2014-01-01

    In this paper, a comparative study between the solar X-ray flares and solar radio bursts in terms of their duration and energy has been done. This has been done by analyzing the data in a statistical way covering the descending phase of the 22nd and 23rd solar cycles. It has been observed that the most probable value of duration of both solar X-ray flares and solar radio bursts remain same for a particular cycle. There is a slight variation in the most probable value of duration in going from 22nd cycle to 23rd cycle in the case of both kinds of events. This small variation may be due to the variation of polar field. A low correlation has been observed between energy fluxes in solar X-ray flares and in solar radio bursts. This has been attributed to the non symmetric contribution of energy to the solar radio and X-ray band controlled by solar magnetic field

  5. Waldmeier's Rules in the Solar and Stellar Dynamos

    Science.gov (United States)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284

  6. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of ≥10 5 G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of ∼2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.

  7. Solar magnetic field - 1976 through 1985: an atlas of photospheric magnetic field observations and computed coronal magnetic fields from the John M. Wilcox Solar Observatory at Stanford, 1976-1985

    International Nuclear Information System (INIS)

    Hoeksema, J.T.; Scherrer, P.H.

    1986-01-01

    Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of Solar Cycle 21. Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field -- Source Surface model. This provides a 3-dimensional picture of the heliospheric field-evolution during the solar cycle. In this report the authors present the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structure of the solar and heliospheric fields, which determine the environment for solar - terrestrial relations and provide the context within which solar-activity-related events occur, can be approximated from these data

  8. Geomagnetism during solar cycle 23: Characteristics

    Directory of Open Access Journals (Sweden)

    Jean-Louis Zerbo

    2013-05-01

    Full Text Available On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT and yearly averaged solar wind speed (364 km/s are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s, associated to the highest value of the yearly averaged aa index (37 nT. We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  9. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Directory of Open Access Journals (Sweden)

    Keunchan Park

    2017-06-01

    Full Text Available Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE and the Wind satellite. We also calculate two pressures (magnetic, dynamic and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME. We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

  10. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  11. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    Science.gov (United States)

    Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-06-01

    Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.type="synopsis">type="main">Plain Language SummaryThere is growing interest in being able to predict the evolution in solar conditions on a better basis than past experience, which is necessarily limited. Two of the key features of the solar magnetic cycle are that the polar fields reverse just after the peak of each sunspot cycle and that the polar field that has accumulated by the time of each sunspot minimum is a good

  12. Solar cycle 22 control on daily geomagnetic variation at Terra Nova Bay (Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available Nine summer geomagnetic observatory data (1986-1995 from Terra Nova Bay Base, Antarctica (Lat.74.690S, Long. 164.120E, 80.040S magnetic latitude are used to investigate the behaviour of the daily variation of the geomagnetic field at polar latitude. The instrumentation includes a proton precession magnetometer for total intensity |F| digital recordings; DI magnetometers for absolute measuring of the angular elements D and I and a three axis flux-gate system for acquiring H,D Z time variation data. We find that the magnetic time variation amplitude follows the solar cycle evolution and that the ratio between minimum solar median and maximum solar median is between 2-3 for intensive elements (H and Z and 1.7 for declination(D. The solar cycle effect on geomagnetic daily variation elements amplitude in Antarctica, in comparison with previous studies, is then probably larger than expected. As a consequence, the electric current system that causes the daily magnetic field variation reveals a quite large solar cycle effect at Terra Nova Bay.

  13. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    Science.gov (United States)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  14. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  15. The reversal of the Sun’s magnetic field in cycle 24

    Directory of Open Access Journals (Sweden)

    Mordvinov A.V.

    2016-03-01

    Full Text Available Analysis of synoptic data from the Vector Spectromagnetograph (VSM of the Synoptic Optical Long-term Investigations of the Sun (SOLIS and the NASA/NSO Spectromagnetograph (SPM at the NSO/Kitt Peak Vacuum Telescope facility shows that the reversals of solar polar magnetic fields exhibit elements of a stochastic process, which may include the development of specific patterns of emerging magnetic flux, and the asymmetry in activity between Northern and Southern hemispheres. The presence of such irregularities makes the modeling and prediction of polar field reversals extremely hard if possible. In a classical model of solar activity cycle, the unipolar magnetic regions (UMRs of predominantly following polarity fields are transported polewards due to meridional flows and diffusion. The UMRs gradually cancel out the polar magnetic field of the previous cycle, and rebuild the polar field of opposite polarity setting the stage for the next cycle. We show, however, that this deterministic picture can be easily altered by the developing of a strong center of activity, or by the emergence of an extremely large active region, or by a ‘strategically placed’ coronal hole. We demonstrate that the activity occurring during the current cycle 24 may be the result of this randomness in the evolution of the solar surface magnetic field.

  16. Deciphering solar magnetic activity: on grand minima in solar activity

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Physics, Montana State University, Bozeman, MT (United States)

    2015-07-08

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well- understood. There has been tremendous progress in the century since the discovery of solar magnetism—magnetism that ultimately drives the electromagnetic, particulate, and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a “grand minimum”? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(&ish) year solar activity cycle.

  17. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  18. DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov [NASA Ames Research Center, Moffett Field, Mountain View, CA 94035 (United States)

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  19. THREE-DIMENSIONAL EVOLUTION OF SOLAR WIND DURING SOLAR CYCLES 22–24

    International Nuclear Information System (INIS)

    Manoharan, P. K.

    2012-01-01

    This paper presents an analysis of three-dimensional evolution of solar wind density turbulence and speed at various levels of solar activity between solar cycles 22 and 24. The solar wind data used in this study have been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, operating at 327 MHz. Results show that (1) on average, there was a downward trend in density turbulence from the maximum of cycle 22 to the deep minimum phase of cycle 23; (2) the scattering diameter of the corona around the Sun shrunk steadily toward the Sun, starting from 2003 to the smallest size at the deepest minimum, and it corresponded to a reduction of ∼50% in the density turbulence between the maximum and minimum phases of cycle 23; (3) the latitudinal distribution of the solar wind speed was significantly different between the minima of cycles 22 and 23. At the minimum phase of solar cycle 22, when the underlying solar magnetic field was simple and nearly dipole in nature, the high-speed streams were observed from the poles to ∼30° latitudes in both hemispheres. In contrast, in the long-decay phase of cycle 23, the sources of the high-speed wind at both poles, in accordance with the weak polar fields, occupied narrow latitude belts from poles to ∼60° latitudes. Moreover, in agreement with the large amplitude of the heliospheric current sheet, the low-speed wind prevailed in the low- and mid-latitude regions of the heliosphere. (4) At the transition phase between cycles 23 and 24, the high levels of density and density turbulence were observed close to the heliospheric equator and the low-speed solar wind extended from the equatorial-to-mid-latitude regions. The above results in comparison with Ulysses and other in situ measurements suggest that the source of the solar wind has changed globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has been significantly reduced

  20. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J. [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States); Pogorelov, N. V. [Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  1. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-01-01

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably ∼15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between ∼36°S-60°S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  2. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Science.gov (United States)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  3. Fast Cycled Superconducting Magnet - Connecting hydraulically the Fast Cycled magnet to the cryogenic feed box.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Photo 1 : Connecting hydraulically the Fast Cycled magnet to the cryogenic feed box. Patrck Viret and Guy Deferne technicians of TE-MSC-TF in SM18. - Photo 2 : Installation of the Fast Cycled Superconducting Magnet (FCM) to the new cold feed box in Sm18. - Photo 3 : Connecting the powering cables of the FCM to the feed box. - Photo 5/6 : The connections of the Fast Cycled Magnet. Intermediate pieces. - Photo 7 : Hydraulic connections of the Fast Cycle Magnet cable to allow the cooling of the magnet’s conductor ( Cable in conduit type) with supercritical helium. - Photo 8 : Verification of the connection: design versus reality. Guy Deferne and Frederick Rougemont, technicians of TE-MSC-TE in SM18.

  4. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

    Science.gov (United States)

    Pipin, V. V.; Tomozov, V. M.

    2018-04-01

    Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP 10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.

  5. QUANTIFYING THE ANISOTROPY AND SOLAR CYCLE DEPENDENCE OF '1/f' SOLAR WIND FLUCTUATIONS OBSERVED BY ADVANCED COMPOSITION EXPLORER

    International Nuclear Information System (INIS)

    Nicol, R. M.; Chapman, S. C.; Dendy, R. O.

    2009-01-01

    The power spectrum of the evolving solar wind shows evidence of a spectral break between an inertial range (IR) of turbulent fluctuations at higher frequencies and a '1/f' like region at lower frequencies. In the ecliptic plane at ∼1 AU, this break occurs approximately at timescales of a few hours and is observed in the power spectra of components of velocity and magnetic field. The '1/f' energy range is of more direct coronal origin than the IR, and carries signatures of the complex magnetic field structure of the solar corona, and of footpoint stirring in the solar photosphere. To quantify the scaling properties we use generic statistical methods such as generalized structure functions and probability density functions (PDFs), focusing on solar cycle dependence and on anisotropy with respect to the background magnetic field. We present structure function analysis of magnetic and velocity field fluctuations, using a novel technique to decompose the fluctuations into directions parallel and perpendicular to the mean local background magnetic field. Whilst the magnetic field is close to '1/f', we show that the velocity field is '1/f α ' with α ≠ 1. For the velocity, the value of α varies between parallel and perpendicular fluctuations and with the solar cycle. There is also variation in α with solar wind speed. We have examined the PDFs in the fast, quiet solar wind and intriguingly, whilst parallel and perpendicular are distinct, both the B field and velocity show the same PDF of their perpendicular fluctuations, which is close to gamma or inverse Gumbel. These results point to distinct physical processes in the corona and to their mapping out into the solar wind. The scaling exponents obtained constrain the models for these processes.

  6. What's So Peculiar about the Cycle 23/24 Solar Minimum?

    Science.gov (United States)

    Sheeley, N. R., Jr.

    2010-06-01

    Traditionally, solar physicists become anxious around solar minimum, as they await the high-latitude sunspot groups of the new cycle. Now, we are in an extended sunspot minimum with conditions not seen in recent memory, and interest in the sunspot cycle has increased again. In this paper, I will describe some of the characteristics of the current solar minimum, including its great depth, its extended duration, its weak polar magnetic fields, and its small amount of open flux. Flux transport simulations suggest that these characteristics are a consequence of temporal variations of the Sun's large-scale meridional circulation.

  7. Do polar faculae terminate or commence an extended cycle of solar activity?

    International Nuclear Information System (INIS)

    Bumba, V.

    1990-01-01

    From the local as well as from the global points of view, polar magnetic fields are formed from successively developed trailing polarity fields expelled from the main activity zone. Polar faculae observed during the 20th and the 21st cycles of activity fill in the areas covered by the most intense unipolar fields distributed in the convection network. These polar regions formed from magnetic fields of an old activity cycle are sharply separated from low-latitude magnetic fields and from fields developed by a new cycle of activity. The polarity distribution in polar faculae seems to follow from unipolarity of their magnetic fields - the prevailing polarity becomes the main leading polarity. The greatest part of the main activity zone, the most intense faculae shifting equatorwards are connected with the zone of the prevailing leading polarity magnetic fields. Some of these faculae - the weak and inhomogeneously distributed ones, bordering the main faculae butterflies polewards - are related again to the trailing polarity fields shifting polewards. The main characteristic of the latitudinal distribution of solar faculae is the existence of their two latitudinal types: the polar faculae shifting polewards are related to the trailing polarity fields of the old cycle, the faculae of the main activity zone shifting equatorwards are related mainly (from the global point of view) to the leading polarity fields, and their activity ends several years earlier than that of the polar ones. The polar faculae with their magnetic fields represent the last phase of the magnetic activity cycle lasting 15-17 years. (author). 6 figs., 21 refs

  8. The Solar Wind Source Cycle: Relationship to Dynamo Behavior

    Science.gov (United States)

    Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.

    2017-12-01

    Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.

  9. THE MORPHOLOGIC PROPERTIES OF MAGNETIC NETWORKS OVER THE SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Huang Chong; Yan Yihua; Zhang Yin; Tan Baolin; Li Gang, E-mail: chuang@nao.cas.cn, E-mail: yyh@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2012-11-10

    The morphologic properties of the magnetic networks during Carrington Rotations (CRs) 1955-2091 (from 1999 to 2010) have been analyzed by applying the watershed algorithm to magnetograms observed by the Michelson Doppler Interferometer on board the Solar and Heliospheric Observatory spacecraft. We find that the average area of magnetic cells on the solar surface at lower latitudes (within {+-}50 Degree-Sign ) is smaller than that at higher latitudes (beyond {+-}50 Degree-Sign ). Statistical analysis of these data indicates that the magnetic networks are fractal in nature and the average fractal dimension is D{sub f} = 1.253 {+-} 0.011. We also find that both the fractal dimension and the size of the magnetic networks are anti-correlated with the sunspot area. This is perhaps because a strong magnetic field can suppress spatially modulated oscillation and compress the boundaries of network cells, leading to smoother cell boundaries. The fractal dimension of the cell deviates from that predicted from an isobar of Kolmogorov k {sup -5/3} homogeneous turbulence.

  10. SOLAR CYCLE 24: CURIOUS CHANGES IN THE RELATIVE NUMBERS OF SUNSPOT GROUP TYPES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Ozguc, A.; Rozelot, J. P.

    2014-01-01

    Here, we analyze different sunspot group (SG) behaviors from the points of view of both the sunspot counts (SSCs) and the number of SGs, in four categories, for the time period of 1982 January-2014 May. These categories include data from simple (A and B), medium (C), large (D, E, and F), and decaying (H) SGs. We investigate temporal variations of all data sets used in this study and find the following results. (1) There is a very significant decrease in the large groups' SSCs and the number of SGs in solar cycle 24 (cycle 24) compared to cycles 21-23. (2) There is no strong variation in the decaying groups' data sets for the entire investigated time interval. (3) Medium group data show a gradual decrease for the last three cycles. (4) A significant decrease occurred in the small groups during solar cycle 23, while no strong changes show in the current cycle (cycle 24) compared to the previous ones. We confirm that the temporal behavior of all categories is quite different from cycle to cycle and it is especially flagrant in solar cycle 24. Thus, we argue that the reduced absolute number of the large SGs is largely, if not solely, responsible for the weak cycle 24. These results might be important for long-term space weather predictions to understand the rate of formation of different groups of sunspots during a solar cycle and the possible consequences for the long-term geomagnetic activity

  11. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  12. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Science.gov (United States)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  13. Linear astrophysical dynamos in rotating spheres: Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity

    International Nuclear Information System (INIS)

    Yoshimura, H.; Wang, Z.; Wu, F.

    1984-01-01

    Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected

  14. The solar activity cycle physical causes and consequences

    CERN Document Server

    Hudson, Hugh; Petrovay, Kristóf; Steiger, Rudolf

    2015-01-01

    A collection of papers edited by four experts in the field, this book sets out to describe the way solar activity is manifested in observations of the solar interior, the photosphere, the chromosphere, the corona and the heliosphere. The 11-year solar activity cycle, more generally known as the sunspot cycle, is a fundamental property of the Sun.  This phenomenon is the generation and evolution of magnetic fields in the Sun’s convection zone, the photosphere.  It is only by the careful enumeration and description of the phenomena and their variations that one can clarify their interdependences.   The sunspot cycle has been tracked back about four centuries, and it has been recognized that to make this data set a really useful tool in understanding how the activity cycle works and how it can be predicted, a very careful and detailed effort is needed to generate sunspot numbers.  This book deals with this topic, together with several others that present related phenomena that all indicate the physical pr...

  15. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Hao Juan; Zhang Mei

    2011-01-01

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the Σ-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  16. Magnetic flux density in the heliosphere through several solar cycles

    Energy Technology Data Exchange (ETDEWEB)

    Erdős, G. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Balogh, A., E-mail: erdos.geza@wigner.mta.hu [The Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

    2014-01-20

    We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3-5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, B{sub R} , were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of B{sub R} to such an extent that the determination of the unsigned, open solar magnetic flux density from the average (|B{sub R} |) is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

  17. THE MINIMUM OF SOLAR CYCLE 23: AS DEEP AS IT COULD BE?

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Jaramillo, Andrés; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-05-01

    In this work we introduce a new way of binning sunspot group data with the purpose of better understanding the impact of the solar cycle on sunspot properties and how this defined the characteristics of the extended minimum of cycle 23. Our approach assumes that the statistical properties of sunspots are completely determined by the strength of the underlying large-scale field and have no additional time dependencies. We use the amplitude of the cycle at any given moment (something we refer to as activity level) as a proxy for the strength of this deep-seated magnetic field. We find that the sunspot size distribution is composed of two populations: one population of groups and active regions and a second population of pores and ephemeral regions. When fits are performed at periods of different activity level, only the statistical properties of the former population, the active regions, are found to vary. Finally, we study the relative contribution of each component (small-scale versus large-scale) to solar magnetism. We find that when hemispheres are treated separately, almost every one of the past 12 solar minima reaches a point where the main contribution to magnetism comes from the small-scale component. However, due to asymmetries in cycle phase, this state is very rarely reached by both hemispheres at the same time. From this we infer that even though each hemisphere did reach the magnetic baseline, from a heliospheric point of view the minimum of cycle 23 was not as deep as it could have been.

  18. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    International Nuclear Information System (INIS)

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-01-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  19. Modulation of Galactic Cosmic Rays in the Inner Heliosphere over Solar Cycles

    Science.gov (United States)

    Shen, Z.-N.; Qin, G.

    2018-02-01

    The 11- and 22-year modulation of galactic cosmic rays (GCRs) in the inner heliosphere is studied using a numerical model developed by Qin and Shen in 2017. Based on the numerical solutions of Parker’s transport equations, the model incorporates a modified Parker heliospheric magnetic field, a locally static time-delayed heliosphere, and a time-dependent diffusion coefficients model in which an analytical expression of the variation of magnetic turbulence magnitude throughout the inner heliosphere is applied. Furthermore, during solar maximum, the solar magnetic polarity is determined randomly with the possibility of A > 0 decided by the percentage of the solar north polar magnetic field being outward and the solar south polar magnetic field being inward. The computed results are compared at various energies with several GCR observations, e.g., the Interplanetary Monitoring Platform 8 (IMP 8), EPHIN on board the Solar and Heliospheric Observatory (SOHO), Ulysses, and Voyager 1 and 2, and they show good agreement. We show that our model has successfully reproduced the 11- and 22-year modulation cycles.

  20. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  1. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  2. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    International Nuclear Information System (INIS)

    Kilpua, E. K. J.; Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J.; Miyahara, H.; Kataoka, R.; Liu, Y. D.

    2015-01-01

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field

  3. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kilpua, E. K. J. [Department of Physics, University Helsinki (Finland); Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J. [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto Univeristy (Finland); Miyahara, H. [Musashino Art University, 1-736 Ogawa-cho, Kodaira-shi, Tokyo 187-8505 (Japan); Kataoka, R. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-06-20

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.

  4. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  5. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-01-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field

  6. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongqi [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Brandenburg, Axel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Sokoloff, D. D., E-mail: hzhang@bao.ac.cn [Department of Physics, Moscow University, 119992 Moscow (Russian Federation)

    2016-03-10

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  7. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-01-01

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  8. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  9. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  10. Reading The Sun: A Three Dimensional Visual Model of The Solar Environment During Solar Cycle 24

    Science.gov (United States)

    Carranza-fulmer, T. L.; Moldwin, M.

    2014-12-01

    The sun is a powerful force that has proven to our society that it has a large impact on our lives. Unfortunately, there is still a lack of awareness on how the sun is capable of affecting Earth. The over all idea of "Reading The Sun" installation is to help demonstrate how the sun impacts the Earth, by compiling various data sources from satellites (SOHO, SDO, and STERO) with solar and solar wind models (MAS and ENLIL) to create a comprehensive three dimensional display of the solar environment. It focuses on the current solar maximum of solar cycle 24 and a CME that impacted Earth's magnetic field on February 27, 2014, which triggered geomagnetic storms around the Earth's poles. The CME was an after-effect of a class X4.9 solar flare, which was released from the sun on February 25, 2014. "Reading The Sun" is a 48" x 48" x 48" hanging model of the sun with color coded open opposing magnetic field lines along with various layers of the solar atmosphere, the heliospheric current sheet, and the inner planets. At the center of the xyz axis is the sun with the open magnetic field lines and the heliospheric current sheet permeating inner planetary space. The xyz axes are color coded to represent various types of information with corresponding visual images for the viewer to be able to read the model. Along the z-axis are three colors (yellow, orange, and green) that represent the different layers of the solar atmosphere (photosphere, chromosphere, and corona) that correspond to three satellite images in various spectrums related to a CME and Solar Flare and the xy-plane shows where the inner planets are in relation to the sun. The exhibit in which "Reading The Sun "is being displayed is called, The Rotation of Language at the Wheather Again Gallery in Rockaway, New York. The intent of the exhibit is to both celebrate as well as present a cautionary tale on the ability of human language to spark and ignite the individual and collective imagination towards an experience

  11. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    International Nuclear Information System (INIS)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-01-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a ∼50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  12. Solar-cycle period-amplitude relation as evidence of hysteresis of the solar-cycle nonlinear magnetic oscillation and the long-term (55 year) cyclic modulation

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1979-01-01

    A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short

  13. Temporal Variation of the Rotation of the Solar Mean Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-04-01

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.

  14. THINNING OF THE SUN'S MAGNETIC LAYER: THE PECULIAR SOLAR MINIMUM COULD HAVE BEEN PREDICTED

    International Nuclear Information System (INIS)

    Basu, Sarbani; Broomhall, Anne-Marie; Chaplin, William J.; Elsworth, Yvonne

    2012-01-01

    The solar magnetic activity cycle causes changes in the Sun on timescales that are equivalent to human lifetimes. The minimum solar activity that preceded the current solar cycle (cycle 24) was deeper and quieter than any other recent minimum. Using data from the Birmingham Solar Oscillations Network (BiSON), we show that the structure of the solar sub-surface layers during the descending phase of the preceding cycle (cycle 23) was very different from that during cycle 22. This leads us to believe that a detailed examination of the data would have led to the prediction that the cycle 24 minimum would be out of the ordinary. The behavior of the oscillation frequencies allows us to infer that changes in the Sun that affected the oscillation frequencies in cycle 23 were localized mainly to layers above about 0.996 R ☉ , depths shallower than about 3000 km. In cycle 22, on the other hand, the changes must have also occurred in the deeper-lying layers.

  15. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR ε ERIDANI

    International Nuclear Information System (INIS)

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-01-01

    The active K2 dwarf ε Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in ε Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 ± 0.03 years and 12.7 ± 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Böhm-Vitense. Finally, based on the observed properties of ε Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  16. Formation of a strong southward IMF near the solar maximum of cycle 23

    Directory of Open Access Journals (Sweden)

    S. Watari

    2004-01-01

    Full Text Available We analyzed observations of the solar activities and the solar wind parameters associated with large geomagnetic storms near the maximum of solar cycle 23. This analysis showed that strong southward interplanetary magnetic fields (IMFs, formed through interaction between an interplanetary disturbance, and background solar wind or between interplanetary disturbances are an important factor in the occurrence of intense geomagnetic storms. Based on our analysis, we seek to improve our understanding of the physical processes in which large negative Bz's are created which will lead to improving predictions of space weather.

    Key words. Interplanetary physics (Flare and stream dynamics; Interplanetary magnetic fields; Interplanetary shocks

  17. Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark S.

    2017-08-01

    The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.

  18. DECLINE AND RECOVERY OF THE INTERPLANETARY MAGNETIC FIELD DURING THE PROTRACTED SOLAR MINIMUM

    International Nuclear Information System (INIS)

    Smith, Charles W.; Schwadron, Nathan A.; DeForest, Craig E.

    2013-01-01

    The interplanetary magnetic field (IMF) is determined by the amount of solar magnetic flux that passes through the top of the solar corona into the heliosphere, and by the dynamical evolution of that flux. Recently, it has been argued that the total flux of the IMF evolves over the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME eruption rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind-associated), disconnection, and interchange reconnection that control the levels of each form of magnetic flux in the interplanetary medium. This is distinct from some earlier models in which the wind-associated component remains steady across the solar cycle. We apply the model of Schwadron et al. that quantifies the sources, interchange, and losses of magnetic flux to 50 yr of interplanetary data as represented by the Omni2 data set using the sunspot number as a proxy for the CME eruption rate. We do justify the use of that proxy substitution. We find very good agreement between the predicted and observed interplanetary magnetic flux. In the absence of sufficient CME eruptions, the IMF falls on the timescale of ∼6 yr. A key result is that rising toroidal flux resulting from CME eruption predates the increase in wind-associated IMF

  19. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  20. Will Solar Cycles 25 and 26 Be Weaker than Cycle 24?

    Science.gov (United States)

    Javaraiah, J.

    2017-11-01

    The study of variations in solar activity is important for understanding the underlying mechanism of solar activity and for predicting the level of activity in view of the activity impact on space weather and global climate. Here we have used the amplitudes (the peak values of the 13-month smoothed international sunspot number) of Solar Cycles 1 - 24 to predict the relative amplitudes of the solar cycles during the rising phase of the upcoming Gleissberg cycle. We fitted a cosine function to the amplitudes and times of the solar cycles after subtracting a linear fit of the amplitudes. The best cosine fit shows overall properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg cycle, but there is considerable ambiguity. Using the epochs of violations of the Gnevyshev-Ohl rule (G-O rule) and the `tentative inverse G-O rule' of solar cycles during the period 1610 - 2015, and also using the epochs where the orbital angular momentum of the Sun is steeply decreased during the period 1600 - 2099, we infer that Solar Cycle 25 will be weaker than Cycle 24. Cycles 25 and 26 will have almost same strength, and their epochs are at the minimum between the current and upcoming Gleissberg cycles. In addition, Cycle 27 is expected to be stronger than Cycle 26 and weaker than Cycle 28, and Cycle 29 is expected to be stronger than both Cycles 28 and 30. The maximum of Cycle 29 is expected to represent the next Gleissberg maximum. Our analysis also suggests a much lower value (30 - 40) for the maximum amplitude of the upcoming Cycle 25.

  1. PHASE RELATIONSHIPS OF SOLAR HEMISPHERIC TOROIDAL AND POLOIDAL CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Muraközy, J., E-mail: murakozy.judit@csfk.mta.hu [Debrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences H-4010 Debrecen P.O.B. 30, H-4010 (Hungary)

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12–23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1–4 and 7–10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12–23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  2. Structure and sources of solar wind in the growing phase of 24th solar cycle

    Science.gov (United States)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  3. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  4. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena

    Science.gov (United States)

    Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao

    2014-08-01

    We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.

  5. Solar wind drivers of geomagnetic storms during more than four solar cycles

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available Using a classification of the near-Earth solar wind into three basic flow types: (1 High-speed streams associated with coronal holes at the Sun; (2 Slow, interstream solar wind; and (3 Transient flows originating with coronal mass ejections (CMEs at the Sun, including interplanetary CMEs and the associated upstream shocks and post-shock regions, we determine the drivers of geomagnetic storms of various size ranges based on the Kp index and the NOAA “G” criteria since 1964, close to the beginning of the space era, to 2011, encompassing more than four solar cycles (20–23. We also briefly discuss the occurrence of storms since the beginning of the Kp index in 1932, in the minimum before cycle 17. We note that the extended low level of storm activity during the minimum following cycle 23 is without precedent in this 80-year interval. Furthermore, the “typical” numbers of storm days/cycle quoted in the standard NOAA G storm table appear to be significantly higher than those obtained from our analysis, except for the strongest (G5 storms, suggesting that they should be revised downward.

  6. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, Adel S.; Al-Ghamdi, A.A.; Al-Heniti, S.

    2009-01-01

    Solar cookers are broadly divided into a direct or focusing type, indirect or box-type and advanced solar cookers. The focusing and box-type solar cookers are for outdoor applications. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this study is to investigate the influence of the melting/solidification fast cycling of the commercial grade acetanilide C 8 H 9 NO (T m = 116 deg. C) and magnesium chloride hexahydrate MgCl 2 .6H 2 O (T m = 116.7 deg. C) on their thermo-physical properties; such as melting point and latent heat of fusion, to be used as storage media inside solar cookers. Five hundred cycles have been performed. The thermo-physical properties are measured using the differential scanning calorimetric technique. The compatibility of the selected phase change materials (PCMs) with the containing material is also studied via the surface investigation, using the SIM technique, of aluminum and stainless steel samples embedded in the PCM during cycling. It is inferred that acetanilide is a promising PCM for cooking indoors and during law intensity solar radiation periods with good compatibility with aluminum as a containing material. However, MgCl 2 .6H 2 O is not stable during its thermal cycling (even with the extra water principle) due to the phase segregation problem; therefore, it is not recommended as a storage material inside solar cookers for cooking indoors. It is also indicated that MgCl 2 .6H 2 O is not compatible with either aluminum or stainless steel.

  7. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-07-20

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca ii K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  8. Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity

    Science.gov (United States)

    Chandra, Harish; Bhatt, Beena

    2018-04-01

    In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.

  9. Observations of recurrent cosmic ray decreases during solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Dunzlaff, P.; Heber, B.; Kopp, A.; Rother, O.; Mueller-Mellin, R.; Klassen, A.; Gomez-Herrero, R.; Wimmer-Schweingruber, R.

    2008-01-01

    During solar cycle 22, the modulation of several hundred MeV galactic cosmic rays (GCRs) by recurrent and transient cosmic ray decreases was observed by the Ulysses spacecraft on its descent towards the solar south pole. In solar cycle 23, Ulysses repeated this trajectory segment during a similar phase of the solar cycle, but with opposite heliospheric magnetic field polarity. Since cosmic ray propagation in the heliosphere should depend on drift effects, we determine in this study the latitudinal distribution of the amplitude of recurrent cosmic ray decreases in solar cycles 22 and 23. As long as we measure the recurrent plasma structures in situ, we find that these decreases behave nearly the same in both cycles. Measurements in the fast solar wind, however, show differences: in cycle 22 (A>0) the recurrent cosmic ray decreases show a clear maximum near 25 and are still present beyond 40 , whereas we see in cycle 23 (A<0) neither such a pronounced maximum nor significant decreases above 40 . In other words: the periodicity in the cosmic ray intensity, which can be clearly seen in the slow solar wind, appears to vanish there. Theoretical models for drift effects, however, predict quite the opposite behaviour for the two solar cycles. To closer investigate this apparent contradiction, we first put the visual inspection of the data onto a more solid basis by performing a detailed Lomb (spectral) analysis. The next step consists of an analysis of the resulting periodicities at 1 AU in order to distinguish between spatial and temporal variations, so that we can obtain statements about the question in how far there is a correlation between the in-situ data at 1 AU and those measured by Ulysses at larger latitudes. We find a good correlation being present during cycle 22, but not for cycle 23. As one potential explanation for this behaviour, we suggest the difference in the coronal hole structures between the cycles 22 and 23 due to a large, stable coronal hole

  10. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, T. S.; Mathur, S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Buccino, A. P.; Mauas, P. J. D.; Petrucci, R. [Instituto de Astronomia y Fisica del Espacio (CONICET), C.C. 67 Sucursal 28, C1428EHA-Buenos Aires (Argentina); Brown, B. P. [Department of Astronomy and Center for Magnetic Self-Organization, University of Wisconsin, Madison, WI 53706-1582 (United States); Soderblom, D. R. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Henry, T. J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Hall, J. C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  11. The Structure of the Heliosphere with Solar Cycle and Its Effect on the Conditions in the Local ISM

    Science.gov (United States)

    Opher, M.; Drake, J. F.; Toth, G.; Swisdak, M.; Michael, A.; Kornbleuth, M. Z.; Zieger, B.

    2017-12-01

    We argued (Opher et al. 2015, Drake et al. 2015) that the magnetic tension of the solar magnetic field plays a crucial role in organizing the solar wind in the heliosheath into two jet-like structures. The heliosphere then has a "croissant"-like shape where the distance to the heliopause downtail is almost the same as towards the nose. Regardless of whether the heliospheric tail is split in two or has a long comet shape there is consensus that the magnetic field in the heliosheath behaves differently than previously expected - it has a "slinky" structure and is turbulent. In this presentation, we will discuss several aspects related with this new model. We will show that this structure persists when the solar magnetic field is treated as a dipole. We show how the heliosphere, with its "Croissant" shape, evolves when the solar wind with solar cycle conditions are included and when the neutrals are treated kinetically (with our new MHD-Kinetic code). Due to reconnection (and turbulence of the jets) there is a substantial amount of heliosheath material sitting on open field lines. We will discuss the impact of artificial dissipation of the magnetic field in driving mixing and how it evolves with the solar cycle. We will discuss as well the development of turbulence in the jets and its role in mixing the plasma in the heliosheath and LISM and controlling the global structure of the heliosphere. We will discuss how the conditions upstream of the heliosphere, in the local interstellar medium are affected by reconnection in the tail and how it evolves with solar cycle. Recently we established (Opher et al. 2017) that reconnection in the eastern flank of the heliosphere is responsible for the twist of the interstellar magnetic field (BISM) acquiring a strong east-west component as it approaches the Heliopause. Reconnection drives a rotational discontinuity (RD) that twists the BISM into the -T direction and propagates upstream in the interstellar medium toward the nose

  12. Scale Dependence of Magnetic Helicity in the Solar Wind

    Science.gov (United States)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  13. Solar Wind Variation with the Cycle I. S. Veselovsky,* A. V. Dmitriev ...

    Indian Academy of Sciences (India)

    tribpo

    The knowledge of the solar cycle variations in the heliospheric plasma and magnetic fields was .... El Borie, Μ. Α., Duldig, Μ. L., Humble, J. Ε. 1997, 25th International Cosmic Ray ... White, O. R. (Boulder: Colorado University Press), Chapter V.

  14. INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA

    International Nuclear Information System (INIS)

    Connick, David E.; Smith, Charles W.; Schwadron, Nathan A.

    2011-01-01

    We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr -1 at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr -1 for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

  15. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, Adel S.; Al-Ghamdi, A.A.; Al-Heniti, S. [Physics Dept., Faculty of Science, King Abdul Aziz Univ., P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2009-12-15

    Solar cookers are broadly divided into a direct or focusing type, indirect or box-type and advanced solar cookers. The focusing and box-type solar cookers are for outdoor applications. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this study is to investigate the influence of the melting/solidification fast cycling of the commercial grade acetanilide C{sub 8}H{sub 9}NO (T{sub m} = 116 C) and magnesium chloride hexahydrate MgCl{sub 2}.6H{sub 2}O (T{sub m} = 116.7 C) on their thermo-physical properties; such as melting point and latent heat of fusion, to be used as storage media inside solar cookers. Five hundred cycles have been performed. The thermo-physical properties are measured using the differential scanning calorimetric technique. The compatibility of the selected phase change materials (PCMs) with the containing material is also studied via the surface investigation, using the SIM technique, of aluminum and stainless steel samples embedded in the PCM during cycling. It is inferred that acetanilide is a promising PCM for cooking indoors and during low intensity solar radiation periods with good compatibility with aluminum as a containing material. However, MgCl{sub 2}.6H{sub 2}O is not stable during its thermal cycling (even with the extra water principle) due to the phase segregation problem; therefore, it is not recommended as a storage material inside solar cookers for cooking indoors. It is also indicated that MgCl{sub 2}.6H{sub 2}O is not compatible with either aluminum or stainless steel. (author)

  16. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  17. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    International Nuclear Information System (INIS)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark; Markel, Robert S.; Sitongia, Leonard; Leamon, Robert J.; Gurman, Joseph B.; Olive, Jean-Philippe; Cirtain, Jonathan W.; Hathaway, David H.

    2013-01-01

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior—hemispheric asymmetry is the normal state—the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the system continue to

  18. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark; Markel, Robert S.; Sitongia, Leonard [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Gurman, Joseph B. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Olive, Jean-Philippe [Astrium SAS, 6 rue Laurent Pichat, F-75016 Paris (France); Cirtain, Jonathan W.; Hathaway, David H. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2013-03-10

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior-hemispheric asymmetry is the normal state-the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the

  19. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  20. THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, N. V.; Zank, G. P. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Suess, S. T. [National Space Science and Technology Center, Huntsville, AL 35805 (United States); Borovikov, S. N. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805 (United States); Ebert, R. W.; McComas, D. J., E-mail: np0002@uah.edu [Southwest Research Institute, San Antonio, TX 78227 (United States)

    2013-07-20

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90 Degree-Sign , separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)-the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  1. THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Zank, G. P.; Suess, S. T.; Borovikov, S. N.; Ebert, R. W.; McComas, D. J.

    2013-01-01

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90°, separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)—the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  2. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  3. Polar coronal holes and solar cycles

    International Nuclear Information System (INIS)

    Simon, P.A.

    1979-01-01

    The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, a low latitude origin of the solar-wind at sunspot maximum is suggested and the cycle variation of solar wind and geomagnetic activity is described. In addition a close relationship is noted between the maximum level of the geomagnetic activity reached a few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum is pointed out. As a conclusion the different categories of phenomena contributing to a solar cycle are specified. (Auth.)

  4. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  5. Prediction of solar cycle 24 using fourier series analysis

    International Nuclear Information System (INIS)

    Khalid, M.; Sultana, M.; Zaidi, F.

    2014-01-01

    Predicting the behavior of solar activity has become very significant. It is due to its influence on Earth and the surrounding environment. Apt predictions of the amplitude and timing of the next solar cycle will aid in the estimation of the several results of Space Weather. In the past, many prediction procedures have been used and have been successful to various degrees in the field of solar activity forecast. In this study, Solar cycle 24 is forecasted by the Fourier series method. Comparative analysis has been made by auto regressive integrated moving averages method. From sources, January 2008 was the minimum preceding solar cycle 24, the amplitude and shape of solar cycle 24 is approximate on monthly number of sunspots. This forecast framework approximates a mean solar cycle 24, with the maximum appearing during May 2014 (+- 8 months), with most sunspot of 98 +- 10. Solar cycle 24 will be ending in June 2020 (+- 7 months). The difference between two consecutive peak values of solar cycles (i.e. solar cycle 23 and 24 ) is 165 months(+- 6 months). (author)

  6. Predictions of Solar Cycle 24: How are We Doing?

    Science.gov (United States)

    Pesnell, William D.

    2016-01-01

    Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.

  7. Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.

    Science.gov (United States)

    Huang, G-H; Lin, C-H; Lee, L C

    2017-08-25

    Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.

  8. The Evolution of the Solar Magnetic Field: A Comparative Analysis of Two Models

    Science.gov (United States)

    McMichael, K. D.; Karak, B. B.; Upton, L.; Miesch, M. S.; Vierkens, O.

    2017-12-01

    Understanding the complexity of the solar magnetic cycle is a task that has plagued scientists for decades. However, with the help of computer simulations, we have begun to gain more insight into possible solutions to the plethora of questions inside the Sun. STABLE (Surface Transport and Babcock Leighton) is a newly developed 3D dynamo model that can reproduce features of the solar cycle. In this model, the tilted bipolar sunspots are formed on the surface (based on the toroidal field at the bottom of the convection zone) and then decay and disperse, producing the poloidal field. Since STABLE is a 3D model, it is able to solve the full induction equation in the entirety of the solar convection zone as well as incorporate many free parameters (such as spot depth and turbulent diffusion) which are difficult to observe. In an attempt to constrain some of these free parameters, we compare STABLE to a surface flux transport model called AFT (Advective Flux Transport) which solves the radial component of the magnetic field on the solar surface. AFT is a state-of-the-art surface flux transport model that has a proven record of being able to reproduce solar observations with great accuracy. In this project, we implement synthetic bipolar sunspots into both models, using identical surface parameters, and run the models for comparison. We demonstrate that the 3D structure of the sunspots in the interior and the vertical diffusion of the sunspot magnetic field play an important role in establishing the surface magnetic field in STABLE. We found that when a sufficient amount of downward magnetic pumping is included in STABLE, the surface magnetic field from this model becomes insensitive to the internal structure of the sunspot and more consistent with that of AFT.

  9. Field aligned current study during the solar declining- extreme minimum of 23 solar cycle

    Science.gov (United States)

    Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam

    Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.

  10. IUE observations of the chromospheric activity-age relation in young solar-type stars

    International Nuclear Information System (INIS)

    Simon, T.; Boesgaard, A.M.

    1983-01-01

    Except for the synoptic observations of the chromospheric Ca II H-K lines by Wilson (1978), in which he sought evidence for magnetic activity cycles, there is still scant data on stellar activity, especially at UV and X-ray wavelengths where 10 5 K TRs and 10 6 - 10 7 K coronae are expected to radiate. This paper presents new UV data, obtained with the IUE spacecraft, for a dozen solar-type stars in the field. The stars are of spectral type F6 V - G1 V; on the basis of their high Li content, they range in age from 0.1 to 2.8 Gyr. The purpose is to study the evolution of TR and chromospheric emission with stellar age, and also the surface distribution of magnetically active regions as revealed by rotational modulation of UV emission line fluxes. (Auth.)

  11. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  12. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  13. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  14. A survey of TiOλ567 nm absorption in solar-type stars

    Science.gov (United States)

    Azizi, Fatemeh; Mirtorabi, Mohammad Taghi

    2018-04-01

    Molecular absorption bands are estimators of stellar activity and spot cycles on magnetically active stars. We have previously introduced a new colour index that compares absorption strength of the titanium oxide (TiO) at 567 nm with nearby continuum. In this paper, we implement this index to measure long-term activity variations and the statistical properties of the index in a sample of 302 solar-type stars from the High Accuracy Radial Velocity Planet search Spectrograph planet search programme. The results indicate a pattern of change in star's activity, covers a range of periods from 2 yr up to 17 yr.

  15. Solar cycle modulation of ENSO variability

    Science.gov (United States)

    Kodera, Kunihiko; Thiéblemont, Rémi

    2016-04-01

    Inspired by the work of Labitzke and van Loon on solar/QBO modulation in the stratosphere, Barnett (1989) conducted an investigation on the relationship between the the biannual component of the sea surface temperature (SST) in the equatorial eastern Pacific and the solar activity. He found that the amplitude of biannual component of the SST (BO) is modulated by the 11-year solar cycle: the amplitude of the BO is large during a period of low solar activity, but small during high solar activity. More than 25-years or two solar cycle has passed since his finding, but the relationship still holds. In order to get an insight into the mechanism of the solar modulation of the El Niño Southern Oscillation (ENSO), here we have revisited this problem. Solar cycle modulation of the BO in the tropical SST is discernible since the end of the 19th centuries, but the amplitude modulation is particularly clear after 1960's. The composite analysis of the SST based on the amplitude of the BO during 1958-2012, indicates that the amplitude of BO is larger when the equatorial Pacific temperature anomalies are high in the central Pacific, but low in the eastern Pacific. Central Pacific anomalies extend to the northern hemisphere, while those in the central Pacific spread toward the southern hemisphere. In short, this anomalous SST pattern is similar to the El Niño modoki. In this connection, it should be noted that the solar signal in the tropical SST also exhibits a similar pattern. This suggests that the modulation of the ENSO variability by the solar cycle originates through a modulation of the El Niño Modoki rather than the canonical El Nino.

  16. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  17. MASC: Magnetic Activity of the Solar Corona

    Science.gov (United States)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  18. "SOLAR MAGNETIZED ""TORNADOES:"" RELATION TO FILAMENTS"

    OpenAIRE

    Su, Yang; Wang, Tongjiang; Veronig, Astrid; Temmer, Manuela; Gan, Weiqun

    2012-01-01

    Solar magnetized "tornadoes", a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but root in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar "tornadoes" {Two papers which focused on different aspect of solar tornadoes were published in the Astrophysical Journal Letters (Li et al. 2012) and Nature (W...

  19. Ten cycles of solar and geomagnetic activity

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1981-01-01

    Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle. (orig.)

  20. Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

    Directory of Open Access Journals (Sweden)

    R. P. Singh

    2004-09-01

    Full Text Available The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February and near equinoxes (March-April; September-October, whereas it depresses the scintillations during the summer (May-July. In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.

  1. The Global Solar Dynamo

    Science.gov (United States)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  2. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  3. Statistical Studies of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars

    Science.gov (United States)

    Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Ishii, Takako T.; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-12-01

    Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ \\propto {E}0.39, similar to those of solar hard/soft X-ray flares, τ \\propto {E}0.2{--0.33}. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out statistical research on 50 solar WLFs observed with Solar Dynamics Observatory/HMI and examined the correlation between the energies and durations. As a result, the E–τ relation on solar WLFs (τ \\propto {E}0.38) is quite similar to that on stellar superflares (τ \\propto {E}0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy: (1) in solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect; (2) the distribution can be understood by applying a scaling law (τ \\propto {E}1/3{B}-5/3) derived from the magnetic reconnection theory. In the latter case, the observed superflares are expected to have 2–4 times stronger magnetic field strength than solar flares.

  4. Performances of four magnetic heat-pump cycles

    International Nuclear Information System (INIS)

    Chen, F.C.; Murphy, R.W.; Mel, V.C.; Chen, G.L.

    1990-01-01

    Magnetic heat pumps have been successfully used for refrigeration applications at near absolute-zero-degree temperatures. In these applications, a temperature lift of a few degrees in a cryogenic environment is sufficient and can be easily achieved by a simple magnetic heat-pump cycle. To extend magnetic heat pumping to other temperature ranges and other types of applications in which the temperature lift is more than just a few degrees requires more involved cycle processes. This paper investigates the characteristics of a few better-known thermomagnetic heat-pump cycles (Carnot, Ericsson, Stirling, and regenerative) in extended ranges of temperature lift. The regenerative cycle is the most efficient one. For gadolinium operating between 0 and 7 T (Tesla) in a heat pump cycle with a heat-rejection temperature of 320 K, our analysis predicted a 42% loss in coefficient of performance at 260 K cooling temperature, and a 15% loss in capacity at 232 K cooling temperature for the constant-field cycle as compared with the ideal regenerative cycle. Such substantial penalties indicate that the potential irreversibilities from this one source (the additional heat transfer that would be needed for the constant-field vs. the ideal regenerative cycle) may adversely affect the viability of certain proposed MHP concepts if the relevant loss mechanisms are not adequately addressed

  5. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  6. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  7. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    Science.gov (United States)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    that they can form under a wide variety of solar wind conditions. However, we find that two distinctly different types of interactions occur for different magnetic field geometries and solar wind conditions. The two types of events appear to differ because of the different trajectories followed by solar wind protons that reflect from localized lunar magnetic fields and the resulting differences in how the incoming solar wind from upstream interacts with these reflected particles.

  8. Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator

    International Nuclear Information System (INIS)

    Plaznik, Uroš; Tušek, Jaka; Kitanovski, Andrej; Poredoš, Alojz

    2013-01-01

    We have analyzed the influence of different magnetic thermodynamic cycles on the performance of a magnetic cooling device with an active magnetic regenerator (AMR) based on the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles. Initially, a numerical simulation was performed using a 1D, time-dependent, numerical model. Then a comparison was made with respect to the cooling power and the COP for different temperature spans. We showed that applying the Ericsson or the Hybrid Brayton–Ericsson cycle with an AMR, instead of the standard Brayton cycle, can increase the efficiency of the selected cooling device. Yet, in the case of the Ericsson cycle, the cooling power was decreased compared to the Hybrid and especially compared to the Brayton cycle. Next, an experimental analysis was carried out using a linear-type magnetic cooling device. Again, the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles with an AMR were compared with respect to the cooling power and the COP for different temperature spans. The results of the numerical simulation were confirmed. The Hybrid Brayton–Ericsson cycle with an AMR showed the best performance if a no-load temperature span was considered as a criterion. -- Highlights: • New thermodynamic cycles with an active magnetic regenerator (AMR) are presented. • Three different thermodynamic cycles with an AMR were analyzed. • Numerical and experimental analyses were carried out. • The best overall performance was achieved with the Hybrid Brayton–Ericsson cycle. • With this cycle the temperature span of test device was increased by almost 10%

  9. Nonlinear solar cycle forecasting: theory and perspectives

    Science.gov (United States)

    Baranovski, A. L.; Clette, F.; Nollau, V.

    2008-02-01

    In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters - the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  10. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  11. A Two Dimensional Prediction of Solar Cycle 25

    Science.gov (United States)

    Munoz-Jaramillo, A.; Martens, P. C.

    2017-12-01

    To this date solar cycle most cycle predictions have focused on the forecast of solar cycle amplitude and cycle bell-curve shape. However, recent intriguing observational results suggest that all solar cycles follow the same longitudinal path regardless of their amplitude, and have a very similar decay once they reach a sufficient level of maturity. Cast in the light of our current understanding, these results suggest that the toroidal fields inside the Sun are subject to a very high turbulent diffusivity (of the order of magnitude of mixing-length estimates), and their equatorward propagation is driven by a steady meridional flow. Assuming this is the case, we will revisit the relationship between the polar fields at minimum and the amplitude of the next cycle and deliver a new generation of polar-field based predictions that include the depth of the minimum, as well as the latitude and time of the first active regions of solar cycle 25.

  12. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  13. Waves and Magnetism in the Solar Atmosphere (WAMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Yuan-Kuen [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Moses, John D. [Heliophysics Division, Science Mission Directorate, NASA, Washington, DC (United States); Laming, John M.; Strachan, Leonard; Tun Beltran, Samuel [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Tomczyk, Steven; Gibson, Sarah E. [High Altitude Observatory, Boulder, CO (United States); Auchère, Frédéric [Institut d' Astrophysique Spatiale, CNRS Université Paris-Sud, Orsay (France); Casini, Roberto [High Altitude Observatory, Boulder, CO (United States); Fineschi, Silvano [INAF - National Institute for Astrophysics, Astrophysical Observatory of Torino, Pino Torinese (Italy); Knoelker, Michael [High Altitude Observatory, Boulder, CO (United States); Korendyke, Clarence [Space Science Division, Naval Research Laboratory, Washington, DC (United States); McIntosh, Scott W. [High Altitude Observatory, Boulder, CO (United States); Romoli, Marco [Department of Physics and Astronomy, University of Florence, Florence (Italy); Rybak, Jan [Astronomical Institute, Slovak Academy of Sciences, Tatranska Lomnica (Slovakia); Socker, Dennis G. [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Vourlidas, Angelos [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD (United States); Wu, Qian, E-mail: yuan-kuen.ko@nrl.navy.mil [High Altitude Observatory, Boulder, CO (United States)

    2016-02-16

    Comprehensive measurements of magnetic fields in the solar corona have a long history as an important scientific goal. Besides being crucial to understanding coronal structures and the Sun's generation of space weather, direct measurements of their strength and direction are also crucial steps in understanding observed wave motions. In this regard, the remote sensing instrumentation used to make coronal magnetic field measurements is well suited to measuring the Doppler signature of waves in the solar structures. In this paper, we describe the design and scientific values of the Waves and Magnetism in the Solar Atmosphere (WAMIS) investigation. WAMIS, taking advantage of greatly improved infrared filters and detectors, forward models, advanced diagnostic tools and inversion codes, is a long-duration high-altitude balloon payload designed to obtain a breakthrough in the measurement of coronal magnetic fields and in advancing the understanding of the interaction of these fields with space plasmas. It consists of a 20 cm aperture coronagraph with a visible-IR spectro-polarimeter focal plane assembly. The balloon altitude would provide minimum sky background and atmospheric scattering at the wavelengths in which these observations are made. It would also enable continuous measurements of the strength and direction of coronal magnetic fields without interruptions from the day–night cycle and weather. These measurements will be made over a large field-of-view allowing one to distinguish the magnetic signatures of different coronal structures, and at the spatial and temporal resolutions required to address outstanding problems in coronal physics. Additionally, WAMIS could obtain near simultaneous observations of the electron scattered K-corona for context and to obtain the electron density. These comprehensive observations are not provided by any current single ground-based or space observatory. The fundamental advancements achieved by the near-space observations

  14. Waves and Magnetism in the Solar Atmosphere (WAMIS)

    International Nuclear Information System (INIS)

    Ko, Yuan-Kuen; Moses, John D.; Laming, John M.; Strachan, Leonard; Tun Beltran, Samuel; Tomczyk, Steven; Gibson, Sarah E.; Auchère, Frédéric; Casini, Roberto; Fineschi, Silvano; Knoelker, Michael; Korendyke, Clarence; McIntosh, Scott W.; Romoli, Marco; Rybak, Jan; Socker, Dennis G.; Vourlidas, Angelos; Wu, Qian

    2016-01-01

    Comprehensive measurements of magnetic fields in the solar corona have a long history as an important scientific goal. Besides being crucial to understanding coronal structures and the Sun's generation of space weather, direct measurements of their strength and direction are also crucial steps in understanding observed wave motions. In this regard, the remote sensing instrumentation used to make coronal magnetic field measurements is well suited to measuring the Doppler signature of waves in the solar structures. In this paper, we describe the design and scientific values of the Waves and Magnetism in the Solar Atmosphere (WAMIS) investigation. WAMIS, taking advantage of greatly improved infrared filters and detectors, forward models, advanced diagnostic tools and inversion codes, is a long-duration high-altitude balloon payload designed to obtain a breakthrough in the measurement of coronal magnetic fields and in advancing the understanding of the interaction of these fields with space plasmas. It consists of a 20 cm aperture coronagraph with a visible-IR spectro-polarimeter focal plane assembly. The balloon altitude would provide minimum sky background and atmospheric scattering at the wavelengths in which these observations are made. It would also enable continuous measurements of the strength and direction of coronal magnetic fields without interruptions from the day–night cycle and weather. These measurements will be made over a large field-of-view allowing one to distinguish the magnetic signatures of different coronal structures, and at the spatial and temporal resolutions required to address outstanding problems in coronal physics. Additionally, WAMIS could obtain near simultaneous observations of the electron scattered K-corona for context and to obtain the electron density. These comprehensive observations are not provided by any current single ground-based or space observatory. The fundamental advancements achieved by the near-space observations

  15. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  16. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  17. Solar cycle variations of geocoronal balmer α emission

    International Nuclear Information System (INIS)

    Nossal, S.; Reynolds, R.J.; Roesler, F.L.; Scherb, F.

    1993-01-01

    Observations of the geocoronal Balmer in nightglow have been made from Wisconsin for more than a solar cycle with an internally consistent intensity reference to standard astronomical nebulae. These measurements were made with a double etalon, pressure-scanned, 15-cm aperture Fabry-Perot interferometer. The resulting long time data provides an opportunity to examine solar cycle influence on the mid-latitude exosphere and to address accompanying questions concerning the degree to which the exosphere is locally static or changing. The exospheric Balmer α absolute intensity measurements reported here show no statistically significant variations throughout the solar cycle when the variation with viewing geometry is removed by normalizing the data to reference exospheric model predictions by Anderson et al. However, the relative intensity dependence on solar depression angle does show a solar cycle variation. This variation suggests a possible related variation in the exospheric hydrogen density profile, although other interpretations are also possible. The results suggest that additional well-calibrated data taken over a longer time span could probe low-amplitude variations over the solar cycle and test predictions of a slow monotonic increase in exospheric hydrogen arising from greenhouse gases. 21 refs., 9 figs., 2 tabs

  18. Nonlinear solar cycle forecasting: theory and perspectives

    Directory of Open Access Journals (Sweden)

    A. L. Baranovski

    2008-02-01

    Full Text Available In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters – the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  19. THE BIMODAL STRUCTURE OF THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-05-01

    Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.

  20. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    International Nuclear Information System (INIS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-01-01

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of β than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona

  1. Solar Wind Features Responsible for Magnetic Storms and Substorms During the Declining Phase of the Solar Cycle: 197

    Science.gov (United States)

    Tsurutani, B.; Arballo, J.

    1994-01-01

    We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.

  2. ON THE WEAKENING OF THE POLAR MAGNETIC FIELDS DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R.; Robbrecht, E.

    2009-01-01

    The Sun's polar fields are currently ∼40% weaker than they were during the previous three sunspot minima. This weakening has been accompanied by a corresponding decrease in the interplanetary magnetic field (IMF) strength, by a ∼20% shrinkage in the polar coronal-hole areas, and by a reduction in the solar-wind mass flux over the poles. It has also been reflected in coronal streamer structure and the heliospheric current sheet, which only showed the expected flattening into the equatorial plane after sunspot numbers fell to unusually low values in mid-2008. From latitude-time plots of the photospheric field, it has long been apparent that the polar fields are formed through the transport of trailing-polarity flux from the sunspot latitudes to the poles. To address the question of why the polar fields are now so weak, we simulate the evolution of the photospheric field and radial IMF strength from 1965 to the present, employing a surface transport model that includes the effects of active region emergence, differential rotation, supergranular convection, and a poleward bulk flow. We find that the observed evolution can be reproduced if the amplitude of the surface meridional flow is varied by as little as 15% (between 14.5 and 17 m s -1 ), with the higher average speeds being required during the long cycles 20 and 23.

  3. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  4. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  5. Fractal Dimension and Maximum Sunspot Number in Solar Cycle

    Directory of Open Access Journals (Sweden)

    R.-S. Kim

    2006-09-01

    Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.

  6. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  7. Coronal Magnetic Field Lines and Electrons Associated with Type III ...

    Indian Academy of Sciences (India)

    P. Kishore

    2017-06-19

    Jun 19, 2017 ... of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel. Keywords. Sun—corona—magnetic field—flares—radio bursts—polarization. 1. Introduction. Type V bursts are relatively unusual solar radio tran- sients.

  8. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    International Nuclear Information System (INIS)

    Tan, Lun C.

    2017-01-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  9. Electron-Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Science.gov (United States)

    Tan, Lun C.

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron-ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  10. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C., E-mail: ltan@umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  11. Witnessing Solar Rejuvenation

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    At the end of last year, the Suns large-scale magnetic field suddenly strengthened, reaching its highest value in over two decades. Here, Neil Sheeley and Yi-Ming Wang (both of the Naval Research Laboratory) propose an explanation for why this happened and what it predicts for the next solar cycle.Magnetic StrengtheningUntil midway through 2014, solar cycle 24 the current solar cycle was remarkably quiet. Even at its peak, it averaged only 79 sunspots per year, compared to maximums of up to 190 in recent cycles. Thus it was rather surprising when, toward the end of 2014, the Suns large-scale magnetic field underwent a sudden rejuvenation, with its mean field leaping up to its highest values since 1991 and causing unprecedentedly large numbers of coronal loops to collapse inward.Yet in spite of the increase we observed in the Suns open flux (the magnetic flux leaving the Suns atmosphere, measured from Earth), there was not a significant increase in solar activity, as indicated by sunspot number and the rate of coronal mass ejections. This means that the number of sources of magnetic flux didnt increase so Sheeley and Wang conclude that flux must instead have been emerging from those sources in a more efficient way! But how?Aligned ActivityWSO open flux and the radial component of the interplanetary magnetic field (measures of the magnetic flux leaving the Suns photosphere and heliosphere, respectively), compared to sunspot number (in units of 100 sunspots). A sudden increase in flux is visible after the peak of each of the last four sunspot cycles. Click for a larger view! [Sheeley Wang 2015]The authors show that the active regions on the solar surface in late 2014 lined up in such a way that the emerging flux was enhanced, forming a strong equatorial dipole field that accounts for the sudden rejuvenation observed.Interestingly, this rejuvenation of the Suns open flux wasnt just a one-time thing; similar bursts have occurred shortly after the peak of every sunspot

  12. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  13. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  14. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  15. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  16. The Floor in the Solar Wind Magnetic Field Revisited

    Science.gov (United States)

    2012-05-07

    index of geomagnetic activity (Svalgaard and Cliver, 2005). This empir- ical/historical evidence for a lower limit or floor in B was substantiated by...with the model of Fisk and Schwadron (2001) for the reversal of the polar magnetic fields at solar maximum. The Fisk and Schwadron model, based on the...interdiurnal variability [IDV] index of geomagnetic activity (Svalgaard and Cliver, 2005, 2010). DM, for minima preceding cycles 22 – 24, is the absolute

  17. A STATISTICAL STUDY OF SOLAR ELECTRON EVENTS OVER ONE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Wang Linghua; Lin, R. P.; Krucker, Säm; Mason, Glenn M.

    2012-01-01

    We survey the statistical properties of 1191 solar electron events observed by the WIND 3DP instrument from 300 keV for a solar cycle (1995 through 2005). After taking into account times of high background, the corrected occurrence frequency of solar electron events versus peak flux exhibits a power-law distribution over three orders of magnitude with exponents between –1.0 and –1.6 for different years, comparable to the frequency distribution of solar proton events, microflares, and coronal mass ejections (CMEs), but significantly flatter than that of soft X-ray (SXR) flares. At 40 keV (2.8 keV), the integrated occurrence rate above ∼0.29 (∼330) cm –2 s –1 sr –1 keV –1 near 1 AU is ∼1000 year –1 (∼600 year –1 ) at solar maximum and ∼35 year –1 (∼25 year –1 ) at solar minimum, about an order of magnitude larger than the observed occurrence rate. We find these events typically extend over ∼45° in longitude, implying the occurrence rate over the whole Sun is ∼10 4 year –1 near solar maximum. The observed solar electron events have a 98.75% association with type III radio bursts, suggesting all type III bursts may be associated with a solar electron event. They have a close (∼76%) association with the presence of low-energy (∼0.02-2 MeV nucleon –1 ), 3 He-rich ( 3 He/ 4 He ≥ 0.01) ion emissions measured by the ACE ULEIS instrument. For these electron events, only ∼35% are associated with a reported GOES SXR flare, but ∼60% appear to be associated with a CME, with ∼50% of these CMEs being narrow. These electrons are often detected down to below 1 keV, indicating a source high in the corona.

  18. Drought over Seoul and Its Association with Solar Cycles

    Directory of Open Access Journals (Sweden)

    Jong-Hyeok Park

    2013-12-01

    Full Text Available We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI. We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

  19. Trends and solar cycle effects in mesospheric ice clouds

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Fiedler, Jens; Baumgarten, Gerd; Gerding, Michael

    Lidar observations of mesospheric ice layers (noctilucent clouds, NLC) are now available since 12 years which allows to study solar cycle effects on NLC parameters such as altitudes, bright-ness, and occurrence rates. We present observations from our lidar stations in Kuehlungsborn (54N) and ALOMAR (69N). Different from general expectations the mean layer characteris-tics at ALOMAR do not show a persistent anti-correlation with solar cycle. Although a nice anti-correlation of Ly-alpha and occurrence rates is detected in the first half of the solar cycle, occurrence rates decreased with decreasing solar activity thereafter. Interestingly, in summer 2009 record high NLC parameters were detected as expected in solar minimum conditions. The morphology of NLC suggests that other processes except solar radiation may affect NLC. We have recently applied our LIMA model to study in detail the solar cycle effects on tempera-tures and water vapor concentration the middle atmosphere and its subsequent influence on mesospheric ice clouds. Furthermore, lower atmosphere effects are implicitly included because LIMA nudges to the conditions in the troposphere and lower stratosphere. We compare LIMA results regarding solar cycle effects on temperatures and ice layers with observations at ALO-MAR as well as satellite borne measurements. We will also present LIMA results regarding the latitude variation of solar cycle and trends, including a comparison of northern and southern hemisphere. We have adapted the observation conditions from SBUV (wavelength and scatter-ing angle) in LIMA for a detailed comparison with long term observations of ice clouds from satellites.

  20. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  1. A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS

    International Nuclear Information System (INIS)

    Denissenkov, Pavel A.

    2010-01-01

    The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.

  2. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  3. Ionospheric data for two solar cycles available online

    International Nuclear Information System (INIS)

    Bilitza, D.; Papitashvili, N.; Grebowsky, J.; Schar, W.

    2002-01-01

    We report about a project that has as its goal to make a large volume of ionospheric satellite insitu data from the sixties, seventies and early eighties easily accessible for public use The original data exist in various machine-specific, highly compressed, binary encoding on 7- or 9-track magnetic tapes. The intent is to decode the data format and convert all data sets to a common ASCII data format and add solar and magnetic indices for user convenience. The original intent of producing CD-ROMs with these data has meanwhile been overtaken by the rapid development of the internet. Most users now prefer to obtain the data directly online and greatly value web-interfaces to browse, plot and subset the data. Accordingly, the focus has shifted to making the data available online on the anonymous ftp site of NASA's National Space Science Data Center (NSSDC) at ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/ and on the development of a web-interface (ATMOWeb, http://nssdc.gsfc.nasa.gov/ atmoweb/) to help users study the data and select interesting time periods. The data considered by this project include data sets from the Alouette I, BE-B (Explorer 22), Alouette 2, DME-A (Explorer 31) , AE-B (Explorer 32), AE-C, -D, -E, OGO-6, ESRO-4, ISIS-I, -2, AEROS-I, -2 Taiyo, ISS-b, Hinotori and DE-2 satellites. The data are primarily electron and ion densities and temperatures measured by Langmuir Probes (LP), Retarding Potential Analyzers (RPA), and Ion Mass Spectrometers (IMS) flown on these satellites. The time resolution of the measurements is typically seconds to minutes. This data base covering almost two solar cycles is a unique asset for studies of the variation and variability of ionospheric parameters. It will be an important element in the quest for a better understanding of ionospheric plasma processes and for improved predictions of ionospheric Space Weather. Current models are still very limited in their predictive capabilities especially at equatorial and auroral

  4. Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle

    Science.gov (United States)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2017-08-01

    We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983, Nature, 304, 401) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region Ω-loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper giving a full description of our dynamo scenario is posted on arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode

  5. Waves and Magnetism in the Solar Atmosphere (WAMIS

    Directory of Open Access Journals (Sweden)

    Yuan-Kuen eKo

    2016-02-01

    Full Text Available Comprehensive measurements of magnetic fields in the solar corona have a long history as an important scientific goal. Besides being crucial to understanding coronal structures and the Sun’s generation of space weather, direct measurements of their strength and direction are also crucial steps in understanding observed wave motions. In this regard, the remote sensing instrumentation used to make coronal magnetic field measurements is well suited to measuring the Doppler signature of waves in the solar structures. In this paper, we describe the design and scientific values of the Waves and Magnetism in the Solar Atmosphere (WAMIS investigation. WAMIS, taking advantage of greatly improved infrared filters and detectors, forward models, advanced diagnostic tools and inversion codes, is a long-duration high-altitude balloon payload designed to obtain a breakthrough in the measurement of coronal magnetic fields and in advancing the understanding of the interaction of these fields with space plasmas. It consists of a 20 cm aperture coronagraph with a visible-IR spectro-polarimeter focal plane assembly. The balloon altitude would provide minimum sky background and atmospheric scattering at the wavelengths in which these observations are made. It would also enable continuous measurements of the strength and direction of coronal magnetic fields without interruptions from the day-night cycle and weather. These measurements will be made over a large field-of-view allowing one to distinguish the magnetic signatures of different coronal structures, and at the spatial and temporal resolutions required to address outstanding problems in coronal physics. Additionally, WAMIS could obtain near simultaneous observations of the electron scattered K-corona for context and to obtain the electron density. These comprehensive observations are not provided by any current single ground-based or space observatory. The fundamental advancements achieved by the near

  6. Solar wind interaction with type-1 comet tails

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1977-01-01

    A comet tail is considered as a plasma cylinder separated by a tangential discontinuity surface from the solar wind. Under typical conditions a comet tail boundary is shown to undergo the Kelvin-Helmholtz instability. With infinite amplitude the stabilizing effect of the magnetic field increases, and waves become stable. The proposed model supplies the detailed quantitative description of helical waves observed in type-1 comet tails. This theory enables the evaluation of the comet tail magnetic field by means of the observations of helical waves. The magnetic field in the comet tail turns out to be of the order of the interplanetary field. This conclusion seems to be in accordance with Alfven's idea that the magnetic field in type-1 comet tails is a captured interplanetary field. (Auth.)

  7. Dependence of the cross polar cap potential saturation on the type of solar wind streams

    OpenAIRE

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2013-01-01

    We compare of the cross polar cap potential (CPCP) saturation during magnetic storms induced by various types of the solar wind drivers. By using the model of Siscoe-Hill \\citep{Hilletal1976,Siscoeetal2002a,Siscoeetal2002b,Siscoeetal2004,Siscoe2011} we evaluate criteria of the CPCP saturation during the main phases of 257 magnetic storms ($Dst_{min} \\le -50$ nT) induced by the following types of the solar wind streams: magnetic clouds (MC), Ejecta, the compress region Sheath before MC ($Sh_{M...

  8. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity?

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    1999-01-01

    We examine the occurrence of dayside high-latitude magnetic variations with periods between 2 and 10 min statistically using data from around 20 magnetic stations in Greenland, Scandinavia, and Canada, many of which have been in operation for a full solar cycle. We derive time series of the power...

  9. Solar-Type Activity in Main-Sequence Stars

    CERN Document Server

    Gershberg, Roald E

    2005-01-01

    Solar-type activity over the whole range of the electromagnetic spectrum is a phenomenon inherent in the majority of low- and moderate-mass main sequence stars. In this monograph observational results are summarized in a systematic and comprehensive fashion. The analysis of the various manifestations of such stellar activity leads to the identification of these phenomena with macroscopic non-linear processes in a magnetized plasma. Comparative study of flare stars and the Sun has become increasingly fruitful and is presently an active field of research involving stellar and solar physicists, experts in plasma physics and high-energy astrophysicists. This book will provide them with both an introduction and overview of observational results from the first optical photometry and spectroscopy, from the satellite telescopes International Ultraviolet Explorer to Hubble Space Telescope, XMM-Newton and Chandra, as well as with the present physical interpretation of solar-type activity in main sequence stars. Gershbe...

  10. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Federico A.; Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires (Argentina); Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  11. Contrasting the solar rotation rate of cycles 23 and 24

    International Nuclear Information System (INIS)

    Antia, H M; Basu, Sarbani

    2013-01-01

    The minimum between solar cycles 23 and 24 was quite unusual compared with other minima for which detailed data are available and this pointed to the possibility that cycle 24 will be unusual. Cycle 24 is almost at its maximum now and we take this opportunity to compare and contrast the solar rotation rate and zonal flows between the two cycles. We find that the rotation rate during cycle 24 is slightly lower than that during cycle 23. Additionally we find that the poleward branch of the zonal flow that is believed to be the harbinger of the next solar cycle is very week in cycle 24.

  12. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  13. Some problems concerning the regularities in the development of the latitudinal distribution of solar magnetic fields

    International Nuclear Information System (INIS)

    Bumba, V.; Hejna, L.

    1988-01-01

    From the comparison of several modes of time development of the latitudinal distribution of solar magnetic fields, obtained by different authors using different basic observational material and different methods, the following results were obtained: At high solar latitudes (|φ|> or ∼ 40deg) all distributions agree irrespective of the method of construction. In zones of activity around the solar equator, there is a qualitatively good but quantitatively poor agreement of the integrated, directly observed fields (from Mt. Wilson Observatory) and of the highly integrated fields derived from Hα synoptic charts. The mode of field distribution at high latitudes, more uniform and unipolar, is probably different from the field distribution at low latitudes where the more concentrated leading polarity occupies practically the same area as the less concentrated following polarity fields, if they are highly integrated. The large difference between Makarov's distribution and other modes of distribution seems to be natural if we take the method of construction into account, and very probably represents its close relationship with the smaller magnetic field elements connected with newer activity, while the other types of distribution demonstrate larger-scale, redistributed, older fields. The areas covered by the positive and negative polarities on the whole Sun during the investigated one and a half solar cycles (No 20 and 21) are practically equal. (author). 5 figs., 10 refs

  14. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  15. Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    Science.gov (United States)

    Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.

    2010-04-01

    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.

  16. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)

    2010-08-25

    Aug 25, 2010 ... 3Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences ... ICME-associated CME latitudes during solar cycle 23 using Song et al.'s method. ..... latitudes during the three phases of cycle 23 separately for the northern (left panel) and southern. (right panel) ...

  17. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  18. The Solar Cycle and, How Do We Know What We Know?

    Science.gov (United States)

    Adams, Mitzi

    2013-01-01

    Through the use of observations, mathematics, mathematical tools (such as graphs), inference, testing, and prediction we have gathered evidence that there are sunspots, a solar cycle, and have begun to understand more about our star, the Sun. We are making progress in understanding the cause of the solar cycle. We expect solar cycle 24 to peak soon. Cycle 24 will be the smallest cycle in 100 years.

  19. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-04-01

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  20. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion?

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    Full Text Available A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243. Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610.

    Key words: Solar physics (celestial mechanics

  1. MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, Ulrich R. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Poppenhaeger, Katja, E-mail: rakesh.yadav@cfa.harvard.edu [Astrophysics Research Center, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-12-20

    The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristics of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.

  2. Variation of Magnetic Field (By , Bz Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2011-06-01

    Full Text Available It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME-driven storms, co-rotating interaction region (CIR-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4 is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0% under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is

  3. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  4. Solar Magnetism eXplorer (Solme X)

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  5. Coronal Magnetic Field Lines and Electrons Associated with Type III

    Indian Academy of Sciences (India)

    Coronal Magnetic Field Lines and Electrons Associated with Type III–V Radio Bursts in a Solar Flare ... velocities of the electron streams associated with the above two types of bursts indicate ... Journal of Astrophysics and Astronomy | News ...

  6. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  7. Imaging a Magnetic-breakout Solar Eruption

    Science.gov (United States)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Liu, Wei; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang

    2016-04-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ˜100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions.

  8. IMAGING A MAGNETIC-BREAKOUT SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang; Liu, Wei

    2016-01-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ∼100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions

  9. Radial frequency diagram (sunflower) for the analysis of diurnal cycle parameters: Solar energy application

    International Nuclear Information System (INIS)

    Božnar, Marija Zlata; Grašič, Boštjan; Mlakar, Primož; Soares, Jacyra; Pereira de Oliveira, Amauri; Costa, Tássio Santos

    2015-01-01

    Graphical abstract: A new type of graphical presentation showing diurnal cycle of solar energy forecast. The application is possible for other parameters related to weather and green energy production. - Highlights: • The diurnal cycle of solar energy is important for the management of the electrical grid. • A solar plant’s average production depends on the statistical features of solar radiation. • The new tool – the “sunflower”, is proposed for solar energy availability representation. • The sunflower identifies and quantifies information with a clear diurnal cycle. • The sunflower diagram has been developed from the “wind rose” diagram. - Abstract: Many meteorological parameters present a natural diurnal cycle because they are directly or indirectly dependent on sunshine exposure. The solar radiation diurnal pattern is important to energy production, agriculture, prognostic models, health and general climatology. This article aims at introducing a new type of radial frequency diagram – hereafter called sunflower – for the analysis of solar radiation data in connection with energy production and also for climatological studies. The diagram is based on two-dimensional data sorting. Firstly data are sorted into classes representing hours in a day. Then the data in each hourly class is sorted into classes of the observed variable values. The relative frequencies of the value classes are shown as sections on each hour’s segment in a radial diagram. The radial diagram forms a unique pattern for each analysed dataset. Therefore it enables the quick detection of features and the comparison of several such patterns belonging to the different datasets being analysed. The sunflower diagram enables a quick and comprehensive understanding of the information about diurnal cycle of the solar radiation data. It enables in a graphical form, quick screening and long-term statistics of huge data quantities when searching for their diurnal features and

  10. Beyond Solar-B: MTRAP, the Magnetic TRAnsition Region Probe

    Science.gov (United States)

    Davis, J. M.; Moore, R. L.; Hathaway, D. H.; Science Definition CommitteeHigh-Resolution Solar Magnetography Beyond Solar-B Team

    2003-05-01

    The next generation of solar missions will reveal and measure fine-scale solar magnetic fields and their effects in the solar atmosphere at heights, small scales, sensitivities, and fields of view well beyond the reach of Solar-B. The necessity for, and potential of, such observations for understanding solar magnetic fields, their generation in and below the photosphere, and their control of the solar atmosphere and heliosphere, were the focus of a science definition workshop, "High-Resolution Solar Magnetography from Space: Beyond Solar-B," held in Huntsville Alabama in April 2001. Forty internationally prominent scientists active in solar research involving fine-scale solar magnetism participated in this Workshop and reached consensus that the key science objective to be pursued beyond Solar-B is a physical understanding of the fine-scale magnetic structure and activity in the magnetic transition region, defined as the region between the photosphere and corona where neither the plasma nor the magnetic field strongly dominates the other. The observational objective requires high cadence (x 16K pixels) with high QE at 150 nm, and extendable spacecraft structures. The Science Organizing Committee of the Beyond Solar-B Workshop recommends that: 1. Science and Technology Definition Teams should be established in FY04 to finalize the science requirements and to define technology development efforts needed to ensure the practicality of MTRAP's observational goals. 2. The necessary technology development funding should be included in Code S budgets for FY06 and beyond to prepare MTRAP for a new start no later than the nominal end of the Solar-B mission, around 2010.

  11. Solar-cycle variation of zonal and meridional flow

    International Nuclear Information System (INIS)

    Komm, R; Howe, R; Hill, F; Hernandez, I Gonzalez; Haber, D

    2011-01-01

    We study the variation with the solar cycle of the zonal and meridional flows in the near-surface layers of the solar convection zone. We have analyzed MDI Dynamics-Program data with ring-diagram analysis covering the rising phase of cycle 23, while the analyzed GONG high-resolution data cover the maximum and declining phase of cycle 23. For the zonal flow, the migration with latitude of the flow pattern is apparent in the deeper layers, while for the meridional flow, a migration with latitude is apparent only in the layers close to the surface. The faster-than-average bands of the zonal flow associated with the new cycle are clearly visible. Similarly, a pattern related to the new cycle appears in the residual meridional flow. We also study the flow differences between the hemispheres during the course of the solar cycle. The difference pattern of the meridional flow is slanted in latitude straddling the faster-than-average band of the torsional oscillation pattern in the zonal flow. The difference pattern of the zonal flow, on the other hand, resembles the cycle variation of the meridional flow. In addition, the meridional flow during the minimum of cycle 23/24 appears to be slightly stronger than during the previous minimum of cycle 22/23.

  12. On the Reduced Geoeffectiveness of Solar Cycle 24: A Moderate Storm Perspective

    Science.gov (United States)

    Selvakumaran, R.; Veenadhari, B.; Akiyama, S.; Pandya, Megha; Gopalswamy, N,; Yashiro, S.; Kumar, Sandeep; Makela, P.; Xie, H.

    2016-01-01

    The moderate and intense geomagnetic storms are identified for the first 77 months of solar cycles 23 and 24. The solar sources responsible for the moderate geomagnetic storms are indentified during the same epoch for both the cycles. Solar cycle 24 has shown nearly 80% reduction in the occurrence of intense storms whereas it is only 40% in case of moderate storms when compared to previous cycle. The solar and interplanetary characteristics of the moderate storms driven by coronal mass ejection (CME) are compared for solar cycles 23 and 24 in order to see reduction in geoeffectiveness has anything to do with the occurrence of moderate storm. Though there is reduction in the occurrence of moderate storms, the Dst distribution does not show much difference. Similarly, the solar source parameters like CME speed, mass, and width did not show any significant variation in the average values as well as the distribution. The correlation between VBz and Dst is determined, and it is found to be moderate with value of 0.68 for cycle 23 and 0.61 for cycle 24. The magnetospheric energy flux parameter epsilon (epsilon) is estimated during the main phase of all moderate storms during solar cycles 23 and 24. The energy transfer decreased in solar cycle 24 when compared to cycle 23. These results are significantly different when all geomagnetic storms are taken into consideration for both the solar cycles.

  13. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  14. A combined cycle utilizing LNG and low-temperature solar energy

    International Nuclear Information System (INIS)

    Rao, Wen-Ji; Zhao, Liang-Ju; Liu, Chao; Zhang, Mo-Geng

    2013-01-01

    This paper has proposed a combined cycle, in which low-temperature solar energy and cold energy of liquefied natural gas (LNG) can be effectively utilized together. Comparative analysis based on a same net work output between the proposed combined cycle and separated solar ORC and LNG vapor system has been done. The results show that, for the combined cycle, a decrease of nearly 82.2% on the area of solar collector is obtained and the area of heat exchanger decreases by 31.7%. Moreover, exergy efficiency is higher than both two separated systems. This work has also dealt with the thermodynamic analyses for the proposed cycle. The results show that R143a followed by propane and propene emerges as most suitable fluid. Moreover, with a regenerator added in the cycle, performance improvement is obtained for the reduction on area of solar collector and increase on system efficiency and exergy efficiency. -- Highlights: • A combined cycle utilizing low-temperature solar energy and LNG together is proposed. • Five objection functions are used to decide the best working fluids. • Cycle with a regenerator has good performance

  15. Energetic evaluation of the largest geomagnetic storms of solar cycle 24 on March 17, 2015 and September 8, 2017 during solar maximum and minimum, respectively

    International Nuclear Information System (INIS)

    Tomova, Dimitrinka; Velinov, Peter; Tassev, Yordan; Tomova, Dimitrinka

    2018-01-01

    Some of the most powerful Earth’s directed coronal mass ejections (CMEs) from the current 24 solar cycle have been investigated. These are CMEs on March 15, 2015 and on September 4 and 6, 2017. As a result of these impacts of Sun on Earth, the highest intensity of the geomagnetic storms for the 24th solar cycle is observed. These G4 – Severe geomagnetic storms are in the periods March 17÷19, 2015 and September 7÷10, 2017. We use the solar wind parameters (velocity V, density or concentration N , temperature T p and intensity of the magnetic field B) from measurements by WIND, ACE and SOHO space crafts in the Lagrange equilibrium point L1 between Sun and Earth. We make calculations for the kinetic (dynamic) energy density E k , thermal energy density E t and magnetic energy density E m during the investigated periods May 10÷24, 2015 and September 2÷16, 2017. Both the energy densities for the individual events and the cumulative energy for each of them are evaluated. The quantitative analysis shows that not always the size of the geomagnetic reaction is commensurate with the density of the energy flux reaching the magnetosphere. In both studied periods, the energy densities have different behaviour over time. But for both periods, we can talk about the prognostic effect – with varying degrees of increase of the dynamic and thermal energies. Such an effect is not observed in the density of magnetic energy. An inverse relationship between the magnitude of the density of energies and the effect of Forbush decrease of the galactic cosmic rays is established. Key words: solar activity, flares, coronal mass ejection (CME), G4 –Severe geomagnetic storms, energy density of the solar wind, space weather

  16. The structure and origin of magnetic clouds in the solar wind

    Directory of Open Access Journals (Sweden)

    V. Bothmer

    a south to north (SN rotation of the magnetic field vector relative to the ecliptic. In contrast, an investigation of solar wind data obtained near Earth's orbit during 1984–1991 showed a preference for NS-clouds. A direct correlation was found between MCs and large quiescent filament disappearances (disparition brusques, DBs. The magnetic configurations of the filaments, as inferred from the orientation of the prominence axis, the polarity of the overlying field lines and the hemispheric helicity pattern observed for filaments, agreed well with the in situ observed magnetic structure of the associated MCs. The results support the model of MCs as large-scale expanding quasi-cylindrical magnetic flux tubes in the solar wind, most likely caused by SMEs associated with eruptions of large quiescent filaments. We suggest that the hemispheric dependence of the magnetic helicity structure observed for solar filaments can explain the preferred orientation of MCs in interplanetary space as well as their solar cycle behavior. However, the white-light features of SMEs and the measured volumes of their interplanetary counterparts suggest that MCs may not simply be just Hα-prominences, but that SMEs likely convect large-scale coronal loops overlying the prominence axis out of the solar atmosphere.

  17. Solar and atmospheric neutrinos in three generations with a magnetic moment

    International Nuclear Information System (INIS)

    Pulido, J.; Tao, Z.

    1995-01-01

    A solution to the solar and atomospheric neutrino problems in three generations in the joint context of matter oscillations and the magnetic moment is investigated. An appropriate rotation of the evolution Hamiltonian reduces the three generation case to a two generation one. A convenient background for such a scenario with small neutrino masses and large magnetic moments is given by the Zee-type models, in which the mass generation mechanism leads to a pair of separate orders of magnitude for the mass square differences between neutrino species. We obtain a ratio var-epsilon congruent 10 -2 --10 -3 between these orders of magnitude, so that one of them [(0.3--3)x10 -2 eV 2 ] is suitable for the atmospheric neutrino solution and the other (∼10 -5 eV 2 ) for the solar neutrino solution. The magnetic moment leads to a decrease of the survival probability with solar neutrino energy. Such a decrease is consistent with the experimental situation

  18. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  19. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  20. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  1. Neutrino magnetic moments and the solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica

    1994-08-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.

  2. Neutrino magnetic moments and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Valencia Univ.

    1994-01-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's

  3. Forecasting the peak of the present solar activity cycle 24

    Science.gov (United States)

    Hamid, R. H.; Marzouk, B. A.

    2018-06-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aamin. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between maximum of solar cycles (RM) and spotless event around the preceding minimum gives R24t = 88.4 with rise time Tr = 4.6 years. For the even cycles R24E = 77.9 with rise time Tr = 4.5 y's. Based on the average aamin. index for cycles (12-23), we estimate the expected amplitude for cycle 24 to be Raamin = 99.4 and 98.1 with time rise of Traamin = 4.04 & 4.3 years for both the total and even cycles in consecutive. The application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 126 with rise time Tr107 = 3.7 years, which are over estimation. Our result indicating to somewhat weaker of cycle 24 as compared to cycles 21-23.

  4. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Su Yang; Veronig, Astrid; Temmer, Manuela [IGAM-Kanzelhoehe Observatory, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Wang Tongjiang [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Gan Weiqun, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  5. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: mscott@hao.ucar.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  6. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  7. Magnetic fields in the solar system planets, moons and solar wind interactions

    CERN Document Server

    Wicht, Johannes; Gilder, Stuart; Holschneider, Matthias

    2018-01-01

    This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors an...

  8. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  9. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  10. Statistics of the largest sunspot and facular areas per solar cycle

    International Nuclear Information System (INIS)

    Willis, D.M.; Kabasakal Tulunay, Y.

    1979-01-01

    The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)

  11. Were chondrites magnetized by the early solar wind?

    Science.gov (United States)

    Oran, Rona; Weiss, Benjamin P.; Cohen, Ofer

    2018-06-01

    Chondritic meteorites have been traditionally thought to be samples of undifferentiated bodies that never experienced large-scale melting. This view has been challenged by the existence of post-accretional, unidirectional natural remanent magnetization (NRM) in CV carbonaceous chondrites. The relatively young inferred NRM age [∼10 million years (My) after solar system formation] and long duration of NRM acquisition (1-106 y) have been interpreted as evidence that the magnetizing field was that of a core dynamo within the CV parent body. This would imply that CV chondrites represent the primitive crust of a partially differentiated body. However, an alternative hypothesis is that the NRM was imparted by the early solar wind. Here we demonstrate that the solar wind scenario is unlikely due to three main factors: 1) the magnitude of the early solar wind magnetic field is estimated to be limits field amplification due to pile-up of the solar wind to less than a factor of 3.5 times that of the instantaneous solar wind field, and 3) the solar wind field likely changed over timescales orders of magnitude shorter than the timescale of NRM acquisition. Using analytical arguments, numerical simulations and astronomical observations of the present-day solar wind and magnetic fields of young stars, we show that the maximum mean field the ancient solar wind could have imparted on an undifferentiated CV parent body is <3.5 nT, which is 3-4 and 3 orders of magnitude weaker than the paleointensities recorded by the CV chondrites Allende and Kaba, respectively. Therefore, the solar wind is highly unlikely to be the source of the NRM in CV chondrites. Nevertheless, future high sensitivity paleomagnetic studies of rapidly-cooled meteorites with high magnetic recording fidelity could potentially trace the evolution of the solar wind field in time.

  12. The inner magnetosphere ion composition and local time distribution over a solar cycle

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C. G.

    2016-03-01

    Using the Cluster/Composition and Distribution Function (CODIF) analyzer data set from 2001 to 2013, a full solar cycle, we determine the ion distributions for H+, He+, and O+ in the inner magnetosphere (L < 12) over the energy range 40 eV to 40 keV as a function magnetic local time, solar EUV (F10.7), and geomagnetic activity (Kp). Concentrating on L = 6-7 for comparison with previous studies at geosynchronous orbit, we determine both the average flux at 90° pitch angle and the pitch angle anisotropy as a function of energy and magnetic local time. We clearly see the minimum in the H+ spectrum that results from the competition between eastward and westward drifts. The feature is weaker in O+ and He+, leading to higher O+/H+ and He+/H+ ratios in the affected region, and also to a higher pitch angle anisotropy, both features expected from the long-term effects of charge exchange. We also determine how the nightside L = 6-7 densities and temperatures vary with geomagnetic activity (Kp) and solar EUV (F10.7). Consistent with other studies, we find that the O+ density and relative abundance increase significantly with both Kp and F10.7. He+ density increases with F10.7, but not significantly with Kp. The temperatures of all species decrease with increasing F10.7. The O+ and He+ densities increase from L = 12 to L ~ 3-4, both absolutely and relative to H+, and then drop off sharply. The results give a comprehensive view of the inner magnetosphere using a contiguous long-term data set that supports much of the earlier work from GEOS, ISEE, Active Magnetospheric Particle Tracer Explorers, and Polar from previous solar cycles.

  13. Magnetic Nulls and Super-radial Expansion in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven; Toma, Giuliana de; Burkepile, Joan; Galloy, Michael [National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States); Rachmeler, Laurel A. [NASA Marshall Space Flight Center, Huntsville, AL 35811 (United States); Rosa, Marc L. De, E-mail: sgibson@ucar.edu [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States)

    2017-05-10

    Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.

  14. Solar energetic particle events during the rise phases of solar cycles 23 and 24

    Science.gov (United States)

    Chandra, R.; Gopalswamy, N.; Mäkelä, P.; Xie, H.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Jain, R.; Awasthi, A. K.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Choudhary, D. P.; Nitta, N. V.

    2013-12-01

    We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996-1998) (22 events) and 24 (2009-2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity pfu), minor (1 pfu pfu) and major (intensity ⩾ 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north-south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.

  15. Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration

    Directory of Open Access Journals (Sweden)

    Antonio Rovira

    2018-04-01

    Full Text Available This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs using different solar concentration technologies: parabolic trough collectors (PTC, linear Fresnel reflectors (LFR and central tower receiver (CT. Each solar technology (i.e. PTC, LFR and CT is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG, increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.

  16. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  17. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  18. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  19. Solar cycle variations of magnetopause locations

    Czech Academy of Sciences Publication Activity Database

    Němeček, Z.; Šafránková, J.; Lopez, R. E.; Dušík, Š.; Nouzák, L.; Přech, J.; Šimůnek, Jiří; Shue, J.-H.

    2016-01-01

    Roč. 58, č. 2 (2016), s. 240-248 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GA14-19376S Institutional support: RVO:68378289 Keywords : magnetopause location * F-10.7 flux * solar cycle * solar wind velocity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.401, year: 2016 http://www.sciencedirect.com/science/article/pii/S0273117715007115

  20. Structure and evolution of magnetic fields associated with solar eruptions

    International Nuclear Information System (INIS)

    Wang Haimin; Liu Chang

    2015-01-01

    This paper reviews the studies of solar photospheric magnetic field evolution in active regions and its relationship to solar flares. It is divided into two topics, the magnetic structure and evolution leading to solar eruptions and rapid changes in the photospheric magnetic field associated with eruptions. For the first topic, we describe the magnetic complexity, new flux emergence, flux cancelation, shear motions, sunspot rotation and magnetic helicity injection, which may all contribute to the storage and buildup of energy that trigger solar eruptions. For the second topic, we concentrate on the observations of rapid and irreversible changes of the photospheric magnetic field associated with flares, and the implication on the restructuring of the three-dimensional magnetic field. In particular, we emphasize the recent advances in observations of the photospheric magnetic field, as state-of-the-art observing facilities (such as Hinode and Solar Dynamics Observatory) have become available. The linkages between observations, theories and future prospectives in this research area are also discussed. (invited reviews)

  1. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.

    2009-05-17

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  2. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.; Thu, K.; Chakraborty, A.; Saha, B. B.; Chun, W. G.

    2009-01-01

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  3. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  4. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  5. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    Science.gov (United States)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  6. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  7. M-number dependence of rotation period of the solar magnetic field and its effect on coronal hole and solar flare

    International Nuclear Information System (INIS)

    Saito, Takao; Oki, Tosio

    1989-01-01

    The photospheric magnetic field is revealed to rotate with different solar rotation periods depending on its m-number, or its longitudinal range. The m-dependent rotation reveals the unexplained solar cycle variation of the 28-day period of the IMF 2-sector structure in inclining/minimum years and of the 27-day period in the declining/minimum years. The m-dependent rotation reveals also the unexplained 155-day periodicity in the occurrence of solar flare clusters, suggesting a motion of the sunspot field relative to the large-scale field. The IMF sector structure is closely related to recurrent geomagnetic storms, while the flare occurrence is related to sporadic SC storms. Hence, the m-dependent rotation is quite important in the study of the STE forecast. (author)

  8. Variation of Supergranule Parameters with Solar Cycles: Results from Century-long Kodaikanal Digitized Ca ii K Data

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Subhamoy; Mandal, Sudip; Banerjee, Dipankar, E-mail: dipu@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-06-01

    The Ca ii K spectroheliograms spanning over a century (1907–2007) from Kodaikanal Solar Observatory, India, have recently been digitized and calibrated. Applying a fully automated algorithm (which includes contrast enhancement and the “Watershed method”) to these data, we have identified the supergranules and calculated the associated parameters, such as scale, circularity, and fractal dimension. We have segregated the quiet and active regions and obtained the supergranule parameters separately for these two domains. In this way, we have isolated the effect of large-scale and small-scale magnetic fields on these structures and find a significantly different behavior of the supergranule parameters over solar cycles. These differences indicate intrinsic changes in the physical mechanism behind the generation and evolution of supergranules in the presence of small-scale and large-scale magnetic fields. This also highlights the need for further studies using solar dynamo theory along with magneto-convection models.

  9. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  10. Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary

    Directory of Open Access Journals (Sweden)

    R. Modolo

    2006-12-01

    Full Text Available The solar wind plasma interaction with the Martian exosphere is investigated by means of 3-D multi-species hybrid simulations. The influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary is examined by comparing two simulations describing the two extreme states of the solar cycle. The hybrid formalism allows a kinetic description of each ions species and a fluid description of electrons. The ionization processes (photoionization, electron impact and charge exchange are included self-consistently in the model where the production rate is computed locally, separately for each ionization act and for each neutral species. The results of simulations are in a reasonable agreement with the observations made by Phobos 2 and Mars Global Surveyor spacecraft. The position of the bow shock and the magnetic pile-up boundary is weakly dependent of the solar EUV flux. The motional electric field creates strong asymmetries for the two plasma boundaries.

  11. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  12. Magnetic Reconnection in the Solar Chromosphere

    Science.gov (United States)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  13. A Coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. I. Surface Magnetic Flux Evolution

    Science.gov (United States)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud

    2015-09-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

  14. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    International Nuclear Information System (INIS)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud

    2015-01-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics

  15. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de physique, Université de Montréal, 2900 boul. Édouard-Montpetit, Montréal, QC, H3T 1J4 (Canada)

    2015-09-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

  16. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  17. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  18. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    International Nuclear Information System (INIS)

    Duffin, R T; White, S M; Ray, P S; Kaiser, M L

    2015-01-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena. (paper)

  19. Magnetic evaluation of a solar panel using HTS-SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Kiwa, Toshihiko, E-mail: kiwa@okayama-u.ac.jp; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-11-15

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized.

  20. Magnetic evaluation of a solar panel using HTS-SQUID

    International Nuclear Information System (INIS)

    Kiwa, Toshihiko; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-01-01

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized

  1. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Augustson, Kyle; Miesch, Mark [High Altitude Observatory, Center Green 1, Boulder, CO 80301 (United States); Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/DSM–CNRS–Université Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Toomre, Juri [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  2. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  3. Solar and interplanetary particles at 2 to 4 MEV during solar cycles 21, solar cycle variations of event sizes, and compositions

    International Nuclear Information System (INIS)

    Armstrong, T.P.; Shields, J.C.; Briggs, P.R.; Eckes, S.

    1985-01-01

    In this paper 2 to 4 MeV/nucleon protons, alpha particles, and medium (CNO) nuclei in the near-Earth interplanetary medium during the years 1974 to 1981 are studied. This period contains both the solar activity minimum in 1976 and the very active onset phase of Solar Cycle 21. Characteristic compositional differences between the solar minimum and solar maximum ion populations have been investigated. Previous studies of interplanetary composition at these energies have concentrated on well-defined samples of the heliospheric medium. During flare particle events, the ambient plasma is dominated by ions accelerated in specific regions of the solar atmosphere; observation of the proton/alpha and alpha/medium ratios for flare events shows that there is marked compositional variability both during an event and from event to event suggesting the complicated nature of flare particle production and transport

  4. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  5. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  6. North–South Asymmetry of the Rotation of the Solar Magnetic Field

    Science.gov (United States)

    Xie, Jinglan; Shi, Xiangjun; Qu, Zhining

    2018-03-01

    Using the rotation rates of the solar magnetic field during solar cycles 21 to 23 obtained by Chu et al. by analyzing the synoptic magnetic maps produced by the NSO/Kitt Peak and SOHO/MDI during the years 1975 to 2008, the temporal variation of the equatorial rotation rate (A) and the latitude gradient of rotation (B) in the northern and southern hemispheres are studied separately. The results indicate that the rotation is more differential (about 4.3%) in the southern hemisphere in the considered time frame. It is found that the north–south asymmetry of A and the asymmetry of B show increasing trends in the considered time frame, while the north–south asymmetry of the solar activity shows a decreasing trend. There exists a significant negative correlation (at 95% confidence level) between the asymmetry of B and the asymmetry of the solar activity, and this may be due to stronger magnetic activity in a certain hemisphere that may suppress the differential rotation to some extent. The periodicities in the variation of A and B are also studied, and periods of about 5.0 and 10.5 yr (5.5 and 10.4 yr) can be found for the variation of the northern (southern) hemisphere B. Moreover, the north–south asymmetry of A and the asymmetry of B have similar periods of about 2.6–2.7 and 5.2–5.3 yr. Further, cross-correlation analysis indicates that there exists a phase difference (about eight months) between the northern and southern hemisphere B, and this means that the northern hemisphere B generally leads by about eight months.

  7. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.

  8. One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Heniti, S.; Al-Agel, F.; Al-Ghamdi, A.A.; Al-Marzouki, F.

    2011-01-01

    Research highlights: → Solar cookers must contain a PCM for cooking indoors. → MgCl 2 .6H 2 O when it cycled in a sealed container. → MgCl 2 .6H 2 O shows maximum of 0.1-3.5 o C of supercooling. → MgCl 2 .6H 2 O is a promising PCM for thermal energy storage. -- Abstract: Cooking is the major necessity for people all over the world. It accounts for a major share of energy consumption in developing countries. There is a critical need for the development of alternative, appropriate, affordable methods of cooking for use in developing countries. There is a history for solar cooking since 1650 where they are broadly divided into direct or focusing type, box-type and indirect or advanced solar cookers. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this paper is to investigate the influence of the melting/solidification fast thermal cycling of commercial grade magnesium chloride hexahydrate (MgCl 2 .6H 2 O) on its thermo-physical properties; such as melting point and latent heat of fusion, to be used as a storage medium inside solar cookers. One thousand cycles have been performed in a sealed container under the extra water principle. The thermo-physical properties are measured using the differential scanning calorimetric technique. It is indicated that MgCl 2 .6H 2 O with the extra water principle and hermetically sealing of the container is a promising phase change material (PCM) for cooking indoors and during law intensity solar radiation periods. It is also found from the melting/solidification behavior of MgCl 2 .6H 2 O that it is solidify almost without supercooling; except in few cases where it showed maximum of 0

  9. Origin and structures of solar eruptions II: Magnetic modeling

    Science.gov (United States)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  10. Galactic and solar radiation exposure to aircrew during a solar cycle

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; McCall, M.J.; Ellaschuk, B.; Butler, A.; Pierre, M.

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H*(10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events. (author)

  11. Solar surface magnetism and irradiance on time scales

    NARCIS (Netherlands)

    Domingo, V.; Ermolli, I.; Fox, P.; Fröhlich, C.; Haberreiter, M.; Krivova, N.; Kopp, G.; Schmutz, W.; Solanki, S.K.; Spruit, H.C.; Unruh, Y.C.; Vögler, A.

    2009-01-01

    The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance

  12. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  13. On the statistics of the largest geomagnetic storms per solar cycle

    International Nuclear Information System (INIS)

    Siscoe, G.L.

    1976-01-01

    The theory of extreme value statistics is applied to the first, second, and third largest geomagnetic storms in nine solar cycles measured by the average half-daily aa indices compiled by Mayaud. Analytic expressions giving the probability of the extremes per solar cycle as a contour function of storm magnitude are obtained by least squares fitting of the observations to the appropriate theoretical extreme value probability functions. The results are used to obtain the statistical characteristics (mode, median, mean, and standard deviation) for the extreme values. The results are applied to find the expected range of extreme values in a set as a function of the number of solar cycles in the set. We find that the expected range of the largest storm is quite narrow and is larger for the second and third largest storms. The observed range of the extreme half-daily aa index for the nine solar cycles is 354--546 γ. In a set of 100 cycles the range is expanded esentially to 311--680γ, an increase of only 39% in the range. The result supports the argument for a change in solar cycle statistics in the latter part of the Seventeenth Century (the Maunder minimum)

  14. Forecast of the key parameters of the 24-th solar cycle

    International Nuclear Information System (INIS)

    Chumak, Oleg Vasilievich; Matveychuk, Tatiana Viktorovna

    2010-01-01

    To predict the key parameters of the solar cycle, a new method is proposed based on the empirical law describing the correlation between the maximum height of the preceding solar cycle and the entropy of the forthcoming one. The entropy of the forthcoming cycle may be estimated using this empirical law, if the maximum height of the current cycle is known. The cycle entropy is shown to correlate well with the cycle's maximum height and, as a consequence, the height of the forthcoming maximum can be estimated. In turn, the correlation found between the height of the maximum and the duration of the ascending branch (the Waldmeier rule) allows the epoch of the maximum, Tmax, to be estimated, if the date of the minimum is known. Moreover, using the law discovered, one can find out the analogous cycles which are similar to the cycle being forecasted, and hence, obtain the synoptic forecast of all main features of the forthcoming cycle. The estimates have shown the accuracy level of this technique to be 86%. The new regularities discovered are also interesting because they are fundamental in the theory of solar cycles and may provide new empirical data. The main parameters of the future solar cycle 24 are as follows: the height of the maximum is Wmax = 95 ± 20, the duration of the ascending branch is Ta = 4.5 ± 0.5yr, the total cycle duration according to the synoptic forecast is 11.3 yr. (research papers)

  15. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  16. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    Science.gov (United States)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  17. Magnetic tornadoes as energy channels into the solar corona.

    Science.gov (United States)

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  18. New type of magnetocaloric effect: Implications on low-temperature magnetic refrigeration using an Ericsson cycle

    International Nuclear Information System (INIS)

    Takeya, H.; Pecharsky, V.K.; Gschneidner, K.A. Jr.; Moorman, J.O.

    1994-01-01

    The low-temperature, high magnetic field heat capacity (1.5 to 70 K and 0 to 9.85 T), dc and ac magnetic behaviors of the compound (Gd 0.54 Er 0.46 )AlNi show that field-induced magnetic entropy change is significant and almost constant over the temperature region of ∼15 to ∼45 K. The resulting temperature dependence of the magnetocaloric effect, nearly constant over a 30+ K temperature range, is unprecedented (most magnetic materials have a caretlike shape temperature dependence). These data show that (Gd 0.54 Er 0.46 )AlNi can be used as an effective active magnetic regenerator material for an Ericsson-cycle magnetic refrigerator, and could substitute for complex composite layered materials suggested earlier

  19. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Delgado-Torres, Agustin M.; Garcia-Rodriguez, Lourdes

    2010-01-01

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration.

  20. Radio wave propagation in the inhomogeneous magnetic field of the solar corona

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.; Zlotnik, E.Ya.

    1977-01-01

    Various types of linear coupling between ordinary and extra-ordinary waves in the coronal plasma with the inhomogeneous magnetic field and the effect of this phenomenon upon the polarization characteristics of solar radio emission are considered. A qualitative analysis of the wave equation indicates that in a rarefied plasma the coupling effects can be displayed in a sufficiently weak magnetic field or at the angles between the magnetic field and the direction of wave propagation close enough to zero or π/2. The wave coupling parameter are found for these three cases. The radio wave propagation through the region with a quasi-transverse magnetic field and through the neutral current sheet is discussed more in detail. A qualitative picture of coupling in such a layer is supported by a numerical solution of the ''quasi-isotropic approximation'' equations. The role of the coupling effects in formation of polarization characteristics of different components of solar radio emission has been investigated. For cm wave range, the polarization is essentially dependent on the conditions in the region of the transverse magnetic field

  1. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  2. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  3. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  4. On proton events of different solar activity cycles

    International Nuclear Information System (INIS)

    Sattarov, I.; Sherdanov, Ch.; Sattarov, B.

    1997-01-01

    In solar activity cycle N21 and N22 the latitude distribution of the proton large flares and sunspot groups is being studied. It was found that higher proton activity of cycle N22 is connected with its higher latitude sunspot activity (author)

  5. PHOTOMETRIC TRENDS IN THE VISIBLE SOLAR CONTINUUM AND THEIR SENSITIVITY TO THE CENTER-TO-LIMB PROFILE

    International Nuclear Information System (INIS)

    Peck, C. L.; Rast, M. P.

    2015-01-01

    Solar irradiance variations over solar rotational timescales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle timescales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solar Photometric Telescope at the Mauna Loa Solar Observatory, we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuum contrast trends, either agreeing with previous results and showing negative correlation with solar cycle or disagreeing and showing positive correlation with solar cycle. Changes in the center-to-limb profile shape over the solar cycle are responsible for the contradictory contrast results, and we demonstrate that the lowest contrast structures, internetwork and network, are most sensitive to these. Thus the strengths of the full-disk, internetwork, and network photometric trends depend critically on the magnetic flux density used in the quiet-Sun definition. We conclude that the contributions of low contrast magnetic structures to variations in the solar continuum output, particularly to long-term variations, are difficult, if not impossible, to determine without the use of radiometric imaging

  6. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  7. The structure of the big magnetic storms

    International Nuclear Information System (INIS)

    Mihajlivich, J. Spomenko; Chop, Rudi; Palangio, Paolo

    2010-01-01

    The records of geomagnetic activity during Solar Cycles 22 and 23 (which occurred from 1986 to 2006) indicate several extremely intensive A-class geomagnetic storms. These were storms classified in the category of the Big Magnetic Storms. In a year of maximum solar activity during Solar Cycle 23, or more precisely, during a phase designated as a post-maximum phase in solar activity (PPM - Phase Post maximum), near the autumn equinox, on 29, October 2003, an extremely strong and intensive magnetic storm was recorded. In the first half of November 2004 (7, November 2004) an intensive magnetic storm was recorded (the Class Big Magnetic Storm). The level of geomagnetic field variations which were recorded for the selected Big Magnetic Storms, was ΔD st=350 nT. For the Big Magnetic Storms the indicated three-hour interval indices geomagnetic activity was Kp = 9. This study presents the spectral composition of the Di - variations which were recorded during magnetic storms in October 2003 and November 2004. (Author)

  8. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  9. Annual reconstruction of the solar cycle from atmospheric 14C variations

    International Nuclear Information System (INIS)

    Murphy, J.O.

    1990-01-01

    Initially, the rise and fall components of the 11-year solar sunspot cycle are approximated by separate least-squares polynomials for four cycle classifications, which are determined by the magnitude of the average of the annual sunspot numbers per cycle. Following a method is formulated to generate detailed reconstruction of the annual variation of a solar cycle based on this cycle average, and the results obtained for cycles -4 through to 21 are compared with the annual Zurich values. This procedure is then employed to establish annual sunspot numbers using published average cycle values obtained from atmospheric carbon 14 variations, which have been derived from the chemical analysis of tree ring sections. The reconstructed sequences are correlated with the observed cycle values and with tree ring width index chronologies which exhibit a significant 11-year periodicity. It is anticipated that the long carbon 14 records and parallel dendrochronological data could be employed to obtain a more detailed portrayal of previous periods of strong solar activity than that given by current estimates based on historical records. 17 refs., 2 tabs., 9 figs

  10. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  11. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  12. Stereo and Solar Cycle 24

    Science.gov (United States)

    Kaise,r Michael L.

    2008-01-01

    The twin STEREO spacecrafi, launched in October 2006, are in heliocentric orbits near 4 AU with one spacecraft (Ahead) leading Earth in its orbit around the Sun and the other (Behind) trailing Earth. As viewed from the Sun, the STEREO spacecraft are continually separating from one another at about 45 degrees per year with Earth biseding the angle. At present, th@spaser=raft are a bit more than 45 degrees apart, thus they are able to each 'vie@ ground the limb's of the Sun by about 23 degrees, corresponding to about 1.75 days of solar rotation. Both spameraft contain an identical set of instruments including an extreme ultraviolet imager, two white light coronagraphs, tws all-sky imagers, a wide selection of energetic particle detectors, a magnetometer and a radio burst tracker. A snapshot of the real time data is continually broadcast to NOW-managed ground stations and this small stream of data is immediately sent to the STEREO Science Center and converted into useful space weather data within 5 minutes of ground receipt. The resulting images, particle, magnetometer and radio astronomy plots are available at j g i t , : gAs timqe conting ues ijnto . g solar cycle 24, the separation angle becomes 90 degrees in early 2009 and 180 degrees in early 201 1 as the activity heads toward maximum. By the time of solar maximum, STEREO will provide for the first time a view of the entire Sun with the mronagraphs and e*reme ultraviolet instruments. This view wilt allow us to follow the evolution of active regions continuously and also detect new active regions long before they pose a space weather threat to Earth. The in situ instruments will be able to provide about 7 days advanced notice of co-rotating structures in the solar wind. During this same intewal near solar maximum, the wide-angle imagers on STEREB will both be ;able to view EarlCP-dirsted CMEs in their plane-oPsky. When combined with Eat-lhorbiting assets available at that time, it seems solar cycle 24 will mark a

  13. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    Science.gov (United States)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise; Hudson, Hugh S.; Nagashima, Kaori

    2017-08-01

    Strong flares and CMEs are often produced from active regions (ARs). In order to better understand the magnetic properties and evolutions of such ARs, we conducted statistical investigations on the SDO/HMI and AIA data of all flare events with GOES levels >M5.0 within 45 deg from the disk center for 6 years from May 2010 (from the beginning to the declining phase of solar cycle 24). Out of the total of 51 flares from 29 ARs, more than 80% have delta-sunspots and about 15% violate Hale’s polarity rule. We obtained several key findings including (1) the flare duration is linearly proportional to the separation of the flare ribbons (i.e., scale of reconnecting magnetic fields) and (2) CME-eruptive events have smaller sunspot areas. Depending on the magnetic properties, flaring ARs can be categorized into several groups, such as spot-spot, in which a highly-sheared polarity inversion line is formed between two large sunspots, and spot-satellite, where a newly-emerging flux next to a mature sunspot triggers a compact flare event. These results point to the possibility that magnetic structures of the ARs determine the characteristics of flares and CMEs. In the presentation, we will also show new results from the systematic flux emergence simulations of delta-sunspot formation and discuss the evolution processes of flaring ARs.

  14. Geometry of the solar wind transition region during the 11-year solar cycle

    International Nuclear Information System (INIS)

    Lotova, N.A.; Blums, D.F.

    1986-01-01

    Geometry of the solar wind transition region and its dynamics during the 11-year solar cycle is investigated. It is shown that the space geometry of the transition region suffers considerable changes. In the years of minimum of solar activity (1975-1977) the transition region has a form close to elliptical, shifts nearer to the Sun, while its width decreases. During the years of maximum of Solar activity (1979-1981) the form of the transition region becomes close to spherically symmetric, is located further from the Sun and its width is increased

  15. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  16. Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: comparisons with Sq field in other longitude sectors

    Science.gov (United States)

    Pham Thi Thu, H.; Amory-Mazaudier, C.; Le Huy, M.

    2011-01-01

    Quiet days variations in the Earth's magnetic field (the Sq current system) are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq), during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E). Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74). This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79) and San Juan in the American sector (~0.03, geographic latitude ~18.38). At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: - The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. - In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger than the afternoon

  17. Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: comparisons with Sq field in other longitude sectors

    Directory of Open Access Journals (Sweden)

    H. Pham Thi Thu

    2011-01-01

    Full Text Available Quiet days variations in the Earth's magnetic field (the Sq current system are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq, during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E. Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74. This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79 and San Juan in the American sector (~0.03, geographic latitude ~18.38. At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: – The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. – In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger

  18. MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Wolfson, Richard; Drake, Christina; Kennedy, Max

    2012-01-01

    The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s –1 . Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface—suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

  19. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles

    International Nuclear Information System (INIS)

    Henchoz, Samuel; Buchter, Florian; Favrat, Daniel; Morandin, Matteo; Mercangöz, Mehmet

    2012-01-01

    Large scale energy storage may play an increasingly important role in the power generation and distribution sector, especially when large shares of renewable energies will have to be integrated into the electrical grid. Pumped-hydro is the only large scale storage technology that has been widely used. However the spread of this technology is limited by geographic constraints. In the present work, a particular implementation of a storage concept based on thermodynamic cycles, invented by ABB Switzerland ltd. Corporate Research, has been analysed thermoeconomically. A variant using solar thermal collectors is presented. It benefits from the synergy between daily variations in solar irradiance and in electricity demand. This results in an effective increase of the electric energy storage efficiency. A steady state multi-objective optimization of a 50 MW plant was done; minimizing the investment costs and maximizing the energy storage efficiency. Several types of cold storage substances have been implemented in the formulation and two different types of solar collector were investigated. A storage efficiency of 57% at a cost of 1200 USD/kW was calculated for an optimized plant using solar energy. Finally, a computation of the behaviour of the plant along the year showed a yearly availability of 84.4%. -- Highlights: ► A variant of electric energy storage based on thermodynamic cycles is presented. ► It uses solar collectors to improve the energy storage efficiency. ► An optimization minimizing capital cost and maximizing energy storage efficiency, was carried out. ► Capital costs lie between 982 and 3192 USD/kW and efficiency between 43.8% and 84.4%.

  20. Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2012-01-01

    Full Text Available We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar during three solar cycles (from cycle 20 to cycle 22, that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz. The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.

  1. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    Science.gov (United States)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  2. Statistical Analysis of Solar Events Associated with SSC over Year of Solar Maximum during Cycle 23: 1. Identification of Related Sun-Earth Events

    Science.gov (United States)

    Grison, B.; Bocchialini, K.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of herafter detailed criteria (velocities, drag coefficient, radio waves, polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The categorization of the events at L1 is made on published catalogues. For each potential CME/L1 event association we compare the velocity observed at L1 with the one observed at the Sun and the estimated balistic velocity. Observations of radio emissions (Type II, Type IV detected from the ground and /or by WIND) associated to the CMEs make the solar source more probable. We also compare the polarity of the magnetic clouds with the hemisphere of the solar source. The drag coefficient (estimated with the drag-based model) is calculated for each potential association and it is compared to the expected range values. We identified a solar source for 26 SSC related events. 12 of these 26 associations match all criteria. We finally discuss the difficulty to perform such associations.

  3. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    Science.gov (United States)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  4. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisa; Lopes, Ilidio, E-mail: ilidio.lopes@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-09-20

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  5. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    International Nuclear Information System (INIS)

    Cardoso, Elisa; Lopes, Ilídio

    2012-01-01

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  6. Construction of Solar-Wind-Like Magnetic Fields

    Science.gov (United States)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  7. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  8. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  9. The Influence of Solar Activity on the Rainfall over India: Cycle-to ...

    Indian Academy of Sciences (India)

    The Influence of Solar Activity on the Rainfall over India: Cycle-to-Cycle Variations. K. M. Hiremath. Indian Institute of Astrophysics, Bangalore 560 034, India. e-mail: hiremath@iiap.res.in. Abstract. We use 130 years data for studying correlative effects due to solar cycle and activity phenomena on the occurrence of rainfall ...

  10. Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4

    Science.gov (United States)

    Peck, E. D.; Randall, C. E.; Harvey, V. L.; Marsh, D. R.

    2015-06-01

    The Whole Atmosphere Community Climate Model version 4 (WACCM4) is used to quantify solar cycle impacts, including both irradiance and particle precipitation, on the middle atmosphere. Results are compared to previous work using WACCM version 3 (WACCM3) to estimate the sensitivity of simulated solar cycle effects to model modifications. The residual circulation in WACCM4 is stronger than in WACCM3, leading to larger solar cycle effects from energetic particle precipitation; this impacts polar stratospheric odd nitrogen and ozone, as well as polar mesospheric temperatures. The cold pole problem, which is present in both versions, is exacerbated in WACCM4, leading to more ozone loss in the Antarctic stratosphere. Relative to WACCM3, a westerly shift in the WACCM4 zonal winds in the tropical stratosphere and mesosphere, and a strengthening and poleward shift of the Antarctic polar night jet, are attributed to inclusion of the QBO and changes in the gravity wave parameterization in WACCM4. Solar cycle effects in WACCM3 and WACCM4 are qualitatively similar. However, the EPP-induced increase from solar minimum to solar maximum in polar stratospheric NOy is about twice as large in WACCM4 as in WACCM3; correspondingly, maximum increases in polar O3 loss from solar min to solar max are more than twice as large in WACCM4. This does not cause large differences in the WACCM3 versus WACCM4 solar cycle responses in temperature and wind. Overall, these results provide a framework for future studies using WACCM to analyze the impacts of the solar cycle on the middle atmosphere.

  11. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  12. Distinct Pattern of Solar Modulation of Galactic Cosmic Rays above a High Geomagnetic Cutoff Rigidity

    Science.gov (United States)

    Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin

    2018-05-01

    Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.

  13. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  14. Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping

    International Nuclear Information System (INIS)

    Wang Jialong; Zong Weiguo; Le Guiming; Zhao Haijuan; Tang Yunqiu; Zhang Yang

    2009-01-01

    We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle. Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2 ± 7.5 to appear during the period from May to October 2012. (letters)

  15. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  16. Neutrino transition magnetic moments and the solar magnetic field on the light of the Kamland evidence

    CERN Document Server

    Antonelli, V; Picariello, M; Pulido, J; Torrente-Lujan, E

    2003-01-01

    We present here a recopilation of recent results about the possibility of detecting solar electron antineutrinos produced by solar core and convective magnetic fields. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. Using the recent Kamland results and assuming a concrete model for antineutrino production by spin-flavor precession in the convective zone based on chaotic magnetic fields,we obtain bounds on the flux of solar antineutrinos, on the average conversion neutrino-antineutrino probability and on intrinsic neutrino magnetic moment. In the most conservative case, $\\mu\\lsim 2.5\\times 10^{-11} \\mu_B$ (95% CL). When studying the effects of a core magnetic field, we find in the weak limit a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar ele...

  17. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  18. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  19. Weaving the history of the solar wind with magnetic field lines

    Science.gov (United States)

    Alvarado Gomez, Julian

    2017-08-01

    Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.

  20. Quiet-time 0.04 - 2 MeV/nucleon Ions at 1 AU in Solar Cycles 23 and 24

    Science.gov (United States)

    Zeldovich, M. A.; Logachev, Y. I.; Kecskeméty, K.

    2018-01-01

    The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about 0.04 - 2 MeV/nucleon) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the {˜} 80 - 320 keV/nucleon Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.

  1. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  2. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    Science.gov (United States)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  3. Study of Ionospheric Indexes T and MF2 related to R12 for Solar Cycles 19-21

    Science.gov (United States)

    Villanueva, Lucia

    2013-04-01

    Modern worldwide communications are mainly based on satellite systems, remote communication networks, and advanced technologies. The most important space weather "meteorological" events produce negative effects on signal transmissions. Magnetic storm conditions that follow coronal mass ejections are particularly of great importance for radio communication at HF frequencies (3-30 MHz range), because the Ionization increase (or decrease), significantly over (or below), the Average Values. Nowadays new technologies make possible to establish Geophysical Observatories and monitor the sun almost in real time giving information about geomagnetic indices. Space Weather programs have interesting software predictions of foF2 producing maps and plots, every some minutes. The Average Values of the ionospheric parameters mainly depend on the position, hour, season and the phase of the 11-year cycle of the solar activity. Around 1990´s several ionospheric indexes were suggested to better predict the state of the foF2 monthly media, as: IF2, G, T and MF2, based on foF2 data from different latitude ionospheric observatories. They really show better seasonal changes than monthly solar indexes of solar flux F10.7 or the international sunspot numbers Ri. The main purpose of this paper is to present an analogic model for the ionospheric index MF2, to establish the average long term predictions of this index. Changes of phase from one cycle to the other of one component of the model is found to fit the data. The usefulness of this model could be the prediction of the ionospheric normal conditions for one entire solar cycle having just the prediction of the maximum of the next smooth sunspot number R12. In this presentation, comparisons of the Australian T index and and the Mikhailov MF2 index show an hysteresis variation with the solar monthly index Ri, such dependence is quite well represented by a polynomial fit of degree 6 for rising and decaying fases for solar cycles 19, 20 and

  4. The far-side solar magnetic index

    International Nuclear Information System (INIS)

    Hernandez, Irene Gonzalez; Jain, Kiran; Hill, Frank; Tobiska, W Kent

    2011-01-01

    Several magnetic indices are used to model the solar irradiance and ultimately to forecast it. However, the observation of such indices are generally limited to the Earth-facing hemisphere of the Sun. Seismic maps of the far side of the Sun have proven their capability to locate and track medium-large active regions at the non-visible hemisphere. We present here the possibility of using the average signal from these seismic far-side maps as a proxy to the non-visible solar activity which can complement the current front-side solar activity indices.

  5. The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)

    Science.gov (United States)

    Ni, Y. Y.

    2018-03-01

    We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.

  6. Solar cycle in current reanalyses: (non)linear attribution study

    Science.gov (United States)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2014-12-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.

  7. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    Science.gov (United States)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  8. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  9. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Ding, Liuguan; Jiang, Yong; Zhao, Lulu; Li, Gang

    2013-01-01

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon –1 exceed 10 pfu, we categorize fast CMEs with speed >900 km s –1 and width >60° from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon –1 . Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon –1 . For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  10. DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui, E-mail: zhangqh@mail.ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China)

    2016-07-10

    2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.

  11. DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES

    International Nuclear Information System (INIS)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui

    2016-01-01

    2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.

  12. AN ANOMALOUS COMPOSITION IN SLOW SOLAR WIND AS A SIGNATURE OF MAGNETIC RECONNECTION IN ITS SOURCE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M., E-mail: lzh@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  13. An Alternative Interpretation of the Relationship between the Inferred Open Solar Flux and the Interplanetary Magnetic Field

    Science.gov (United States)

    Riley, Pete

    2007-01-01

    Photospheric observations at the Wilcox Solar Observatory (WSO) represent an uninterrupted data set of 32 years and are therefore unique for modeling variations in the magnetic structure of the corona and inner heliosphere over three solar cycles. For many years, modelers have applied a latitudinal correction factor to these data, believing that it provided a better estimate of the line-of-sight magnetic field. Its application was defended by arguing that the computed open flux matched observations of the interplanetary magnetic field (IMF) significantly better than the original WSO correction factor. However, no physically based argument could be made for its use. In this Letter we explore the implications of using the constant correction factor on the value and variation of the computed open solar flux and its relationship to the measured IMF. We find that it does not match the measured IMF at 1 AU except at and surrounding solar minimum. However, we argue that interplanetary coronal mass ejections (ICMEs) may provide sufficient additional magnetic flux to the extent that a remarkably good match is found between the sum of the computed open flux and inferred ICME flux and the measured flux at 1 AU. If further substantiated, the implications of this interpretation may be significant, including a better understanding of the structure and strength of the coronal field and I N providing constraints for theories of field line transport in the corona, the modulation of galactic cosmic rays, and even possibly terrestrial climate effects.

  14. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  15. Multiple recycling of NdFeB-type sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakotnik, M. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: miha.zakotnik@gmail.com; Harris, I.R.; Williams, A.J. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-05

    Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density and in the magnetic properties. The chemical analysis indicated that this was due to the progressive oxidation of the Nd-rich material and to some Nd loss by evaporation. The procedure was then repeated but with the addition (blending) of a fine powder of neodymium hydride after the first cycle. It was found that the addition of 1 at.% of neodymium at each stage was sufficient to maintain the density and the magnetic properties of the recycled magnets up to and including the 4th cycle. Inductively coupled plasma (ICP) and metallographic analysis indicated that the neodymium hydride additions compensated for the neodymium loss due to evaporation and to oxidation so that the proportion of Nd-rich material remained approximately constant. The additional amount of Nd{sub 2}O{sub 3} in the blended recycled magnets appeared to inhibit grain growth on the 3rd and 4th cycles when compared to that of the unblended magnets. The next challenge is to see if the process can be scaled-up to an industrial scale.

  16. Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere

    Science.gov (United States)

    Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.

    2017-12-01

    Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.

  17. Modelling the solar magnetism: from its internal origin to its manifestations at the surface

    International Nuclear Information System (INIS)

    Jouve, Laurene

    2008-01-01

    This thesis is part of the general study of dynamical processes involved in stars such as convection, rotation or magnetic fields and of their nonlinear interactions. The results of numerical simulations using the 2D finite element code STELEM and the pseudo-spectral 3D code ASH are presented. The first part of this work focuses on the global modeling of the solar dynamo. Through 2D simulations using mean-field theory, I studied the influence of a complex profile of meridional flow in Babcock-Leighton models. We show that there may be doubts about the ability of such models to reproduce the main characteristics of the solar cycle. In order to better constrain the effects of solar variability on the Earth climate, we present a first application in solar physics of sophisticated prediction methods which are used in meteorology. I also computed the first 3D MHD simulations in spherical geometry of a key step in the solar dynamo: the nonlinear evolution of magnetic structures from the base of the convection zone up to the surface where they produce active regions. Weak fields are likely to be modulated by convective motions, thus creating favored longitudes of emergence. If these structures are sufficiently arched, the orientation of bipolar spots corresponds to Joy's law. The introduction of an atmosphere in these models is a step towards a 3D global vision of our Sun. (author) [fr

  18. Numerical simulations of sheared magnetic lines at the solar null line

    Science.gov (United States)

    Kuźma, B.; Murawski, K.; Solov'ev, A.

    2015-05-01

    Aims: We perform numerical simulations of sheared magnetic lines at the magnetic null line configuration of two magnetic arcades that are settled in a gravitationally stratified and magnetically confined solar corona. Methods: We developed a general analytical model of a 2.5D solar atmospheric structure. As a particular application of this model, we adopted it for the curved magnetic field lines with an inverted Y shape that compose the null line above two magnetic arcades, which are embedded in the solar atmosphere that is specified by the realistic temperature distribution. The physical system is described by 2.5D magnetohydrodynamic equations that are numerically solved by the FLASH code. Results: The magnetic field line shearing, implemented about 200 km below the transition region, results in Alfvén and magnetoacoustic waves that are able to penetrate solar coronal regions above the magnetic null line. As a result of the coupling of these waves, partial reflection from the transition region and scattering from inhomogeneous regions the Alfvén waves experience fast attenuation on time scales comparable to their wave periods, and the physical system relaxes in time. The attenuation time grows with the large amplitude and characteristic growing time of the shearing. Conclusions: By having chosen a different magnetic flux function, the analytical model we devised can be adopted to derive equilibrium conditions for a diversity of 2.5D magnetic structures in the solar atmosphere. Movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  19. Rapid thermal cycling of new technology solar array blanket coupons

    Science.gov (United States)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  20. Proterozoic Milankovitch cycles and the history of the solar system.

    Science.gov (United States)

    Meyers, Stephen R; Malinverno, Alberto

    2018-06-19

    The geologic record of Milankovitch climate cycles provides a rich conceptual and temporal framework for evaluating Earth system evolution, bestowing a sharp lens through which to view our planet's history. However, the utility of these cycles for constraining the early Earth system is hindered by seemingly insurmountable uncertainties in our knowledge of solar system behavior (including Earth-Moon history), and poor temporal control for validation of cycle periods (e.g., from radioisotopic dates). Here we address these problems using a Bayesian inversion approach to quantitatively link astronomical theory with geologic observation, allowing a reconstruction of Proterozoic astronomical cycles, fundamental frequencies of the solar system, the precession constant, and the underlying geologic timescale, directly from stratigraphic data. Application of the approach to 1.4-billion-year-old rhythmites indicates a precession constant of 85.79 ± 2.72 arcsec/year (2σ), an Earth-Moon distance of 340,900 ± 2,600 km (2σ), and length of day of 18.68 ± 0.25 hours (2σ), with dominant climatic precession cycles of ∼14 ky and eccentricity cycles of ∼131 ky. The results confirm reduced tidal dissipation in the Proterozoic. A complementary analysis of Eocene rhythmites (∼55 Ma) illustrates how the approach offers a means to map out ancient solar system behavior and Earth-Moon history using the geologic archive. The method also provides robust quantitative uncertainties on the eccentricity and climatic precession periods, and derived astronomical timescales. As a consequence, the temporal resolution of ancient Earth system processes is enhanced, and our knowledge of early solar system dynamics is greatly improved.

  1. The use of solar faculae in studies of the sunspot cycle

    International Nuclear Information System (INIS)

    Brown, G.M.; Evans, R.

    1980-01-01

    Comparison of the long-term variation of photospheric faculae areas with that of sunspots shows that studies of faculae provide both complementary and supplementary information on the behaviour of the solar cycle. Detailed studies of the development of sunspots with respect to faculae show that there is a high degree of order over much of a given cycle, but marked differences from cycle to cycle. Within a cycle the relationship between spot and faculae areas appears to be similar for the N and S solar hemispheres, and over the early stages of a cycle it is directly related to the magnitude of the maximum sunspot number subsequently attained in that cycle. This result may well have predictive applications, and formulae are given relating the peak sunspot number to simple parameters derived from this early developmental stage. Full application to the current cycle 21 is denied due to the cessation of the Greenwich daily photoheliographic measurements, but use of the cruder weekly data suggests a maximum smoothed sunspot number of 150 +- 22. The effects of the incompatibility of the spot and faculae data, in that faculae are unobservable over a large fraction of the solar disc and also do not always develop associated spots, have been examined in a detailed study of two cycles and shown not to vitiate the results. (orig.)

  2. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    Science.gov (United States)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  3. Sub-solar Magnetopause Observation and Simulation of a Tripolar Guide-Magnetic Field Perturbation

    Science.gov (United States)

    Eriksson, S.; Cassak, P.; Retino, A.; Mozer, F.

    2015-12-01

    The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 at a rather symmetric sub-solar magnetopause that displayed different out-of-plane signatures for similar solar wind conditions. The first case was reported by Mozer et al. [2002] and displayed a bipolar guide field supporting a quadrupole Hall field consistent with a single X-line. The second case, however, shows the first known example of a tripolar guide-field perturbation at Earth's magnetopause reminiscent of the types of solar wind exhausts that Eriksson et al. [2014; 2015] have reported to be in agreement with multiple X-lines. A dedicated particle-in-cell simulation is performed for the prevailing conditions across the magnetopause. We propose an explanation in terms of asymmetric Hall magnetic fields due to a presence of a magnetic island between two X-lines, and discuss how higher resolution MMS observations can be used to further study this problem at the magnetopause.

  4. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  5. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  6. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett; Forgács-Dajka, Emese [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2015-06-20

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  7. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    International Nuclear Information System (INIS)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi

    2015-01-01

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed

  8. Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1982-02-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated

  9. Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects

    Science.gov (United States)

    Bocchialini, K.; Grison, B.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Régnier, S.; Zouganelis, I.

    2018-05-01

    Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l'Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km s-1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric-hectometric wavelengths is a very useful criterion for the CME-SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR

  10. Hilbert-Huang transform analysis of long-term solar magnetic activity

    Science.gov (United States)

    Deng, Linhua

    2018-04-01

    Astronomical time series analysis is one of the hottest and most important problems, and becomes the suitable way to deal with the underlying dynamical behavior of the considered nonlinear systems. The quasi-periodic analysis of solar magnetic activity has been carried out by various authors during the past fifty years. In this work, the novel Hilbert-Huang transform approach is applied to investigate the yearly numbers of polar faculae in the time interval from 1705 to 1999. The detected periodicities can be allocated to three components: the first one is the short-term variations with periods smaller than 11 years, the second one is the mid- term variations with classical periods from 11 years to 50 years, and the last one is the long-term variations with periods larger than 50 years. The analysis results improve our knowledge on the quasi-periodic variations of solar magnetic activity and could be provided valuable constraints for solar dynamo theory. Furthermore, our analysis results could be useful for understanding the long-term variations of solar magnetic activity, providing crucial information to describe and forecast solar magnetic activity indicators.

  11. The onset of the solar active cycle 22

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1989-01-01

    There is a great deal of interest in being able to predict the main characteristics of a solar activity cycle (SAC). One would like to know, for instance, how large the amplitude (R sub m) of a cycle is likely to be, i.e., the annual mean of the sunspot numbers at the maximum of SAC. Also, how long a cycle is likely to last, i.e., its period. It would also be interesting to be able to predict the details, like how steep the ascending phase of a cycle is likely to be. Questions like these are of practical importance to NASA in planning the launch schedule for the low altitude, expensive spacecrafts like the Hubble Space Telescope, the Space Station, etc. Also, one has to choose a proper orbit, so that once launched the threat of an atmospheric drag on the spacecraft is properly taken into account. Cosmic ray data seem to indicate that solar activity cycle 22 will surpass SAC 21 in activity. The value of R sub m for SAC 22 may approach that of SAC 19. It would be interesting to see whether this prediction is borne out. Researchers are greatly encouraged to proceed with the development of a comprehensive prediction model which includes information provided by cosmic ray data

  12. The onset of the solar active cycle 22

    Science.gov (United States)

    Ahluwalia, H. S.

    1989-01-01

    There is a great deal of interest in being able to predict the main characteristics of a solar activity cycle (SAC). One would like to know, for instance, how large the amplitude (R sub m) of a cycle is likely to be, i.e., the annual mean of the sunspot numbers at the maximum of SAC. Also, how long a cycle is likely to last, i.e., its period. It would also be interesting to be able to predict the details, like how steep the ascending phase of a cycle is likely to be. Questions like these are of practical importance to NASA in planning the launch schedule for the low altitude, expensive spacecrafts like the Hubble Space Telescope, the Space Station, etc. Also, one has to choose a proper orbit, so that once launched the threat of an atmospheric drag on the spacecraft is properly taken into account. Cosmic ray data seem to indicate that solar activity cycle 22 will surpass SAC 21 in activity. The value of R sub m for SAC 22 may approach that of SAC 19. It would be interesting to see whether this prediction is borne out. Researchers are greatly encouraged to proceed with the development of a comprehensive prediction model which includes information provided by cosmic ray data.

  13. Frequency-domain analysis of resonant-type ring magnet power supplies

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Reiniger, K.W.

    1993-01-01

    For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results

  14. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  15. INERTIAL RANGE TURBULENCE OF FAST AND SLOW SOLAR WIND AT 0.72 AU AND SOLAR MINIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, Eliza; Echim, Marius; Munteanu, Costel [Institute for Space Sciences, Măgurele (Romania); Zhang, Tielong [Space Research Institute, Graz (Austria); Bruno, Roberto [INAF-IAPS, Istituto di Astrofizica e Planetologia Spaziali, Rome (Italy); Kovacs, Peter, E-mail: eliteo@spacescience.ro [Geological and Geophysical Institute of Hungary, Budapest (Hungary)

    2015-05-10

    We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s{sup −1}. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005–0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is −1.60 for fast solar wind and −1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.

  16. NONLINEAR PREDICTION OF SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Kilcik, A.; Anderson, C. N. K.; Ye, H.; Sugihara, G.; Rozelot, J. P.; Ozguc, A.

    2009-01-01

    Sunspot activity is highly variable and challenging to forecast. Yet forecasts are important, since peak activity has profound effects on major geophysical phenomena including space weather (satellite drag, telecommunications outages) and has even been correlated speculatively with changes in global weather patterns. This paper investigates trends in sunspot activity, using new techniques for decadal-scale prediction of the present solar cycle (cycle 24). First, Hurst exponent H analysis is used to investigate the autocorrelation structure of the putative dynamics; then the Sugihara-May algorithm is used to predict the ascension time and the maximum intensity of the current sunspot cycle. Here we report H = 0.86 for the complete sunspot number data set (1700-2007) and H = 0.88 for the reliable sunspot data set (1848-2007). Using the Sugihara-May algorithm analysis, we forecast that cycle 24 will reach its maximum in 2012 December at approximately 87 sunspot units.

  17. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  18. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  19. Solar activity simulation and forecast with a flux-transport dynamo

    Science.gov (United States)

    Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.

    2018-06-01

    We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.

  20. SOLAR ERUPTION AND LOCAL MAGNETIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-11-10

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5–1.5) and high decay index (0.9–1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.

  1. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences......Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...

  2. SNO results and neutrino magnetic moment solution to the solar ...

    Indian Academy of Sciences (India)

    that the solar neutrino deficit is due to the interaction of neutrino transition magnetic moment with the solar magnetic ... Another new feature in the analysis is that for the global analysis, we have replaced the spectrum by its centroid. ... rise to mean potentials Va for neutrinos which are proportional to the number density of.

  3. Thermodynamic analysis of a novel integrated solar combined cycle

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Yang, Yongping

    2014-01-01

    Highlights: • A novel ISCC scheme with two-stage DSG fields has been proposed and analyzed. • HRSG and steam turbine working parameters have been optimized to match the solar integration. • New scheme exhibits higher solar shares in the power output and solar-to-electricity efficiency. • Thermodynamic performances between new and reference systems have been investigated and compared. - Abstract: Integrated solar combined cycle (ISCC) systems have become more and more popular due to their high fuel and solar energy utilization efficiencies. Conventional ISCC systems with direct steam generation (DSG) have only one-stage solar input. A novel ISCC with DSG system has been proposed and analyzed in this paper. The new system consists two-stage solar input, which would significantly increase solar share in the total power output. Moreover, how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies, which have been analyzed in the paper. It has been found that using solar heat to supply latent heat for vaporization of feedwater would be superior to that to be used for sensible heating purposes (e.g. Superheating steam). The study shows that: (1) producing both the high- and low-pressure saturated steam in the DSG trough collector could be an efficient way to improve process and system performance; (2) for a given live steam pressure, the optimum secondary and reheat steam conditions could be matched to reach the highest system thermal efficiency and net solar-to-electricity efficiency; (3) the net solar-to-electricity efficiency could reach up to 30% in the novel two-stage ISCC system, higher than that in the one-stage ISCC power plant; (4) compared with the conventional combined cycle gas turbine (CCGT) power system, lower stack temperature could be achieved, owing to the elimination of the approach-temperature-difference constraint, resulting in better thermal match in the heat recovery steam generator

  4. Frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Science.gov (United States)

    Salabert, D.; Régulo, C.; Pérez Hernández, F.; García, R. A.

    2018-04-01

    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence on radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 μHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main sequence solar-like stars, the F-star HD 49933, and the young 1 Gyr-old solar analog KIC 10644253, although with different amplitudes of the shifts of about 2 μHz and 0.5 μHz, respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l = 0 and l = 1 modes individually. Given the quality of the data, the results could indicate that a physical source of perturbation different from that in the Sun is dominating in this sample of solar-like stars.

  5. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Science.gov (United States)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  6. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production. These co...

  7. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  8. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  9. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  10. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  11. Magnetic dips in the solar wind

    International Nuclear Information System (INIS)

    Dobrowolny, M.; Bavassano, B.; Mariani, F.; Ness, N.; Burlaga, L.

    1978-09-01

    With the help of magnetic data from the HELIOS 1 fluxgate magnetometer, with a 0.2 sec resolution, the structures of several interplanetary discontinuities involving magnetic dips and rotations of the magnetic field vector were investigated. A minimum variance analysis illustrates the behavior of the magnetic field through the transition in the plane of its maximum variation. By means of this analysis, quite different structures have been individuated, in particular, narrow transitions resembling almost one-dimensional reconnected neutral sheets. For the thinner cases (scale lengths of the magnetic rotation of the order or smaller than 1,000 km), results show the observed structures could be the nonlinear effect of a resistive tearing mode instability having developed on an originally one-dimensional neutral sheet at the solar corona

  12. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  13. Relationships between the solar wind and the polar cap magnetic activity

    International Nuclear Information System (INIS)

    Berthelier, A.

    1981-01-01

    The influence of solar wind conditions on magnetic activity is described in order to delineate the differences in the response of the magnetic activity to the arrival on the magnetopause of different typical solar wind variations. By determining a new index of local magnetic activity free from seasonal and diurnal effects we put in evidence the dependence of the various effects upon the invariant latitude. Most important results are: (1) the main increase of the magnetic activity does not occur at the same invariant latitude for different interplanetary variations, e.g. peaks of Bz tend to increase magnetic activity mainly in the auroral zones while peaks of B correspond to a uniform increase in magnetic activity over the polar cap and auroral zone; (2) there is a two steps response of magnetic activity to the high speed plasma streams; (3) an increase of magnetic activity is observed for large and northward Bz, which probably indicates that the solar wind-magnetosphere coupling is efficient under these circumstances. The specific influences of the IMF polarity are also briefly reviewed. (orig.)

  14. The impact of solar flares and magnetic storms on humans

    Energy Technology Data Exchange (ETDEWEB)

    Joselyn, J.A. (NOAA, Space Environment Laboratory, Boulder, CO (United States))

    1992-03-01

    Three classes of solar emanations, namely, photon radiation from solar flares, solar energetic particles, and inhomogeneities in the solar wind that drive magnetic storms, are examined, and their effects on humans and technological systems are discussed. Solar flares may disrupt radio communications in the HF and VLF ranges. Energetic particles pose a special hazard at low-earth orbit and above, where they can penetrate barriers such as spacesuits and aluminum and destroy cells and solid state electronics. Energetic solar particles also influence terrestrial radio waves propagating through polar regions. Magnetic storms may disturb the operation of navigation instruments, power lines and pipelines, and satellites; they give rise to ionospheric storms which affect radio communication at all latitudes. There is also a growing body of evidence that changes in the geomagnetic field affect biological systems. 3 refs.

  15. The impact of solar flares and magnetic storms on humans

    International Nuclear Information System (INIS)

    Joselyn, J.A.

    1992-01-01

    Three classes of solar emanations, namely, photon radiation from solar flares, solar energetic particles, and inhomogeneities in the solar wind that drive magnetic storms, are examined, and their effects on humans and technological systems are discussed. Solar flares may disrupt radio communications in the HF and VLF ranges. Energetic particles pose a special hazard at low-earth orbit and above, where they can penetrate barriers such as spacesuits and aluminum and destroy cells and solid state electronics. Energetic solar particles also influence terrestrial radio waves propagating through polar regions. Magnetic storms may disturb the operation of navigation instruments, power lines and pipelines, and satellites; they give rise to ionospheric storms which affect radio communication at all latitudes. There is also a growing body of evidence that changes in the geomagnetic field affect biological systems. 3 refs

  16. Latitude dependence of the solar wind speed: Influence of the coronal magnetic field geometry

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1976-01-01

    The dependence of solar wind speed on latitude as influenced by the magnetic field configuration of the inner corona is studied. It is found that in general, a dipolelike field geometry characteristic of a minimum-type corona tends to produce a solar wind speed distribution which increases with heliographic latitude, in accordance with observations. At very high coronal base densities and temperatures, however, this effect is minimal or even inverted. Physically, the field affects the wind speed through its area divergence, a larger divergence resulting in correspondingly lower speeds. During solar minimum, eclipse photographs suggest that the field divergence increases from pole to equator, a characteristic not apparent during solar maximum. Hence we expect the latitudinal increase in speed to be most pronounced at the minimum phase of solar activity

  17. Solar Cycle Phase Dependence of Supergranular Fractal Dimension

    Indian Academy of Sciences (India)

    Solar Cycle Phase Dependence of Supergranular Fractal Dimension ... NIE Institute of Technology, Mysore, India. ... This means that each accepted article is being published immediately online with DOI and article citation ID with starting page ...

  18. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    Science.gov (United States)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III

  19. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  20. PREDICTION OF SOLAR FLARES USING UNIQUE SIGNATURES OF MAGNETIC FIELD IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Raboonik, Abbas; Safari, Hossein; Alipour, Nasibe [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of); Wheatland, Michael S., E-mail: raboonik@alumni.znu.ac.ir, E-mail: safari@znu.ac.ir [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-01-01

    Prediction of solar flares is an important task in solar physics. The occurrence of solar flares is highly dependent on the structure and topology of solar magnetic fields. A new method for predicting large (M- and X-class) flares is presented, which uses machine learning methods applied to the Zernike moments (ZM) of magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for a period of six years from 2010 June 2 to 2016 August 1. Magnetic field images consisting of the radial component of the magnetic field are converted to finite sets of ZMs and fed to the support vector machine classifier. ZMs have the capability to elicit unique features from any 2D image, which may allow more accurate classification. The results indicate whether an arbitrary active region has the potential to produce at least one large flare. We show that the majority of large flares can be predicted within 48 hr before their occurrence, with only 10 false negatives out of 385 flaring active region magnetograms and 21 false positives out of 179 non-flaring active region magnetograms. Our method may provide a useful tool for the prediction of solar flares, which can be employed alongside other forecasting methods.

  1. Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Hinteregger, H.E.

    1980-01-01

    Measurements of the solar flux in the Schumann-Runge continuum (1350-1750 A) by the Atmosphere Explorer satellites reveal a strong dependence on solar activity. Solar intensities over the rising phase of cycle 21, increase by more than a factor of two at the shorter wavelengths (1350 A), with a smaller change (approx.10%) at 1750 A. A significant 27 day variability is found to exist superimposed on the solar cycle variation. Because radiation in this portion of the spectum is important to the lower thermosphere in the photodissociation of 0 2 and the production of 0( 1 D), we use the unattenuated Schumann-Runge continuum dissociation frequency as a parameter to illustrate the magnitude and temporal characteristics of this variation. The values of this parameter, J/sub infinity/(0 2 )/sub SR/, range from 1.5 x 10 -6 s -1 for April 23, 1974, to 2.8 x 10 -6 s -1 for February 19, 1979. In studies of oxygen in the lower thermosphere, it is therefore necessary to use solar spectral intensities representative of the actual conditions for which the calculations are made. Both the J/sub infinity/(0 2 )/sub SR/ parameter and the solar flux at various wavelengths over the 1350 to 1750 A range can be expressed in terms of the F10.7 index to a reasonable approximation

  2. Helioseismic inferences of the solar cycles 23 and 24: GOLF and VIRGO observations

    Science.gov (United States)

    Salabert, D.; García, R. A.; Jiménez, A.

    2014-12-01

    The Sun-as-a star helioseismic spectrophotometer GOLF and photometer VIRGO instruments onboard the SoHO spacecraft are collecting high-quality, continuous data since April 1996. We analyze here these unique datasets in order to investigate the peculiar and weak on-going solar cycle 24. As this cycle 24 is reaching its maximum, we compare its rising phase with the rising phase of the previous solar cycle 23.

  3. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  4. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  5. What can four solar neutrino experiments tell us about the magnetic moment solution to the solar neutrino problem?

    International Nuclear Information System (INIS)

    Pulido, J.

    1993-01-01

    The results reported by the four solar neutrino experiments (Homestake, Kamiokande, SAGE, Gallex) are analyzed from the point of view of the magnetic moment solution to the solar neutrino problem. The neutrino deficit reported by the gallium experiments (SAGE, Gallex) is apparently not as large as the one reported by Homestake and Kamiokande, a phenomenon suggesting a greater suppression in the large energy solar neutrino sector but also consistent with a uniform suppression for all neutrinos. Both uniform and nonuniform suppressions are examined for three different variants of the solar magnetic field and the possible parameter ranges for Δ 2 m 21 and μ ν are investigated. Massless neutrinos are not excluded and in all cases Δ 2 m 21 -5 eV 2 . The anticorrelation of the neutrino flux with sunspot activity is possible in any of the experiments but is in no way implied by a sizable magnetic moment and magnetic field

  6. Solar cycle length hypothesis appears to support the IPCC on global warming

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1999-01-01

    warming from the enhanced concentrations of greenhouse gases. The "solar hypothesis" claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier paper we have demonstrated that for data covering...... lengths with the "corrected" temperature anomalies is substantially better than with the historical anomalies. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.......Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of Northern Hemisphere land air temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global...

  7. Solar Energetic Particle Composition over Two Solar Cycles as Observed by the Ulysses/HISCALE and ACE/EPAM Pulse Height Analyzers.

    Science.gov (United States)

    Patterson, J. D.; Madanian, H.; Manweiler, J. W.; Lanzerotti, L. J.

    2017-12-01

    We present the compositional variation in the Solar Energetic Particle (SEP) population in the inner heliosphere over two solar cycles using data from the Ulysses Heliospheric Instrument for Spectra, Composition, and Anisotropy at Low Energies (HISCALE) and Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM). The Ulysses mission was active from late 1990 to mid-2009 in a heliopolar orbit inclined by 80° with a perihelion of 1.3 AU and an aphelion of 5.4 AU. The ACE mission has been active since its launch in late 1997 and is in a halo orbit about L1. These two missions provide a total of 27 years of continuous observation in the inner heliosphere with twelve years of simultaneous observation. HISCALE and EPAM data provide species-resolved differential flux and density of SEP between 0.5-5 MeV/nuc. Several ion species (He, C, O, Ne, Si, Fe) are identified using the Pulse Height Analyzer (PHA) system of the Composition Aperture for both instruments. The He density shows a noticeable increase at high solar activity followed by a moderate drop at the quiet time of the solar minimum between cycles 23 and 24. The density of heavier ions (i.e. O and Fe) change minimally with respect to the F10.7 index variations however, certain energy-specific count rates decrease during solar minimum. With Ulysses and ACE observing in different regions of the inner heliosphere, there are significant latitudinal differences in how the O/He ratios vary with the solar cycle. At solar minimum, there is reasonable agreement between the observations from both instruments. At solar max 23, the differences in composition over the course of the solar cycle, and as observed at different heliospheric locations can provide insight to the origins of and acceleration processes differentially affecting solar energetic ions.

  8. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  9. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  10. More than a solar cycle of synoptic solar and coronal data - a video presentation

    International Nuclear Information System (INIS)

    Hoeksema, J.T.; Scherrer, P.H.; Herant, M.; Title, A.M.

    1988-01-01

    Color video movies of synoptic observations of the sun and corona can now be created. Individual analog frames on laser disks can be referenced digitally and played back at any speed. We have brought together photospheric magnetic field data from the Wilcox Solar Observatory at Stanford and the National Solar Observatory, model computations of the coronal magnetic field, and coronal data from the Sacramento Peak coronagraph and the Mauna Loa K-coronameter and made a series of movies presenting the data sets individually and in comparison with one another. This paper presents a description of each of the data sets and movies developed thus far and briefly outlines some of the more interesting and obvious features observed when viewing the movies

  11. The interplanetary magnetic field observed by Juno enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-06-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  12. The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-01-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  13. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  14. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    Science.gov (United States)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  15. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  16. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  17. MAGNETIC PROPERTIES OF SOLAR ACTIVE REGIONS THAT GOVERN LARGE SOLAR FLARES AND ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Toriumi, Shin [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Schrijver, Carolus J. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Harra, Louise K. [UCL-Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Hudson, Hugh [SUPA School of Physics and Astronomy, University of Glasgow (United Kingdom); Nagashima, Kaori, E-mail: shin.toriumi@nao.ac.jp [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory . More than 80% of the 29 ARs are found to exhibit δ -sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ -sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 10{sup 23} Mx, might be able to produce “superflares” with energies of the order of 10{sup 34} erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  18. Recurring coronal holes and their rotation rates during the solar cycles 22-24

    Science.gov (United States)

    Prabhu, K.; Ravindra, B.; Hegde, Manjunath; Doddamani, Vijayakumar H.

    2018-05-01

    Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between ± 20° latitudes. In this period, more number of recurring coronal holes appeared in and around 100° and 200° Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area <10^{21} cm2 appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between ± 60° latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.

  19. Solar Cycle in the Heliosphere and Cosmic Rays

    Science.gov (United States)

    2014-10-23

    at the source surface at 2.5 solar radii around the Sun. OMF shows a great variability both in solar cycle and on the centennial scale (see Fig. 3...It is important to note that the centennial variability is great (Lockwood et al. 1999; Solanki et al. 2000) comparable with or even greater than the...be identified as spikes in production of cosmogenic isotope (10Be and 14C) records on the centennial -millennial time scale (e.g., Usoskin and

  20. A rotary permanent magnet magnetic refrigerator based on AMR cycle

    International Nuclear Information System (INIS)

    Aprea, C.; Cardillo, G.; Greco, A.; Maiorino, A.; Masselli, C.

    2016-01-01

    Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative refrigeration). In order to demonstrate the potential of magnetic refrigeration to provide useful cooling in the near room temperature range, a novel Rotary Permanent Magnet Magnetic Refrigerator (RPMMR) is described in this paper. Gadolinium has been selected as magnetic refrigerant and demineralized water has been employed as regenerating fluid. The total mass of gadolinium (1.20 kg), shaped as packed bed spheres, is housed in 8 regenerators. A magnetic system, based on a double U configuration of permanent magnets, provides a magnetic flux density of 1.25 T with an air gap of 43 mm. A rotary vane pump forces the regenerating fluid through the regenerators. The operational principle of the magnetic refrigerator and initial experimental results are reported and analyzed.

  1. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...

  2. The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions

    Science.gov (United States)

    Kirichenko, A. S.; Bogachev, S. A.

    2017-09-01

    We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS- Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 - 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is 1.48 ±0.86, which is close to the value obtained previously by Pevtsov et al. ( Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 - 8 Å, the power-law indices for PFF(B) and PFF(Φ) for microflares are 3.87 ±2.16 and 3 ±1.6, respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner-Tucker-Vaiana scaling laws.

  3. HEIGHT VARIATION OF THE VECTOR MAGNETIC FIELD IN SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: dorozco@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-04-20

    Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.

  4. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Axel; Ashurova, Mohira B. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Jabbari, Sarah, E-mail: brandenb@nordita.org [School of Mathematical Sciences and Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)

    2017-08-20

    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  5. Magnetic stability under magnetic cycling of MgO-based magnetic tunneling junctions with an exchange-biased synthetic antiferromagnetic pinned layer

    Directory of Open Access Journals (Sweden)

    Qiang Hao

    2016-02-01

    Full Text Available We investigate the magnetic stability and endurance of MgO-based magnetic tunnel junctions (MTJs with an exchange-biased synthetic antiferromagnetic (SAF pinned layer. When a uniaxially cycling switching field is applied along the easy axis of the free magnetic layer, the magnetoresistance varies only by 1.7% logarithmically with the number of cycles, while no such change appears in the case of a rotating field. This observation is consistent with the effect of the formation and motion of domain walls in the free layer, which create significant stray fields within the pinned hard layer. Unlike in previous studies, the decay we observed only occurs during the first few starting cycles (<20, at which point there is no further variance in all performance parameters up to 107 cycles. Exchange-biased SAF structure is ideally suited for solid-state magnetic sensors and magnetic memory devices.

  6. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    Science.gov (United States)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  7. Motions and magnetic fields in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-09-01

    The measured magnetic fields generally cannot be regarded as ''mean'' values of the magnetic field intensity H due to depolarization effects in the sum of the Zeeman components of small elements. A picture of smallest magnetic elements in the photosphere can be identified with the photospheric network of the granulation. A relatively long lifetime of the elements of this network and characteristics of its evolution show that a magnetic field of H > or approximately = 10/sup 2/ Oe is concentrated in the dark network between granules near to the solar disc center. Direct measurements of H in solar prominences give values of H ranging from 10 to 10/sup 2/ Oe. At their boundary they cannot be smaller than 10/sup 2/ Oe. The chromospheric elements seen in the center of H/sub a/ (spectrograms obtained on the solar stratospheric observatory (SSO) in 1970-1973) are about four times wider than photospheric elements. The growth in size of the structure elements from the photosphere to the chromosphere results from the magnetic expansion of elements floating up in the atmosphere. On the basis of the stratospheric and best filter observations it is shown that typical configurations of the field are magnetic arcs. Sunspots are considered as stationary processes dissipating due to magnetohydrodynamic instabilities. They have (observations on the SSO) considerable regions of a homogeneous magnetic field inside the umbra. The complicated system of twisted magnetic ropes in outer parts of the umbra and penumbra results from the dissipation of the main configuration. The most plausible model of a sunspot seems to be a twisted toroid with a steady magnetic field directed along the axis of symmetry inside the toroid. This model explains the fact of appearance of a secondary sunspot group inside the primary main group. The axis of the sunspot toroid always remains in the photosphere. Some properties of ''super-granules'' and ''giant granules'' are discussed.

  8. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.

    2017-12-01

    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  9. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...

  10. North–South Distribution of Solar Flares during Cycle 23 Bhuwan ...

    Indian Academy of Sciences (India)

    in the SGD (Solar Geophysical Data) during the time span of 01 May 1996 to 31. December 2003, covering almost 8 years of solar cycle 23. During this period, the occurrence of 20235 Hα flares is reported. In Hα, flares are classified according to their importance and brightness classes. The important class (S = subflare, ...

  11. Training effects induced by cycling of magnetic field in ferromagnetic rich phase-separated nanocomposite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kalipada, E-mail: kalipada.das@saha.ac.in; Das, I.

    2015-12-01

    We have carried out an experimental investigation of magneto-transport and magnetic properties of charge-ordered Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} (PCMO) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) nanoparticles along with a nanocomposite consisting of those two types of nanoparticles. From the magneto-transport measurements, clear irreversibility is observed in the field dependence of resistance due to magnetic field cycling in the case of PCMO nanoparticles. The value of resistance increases during such a field cycling. However such an irreversibility is absent in the case of LSMO nanoparticles as well as nanocomposites. On the other hand, the magnetic measurements indicate the gradual growth of antiferromagnetic phases in all samples leading to a decrease in magnetization. These inconsistencies between magneto-transport and magnetic behaviors are attributed to the magnetic training effects. - Highlights: • The resistance value in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} nanoparticles is found to increase owing to the magnetic field cycling. • No anomaly in resistance was found in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3}–La{sub 0.67}Sr{sub 0.33}MnO{sub 3} nanocomposite. • Magnetic measurements indicate the training effect in nanostructure compounds.

  12. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  13. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  14. FINE MAGNETIC FEATURES AND CHIRALITY IN SOLAR ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    Zhang Hongqi

    2010-01-01

    In this paper, we present fine magnetic features near the magnetic inversion line in the solar active region NOAA 10930. The high-resolution vector magnetograms obtained by Hinode allow detailed analyses around magnetic fibrils in the active region. The analyses are based on the fact that the electric current density can be divided into two components: the shear component caused by the magnetic inhomogeneity and the twist component caused by the magnetic field twist. The relationships between magnetic field, electric current density, and its two components are examined. It is found that the individual magnetic fibrils are dominated by the current density component caused by the magnetic inhomogeneity, while the large-scale magnetic region is generally dominated by the electric current component associated with the magnetic twist. The microstructure of the magnetic field in the solar atmosphere is far from the force-free field. The current mainly flows around the magnetic flux fibrils in the active regions.

  15. A Comparative Study of the Eruptive and Non-eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

    Science.gov (United States)

    Sarkar, Ranadeep; Srivastava, Nandita

    2018-02-01

    We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.

  16. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    Energy Technology Data Exchange (ETDEWEB)

    Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  17. Solar Flare Super-Events: When they Can Occur and the Energy Limits of their Realization

    Science.gov (United States)

    Ishkov, Vitaly N.

    2015-03-01

    For the successful development of terrestrial civilization it is necessary to estimate the space factors, including phenomena on Sun, which can ruin it or cause such catastrophic loss, that the restoration to the initial level can take unacceptably long time. Super-powerful solar flares are the only such phenomena. Therefore an attempt is undertaken to estimate the possibility of such super-event occurrence at this stage of our star evolution. Since solar flare events are the consequence of the newly emerging magnetic fluxes interacting with the already existing magnetic fields of active regions, are investigated the observed cases which lead to the realization of such super-events. From the observations of the maximal magnetic fluxes during the period of reliable solar observations, the conclusion is made that the super- extreme solar flares cannot significantly exceed the most powerful solar flares which have already been observed. On the statistics of the reliable solar cycles the sunspot groups, in which occurred the most powerful solar super-events (August- September 1859 - solar cycle 10; June 1991 - SC 22; October-November 2003 - SC 23) appeared in the periods of the solar magnetic field reorganization between the epochs of "increased" and "lowered" solar activity.

  18. Solar wind fluctuations at large scale: A comparison between low and high solar activity conditions

    International Nuclear Information System (INIS)

    Bavassano, B.; Bruno, R.

    1991-01-01

    The influence of the Sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU, Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. On the whole, the Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. At scales from 0.5 to 3 days the most important feature is the growth, as the solar wind expansion develops, of strong positive correlations between magnetic and thermal pressures. These structures are progressively built up by the interaction between different wind flows. This effect is more pronounced at low than at high activity. Our findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations

  19. UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS

    International Nuclear Information System (INIS)

    Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal; Kosovichev, A. G.; Mansour, N. N.

    2016-01-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  20. Atlas of fine structures of dynamic spectra of solar type IV-dm and some type II radio bursts

    International Nuclear Information System (INIS)

    Slottje, C.

    1982-01-01

    The author presents an atlas of spectral fine structures of solar radio bursts of types IV and II around 1 m wavelength, as obtained with a multichannel spectrograph at Dwingeloo. The structures form largely a collection of observations of these events during late 1968 through 1974, thus covering almost entirely the declining branch of solar cycle 20. The spectrograph has an extra enhanced contrast output with properties quite different from those of the commonly used swept frequency spectrographs. The corresponding instrumental characteristics and effects are discussed. A classification of fine structures and an analysis of their statistical properties and of those of the pertinent radio events are also given. (Auth.)

  1. Interhemispheric differences and solar cycle effects of the high-latitude ionospheric convection patterns deduced from Cluster EDI observations

    Science.gov (United States)

    Förster, Matthias; Haaland, Stein

    2015-04-01

    Here, we present a study of ionospheric convection at high latitudes that is based on satellite measurements of the Electron Drift Instrument (EDI) on-board the Cluster satellites, which were obtained over a full solar cycle (2001-2013). The mapped drift measurements are covering both hemispheres and a variety of different solar wind and interplanetary magnetic field (IMF) conditions. The large amount of data allows us to perform more detailed statistical studies. We show that flow patterns and polar cap potentials can differ between the two hemispheres on statistical average for a given IMF orientation. In particular, during southward directed IMF conditions, and thus enhanced energy input from the solar wind, we find that the southern polar cap has a higher cross polar cap potential. We also find persistent north-south asymmetries which cannot be explained by external drivers alone. Much of these asymmetries can probably be explained by significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemisphere. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace. The average convection is higher during periods with high solar activity. Although local ionospheric conditions may play a role, we mainly attribute this to higher geomagnetic activity due to enhanced solar wind - magnetosphere interactions.

  2. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  3. Evidence of Suess solar-cycle bursts in Holocene speleothem d18O records

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Jacobsen, B. H.; Riisager, Peter

    2012-01-01

    Several studies indicate that changes in solar activity may have driven Holocene subtropical monsoon variability on decadal and centennial timescales, but the strength and nature of this link remains debated. In this study, we combine a recent mapping of the Holocene solar-cycle activity with four...... in driving centennial-scale changes in the hydrological cycle in the subtropics during the Holocene....

  4. A Solar Axion Search Using a Decommissioned LHC Test Magnet

    CERN Multimedia

    Lozza, V; Christensen, F E; Jakobsen, A C; Neff, S H; Carmona martinez, J M; Giomataris, I; Krcmar, M; Vafeiadis, T; Luzon marco, G M; Gracia garza, J; Lakic, B; Cantatore, G; Solanki, S K; Ozbey, A; Davenport, M; Funk, W; Desch, K K; Villar, J A; Jakovcic, K; Eleftheriadis, C; Diago ortega, A; Zioutas, K; Gardikiotis, A; Cetin, S A; Hasinoff, M D; Hoffmann, D; Laurent, J; Castel pablo, J F; Gninenko, S; Ferrer ribas, E; Liolios, A; Anastasopoulos, V; Kaminski, J; Dafni, T; Garcia irastorza, I; Ruiz choliz, E; Pivovaroff, M J; Krieger, C; Lutz, G; Fanourakis, G; Ruz armendariz, J; Vogel, J K

    2002-01-01

    Previous solar axion searches have been carried out in Brookhaven (1990) and in Tokyo (2000- ), tracking the Sun with a dipole magnet. QCD inspired axions should be produced after the Big Bang, being thus candidates for the dark matter. The Sun is a very useful source of weakly interacting particles for fundamental research. Axions can be produced also in the Sun's core through the scattering of thermal photons in the Coulomb field of electric charges (Primakoff effect). In a transverse magnetic field the Primakoff effect can work in reverse, coherently converting the solar axions or other axion-like particles (ALPS) back into X-ray photons in the keV range. The conversion efficiency increases with $(B⋅L)^2$. In the CAST experiment an LHC prototype dipole magnet (B = 9 T and L = 10 m) with straight beam pipes provides a conversion efficiency exceeding that of the two earlier solar axion telescopes by almost a factor of 100. This magnet is mounted on a moving platform and coupled to both gas filled and soli...

  5. Some statistical characteristics of magnetic activity

    International Nuclear Information System (INIS)

    Afanas'eva, V.I.; Shevnin, A.D.

    1978-01-01

    The secular range and 2-year cycle recurrence of the solar and magnetic activity are considered by the correlation of the solar spots and magnetic storms continuous series. Established are the duration of various categories of storms and their active periods, as well as the activity progress pattern inside the storm. The results of the research of the 27-day recurrence of magnetic storms are summed-up and the recurrence percentage of storms of all categories is given for several revolutions of the Sun. The latitudinal amplitude distribution of the magnetic storms is researched

  6. SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F.; Telloni, D.; Zurbuchen, T. H.; Weberg, M.

    2013-01-01

    In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

  7. Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV Traction Considering Driving Cycles

    Directory of Open Access Journals (Sweden)

    Thanh Anh Huynh

    2018-05-01

    Full Text Available This paper evaluates the electromagnetic and thermal performance of several traction motors for electric vehicles (EVs. Two different driving cycles are employed for the evaluation of the motors, one for urban and the other for highway driving. The electromagnetic performance to be assessed includes maximum motor torque output for vehicle acceleration and the flux weakening capability for wide operating range under current and voltage limits. Thermal analysis is performed to evaluate the health status of the magnets and windings for the prescribed driving cycles. Two types of traction motors are investigated: two interior permanent magnet motors and one permanent magnet-assisted synchronous reluctance motor. The analysis results demonstrate the benefits and disadvantages of these motors for EV traction and provide suggestions for traction motor design. Finally, experiments are conducted to validate the analysis.

  8. The convective noise floor for the spectroscopic detection of low mass companions to solar type stars

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D. E.; Brault, J. W.

    1986-01-01

    The threshold mass for the unambiguous spectroscopic detection of low mass companions to solar type stars is defined here as the time when the maximum acceleration in the stellar radial velocity due to the Doppler reflex of the companion exceeds the apparent acceleration produced by changes in convection. An apparent acceleration of 11 m/s/yr in integrated sunlight was measured using near infrared Fourier transform spectroscopy. This drift in the apparent solar velocity is attributed to a lessening in the magnetic inhibition of granular convection as solar minimum approaches. The threshold mass for spectroscopic detection of companions to a one solar mass star is estimated at below one Jupiter mass.

  9. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liuguan; Jiang, Yong [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China); Zhao, Lulu; Li, Gang, E-mail: gang.li@uah.edu [Department of Physics and CSPAR, University of Alabama in Huntsville, AL 35899 (United States)

    2013-01-20

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon{sup -1} exceed 10 pfu, we categorize fast CMEs with speed >900 km s{sup -1} and width >60 Degree-Sign from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon{sup -1}. Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon{sup -1}. For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  10. Solar flares

    International Nuclear Information System (INIS)

    Kaastra, J.S.

    1985-01-01

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  11. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States)

    2017-09-10

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  12. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhao, Lulu

    2017-01-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  13. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  14. Unusual Polar Conditions in Solar Cycle 24 and Their Implications for Cycle 25

    Science.gov (United States)

    Gopalswamy, Nat; Yashiro, Seiji; Akiyama, Sachiko

    2016-01-01

    We report on the prolonged solar-maximum conditions until late 2015 at the north-polar region of the Sun indicated by the occurrence of high-latitude prominence eruptions (PEs) and microwave brightness temperature close to the quiet-Sun level. These two aspects of solar activity indicate that the polarity reversal was completed by mid-2014 in the south and late 2015 in the north. The microwave brightness in the south-polar region has increased to a level exceeding the level of the Cycle 23/24 minimum, but just started to increase in the north. The northsouth asymmetry in the polarity reversal has switched from that in Cycle 23. These observations lead us to the hypothesis that the onset of Cycle 25 in the northern hemisphere is likely to be delayed with respect to that in the southern hemisphere. We find that the unusual condition in the north is a direct consequence of the arrival of poleward surges of opposite polarity from the active region belt. We also find that multiple rush-to-the-pole episodes were indicated by the PE locations that lined up at the boundary between opposite-polarity surges. The high-latitude PEs occurred in the boundary between the incumbent polar flux and the insurgent flux of opposite polarity.

  15. Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations

    Science.gov (United States)

    Schmieder, B.; Hofmann, A.; Staude, J.

    The third Advances in Solar Physics Euroconference (ASPE) "Magnetic Fields and Oscillations"concluded a series of three Euroconferences sponsored by the European Union. The meeting took place in Caputh near Potsdam, Germany, on September 22-25, 1998, followed by the JOSO (Joint Organization for Solar Observations) 30th Annual Board Meeting on September 26, 1998. The ASPE formula is attractive and compares well with other meetings with "show-and-tell" character. This meeting had 122 participants coming from 26 countries; 36 participants came from countries formerly behind the Iron Curtain; a "politically incorrect" estimate says that 48 participants were below 35 years of age, with an unusually large female-to-male ratio. This characteristic of youngness is the more striking since solar physics is a perhaps overly established field exhibiting an overly senior age profile. It was a good opportunity to train this young generation in Solar Physics. The conference topic "Magnetic Fields and Oscillations" obviously was wide enough to cater to many an interest. These proceedings are organized according to the structure of the meeting. They include the topics 'High resolution spectropolarimetry and magnetometry', 'Flux-tube dynamics', 'Modelling of the 3-D magnetic field structure', 'Mass motions and magnetic fields in sunspot penumbral structures', 'Sunspot oscillations', 'Oscillations in active regions - diagnostics and seismology', 'Network and intranetwork structure and dynamics', and 'Waves in magnetic structures'. These topics covered the first 2.5 days of the conference. The reviews, oral contributions, and poster presentations were by no means all of the meeting. The ASPE formula also adds extensive plenary sessions of JOSO Working groups on topics that involve planning of Europe-wide collaboration. At this meeting these concerned solar observing techniques, solar data bases, coordination between SOHO and ground-based observing, and preparations for August 11, 1999

  16. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.

    2014-01-01

    Highlights: • As the solar irradiation increases, the exergetic efficiency increases. • The R134a combined cycle has best exergetic performance, 26%. • The R600a combined cycle has the lowest exergetic efficiency, 20%. • The main source of exergy destruction is the solar collector. • There is an exergetic improvement potential of 75% in the systems considered. - Abstract: In this paper, detailed exergy analysis of selected thermal power systems driven by parabolic trough solar collectors (PTSCs) is presented. The power is produced using either a steam Rankine cycle (SRC) or a combined cycle, in which the SRC is the topping cycle and an organic Rankine cycle (ORC) is the bottoming cycle. Seven refrigerants for the ORC were examined: R134a, R152a, R290, R407c, R600, R600a, and ammonia. Key exergetic parameters were examined: exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential. For all the cases considered it was revealed that as the solar irradiation increases, the exergetic efficiency increases. Among the combined cycles examined, the R134a combined cycle demonstrates the best exergetic performance with a maximum exergetic efficiency of 26% followed by the R152a combined cycle with an exergetic efficiency of 25%. Alternatively, the R600a combined cycle has the lowest exergetic efficiency, 20–21%. This study reveals that the main source of exergy destruction is the solar collector where more than 50% of inlet exergy is destructed, or in other words more than 70% of the total destructed exergy. In addition, more than 13% of the inlet exergy is destructed in the evaporator which is equivalent to around 19% of the destructed exergy. Finally, this study reveals that there is an exergetic improvement potential of 75% in the systems considered

  17. Solar Wind Energy Input during Prolonged, Intense Northward Interplanetary Magnetic Fields: A New Coupling Function

    Science.gov (United States)

    Du, A. M.; Tsurutani, B. T.; Sun, W.

    2012-04-01

    Sudden energy release (ER) events in the midnight sector at auroral zone latitudes during intense (B > 10 nT), long-duration (T > 3 hr), northward (Bz > 0 nT = N) IMF magnetic clouds (MCs) during solar cycle 23 (SC23) have been examined in detail. The MCs with northward-then-southward (NS) IMFs were analyzed separately from MCs with southward-then-northward (SN) configurations. It is found that there is a lack of substorms during the N field intervals of NS clouds. In sharp contrast, ER events do occur during the N field portions of SN MCs. From the above two results it is reasonable to conclude that the latter ER events represent residual energy remaining from the preceding S portions of the SN MCs. We derive a new solar wind-magnetosphere coupling function during northward IMFs: ENIMF = α N-1/12V 7/3B1/2 + β V |Dstmin|. The first term on the right-hand side of the equation represents the energy input via "viscous interaction", and the second term indicates the residual energy stored in the magnetotail. It is empirically found that the magnetosphere/magnetotail can store energy for a maximum of ~ 4 hrs before it has dissipated away. This concept is defining one for ER/substorm energy storage. Our scenario indicates that the rate of solar wind energy injection into the magnetosphere/magnetotail determines the form of energy release into the magnetosphere/ionosphere. This may be more important than the dissipation mechanism itself (in understanding the form of the release). The concept of short-term energy storage is applied for the solar case. It is argued that it may be necessary to identify the rate of energy input into solar magnetic loop systems to be able to predict the occurrence of solar flares.

  18. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N.-E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J.-C.

    2012-04-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.

  19. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  20. Semi-annual Sq-variation in solar activity cycle

    Science.gov (United States)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  1. Annual energy and environment analysis of solarized steam injection gas turbine (STIG) cycle for Indian regions

    International Nuclear Information System (INIS)

    Selwynraj, A. Immanuel; Iniyan, S.; Suganthi, L.; Livshits, Maya; Polonsky, Guy; Kribus, Abraham

    2016-01-01

    Highlights: • Study on the influence of local climatic conditions on solar STIG cycle is presented. • The annual solar to electricity efficiency ranges between 11.2 and 17.1% and the solar fraction ranges 9.3–41.7%. • The range of annual specific CO_2 emission is 312–408 kg/MWh and incremental CO_2 avoidance is 4.2–104 kg/MWh. • The levelized tariff (LT) is 0.2–0.23 $/kWh, and the solar levelized tariff (SLT) ranges from 0.11 to 0.27 $/kWh. - Abstract: The solarized steam injection gas turbine (STIG) cycle uses both the fuel and solar heat simultaneously for power generation. The annual thermodynamic performances of the cycle for sites in India with local climatic conditions such as ambient temperature, relative humidity and availability of direct normal irradiance (DNI) to the solar concentrators under two modes of constant and variable power are presented in this paper. The results reveal that the solar to electricity efficiency of solar hybrid STIG plant with a simple parabolic trough collector (PTC) is similar to existing solar thermal technologies, and also higher solar share is obtained. The study also reveals that the annual CO_2 emission is similar to combined cycle plants and lower than gas turbine technologies. The incremental CO_2 avoidance is also computed due to solar participation. The annual values of exergetic solar fraction and exergetic efficiency at Indore are higher than Jaipur. Results of an improved economic assessment show that the levelized tariff (LT) of solar hybrid STIG plant is 0.2–0.23 $/kWh and the levelized tariff (solar only) or solar levelized tariff (SLT) of solar STIG plant ranges from 0.11 to 0.27 $/kWh for both constant and variable power scenarios.

  2. Generation of magnetic structures on the solar photosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gangadhara, R. T.; Krishan, V. [Indian Institute of Astrophysics, Bangalore-560034 (India); Bhowmick, A. K.; Chitre, S. M., E-mail: ganga@iiap.res.in [Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai-400098 (India)

    2014-06-20

    The lower solar atmosphere is a partially ionized plasma consisting of electrons, ions, and neutral atoms. In this, which is essentially a three-fluid system, the Hall effect arises from the treatment of the electrons and ions as two separate fluids and the ambipolar diffusion arises from the inclusion of neutrals as the third fluid. The Hall effect and ambipolar diffusion have been shown to be operational in a region beginning from near the photosphere up to the chromosphere. In a partially ionized plasma, the magnetic induction is subjected to ambipolar diffusion and the Hall drift in addition to the usual resistive dissipation. These nonlinear effects create sharp magnetic structures which then submit themselves to various relaxation mechanisms. A first-principles derivation of these effects in a three-fluid system and an analytic solution to the magnetic induction equation in a stationary state are presented, which in the general case includes the Hall effect, ambipolar diffusion, and ohmic dissipation. The temporal evolution of the magnetic field is then investigated under the combined as well as the individual effects of the Hall drift and ambipolar diffusion to demonstrate the formation of steep magnetic structures and the resultant current sheet formation. These structures have just the right features for the release of magnetic energy into the solar atmosphere.

  3. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  4. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  5. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Directory of Open Access Journals (Sweden)

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  6. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  7. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  8. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  9. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    suitable control strategy and both the overall annual production and the average solar to electrical efficiency are estimated with an annual simulation. The results suggest that the introduction of binary working fluids enables to increase the solar system performance both in design and part-load operation....... cycle. The purpose of this paper is to optimize a low temperature organic Rankine cycle tailored for solar applications. The objective of the optimization is the maximization of the solar to electrical efficiency and the optimization parameters are the working fluid and the turbine inlet temperature...... and pressure. Both pure fluids and binary mixtures are considered as possible working fluids and thus one of the primary aims of the study is to evaluate whether the use of multi-component working fluids might lead to increased solar to electrical efficiencies. The considered configuration includes a solar...

  10. The Recalibrated Sunspot Number: Impact on Solar Cycle Predictions

    Science.gov (United States)

    Clette, F.; Lefevre, L.

    2017-12-01

    Recently and for the first time since their creation, the sunspot number and group number series were entirely revisited and a first fully recalibrated version was officially released in July 2015 by the World Data Center SILSO (Brussels). Those reference long-term series are widely used as input data or as a calibration reference by various solar cycle prediction methods. Therefore, past predictions may now need to be redone using the new sunspot series, and methods already used for predicting cycle 24 will require adaptations before attempting predictions of the next cycles.In order to clarify the nature of the applied changes, we describe the different corrections applied to the sunspot and group number series, which affect extended time periods and can reach up to 40%. While some changes simply involve constant scale factors, other corrections vary with time or follow the solar cycle modulation. Depending on the prediction method and on the selected time interval, this can lead to different responses and biases. Moreover, together with the new series, standard error estimates are also progressively added to the new sunspot numbers, which may help deriving more accurate uncertainties for predicted activity indices. We conclude on the new round of recalibration that is now undertaken in the framework of a broad multi-team collaboration articulated around upcoming ISSI workshops. We outline the future corrections that can still be expected in the future, as part of a permanent upgrading process and quality control. From now on, future sunspot-based predictive models should thus be made more adaptable, and regular updates of predictions should become common practice in order to track periodic upgrades of the sunspot number series, just like it is done when using other modern solar observational series.

  11. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    Science.gov (United States)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  12. An investigation of the solar cycle response of odd-nitrogen in the thermosphere

    Science.gov (United States)

    Rusch, David W.; Solomon, Stanley C.

    1992-01-01

    This annual report covers the first year of funding for the study of the solar cycle variations of odd-nitrogen (N((sup 2)D), N((sup 4)S), NO) in the Earth's thermosphere. The study uses the extensive data base generated by the Atmosphere Explorer (AE) satellites, and the Solar Mesosphere Explorer Satellite. The AE data are being used, for the first time, to define the solar variability effect on the odd-nitrogen species through analysis of the emissions at 520 nano-m from N((sup 2)D) and the emission from O(+)((sup 2)P). Additional AE neutral and ion density data are used to help define and quantify the physical processes controlling the variations. The results from the airglow study will be used in the next two years of this study to explain the solar cycle changes in NO measured by the Solar Mesosphere Explorer.

  13. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  14. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)

    Science.gov (United States)

    Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances

    1989-01-01

    The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.

  15. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  16. Solar wind fluctuations at large scale - A comparison between low and high solar activity conditions

    Science.gov (United States)

    Bavassano, B.; Bruno, R.

    1991-02-01

    The influence of the sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role-exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. The Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. These findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations.

  17. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  18. A study of the asymmetrical distribution of solar activity features on solar and plasma parameters (1967-2016)

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-04-01

    The impact of asymmetrical distribution of hemispheric sunspot areas (SSAs) on the interplanetary magnetic field, plasma, and solar parameters from 1967 to 2016 has been studied. The N-S asymmetry of solar-plasma activities based on SSAs has a northern dominance during solar cycles 20 and 24. However, it has a tendency to shift to the southern hemisphere in cycles 21, 22, and 23. The solar cycle 23 showed that the sorted southern SSAs days predominated over the northern days by ˜17%. Through the solar cycles 21-24, the SSAs of the southern hemisphere were more active. In contrast, the northern SSAs predominate over the southern one by 9% throughout solar cycle 20. On the other hand, the average differences of field magnitude for the sorted northern and southern groups during solar cycles 20-24 are statistically insignificant. Clearly, twenty years showed that the solar plasma ion density from the sorted northern group was denser than that of southern group and a highest northern dominant peak occurred in 1971. In contrast, seventeen out of fifty years showed the reverse. In addition, there are fifteen clear asymmetries of solar wind speed (SWS), with SWS (N) > SWS (S), and during the years 1972, 2002, and 2008, the SWS from the sorted northern group was faster than that of southern activity group by 6.16 ± 0.65 km/s, 5.70 ± 0.86 km/s, and 5.76 ± 1.35 km/s, respectively. For the solar cycles 20-24, the grand-averages of P from the sorted solar northern and southern have nearly the same parameter values. The solar plasma was hotter for the sorted northern activity group than the southern ones for 17 years out of 50. Most significant northern prevalent asymmetries were found in 1972 (5.76 ± 0.66 × 103 K) and 1996 (4.7 ± 0.8 × 103 K), while two significant equivalent dominant southern asymmetries (˜3.8 ± 0.3 × 103 K) occurred in 1978 and 1993. The grand averages of sunspot numbers have symmetric activity for the two sorted northern and southern hemispheres

  19. Seismic Study of Magnetic Field in the Solar Interior H. M. Antia

    Indian Academy of Sciences (India)

    It is clear that the surface term is well correlated with the observed magnetic flux at the solar surface. Thus it is quite likely that observed asphericity near the solar surface is actually due to magnetic field. The left panel in Fig. 3 shows δc2/c2 obtained using MDI data. These results clearly show some temporal variations, but a ...

  20. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations

    Science.gov (United States)

    Salabert, D.; García, R. A.; Turck-Chièze, S.

    2015-06-01

    Solar activity has significantly changed over the last two Schwabe cycles. After a long and deep minimum at the end of Cycle 23, the weaker activity of Cycle 24 contrasts with the previous cycles. In this work, the response of the solar acoustic oscillations to solar activity is used in order to provide insights into the structural and magnetic changes in the sub-surface layers of the Sun during this on-going unusual period of low activity. We analyze 18 yr of continuous observations of the solar acoustic oscillations collected by the Sun-as-a-star GOLF instrument on board the SoHO spacecraft. From the fitted mode frequencies, the temporal variability of the frequency shifts of the radial, dipolar, and quadrupolar modes are studied for different frequency ranges that are sensitive to different layers in the solar sub-surface interior. The low-frequency modes show nearly unchanged frequency shifts between Cycles 23 and 24, with a time evolving signature of the quasi-biennial oscillation, which is particularly visible for the quadrupole component revealing the presence of a complex magnetic structure. The modes at higher frequencies show frequency shifts that are 30% smaller during Cycle 24, which is in agreement with the decrease observed in the surface activity between Cycles 23 and 24. The analysis of 18 yr of GOLF oscillations indicates that the structural and magnetic changes responsible for the frequency shifts remained comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below 1400 km as revealed by the low-frequency modes. The frequency shifts of the higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is magnetically weaker in the upper layers of Sun. Appendices are available in electronic form at http://www.aanda.orgThe following 68 GOLF frequency tables are available and Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  1. Activity cycles in members of young loose stellar associations

    Science.gov (United States)

    Distefano, E.; Lanzafame, A. C.; Lanza, A. F.; Messina, S.; Spada, F.

    2017-10-01

    Context. Magnetic cycles analogous to the solar cycle have been detected in tens of solar-like stars by analyzing long-term time series of different magnetic activity indexes. The relationship between the cycle properties and global stellar parameters is not fully understood yet. One reason for this is the lack of long-term time series for stars covering a wide range of stellar parameters. Aims: We searched for activity cycles in a sample of 90 young solar-like stars with ages between 4 and 95 Myr with the aim to investigate the properties of activity cycles in this age range. Methods: We measured the length Pcyc of a given cycle by analyzing the long-term time series of three different activity indexes: the period of rotational modulation, the amplitude of the rotational modulation and the median magnitude in the V band. For each star, we also computed the global magnetic activity index ⟨ IQR ⟩ that is proportional to the amplitude of the rotational modulation and can be regarded as a proxy of the mean level of the surface magnetic activity. Results: We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars of the sample. The lack of correlation between Pcyc and Prot and the position of our targets in the Pcyc/Prot-Ro-1 diagram suggest that these stars belong to the so-called transitional branch and that the dynamo acting in these stars is different from the solar dynamo and from that acting in the older Mt. Wilson stars. This statement is also supported by the analysis of the butterfly diagrams whose patterns are very different from those seen in the solar case. We computed the Spearman correlation coefficient rS between Pcyc, ⟨ IQR ⟩ and various stellar parameters. We found that Pcyc in our sample is uncorrelated with all the investigated parameters. The ⟨ IQR ⟩ index is positively correlated with the convective turnover timescale, the magnetic diffusivity timescale τdiff, and the dynamo number DN, whereas it is anti

  2. Thermoeconomic optimization of a combined-cycle solar tower power plant

    International Nuclear Information System (INIS)

    Spelling, James; Favrat, Daniel; Martin, Andrew; Augsburger, Germain

    2012-01-01

    A dynamic model of a pure-solar combined-cycle power plant has been developed in order to allow determination of the thermodynamic and economic performance of the plant for a variety of operating conditions and superstructure layouts. The model was then used for multi-objective thermoeconomic optimization of both the power plant performance and cost, using a population-based evolutionary algorithm. In order to examine the trade-offs that must be made, two conflicting objectives will be considered, namely minimal investment costs and minimal levelized electricity costs. It was shown that efficiencies in the region of 18–24% can be achieved, and this for levelized electricity costs in the region of 12–24 UScts/kWh e , depending on the magnitude of the initial investment, making the system competitive with current solar thermal technology. -- Highlights: ► Pure-solar combined-cycle studied using thermoeconomic tools. ► Multi-objective optimization conducted to determine Pareto-optimal power plant designs. ► Levelised costs between 12 and 24 UScts/kWhe predicted. ► Efficiencies between 18 and 24% predicted.

  3. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  4. Studying the Formation and Evolution of Eruptive Solar Magnetic Flux Ropes

    Science.gov (United States)

    Linton, M.

    2017-12-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics. This work is funded by the NASA Living with a Star program.

  5. A comparison of solar wind streams and coronal structure near solar minimum

    Science.gov (United States)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  6. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Lior, Noam

    2015-01-01

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO 2 capture. • Exergy efficiency of about 55% and specific CO 2 emissions of 34 g/kW h are predicted. • Systems CO 2 emissions are 36.8% lower compared to a combined cycle with CO 2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO 2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO 2 -free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO 2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO 2 capture, the proposed solar-assisted system CO 2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO 2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and

  7. Does the magnetic expansion factor (fs) play a role in solar wind acceleration?

    Science.gov (United States)

    Wallace, Samantha; Arge, Charles N.; Pihlstrom, Ylva

    2017-08-01

    For the past 25 years, magnetic expansion factor (fs) has been a key parameter used in the calculation of terminal solar wind speed (vsw) in both the Wang-Sheeley-Arge (WSA) model and its predecessor the Wang-Sheeley (WS) model. Since the discovery of an inverse relationship between fs and vsw, the physical role that magnetic expansion factor plays in the acceleration of the solar wind has been explored and debated. In this study, we investigate whether magnetic expansion factor plays a causal role in determining the terminal speed of the solar wind or merely serves as proxy. To do so, we explore how fs, as determined by WSA, relates to vsw for two different scenarios: 1) extended periods where the fast solar wind emerges from the centers of large coronal holes, and 2) periods where the solar wind emerges from pseudostreamers. For these same scenarios, we will also consider an alternative empirical relationship between solar wind speed and the minimum angular distance at the photosphere of a solar wind source to the nearest coronal hole boundary (i.e., DCHB, θb). We then compare these two different prediction techniques directly with heliospheric observations (i.e., ACE, STEREO-A & B, Ulysses) of solar wind speed to determine whether one clearly out performs the other.

  8. Helicity--vorticity turbulent pumping of magnetic fields in the solar dynamo

    OpenAIRE

    Pipin, V. V.

    2012-01-01

    The interaction of helical convective motions and differential rotation in the solar convection zone results in turbulent drift of a large-scale magnetic field. We discuss the pumping mechanism and its impact on the solar dynamo.

  9. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-01-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible

  10. Behaviour of Earths Magnetic Field During Solar Eclipse ( 29 May 2006)

    International Nuclear Information System (INIS)

    Ozcep, F.; Alp, H.

    2007-01-01

    Interaction and relation between geophysical properties (gravity, geomagnetic field, etc.) of the Earth and Sun has been a fascinating topic ever since humanity habilitated the Earth. For example, the role of solar energy in sustaining agricultural activities was noted long ago and human beings are ever grateful to the Sun for his bounty. Since prehistoric times, many cultures have regarded the Sun as a deity. However, until recent decades, the contribution of Sun was assumed to be only in heat and light, which everybody could feel easily. Our aim is to study the behaviour of earths magnetic field during solar e clips ( 29 may 2006). Fort this aim, from 27 may 2006 hour 18.00 to 29 may 2006 hour 18.00, it was observed the earths magnetic field before, during and after solar eclipse. During this period, every 5 minute , magnetic field were measured by two proton magnetometer

  11. Motions and solar magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-02-01

    Fine structure of magnetic fields in the Sun has been investigated. The data of the Soviet solar stratospheric observatory (SSO) with the telescope with a mirror first of 50 and then 100 cm in diameter obtained for the period of 1970-1973 served as material for research. The experiments give evidence of the presence of photospheric granulation with the characteristic dimension of granules below 150 km. The angular resolution of instruments does not make it possible to realize direct measurements of magnetic fields of such sizes. The indirect estimates indicate the fact that the magnetic fields of photosphere cannot be less than 10/sup 2/ Oe. A comparison of Hsub(..cap alpha..) lines with lines of metals and with the continuous spectrum shows that the least dimensions of chromosphere elements account for 500 km. Since in chromosphere density decreases drastically, than in order to suppress hydrodynamic flows fields should be of the order of 10/sup 3/ Oe. It has been concluded that the problem of the origin and evolution of the magnetic field of the Sun should be also solved by applying data on other stars.

  12. Table-top solar flares produced with laser driven magnetic reconnections

    Directory of Open Access Journals (Sweden)

    Zhong J.Y.

    2013-11-01

    Full Text Available The American Nuclear Society (ANS has presented the prestigious Edward Teller award to Dr. Bruce A. Remington during the 2011 IFSA conference due to his “pioneering scientific work in the fields of inertial confinement fusion (ICF, and especially developing an international effort in high energy density laboratory astrophysics” [1,2]. This is a great acknowledgement to the subject of high energy density laboratory astrophysics. In this context, we report here one experiment conducted to model solar flares in the laboratory with intense lasers [3]. The mega-gauss –scale magnetic fields produced by laser produced plasmas can be used to make magnetic reconnection topology. We have produced one table-top solar flare in our laboratory experiment with the same geometric setup as associated with solar flares.

  13. POSSIBLE EVIDENCE FOR A FISK-TYPE HELIOSPHERIC MAGNETIC FIELD. I. ANALYZING ULYSSES/KET ELECTRON OBSERVATIONS

    International Nuclear Information System (INIS)

    Sternal, O.; Heber, B.; Kopp, A.; Engelbrecht, N. E.; Burger, R. A.; Ferreira, S. E. S.; Potgieter, M. S.; Fichtner, H.; Scherer, K.

    2011-01-01

    The propagation of energetic charged particles in the heliospheric magnetic field is one of the fundamental problems in heliophysics. In particular, the structure of the heliospheric magnetic field remains an unsolved problem and is discussed as a controversial topic. The first successful analytic approach to the structure of the heliospheric magnetic field was the Parker field. However, the measurements of the Ulysses spacecraft at high latitudes revealed the possible need for refinements of the existing magnetic field model during solar minimum. Among other reasons, this led to the development of the Fisk field. This approach is highly debated and could not be ruled out with magnetic field measurements so far. A promising method to trace this magnetic field structure is to model the propagation of electrons in the energy range of a few MeV. Employing three-dimensional and time-dependent simulations of the propagation of energetic electrons, this work shows that the influence of a Fisk-type field on the particle transport in the heliosphere leads to characteristic variations of the electron intensities on the timescale of a solar rotation. For the first time it is shown that the Ulysses count rates of 2.5-7 MeV electrons contain the imprint of a Fisk-type heliospheric magnetic field structure. From a comparison of simulation results and the Ulysses count rates, realistic parameters for the Fisk theory are derived. Furthermore, these parameters are used to investigate the modeled relative amplitudes of protons and electrons, including the effects of drifts.

  14. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  15. Heliomagnetic cycle of magneto-ionospheric and interplanetary activities

    International Nuclear Information System (INIS)

    Zaretskij, N.S.; Krymskij, P.F.; Maksimov, Ya.Ya.

    1983-01-01

    The difference in frequency distributions of geomagnetic- and ionospheric disturbance levels are revealed within generalized intervals: odd-even- and even-odd 11-year solar activity cycles. The interplanetary medium of the first half of the 20th cycle (before reversal of the general heliomagnetic field polarity) is characterized by the background vertical component of the interplanetary magnetic field (IMF) in the north direction, rather small variability of the interplanetary field and low solar wind velocity. The south field component, higher field dispersion and high-velocity corpuscular fluxes are characteristic of the second half of the cycle. The 22-year variation in the number of small and moderate values of the geomagnetic activity within the limits of the 20th cycle is satisfactorily described by the behaviour of the quantities of the corresponding values of the IMF north-south component, field variability and solar wind velocity

  16. Annual and solar cycle dependencies of SuperDARN scatter occurrence and ionospheric convection measurements

    Science.gov (United States)

    Lester, M.; Imber, S. M.; Milan, S. E.

    2012-12-01

    The Super Dual Auroral Radar Network (SuperDARN) provides a long term data series which enables investigations of the coupled magnetosphere-ionosphere system. The network has been in existence essentially since 1995 when 6 radars were operational in the northern hemisphere and 4 in the southern hemisphere. We have been involved in an analysis of the data over the lifetime of the project and present results here from two key studies. In the first study we calculated the amount of ionospheric scatter which is observed by the radars and see clear annual and solar cycle variations in both hemispheres. The recent extended solar minimum also produces a significant effect in the scatter occurrence. In the second study, we have determined the latitude of the Heppner-Maynard Boundary (HMB) using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection for the interval 1996 - 2011. We find that the average latitude of the HMB at midnight is 61° magnetic latitude during solar the maximum of 2003, but it moves significantly poleward during solar minimum, averaging 64° latitude during 1996, and 68° during 2010. This poleward motion is observed despite the increasing number of low latitude radars built in recent years as part of the StormDARN network, and so is not an artefact of data coverage. We believe that the recent extreme solar minimum led to an average HMB location that was further poleward than the previous solar cycle. We have also calculated the Open-Closed field line Boundary (OCB) from auroral images during a subset of the interval (2000 - 2002) and find that on average the HMB is located equatorward of the OCB by ~7o. We suggest that the HMB may be a useful proxy for the OCB when global images are not available. The work presented in this paper has been undertaken as part of the European Cluster Assimilation Technology (ECLAT) project which is funded through the EU FP7 programme and involves groups at

  17. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations over two solar cycles, and operational forecasting.

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2015-12-01

    Understanding of the dynamics in Earth's radiation belts is critical to accurate modeling and forecasting of space weather conditions, both which are important for design, and protection of our space-borne assets. In the current study, we utilize the Versatile Electron Radiation Belt (VERB) code, multi-spacecraft measurements, and a split-operator Kalman filter to recontructe the global state of the radiation belt system in the CRRES era and the current era. The reanalysis has revealed a never before seen 4-belt structure in the radiation belts during the March 1991 superstorm, and highlights several important aspects in regards to the the competition between the source, acceleration, loss, and transport of particles. In addition to the above, performing reanalysis in adiabatic coordinates relies on specification of the Earth's magnetic field, and associated observational, and model errors. We determine the observational errors for the Kalman filter directly from cross-spacecraft phase-space density (PSD) conjunctions, and obtain the error in VERB by comparison with reanalysis over a long time period. Specification of errors associated with several magnetic field models provides an important insight into the applicability of such models for radiation belt research. The comparison of CRRES area reanalysis with Van Allen Probe era reanalysis allows us to perform a global comparison of the dynamics of the radiation belts during different parts of the solar cycle and during different solar cycles. The data assimilative model is presently used to perform operational forecasts of the radiation belts (http://rbm.epss.ucla.edu/realtime-forecast/).

  18. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  19. Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2004-04-01

    Full Text Available Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near-Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field's radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days, for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000 model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the

  20. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.