WorldWideScience

Sample records for solar water-heating systems

  1. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  2. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  3. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  4. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    Solar water heating systems are usually designed using simplified equation of annual efficiency of the heating system from solar radiation incident on the collector during the year and empirical values of annual efficiency. The pe1formance of the preliminary design is predicted by using either/chart method or by translate it ...

  5. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  6. Comparison of three systems of solar water heating by thermosiphon

    Science.gov (United States)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  7. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  8. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  9. Optimum systems design with random input and output applied to solar water heating

    Science.gov (United States)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  10. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    OpenAIRE

    M. Z. H. Khan; M. R. Al-Mamun; S. Sikdar; P. K. Halder; M. R. Hasan

    2016-01-01

    This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experi...

  11. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  12. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  13. Technical project of a solar water heating system for Hostal FRATERNIDAD, Santiago de Cuba

    International Nuclear Information System (INIS)

    Arzuaga Machado, Yusnel; Torres Ten, Alonso; Fonseca Fonseca, Susana; Fuetes lombá, Osmanys; Massipe Hernández, J. Raúl; Gonzalez, Wagner Roberto

    2017-01-01

    It is presented the technical project of a solar water heating system for Hostal FRATERNIDAD, Santiago de Cuba, Cuba, 20 Cabannas type tourism and a one of 2 square meter flat solar collector will be used, with a storage tank of 200 liters capacity, that is to say one system per cabin. (author)

  14. Feasibility analysis of domestic solar water heating systems in Greece

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; El Samani, K.; Koronakis, P.

    2005-01-01

    The excessive usage of fossil fuels has world-widely caused chain environmental consequences. An interesting solution to this problem is the systematic exploitation of available renewable energy sources, including solar energy. Greece is located in a major geographical region with an abundant and reliable supply of solar energy, even during the winter. In as much, one cannot disregard the significant dependency of the country on imported fuels, since almost 70% of its domestic energy consumption is covered by oil and natural gas imports. Despite the relative local sun abundance, during the last 10 years the local solar collectors market illustrates a sluggish behaviour, in comparison with the impressive numbers of sales during the 1980-1990 decade. At a first glance, such an occurrence characterizes a controversy. In an attempt to find a rational explanation of this peculiar situation, an integrated cost-benefit analysis is carried out taking into consideration the vast majority of the parameters affecting solar thermal energy production cost. The resulting numerical values are then compared with the corresponding ones coming from alternative hot-water production techniques. Accordingly, a quite extensive sensitivity analysis is carried out, in order to demonstrate the impact of the main techno-economic parameters on the fiscal behaviour of contemporary solar hot water production systems. The results obtained not only explain with sufficient accuracy the current local market situation but also demonstrate the specific actions that if realized they may boost solar collector sales in the corresponding local market. (author)

  15. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  16. Solar Water Heating with Low-Cost Plastic Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  17. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  18. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  19. Parametric studies of an active solar water heating system with ...

    Indian Academy of Sciences (India)

    overall photovoltaic thermal efficiency will increase and also will save valuable space. ... sumption of RM95 per month for a medium cost house (Faridah 2003). ..... Hence, the use of solar water heater shall improve public awareness in.

  20. Mitigating Climate Change by the Development and Deployment of Solar Water Heating Systems

    Directory of Open Access Journals (Sweden)

    S. T. Wara

    2013-01-01

    Full Text Available Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in Water Heating Systems. Ogun State in Nigeria was used as a case study. The solar radiation for the state was explored with an annual average of 4.775 kWh/m2 recorded. The designed system comprised storage tanks and the collector unit which comprises wooden casing, copper tube, and aluminium foil. Test results for the unlagged and lagged storage tanks for water temperature at various angles of inclination (2.500°–20.000° were on the average 27.800°C and 28.300°C, respectively, for the inlet temperature and 60.100°C and 63.000°C for the outlet temperature, respectively. The efficiency of the Solar Water Heating System was 72.500% and the power saved 2.798 kW. The cost of the unit is put at 1121,400 ($145 as at August 2012. The unit developed can be applied for the purpose of reducing the cost of energy, dealing with environmental challenges, and improving the use of energy, hence serving as a climate mitigation process as this can be extended for water heating for domestic and other industrial purposes.

  1. In-Situ Measurements of the Performance of Thermosyphon Solar Water Heating Systems in Libya

    International Nuclear Information System (INIS)

    Abdunnabi, M. I. R.; Loveday, D. L.

    2014-01-01

    This paper reports on a project carried out by the Centre for Solar Energy Research and Studies (CSERS) to familiarize Libyan people with solar water heating technologies. Around 100 solar water heaters have been installed in the domestic sector and selected systems were equipped with monitoring instruments required to evaluate thermal performance. The paper presents the results of data collected over a one year period from a system installed in a family residence situated in a village located 90 km south of Tripoli (Libyan capital). The results showed that the system solar fraction was 55.8% of the average amount of daily hot water withdrawn (144 liters) at an average withdrawal temperature of 46.6 °. The total energy withdrawn during the whole year was 1557 kWl1. It is concluded that such a system is not adequate in terms of cost effectiveness for the current installed situation. It is recommended that the annual solar fraction for any solar water heating system should be over 70° in order to achieve cost—effectiveness and to help wide spread take—up of this technology.(author)

  2. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  3. Techno-Economic Analysis of Solar Water Heating Systems inTurkey.

    Science.gov (United States)

    Ertekin, Can; Kulcu, Recep; Evrendilek, Fatih

    2008-02-25

    In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber). Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type's heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs) of the galvanized absorber were lower, net present values (NPVs) of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  4. Techno-Economic Analysis of Solar Water Heating Systems inTurkey

    Directory of Open Access Journals (Sweden)

    Fatih Evrendilek

    2008-02-01

    Full Text Available In this study, solar water heater was investigated using meteorological and geographical data of 129 sites over Turkey. Three different collector types were compared in terms of absorber material (copper, galvanized sheet and selective absorber. Energy requirement for water heating, collector performances, and economical indicators were calculated with formulations using observed data. Results showed that selective absorbers were most appropriate in terms of coverage rate of energy requirement for water-heating all over Turkey. The prices of selective, copper and galvanized absorber type’s heating systems in Turkey were 740.49, 615.69 and 490.89 USD, respectively. While payback periods (PBPs of the galvanized absorber were lower, net present values (NPVs of the selective absorber were higher than the rest. Copper absorber type collectors did not appear to be appropriate based on economical indicators.

  5. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  6. Solar energy uses in home water heating systems; Utilizacao da energia solar em sistemas de aquecimento de agua residencial

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Luiz Henrique

    2008-07-01

    The awareness of the importance of the environment has stimulated the study of new energy sources renewed and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of residential water heating, instead of the electric shower, can compliment the economy of electric energy, based on the Brazilian energy matrix. To know all the factors that influence the operation of a system of water heating by solar energy it is important the determination of its economic and technical viabilities and, distribution targeting in urban and agricultural residences. To evaluate equipment of water heating for solar energy in the region west of the Parana, Brazil, an archetype with similar characteristics to equipment used in residences for two inhabitants was built, to function with natural circulation or thermosyphon and without help of a complementary heating system. The room temperature and the speed of the wind were also evaluated, verifying its influence in the heating system. The equipment revealed technical viability, reaching the minimum temperature of 35 deg C for shower, whenever the solar radiation was above the 3500 W.m{sup -2}, for the majority of the studied days. The system operated without interruptions and it did not need maintenance, except for the monthly glass cleaning. Economic viability was clearly demonstrated since the useful life of the equipment exceeded the period of use to gain its investment. (author)

  7. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  8. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  9. The comparison of solar water heating system operation parameters calculated using traditional method and dynamic simulations

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2016-01-01

    Full Text Available The proper design of renewable energy based systems is really important to provide their efficient and safe operation. The aim of this paper is to compare the results obtained during traditional static calculations, with the results of dynamic simulations. For this reason, simulations of solar water heating (SWH system, designed for a typical residential building, were conducted in the TRNSYS (Transient System Simulation Tool. Carried out calculations allowed to determine the heat generation in the discussed system as well as to estimate the efficiency of considered installation. Obtained results were compared with the results from other available tool based on the static calculations. It may be concluded, that using dynamic simulations at the designing stage of renewable energy based systems may help to avoid many exploitation problems (including low efficiency, overheating etc. and allows to provide safe exploitation of such installations.

  10. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  11. Solar water heating in the hotel industry

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, A

    1981-01-01

    There is an increasing number of hotels, pensions, guest-houses and boarding-houses whose owners attempt to lower their energy cost - especially for water heating in summer - by installing solar systems. The article presents some examples of buildings in West Germany.

  12. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Hazami, Majdi; Naili, Nabiha; Attar, Issam; Farhat, Abdelhamid

    2013-01-01

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO 2 . - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m 3 and 410 m 3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800

  13. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Pilatowsky, I. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco, s/n, Colonia Centro, 62580 Temixco, Morelos (Mexico); Ruiz, V. [Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Isla de la Cartuja, 41092 Sevilla, Espana (Spain)

    2008-07-15

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design

  14. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    International Nuclear Information System (INIS)

    Garcia-Valladares, O.; Pilatowsky, I.; Ruiz, V.

    2008-01-01

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and

  15. Multivariate optimization of a solar water heating system using the Simplex method

    CERN Document Server

    Michelson, E

    1982-01-01

    Two Simplex computer library packages for multivariate optimization have been tested on an hour-by-hour simulation of a solar water heating system. The two packages are: MINUITS written at CERN (Geneva) , and the E04CCF routine which is part of the UK Numerical Algorithms Group Library. Technical and economic optima have been derived for three of the following variables simultaneously: collector area, tilt, azimuth, and store volume. The two packages give the same results. The meteorological data used were one (composite) year for Hamburg (Germany) and 1964 for Kew (UK). The Hamburg data were also condensed to form a year consisting of 60 averaged days. The optima derived with the 60-day year were very close to those obtained with the 365-day year. The Simplex method, which is a direct search method, is known to be very robust. It is particularly suited to hour-by-hour simulations of solar heating systems since the function being minimized is not monotonically decreasing towards the minimum in sufficient sign...

  16. Training plumbers to design and install solar water heating systems for households (''SHINE 21'')

    International Nuclear Information System (INIS)

    2001-01-01

    This report summarises the findings of a project to develop training materials to help the plumbing industry take advantage of the growth in the UK solar water heating market. Details are given of a questionnaire survey of plumbers relating to their experience of solar water heating and their attitudes to training, and the development of a new training course file, video, CD-ROM, trainer's pack, and business skills module. The development and piloting of the training programmes and the development of models for regional co-operation are described along with methods for driving the demand for training and co-operation with other European Member states. Recommendations for further work are given

  17. Water heating solar system for popular houses; Sistema solar de aquecimento de agua para residencias populares

    Energy Technology Data Exchange (ETDEWEB)

    Mogawer, Tamer; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    In this paper we present a case study for the design of a low cost solar heating system for a popular residence in an isolated rural community in the state of Rio Grande do Norte. This scaling can be extended to several rural communities that are in the same situation in Brazil as well as the wider use of solar power between the low-income people who do not have the benefits of electricity in their homes or want to have a lower cost of electricity. In this context, there are very interesting alternatives, among which is the replacement of electric heating bath water by heating by solar energy. According to several sources the electric shower, as it is now simple and extremely cheap, is the villain of the national electrical system. It is used in peak hours of consumption, something like 10% of electric generating capacity installed in Brazil, forcing many industries to switch off the machines because of the high cost of electricity during this period. Using the heating by solar energy, we can reduce consumption of electric shower and also increase the use of clean energy in popular homes and in isolated rural communities. This paper will address the use of solar energy with the basic purpose of heating water for bathing in popular residences and in isolated rural areas, using low cost systems, built with easily materials that is found in any area of the country. (author)

  18. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  19. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.; Lysen, E.H.; van Egmond, S.; van Sark, W.G.J.H.M.

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that

  20. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  1. Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong

    International Nuclear Information System (INIS)

    Chow, T.T.; Fong, K.F.; Chan, A.L.S.; Lin, Z.

    2006-01-01

    There is a growing, government-led trend of applying renewable energy in Hong Kong. One area of interest lies in the wider use of solar-energy systems. The worldwide fast development of building-integrated solar technology has prompted the design alternative of fixing the solar panels on the external facades of buildings. In Hong Kong, high-rise buildings are found everywhere in the urban districts. How to make full use of the vertical facades of these buildings to capture the most solar radiation can be an important area in the technology promotion. In this numerical study, the potential application of a centralized solar water-heating system in high-rise residence was evaluated. Arrays of solar thermal collectors, that occupied the top two-third of the south and west facades of a hypothetical high-rise residence, were proposed for supporting the domestic hot-water system. Based on typical meteorological data, it was found that the annual efficiency of the vertical solar collectors could reach 38.4% on average, giving a solar fraction of 53.4% and a payback period of 9.2 years. Since the solar collectors were able to reduce the heat transmission through the building envelope, the payback was in fact even shorter if the energy saving in air-conditioner operation was considered

  2. Longevity characteristics of flat solar water-heating collectors in hot-water-supply systems. Part 1. Procedure for calculating collector thermal output

    International Nuclear Information System (INIS)

    Avezova, N.R.; Ruziev, O. S.; Suleimanov, Sh. I.; Avezov, R. R.; Vakhidov, A.

    2013-01-01

    A procedure for calculating longevity indices (daily and monthly variations and, hence, annual thermal output) of flat solar water-heating collectors, amount of conditional fuel saved per year by using solar energy, and cost of solar fuel and thermal energy generated in hot-water-supply systems is described. (authors)

  3. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  4. A water heating system analysis for rural residences, using solar energy; Analise de um sistema de aquecimento de agua para residencias rurais, utilizando energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Luiz H.; Souza, Samuel N.M. de; Siqueira, Jair A.C.; Nogueira, Carlos E.C.; Santos, Reginaldo F. [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Programa de Pos-Graduacao em Engenharia Agricola], emails: melegsouza@yahoo.com, ssouza@unioeste.br, jairsiqueira@unioeste.br, cecn1@yahoo.com.br, rfsantos@unioeste.br

    2010-01-15

    The awareness of the importance of the environment has stimulated the study of new renewed energy sources and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of agricultural residential water heating, can complement the economy of electric energy, base of the Brazilian energy matrix. Knowing the factors that influence the operation of a system of water heating by solar energy is important in determining their technical viabilities targeting their distribution in agricultural residences. To evaluate equipment of water heating for solar energy, a prototype was constructed in the campus of Assis Gurgacz College, in Cascavel,State of Parana, Brazil, with similar characteristics to equipment used in residences for two inhabitants, to function with natural circulation or thermo siphon and without help of a complementary heating system. The equipment revealed technical viability, reaching the minimum temperature for shower, of 35 deg C, whenever the solar radiation was above the 3,500 Wh m{sup -2}, for the majority of the studied days. (author)

  5. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  6. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  7. Standard Practice for Installation and Service of Solar Domestic Water Heating Systems for One- and Two-Family Dwellings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This practice provides descriptions of solar domestic water heating systems and sets forth installation and service practices in new and existing one- and two-family dwellings to help ensure adequate operation and safety., 1.2 This practice applies regardless of the fraction of heating requirement supplied by solar energy, the type of conventional fuel used in conjunction with solar, or the heat transfer fluid (or fluids) used as the energy transport medium. However, where more stringent requirements are recommended by the manufacturer, these manufacturer requirements shall prevail. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Sections 6 and 7.

  8. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  9. Design of a Solar Water Heating System for Kuti Hall, University of ...

    African Journals Online (AJOL)

    Monthly average daily irradiance in plane of solar collector and Cold water temperature calculated from weather data collated to determine heating load. Mathematical model was developed based on heat transfer, thermal and optical and energy performance of collector. The absorber plate area, dimensions of solar ...

  10. The UK solar water heating industry: a period of development and growth

    International Nuclear Information System (INIS)

    Blower, John

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the solar water heating sector in the UK and presents an illustration of the layout of a typical solar water heating system. The rising demand for solar water heating and growth in sales especially in the export market are noted. Developments within the UK solar water heating manufacturing industry are considered, and details are given of design and development in innovative policy infrastructure, and the SHINE 21 project supported by the EU's ADAPT programme and the UK Department of Trade and Industry involving collaboration between the solar water heating and plumbing industries. Developments in the new build sectors including in-roof solar collector products and the increasing number of solar water heating systems installed in UK houses are discussed along with the promising future for the market

  11. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  12. Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hinti, I.; Al-Ghandoor, A.; Maaly, A.; Abu Naqeera, I.; Al-Khateeb, Z.; Al-Sheikh, O. [The Hashemite University, Zarqa 13115 (Jordan)

    2010-08-15

    This paper presents an experimental investigation of the performance of water-phase change material (PCM) storage for use with conventional solar water heating systems. Paraffin wax contained in small cylindrical aluminum containers is used as the PCM. The containers are packed in a commercially available, cylindrical hot water storage tank on two levels. The PCM storage advantage is firstly demonstrated under controlled energy input experiments with the aid of an electrical heater on an isolated storage tank, with and without the PCM containers. It was found that the use of the suggested configuration can result in a 13-14 C advantage in the stored hot water temperature over extended periods of time. The storage performance was also investigated when connected to flat plate collectors in a closed-loop system with conventional natural circulation. Over a test period of 24 h, the stored water temperature remained at least 30 C higher than the ambient temperature. The use of short periods of forced circulation was found to have minimum effect on the performance of the system. Finally, the recovery effect and the storage performance of the PCM was analyzed under open-loop operation patterns, structured to simulate daily use patterns. (author)

  13. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  14. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  15. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  16. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  17. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  18. Solar water heating and its prospect for timber drying application

    Energy Technology Data Exchange (ETDEWEB)

    Yin, B T

    1982-01-01

    The technical requirements for timber drying are discussed, and the possibility of using a solar water heating system to substitute for conventional fuel in a modern kiln is looked into from heat transfer considerations. At the moment, conventional fuel is used to generate steam for the heating of air in a kiln. If hot water is to be substitued for steam as the heating medium, the heating coil size required is larger. This size is determined relative to that of a steam coil for similar kiln operating temperatures. 5 references.

  19. Study on the application of NASA energy management techniques for control of a terrestrial solar water heating system

    Science.gov (United States)

    Swanson, T. D.; Ollendorf, S.

    1979-01-01

    This paper addresses the potential for enhanced solar system performance through sophisticated control of the collector loop flow rate. Computer simulations utilizing the TRNSYS solar energy program were performed to study the relative effect on system performance of eight specific control algorithms. Six of these control algorithms are of the proportional type: two are concave exponentials, two are simple linear functions, and two are convex exponentials. These six functions are typical of what might be expected from future, more advanced, controllers. The other two algorithms are of the on/off type and are thus typical of existing control devices. Results of extensive computer simulations utilizing actual weather data indicate that proportional control does not significantly improve system performance. However, it is shown that thermal stratification in the liquid storage tank may significantly improve performance.

  20. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  1. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  2. Solar water heating: The making of a simple, standard appliance

    International Nuclear Information System (INIS)

    Block, D.L.

    1993-01-01

    Within the solar community we have carried on never-ending discussions about the performance of solar water heaters. As a long-time solar advocate and researcher, I am continually asked, open-quotes When will solar usage become widespread?close quotes We who are in the solar business all face this question, and we must respond. Our answers usually take the form of some discussion on efficiency improvements, life-cycle costs, level playing field or environmental factors. But the only real way to answer this question is: Use of solar will be widewspread when a solar water heater is considered to be just another standard appliance. Increased installations is the key, and the solar technology with the greatest near-term potential for increased installation is solar water heating

  3. Investigating the real situation of Greek solar water heating market

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kavadias, K.A.; Spyropoulos, G.

    2005-01-01

    Solar thermal applications have been acknowledged among the leading alternative solutions endeavouring to face the uncontrollable oil price variations, the gradual depletion of fossil fuel reserves and the chain environmental consequences caused by its excessive usage. Almost 30 years after the initial emergence of the commercial domestic solar water heating system (DSWHS) in the European market, the corresponding technology is qualified as quite mature. On top of this, the European Commission expects that 100,000,000 m 2 of solar collectors are to be installed in Europe by the year 2010 to facilitate durable and environment-friendly heat. In this context, the Greek DSWHSs market is highly developed worldwide, having a great experience in this major energy market segment. The present study is devoted to an extensive evaluation of the local DSWHSs market, including a discerning analysis of its time variation, taking seriously into account the corresponding annual replacement rate. Accordingly, the crucial techno-economic reasons, limiting the DSWHSs penetration in the local heat production market, are summarized and elaborated. Subsequently, the national policy measures - aiming to support the DSWHSs in the course of time - are cited, in comparison with those applied in other European countries. Next, the financial attractiveness of a DSWHS for Greek citizens is examined in the local socio-economic environment. The present work is integrated by reciting the prospects and mustering certain proposals that, if applied, could stimulate the local market. As a general comment, the outlook for penetration of new DSWHSs in the local market is rather grim, as the current techno-economic situation of solar heat cannot compete with oil and natural gas heat production, unless the remarkable social and environmental benefits of solar energy are seriously considered. Hence, the Greek State lacks stimulus to further DSWHSs installations, being strongly in support of the imported

  4. A Novel Design Method for Optimizing an Indirect Forced Circulation Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-10-01

    Full Text Available To maximize the energy performance and economic benefits of solar water heating (SWH systems, the installation and operation-related design variables as well as those related to capacity must be optimized. This paper presents a novel design method for simultaneously optimizing the various design variables of an indirect forced-circulation SWH system that is based on the life cycle cost and uses a genetic algorithm. The effectiveness of the proposed method is assessed by evaluating the long-term performance corresponding to four cases, which are optimized using different annual solar fractions and sets of the design variables. When the installation and operation-related design variables were taken into consideration, it resulted in an efficient and economic design and an extra cost reduction of 3.2%–6.1% over when only the capacity-related design variables were considered. In addition, the results of parametric studies show that the slope and mass flow rate of the collector have a significant impact on the energy and economic performances of SWH systems. In contrast, the mass flow rate in the secondary circuit and the differences in the temperatures of the upper and lower dead bands of the differential controller have a smaller impact.

  5. Optimization of a computer simulation code to analyse thermal systems for solar energy water heating; Aperfeicoamento de um programa de simulacao computacional para analise de sistemas termicos de aquecimento de agua por energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Pozzebon, Felipe Barin

    2009-02-15

    The potential of solar water heating systems through solar energy in Brazil is excellent due to the climatic features of the country. The performance of these systems is highly influenced also by the materials used to build it and by the dimension of its equipment and components. In face of global warming, solar energy gains more attention, since it is one of the renewable energy that will be largely used to replace some of the existing polluting types of energy. This paper presents the improvement of a software that conducts simulations of water heating systems using solar energy in thermosyphon regime or forced circulation. TermoSim, as it is called, was initiated at the Solar Labs, and is in its version 3.0. The current version is capable of simulating 6 different arrangements' possibilities combined with auxiliary energy: systems with solar collectors with auxiliary energy with gas, electric energy, internal electric energy, electric energy in series with the consumption line, and no auxiliary energy. The software is a tool to aid studies and analysis of solar heating systems, it has a friendly interface that is easy to comprehend and results are simple to use. Besides that, this version also allows simulations that consider heat losses at night, situation in which a reverse circulation can occur and mean efficiency loss, depending on the simulated system type. There were many simulations with the mathematical models used and comparisons were made with the climatic data of the city of Caxias do Sul, in Rio Grande do Sul state, in Brazil, determining the system with the most efficient configuration for the simulated water consume profile. The paper is finalized with simple economic analyses with the intention of foreseeing the time for payback on the investment, taking into account the current prices for electrical energy in the simulated area and the possible monthly economy provided with the use of a solar energy heating system. (author)

  6. Comparative Studies of the Operation Method of Solar Energy Water Heating System with Auxiliary Heat Pump Heater%热泵辅助供热太阳能热水系统运行模式对比分析

    Institute of Scientific and Technical Information of China (English)

    林辩启; 罗会龙; 王浩; 田盼雨

    2015-01-01

    太阳能热水系统与热泵辅助供热合理结合可取长补短,有效降低建筑能耗。简要概述了空气源热泵、水源热泵、地源热泵辅助供热太阳能热水系统的结构形式及其运行模式。在此基础上,对比分析了热泵辅助供热太阳能热水系统各种典型运行模式的特点及其适用的应用环境。%The appropriate combination of solar water heating system and heat pump auxiliary heating is an effective way to reduce the building energy consumption. The structure and operation method of solar water heating system with different auxiliary heating, such as air-source heat pump, water-source heat pump, and soil-source heat pump, were introduced briefly. The characteristics of all kinds of solar water heating system with auxiliary heating were compared and analyzed. The suitable application environment of solar water heating system with auxiliary heating was also presented.

  7. Forecasting the demand on solar water heating systems and their energy savings potential during the period 2001-2005 in Jordan

    International Nuclear Information System (INIS)

    Kablan, M.M.

    2003-01-01

    Jordan is an example of a developing country that depends almost exclusively on imported oil. Luckily, Jordan is blessed with good solar energy resources. However, only 24% of Jordanian families are installing solar water heating systems (SWHS). The objective of this research is to forecast the yearly demand on SWHS by the household sector during the period 2001-2005 and to compute the potential energy savings throughout the investigated period due to the use of SWHS. It is found that the net energy collected over the entire investigated period is about 1454.4 million kW h. In addition, the capital savings over the entire investigated period is estimated to be 46.28 million US$ if SWHS are used to heat water instead of the commonly used LPG gas cookers. The results of the research may assist decision makers in the energy sector to implement more comprehensive plans that encourage more families to install SWHS and save on imported oil

  8. TRNSYS coupled with previs for simulation and sizing of solar water heating system: University Campus as case study

    International Nuclear Information System (INIS)

    Dkiouak, R.; Ahachad, M.

    2006-01-01

    A solar plant for hot-water production was investigated by the dynamic simulation code TRNSYS coupled with PREVIS code. Typical daily university campus consumption for a 240 students was considered. The hot-water demand temperature (45 degree centigrade) is controlled by a conventional fuel auxiliary heater and a tempering valve. The fluids circulate by pumps activated by electricity. Annual energy performance, in terms of solar fraction, was calculated for Tangier.(Author)

  9. Solar power from the supermarket. Water heating, space heating and air conditioning with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The different ways of utilizing solar energy are discussed. So far, top water heating is still the most practicable and most economical solution. Model houses with solar collectors, built by BBC and Philips, are dealt with in particular.

  10. Análise de um sistema de aquecimento de água para residências rurais, utilizando energia solar A water heating system analysis for rural residences, using solar energy

    Directory of Open Access Journals (Sweden)

    Luiz H. Basso

    2010-02-01

    Full Text Available A conscientização da importância do meio ambiente tem incentivado o estudo de novas fontes energéticas renováveis e menos poluentes. Dentre essas fontes, a energia solar destaca-se por ser perene e limpa. A utilização da energia solar em sistemas de aquecimento de água residencial rural pode colaborar com a economia de energia elétrica, base da matriz energética brasileira. Conhecer os fatores que influenciam na operação de um sistema de aquecimento de água por energia solar é importante na determinação de sua viabilidade técnica, visando a sua difusão em residências rurais. Para tanto, construiu-se um protótipo, no câmpus da Faculdade Assis Gurgacz, em Cascavel - PR, com características similares a um equipamento utilizado em residências para dois habitantes, para funcionar com circulação natural ou termossifão e sem auxílio de sistema de aquecimento complementar. O equipamento mostrou-se viável tecnicamente, alcançando a temperatura mínima para banho de 35 °C, sempre que a radiação solar foi superior a 3.500 Wh m-2, o que aconteceu para a maioria dos dias estudados.The awareness of the importance of the environment has stimulated the study of new renewed energy sources and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of agricultural residential water heating, can complement the economy of electric energy, base of the Brazilian energy matrix. Knowing the factors that influence the operation of a system of water heating by solar energy is important in determining their technical viabilities targeting their distribution in agricultural residences. To evaluate equipment of water heating for solar energy, a prototype was constructed in the campus of Assis Gurgacz College, in Cascavel,State of Paraná, Brazil, with similar characteristics to equipment used in residences for two inhabitants, to function with natural circulation or

  11. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2016-04-01

    With support from the U.S. Department of Energy Building America Program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in the spring of 2014, and CARB has been monitoring the performance of the water-heating systems since May 2014.

  12. Cyprus solar water heating cluster: A missed opportunity?

    International Nuclear Information System (INIS)

    Maxoulis, Christos N.; Charalampous, Harris P.; Kalogirou, Soteris A.

    2007-01-01

    Cyprus is often called the 'sun island' because of the amount of sunshine received all year round. The abundance of solar radiation together with a good technological base has created favourable conditions for the exploitation of solar energy on the island. This led to the development of a pioneering solar collector industry in Cyprus, which in the mid-1980s was flourishing. The result was an outstanding figure of installed solar collector area per inhabitant. Nowadays, Cyprus is cited as the country with the highest solar collector area installed per inhabitant, worldwide. This means that the local market for solar thermal collectors (for domestic applications) is now rather saturated. It was only rational to assume that Cypriot firms equipped with their gained expertise and leading edge would have safeguarded a sustainable growth and have an international orientation, focusing on exports in an emerging European and eastern Mediterranean thermal solar market. Unfortunately, this is not the case today. This paper reviews the economic performance and the competitiveness of Cyprus and the evolution of the solar water heating (SWH) industry using the cluster theory of Michael Porter. Its aim is to give insight and explanations for the success of the sector domestically, its failure with regards to exporting activity, pinpoint the industry in the European map and finally give recommendations for the cross the boarders commercial success of the industry

  13. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  14. Solar water heating for small cheese factories in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros Donohue, A A

    1982-03-01

    Plans are described for the implementation of 40 small plants to be used for cheese production. As a start, a demonstration plant has been built in San Juan de Chuquibambilla-Puno, Peru. Design and testing of a flat plate solar collector, to be used for water heating purposes, are described. The cheese making process is discussed. Essentially two pots are required, one at 32/sup 0/C and one at 80/sup 0/. Two flat plate collectors (1.12 m/sup 2/ each) are connected to a 150 l storage tank. Instrumentation and results are discussed. Total efficiency of the process is given as 40%. It is concluded that future installations should consider using biogas digesters and wind driven water pumps in addition to the solar collectors. A brief discussion of the climate, population distribution, and economy of Peru is given. (MJJ)

  15. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  16. Discussion of the Integrate Designs between Solar Energy Water Heating System and Air-source Heat Pump%空气源热泵与太阳能热水系统集成设计探讨

    Institute of Scientific and Technical Information of China (English)

    王伟; 南晓红; 马俊; 李飞

    2011-01-01

    对不同地区应用的几种不同形式空气源热泵辅助型太阳能热水系统设计方案进行介绍探讨,并以其为基础提出一种新的空气源热泵与太阳能热水系统集成的多功能系统设计方案。总结了不同地区、不同形式空气源热泵辅助型太阳能热水系统的设计方案、特点及新集成系统运行模式等,为我国不同地区应用此类系统时选择具体设计方案提供参考。%In this paper,different designs of the solar energy water heating system aided by air-source heat pump(SEWH-ASHP) are introduced and discussed,then a new integrate design between solar energy water heating system and air-source heat pump is given.Characters of different designs of the solar energy water heating system aided by air-source heat pump in different area are summed and the operational modes of the integrate system are analysed,which would be a useful reference to chose for designing and using the system of SEWH-ASHP and integrate system in different areas in China.

  17. A LCC model of renewal energy : the cases of water heating system in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.J. [Leader Univ., Tainan City, Taiwan (China). Dept. of Construction Technology; Huang, J.S. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Bioenvironmental Systems Engineering

    2007-07-01

    One of the most important renewable energy strategies being promoted by the Bureau of Energy, Ministry of Economic Affairs in Taiwan is the use of solar energy water heating systems. This paper presented the results of a study that examined whether these systems were a feasible alternative without governmental subsidies. Economic methods of investment analysis, such as net benefit analysis, the saving-to-investment ratio, the adjusted internal rate of return, the life cycle cost (LCC) analysis, and sensitivity analysis can be used to evaluate buildings and building systems. Comparing different kinds of energy consumption alternatives, the LCC method is particularly suitable for determining whether the higher initial cost of the systems is economically justified by reductions in future costs. This study used the LCC method to evaluate renewable energy alternatives in Taiwan using water heating systems in the National Taiwan University (NTU) Smart Home as illustrative examples. Three kinds of water heating systems are used in the NTU Smart Home, including the evacuated tubular collectors, heat pump water heating system and power-saving water heating system. This study assessed LCC using gas geyser heating as the contrast group. Sensitivity analysis was used to verify the major factors, and show how it influences life cycle costing. It was concluded that compared with the gas geyser water heating system, the power-saving water heating system was the inefficient scheme. 7 refs., 1 tab., 2 figs.

  18. Validation of a simulation method for forced circulation type of solar domestic hot water heating systems; Kyosei junkangata taiyonetsu kyuto system simulation hoho no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Udagawa, M [Kogakuin University, Tokyo (Japan); Matsumoto, T [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    Simulation of solar hot water systems using element model was conducted, in which computation of the convergence of apparatus characteristic values was performed every hour. For each apparatus, the outlet temperature was made a function of the inlet temperature on the basis of the heat balance, from which a simultaneous equation was derived and then solved for the determination of the outlet temperature for the computation of the quantity of heat collected by each apparatus. The actually measured system comprises a planar solar collector, heat storage tank, and heat collector piping. The measurement involved a direct heat collecting system with the medium running from the heat storage tank bottom layer, through the solar collector, and then back to the heat storage tank third layer, and an indirect heat collector system with a heat exchanger provided at the heat storage tank bottom layer. There was no substantial difference between the direct type and the indirect type with respect to the solar collector inlet and outlet temperatures, quantity of heat collected, and the fluctuation in heat storage tank inside temperature distribution relative to time. Difference occurred between the two in tank water temperature distribution, however, when water was extracted in great volume at a time. The quantity of the heat collected by each of the two and the daily integration of the same differed but a little from computed values. 4 refs., 6 figs., 4 tabs.

  19. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-17

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption. In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.

  20. Retrofitting Conventional Electric Domestic Hot Water Heaters to Solar Water Heating Systems in Single-Family Houses—Model Validation and Optimization

    Directory of Open Access Journals (Sweden)

    Luis R. Bernardo

    2013-02-01

    Full Text Available System cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. In this study, the TRNSYS simulation models of the retrofitting solar thermal system were validated against measurements. Results show that the validated models are in good agreement with measurements. On an annual basis a deviation of 2.5% out of 1099 kWh was obtained between the auxiliary energy from results and from the simulation model for a complete system. Using the validated model a system optimization was carried out with respect to control strategies for auxiliary heating, heat losses and volume of auxiliary storage. A sensitivity analysis was carried out regarding different volumes of retrofitted hot water boiler, DHW profiles and climates. It was estimated that, with adequate improvements, extended annual solar fractions of 60%, 78% and 81% can be achieved for Lund (Sweden, Lisbon (Portugal and Lusaka (Zambia, respectively. The correspondent collector area was 6, 4 and 3 m2, respectively. The studied retrofitted system achieves a comparable performance with conventional solar thermal systems with the potential to reduce the investment cost.

  1. Estimation of solar collector area for water heating in buildings of Malaysia

    Science.gov (United States)

    Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.

    2018-04-01

    Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.

  2. Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left-Right twisted tapes

    International Nuclear Information System (INIS)

    Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.

    2011-01-01

    Research highlights: → Conventional solar heaters are inefficient due to poor convective heat transfer. → Twisted tapes improve the heat transfer rate in solar water heater system. → Increase in outlet water temperature by 15 o C through the use of twisted tapes. →Thermal performance of twisted tape collector is 19% more than plain tube system. → Reduces collector area (0.6 m 2 ) whereas area for conventional collector is 1 m 2 . -- Abstract: Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical and Left-Right twist of twist ratio 3 has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes unidirectional over the length. But, in Left-Right system the swirl flow is bidirectional which increases the heat transfer and pressure drop when compared to the helical system. The experimental heat transfer and friction factors characteristics are validated with theoretical equations and the deviation falls with in the acceptable limits. The results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector. Compared to helical and Left-Right twisted tape system of same twist ratio 3, maximum thermal performance is obtained for Left-Right twisted tape collector with increase in solar intensity.

  3. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  4. Solar Space and Water Heating for School -- Dallas, Texas

    Science.gov (United States)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  5. Simulation study on single family house with solar floor and domestic hot water heating system by EESLISM; EESLISM ni yoru taiyonetsu danbo kyuto jutaku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H; Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Indoor thermal conditions and energy performance were simulated, by the aid of EESLISM as a common simulation program for indoor thermal conditions and energy systems, for an actual two-storied single family house equipped with solar-heated floors and a domestic hot water (DHW) heating system, in order to investigate applicability of the simulation program. The house, built in Shibuya Ward in Tokyo, has a total floor area of 164m{sup 2}, with a living room, dining room and study heated by the solar system for a total floor area of 35m{sup 2}. A heat-storage tank is provided, dedicated to the DHW system. The solar collector is of flat type, with selectively light-absorbing planes, having a total collector area of 11.46m{sup 2}. The operating conditions of the floor-heating and DHW systems are almost reproduced. It is necessary to take surrounding conditions into consideration; solar radiation in daytime will be overestimated if adjacent buildings are neglected to give higher temperature in the space and on the wall on the south than the observed level. 6 refs., 5 figs., 1 tab.

  6. Side-by-Side Testing of Water Heating Systems: Results from the 2013-2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Bulding America Partnership for Improved Residential Construction

    2017-07-12

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  7. Engineering Design and Economic Analysis of Air Source Heat Pump Assisted Solar Water Heating System%热泵+太阳能热水系统的工程设计与经济分析

    Institute of Scientific and Technical Information of China (English)

    李永华

    2013-01-01

    以空气源热泵为辅助热源的太阳能集中热水系统,不仅节能效率高,而且能保证全天候连续热水供应,是近年来太阳能利用的发展方向之一。淮海工学院学生浴室采用了空气源热泵辅助太阳能热水系统,设计用水人数17000人,日需热水量184 t。介绍了该热水系统的工作原理及设计计算,并对5种热水工程方案从初期投资和运行费用方面进行了详细的经济性分析,结果表明:以空气源热泵为辅助热源的热水方案较其他方案具有更好的经济、环保效益。%The high energy-efficient solar energy water heating system in conjunction with air source heat pump, supplying all-weather continuous hot water, is one of the developing direction of solar energy utilization in recent years. Students ’ Bathroom of Huaihai Institute of Technology use solar water heating system assisted with air source heat pump for 17000 students, requiring 184 tons of hot water every day. The working principle and design calculation of hot water system are expounded with detailed analysis of the initial investment and operating costs for five kinds of heating water engineering solutions. Results show that air source heat pump as auxiliary heat source has better economic and environmental benefits.

  8. THE EVALUATION OF THE SOLAR ORIENTED ENERGY EFFECTIVE BUILDING DESIGN UNDER THE MEDITERRANEAN CLIMATE CONDITIONS IN TERMS OF WATER HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Gizem TETİK

    2014-01-01

    Full Text Available Within the acknowledging of the fact that the half of the resources of the earth is being utilized for construction purposes; in this dissertation, which aims to lower this rate for our country by raising the awareness of the society, it is asserted that the utilization of the solar energy, unlike the common belief, should be considered as a passive manner during the design phase, before utilizing it in an active manner and the types of utilization, in which the solar energy can be benefitted at its full, is further demonstrated. Within this context, the analyses of the solar energy systems were conducted, the variables according to the climate and building types were discussed and the current suggestions for the improvement were presented along with the relevant literature reviews and case studies.

  9. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  10. 关于住宅建筑太阳能热水系统设计的探讨%Design of Solar Water Heating System in Residential Buildings

    Institute of Scientific and Technical Information of China (English)

    王彬

    2015-01-01

    太阳能系统建筑一体化设计,在住宅建筑实践中已被广泛应用,且收效良好。结合本刊刊发的某篇关于太阳能热水系统设计的论述,对其重点提出的“集中集热-分户使用的热水系统”加以再分析。本着严谨的技术适用性分析态度,现提出住宅建筑太阳能热水系统在一般条件下的首选方案,即采取独立分户系统;以及在不同建筑高度、建筑朝向、日照条件等情况下,综合利用建筑平、立面进行立体布局;特殊情况下,甚至可利用太阳能光伏系统进行补充,从而促进和鼓励系统使用效率,实现系统最大化节能减排作用。%Building integrated solar system has been widely used in residential construction with good effect. A paper was issued in this Journal about solar hot water system, and the related analysis on centralized heat water systems for household use is reviewed. In a rigorous analysis of the technical suitability, the preferred solution is proposed for the residential building’s solar hot water systems in general terms, which is the independent household system; three-dimensional layout of the facade shall be utilized in the case of different building heights, building orientation and sunshine conditions; the solar photovoltaic system even shall be supplemented in special circumstances, to promote system using efficiency and achieve the maximized energy efficiency and emission reduction effect.

  11. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  12. Creating a Comprehensive Solar Water Heating Deployment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Focus Marketing Services

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  13. Creating a Comprehensive Solar Water Heating Deployment Strategy

    International Nuclear Information System (INIS)

    Focus Marketing Services

    1999-01-01

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry

  14. Solar water-heating performance evaluation-San Diego, California

    Science.gov (United States)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  15. Comparison of conventional and solar-water-heating products and industries report

    Energy Technology Data Exchange (ETDEWEB)

    Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

    1980-07-11

    President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

  16. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  17. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  18. Business Opportunity Prospectus for Utilities in Solar Water Heating

    Energy Technology Data Exchange (ETDEWEB)

    Energy Alliance Group

    1999-06-30

    Faced with deregulation and increasingly aggressive competition, utilities are looking for new products and services to increase revenues, improve customer loyalty and retention, and establish barriers to market erosion. With open access now a reality, and retail wheeling just around the corner, business expansion via new products and services is now the central goal for most utilities in the United States. It may seem surprising that solar thermal energy as applied to heating domestic hot water - an idea that has been around for a long time - offers what utilities and their residential customers want most in a new product/service. This document not only explains how and why, it shows how to get into the business and succeed on a commercial scale.

  19. A hybrid solar/diesel water heating system: in medicine area in a hospital in Mexico city; Sistema hibrido de energia solar y diesel para calentamiento de agua: caso en el area de medicina fisica en un hospital en la ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco Mejia, Miguel; Wolpert Kuri, Jorge [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    A hybrid solar/diesel water heating system for therapy in a hospital in Mexico is described in this paper. The use of solar energy in hospitals and clinics, represent an environmentally friendly alternative to the burning of fossil fuels. Analysis is made regarding the feasibility of integrating both solar energy and conventional energy (fuel oil) as back up, to satisfy the hot water demand for hydrotherapy in a hospital. Results from simulation show that solar energy is a cheap means to provide up to 60% of the hot water demand. The solar assisted system proposed uses flat plate solar collectors integrated with an existing hot water tank, where water is heated with vapor from a diesel ran boiler. This represents significant savings on the solar system cost. [Spanish] La utilizacion de la energia solar en hospitales y clinicas, representa una posibilidad para obtener ahorros importantes de energia para satisfacer la demanda de agua caliente. En el presente estudio se analiza la demanda de agua caliente para uso en medicina fisica (hidroterapia), en un hospital ubicado en la Cd. De Mexico y la factibilidad de usar la energia solar, empleando como apoyo el sistema tradicional de combustible fosil (diesel). Mediante un analisis termico se determina el calor necesario para satisfacer la demanda de agua caliente. El analisis economico muestra los costos del sistema solar, los ahorros que se tendran y el periodo de recuperacion de la inversion. Los resultados muestran que la utilizacion de la energia solar es factible debido a la disminucion tanto del consumo de combustible, como de las emisiones atmosfericas. Se propone la instalacion de un sistema solar con colectores planos y el aprovechamiento de uno de los dos tanques de agua caliente existentes, donde se efectua la trasferencia de calor al agua por medio de vapor, lo cual disminuye el costo del sistema solar. La aportacion solar puede ser mayor del 60%, el complemento sera aportado por el sistema tradicional con

  20. Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2008-01-01

    The South African electrical utility, ESKOM, currently focuses its demand side management (DSM) initiatives on controlling electrical load between 18:00 and 20:00 each day, which is the utility's peak demand period. Funding is provided to energy service companies (ESCo's) to implement projects that can achieve load shifting out of this period. This paper describes how an improved in line water heating concept developed in previous studies was implemented into several real life industrial sanitary water heating systems to obtain the DSM load shift required by ESKOM. Measurements from a selection of these plants are provided to illustrate the significant load reductions that are being achieved during 18:00-20:00. The measured results also show that the peak load reduction is achieved without adversely affecting the availability of sufficient hot water to the persons using the showering and washing facilities served by the water heating system. A very good correlation also exists between these measured results and simulations that were done beforehand to predict the DSM potential of the project. The in line water heater concept provides an improved solution for DSM at sanitary water heating systems due to the stratified manner in which hot water is supplied to the tanks. This provides an improved hot water supply to users when compared to conventional in tank heating systems, even with load shifting being done. It also improves the storage efficiency of a plant, thereby allowing the available storage capacity of a plant to be utilized to its full extent for load shifting purposes

  1. Legionellae in water heating systems. Legionellen in Warmwasserbereitungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    A Public Health Office inquiry submitted to the Building Surveyor's Office about prophylactic measures taken to protect the health of bathers at the Vonderort saltwater pools was followed by a detailed inquiry among AMEV members. It was found that most of the persons interviewed did not have sufficient experience in using water heating methods which completely ban legionellae. However, several administrative authorities considered a 60deg C thermal tap water disinfection a necessary protective measure. A circular regulation was subsequently issued by the Northrhine-Westphalian Ministry for Building Construction and Housing to improve legionella protection. Details are also given about the protective measures and maintenance schemes issued by the Public Health Office for drinking water and space HVAC systems. (BWI).

  2. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J.

    2009-01-01

    A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system has economic advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities. (author)

  3. Appropriate technology for solar energy system aiming water heating for human bath in houses of rural areas; Tecnologia apropriada para sistema de energia solar visando aquecimento de agua para o banho humano em moradias do meio rural

    Energy Technology Data Exchange (ETDEWEB)

    Rispoli, Italo Alberto Gatica [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo], e-mail: gatica@dglnet.com.br; Mariotoni, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico], e-mail: cam@fec.unicamp.br

    2004-07-01

    The Brazilian land receives a great amount of solar radiation all over the year, therefore, because both the culture and practical aspects, Brazilians use in a non-moderate way the electricity to boil the water for human bath in the rural homes, in the lower income residences even at part of the medium class homes. That happens due to the very low price of an electrical shower, about US$ 6,5. In fact, that way of heating water is largely used because, besides the very low electrical shower price, it is not necessary to install a complete hot water both hydraulic and electrical building systems, but just both single hydraulic pipes and electrical devices. On the other hands, at rural regions where the electricity does not achieve the rural people uses firewood in order to get hot water for human bath. At the rural places the use of electrical showers has meaning an increase in the electrical transformers powers, heavier electrical transmission rural lines, with greater prices and, at the urban zones, the use of electrical showers in the lower social classes has contributed to a more expressive electrical load at the nacional electrical system load peck, between 5:30 to 8:30 a.m. The public administration, mostly, does not take into account both social, economic and environmental costs in order to think about the electricity offer. The solar heating systems, generally used in Brazil, conserves the same reservoirs used in France at 1880. Therefore, this paper presents some technical subsidies applied to rural homes, even to lower income people's homes aiming to stimulate the Brazilian public authorities to make a public police to facilitate both the industrialization and dissemination of solar heating systems, appropriate to the rural area, with lower costs, compounded by good technology equipment, with guarantee of lasting and quality. (author)

  4. Reduction of Energy Consumption and CO2 Emissions in Domestic Water Heating by Means of Direct Expansion Solar Assisted Heat Pump

    International Nuclear Information System (INIS)

    Baleta, J.; Curko, T.; Cutic, T.; Pasanec, J.; Soldo, V.

    2012-01-01

    Domestic water heating in households sector is usually performed by either fossil fuel fired or electric boilers. Both the combustion process of the former and large electricity consumption of the latter strongly influence overall greenhouse gas emissions. Moreover, very high specific heat of water requires large quantity of energy for water heating making a significant impact on the overall energy consumption in the households sector whose total consumption of 80,81 PJ equals to 19,6% of total primary energy supply in Croatia in 2010. Considering the mentioned impact on energy consumption and CO 2 emissions as well as goals set by European Commission (so called 20-20-20), new technologies based on renewable energy sources are more than welcome in the field of domestic water heating. Direct expansion solar assisted heat pump is presented in this paper. Its working principle is based on single-stage vapour-compression cycle. Representing a gradual step to commercial application with a water tank of 300 l, the developed mobile unit is designed as a test rig enabling all necessary measurements to evaluate potential of solar irradiation for domestic water heating on various locations. Besides the unit description, trial testing results are presented and analyzed as well as a basic comparison of CO 2 emissions between solar assisted heat pump and conventionally used water heating systems. Taking into account both the decentralized water heating and favourable climatic conditions (especially along the Croatian Adriatic coast) as well as rising fossil fuel prices, it is expected that solar assisted heat pumps will be commercialized in the near future.(author)

  5. Efficiency analysis of solar facilities for building heating and household water heating under conditions in the Czech Republic

    OpenAIRE

    Pivko, Michal; Jursová, Simona; Turjak, Juraj

    2012-01-01

    The paper studies the efficiency of solar facilities applied for the heating of buildings and household water heating in the Czech Republic. The Czech Republic is situated in the temperate zone characterized by changeable weather. It is respected in the assessment of a solar facility installation. The efficiency of solar facilities is evaluated according to energy and economic balances. It is analyzed for solar facilities heating both household water and buildings. The main problems relating ...

  6. The role and benefits of solar water heating in the energy demands of low-income dwellings in Brazil

    International Nuclear Information System (INIS)

    Naspolini, H.F.; Militao, H.S.G.; Ruether, R.

    2010-01-01

    In Brazil the widespread use of electrical showerheads for providing hot water for domestic consumption contributes to a load curve that peaks in the early evening, imposing a considerable burden to generation, transmission, and distribution utilities. On average, over 73% of Brazilian households use these 3-8 kW electrical resistance showerheads. In some of the more temperate climate regions in the south of the country, where most of the Brazilian population is concentrated, electrical showers are present in over 90% of residential buildings. For the residential consumer, while these high-power heating devices are the least-cost investment alternative, they lead to high running energy costs. Furthermore, due to their very low load factor (typically below 2%), each of these high-power showerheads results in considerably low return on the high investment costs in terms of infrastructure for the electricity sector. Particularly in low-income dwellings, electrical showerheads represent by far the highest electrical loads, resulting in a considerable component in the monthly energy bill. On the other hand, Brazil is one of the sunniest countries in the world, and solar water heating technologies have demonstrated large financial benefits and short payback times. Due to their comparatively higher initial investment costs, however, domestic solar water heaters are used mostly in higher income residences. In this work we present the potential of a low-cost version of the typical domestic solar water heating system for low-income dwellings, where the electrical resistance, which is normally installed inside the hot water tank, is replaced by a variable power electrical showerhead. This design avoids the use of electrical power as auxiliary heating for the whole of the boiler volume, since only the water which passes through the showerhead might be heated by the electrical resistance. This system configuration is a commercially available low-cost solar water heater option

  7. Potential use of solar water heating systems in residential areas of the city of Piracicaba; Potencial da utilizacao de coletores solares no aquecimento de agua residencial na cidade de Piracicaba

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rafel Deleo e; Vieira Junior, Jose Carlos de Melo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], Emails: rafael.deleo.oliveira@usp.br, jcarlos@sc.usp.br

    2010-10-15

    Solar collector is a device that uses solar energy for heating fluid (both liquid and gaseous) which can then be used to generate energy. This study is based on the method of calculating the global solar radiation incident on the inclined plane using data from the city of Piracicaba, state of Sao Paulo. As a result of the study it can be seen that for the city of Piracicaba the collecting area of 4.62 M{sup 2} presents solar fraction varying between 87.27% and 97.79% for heating 300 liters of water and 200 liters of water daily, respectively. Based on the results one can conclude that the savings would be about 47.74 GWh, if a collection area of 360 thousand m{sup 2} (0.36 km{sup 2}) were fully exploited, which represents savings of approximately R$ 15.86 million per year for the municipality. (author)

  8. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  9. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  10. Simulation of the impact of financial incentives on solar energy utilization for space conditioning and water heating: 1985

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H C

    1979-01-01

    Financial incentives designed to accelerate the use of solar energy for heating, cooling, and water heating of buildings have been proposed by both state and federal legislative bodies in the U.S.A. Among the most frequently mentioned incentives are sales and property tax exemptions, tax deductions and credits, rapid amortization provisions, and interest rate subsidies. At the present time there is little available information regarding the ability of such incentives to advance the rate of solar energy utilization. This paper describes the derivation and use of a computer simulation model designed to estimate solar energy use for space conditioning and water heating for given economic, climatic, and technological conditions. When applied to data from the Denver, Colorado metropolitan area, the simulation model predicts that sales tax exemptions would have little impact over the next decade, interest rate subsidies could more than double solar energy use, and the other proposed incentives would have an intermediate impact.

  11. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Building America Partnership for Improved Residential Construction (BA-PIRC)

    2017-07-01

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from a standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.

  12. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    International Nuclear Information System (INIS)

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G.

    2011-01-01

    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  13. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  14. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  15. Evaluation of the thermal performance of a solar water heating thermosyphon versus a two-phase closed thermosyphon using different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Ordaz-Flores, A. [Posgrado en Ingenieria (Energia), Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Garcia-Valladares, O.; Gomez, V.H. [Centro de Investigacion en Energia, Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico)

    2008-07-01

    A water heating closed two-phase thermosyphon solar system was designed and built. The system consists of a flat plate solar collector coupled to a thermotank by a continuous copper tubing in which the working fluid circulates. The working fluid evaporates in the collector and condensates in the thermotank transferring its latent heat to the water through a coil heat exchanger. The tested fluids are acetone and R134a. The thermal performance of the proposed systems is compared with a conventional solar water thermosyphon under the same operating conditions. Advantages of a two-phase system include the elimination of freezing, fouling, scaling and corrosion. Geometry and construction materials are the same except for the closed circuit presented in the two-phase system. Data were collected from temperature and pressure sensors throughout the two systems. Early results suggest that R134a may provide a better performance than acetone for this kind of systems. (orig.)

  16. Building America Case Study: Side-by-Side Testing of Water Heating Systems: Results from 2013-2014 Evaluation Final Report, Cocoa, FL

    Energy Technology Data Exchange (ETDEWEB)

    Rothgeb, Stacey K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colon, C. [BA-PIRC; Martin, E. [BA-PIRC

    2017-08-24

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  17. Building America Case Study: Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    C. Colon and E. Martin

    2017-08-24

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  18. The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (LHP-STF) heat pump water heating system: Techno-economic analysis in three European climates

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Shen, Jingchun; Adkins, Deborah; Yang, Tong; Tang, Llewellyn; Zhao, Xudong; He, Wei; Xu, Peng; Liu, Chenchen; Luo, Huizhong

    2015-01-01

    Highlights: • LHP-STF was evaluated from both technical and economic aspects for three EU climates. • The impact of LHP-STF on the overall building socio-energy performance was explored. • A dedicated business model was developed to study the economic feasibility of LHP-STF. • Three fundamental methods for financial measurement of LHP-STF were analysed. • Four investment options were considered in this business model. - Abstract: Most of the building renovation plans are usually decided in the early design stage. This delicate phase contains the greatest opportunity to achieve the high energy performance buildings after refurbishment. It is therefore important to provide the pertinent energy performance information for the designers or decision-makers from multidisciplinary and comparative points of view. This paper investigates the renovation concept of a novel loop-heat-pipe based solar thermal facade (LHP-STF) installed on a reference residential building by technical evaluation and economic analysis in three typical European climates, including North Europe (represented by Stockholm), West Europe (represented by London) and South Europe (represented by Madrid). The aim of this paper is firstly to explore the LHP-STF’s sensitivity with regards to the overall building socio-energy performance and secondly to study the LHP-STF’s economic feasibility by developing a dedicated business model. The reference building model was derived from the U.S. Department of Energy (DOE) commercial buildings research, in which the energy data for the building models were from the ASHRAE codes and other standard practices. The financial data were collected from the European statistic institute and the cost of system was based on the manufactured prototype. Several critical financial indexes were applied to evaluate the investment feasibility of the LHP-STF system in building renovation, such as Payback Period (PP), Net Present Value (NPV), and the modified internal

  19. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winters Associates, Inc., Norwalk, CT (United States)

    2016-02-01

    In western Massachusetts, an affordable housing developer built a community of 20 homes with the goal of approaching zero energy consumption. In addition to excellent thermal envelopes and photovoltaic systems, the developer installed a solar domestic hot water (SDHW) system on each home. The Consortium for Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America research team, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.

  20. Generalized indices of a typical individual water-heating solar plant in the climatic conditions of Russia different regions

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.

    2003-01-01

    By the example of the typical solar water-heating plant (SWP), designed for daily consumption of 100 l of heated water the calculation of the number of days in the year is accomplished, during which such a plant could provide for heating the water not below the assigned control level of 37, 45 and 55 deg C for various ratios between the solar collector square and tank-accumulator volume. The generalized dependences are obtained on the basis of processing the results of the SWP dynamic modeling with application of the typical meteoyears, generated for the climatic conditions of more than 40 populated localities in Russia both in its European and Asian part. The efficiency of the SWP operation in different regions of the country may be determined through their application [ru

  1. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  2. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  3. Thermophysical characteristics of plastic bottles as an element of water heat accumulators in solar greenhouses

    International Nuclear Information System (INIS)

    Khalimov, A. G.; Khairiddinov, B. Eh.; Kim, V. D.; Khalimov, G. G.

    2012-01-01

    This article considers the thermophysical and granulometric characteristics of polyethylene terephthalate (PET) plastic bottles filled with water. The given figures allow one to conduct calculations of thermal plastic bottles as heat storage elements for solar greenhouses. (author)

  4. Campaign of promoting the individual solar water heating; Campagne de promotion du chauffe-eau solaire individuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-14

    This document is the file of a press conference organized by Agency of Environment and Energy Management (ADEME) on 14 April 2000. The subject matter was re-launching the solar heat generation in metropolitan France. ADEME plans promoting in the frame of HELIOS 2006 program the heat production and solar water heating for individual and collective uses. Individual solar water heater was selected as the most available appliance as it appears to be the best product of interest for the public at large. The content of the document is: - objectives; - target regions; - communication means; - HELIOS, the program for 2000 - 2006; - QUALISOL map; - other capabilities of HELIOS; - additional information. Three important objectives are addressed: implementing a national-wide coherent communication; undertaking a progressive regional operations, adjustable for use in other regions; using the experience of regional ADEME delegations in regions with good market conditions and high qualification of personnel and industries. As a first stage, as targets, five metropolitan regions corresponding to the exposed criteria were selected: Corsica, Languedoc Roussillon, Midi-Pyrenees, PACA, Rhone Alpes. Objective and the structure of the program HELIOS 2006 are outlined.

  5. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    Zede Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15 (1998) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected should load here if your Web ...

  6. Study of a biogas digester feed in energy by a solar-water heating collector

    International Nuclear Information System (INIS)

    Miri, R.; Tou, I.

    2006-01-01

    heating, the lighting and manure with high fertilising potential (stabilised mud) like amendments for the arable lands. The production of biogas could be regarded as an economic solution, decentralised and ecological with these problems through energy autonomy and a durable agricultural development of the rural zones. The bio-methane remains an energy ignored in Algeria, that in spite of several attempts at use which were undertaken since the Forties and even if it does not form part of our sociological cultural and economic traditions, it must represent the best solution to the already mentioned problems. Our study propose to produce bio-methane starting from the animal manure (dung of cows). For that an experimental device was designed and carried out. It consists of digester of 800 litters, of a gas meter bell of 600 litters, of a device of heating applied with a solar-fired heater which ensures a mesophile temperature to him and of a system of agitation of the substrate. The experimental study made it possible to optimize the process of production, for a domestic application and also to develop a system temperature control required at the entry of digester ranging between 25 and 40 degree centigrade. The model is quasi-autonomous. The achievement of this objective of research will make it possible, as we hope for it, to lay down a policy of digester installation of on a national scale.(Author)

  7. Thermal analysis of a solar collector consisting of V cavities for water heating; Analise termica de um coletor solar composto de cavidades V para aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Michel Fabio de Souza

    2009-03-15

    The solar water heating is carried through, in Brazil, by means of solar heaters compound for collectors flat plate of the type plate-and-pipes, devices that operate in stationary position and they do not require tracking of the sun. A compound collector for some formed V-trough concentrators can be an alternative to the conventional solar collectors flat plate. This compound collector for V-trough is considered, each one, for side-walls which are specularly reflecting surfaces associates in V (equivalent to a triangular gutter). Next to the vertex to each V-trough concentrators an absorber tube is fixed, for flow of the fluid to be heated. Interconnection of the absorbers tubes forms a similar tubular network existing in solar collectors of the type the plate and pipe. V-trough concentrators with the absorbers tubes are made use in series in the interior a prismatic box, which have one of its faces consisting by a glass covering and directed toward incidence of the solar radiation. An analysis of thermal performance of these devices operating stationary and without tracking of the sun is researched. A mathematical model for the computational simulation of the optical and thermal performance of these concentrative devices is elaborated, whose implementation was carried through software EES (Engineering Equation Solver). The efficiency optics of V-trough concentrators with cylindrical absorbers is calculated from the adaptation of the methodology used for Fraidenraich (1994), proposal for Hollands (1971) for V-trough cavities with plain absorbers. The thermal analysis of the considered collector was based on the applied methodology the CPC for Hsieh (1981) and Leao (1989). Relative results to the thermal performance of V-trough concentrators suggest that these configurations are not competitive, technique and economically, with the conventional plain collectors. Although some geometric configurations presented next thermal efficiencies to the conventional plain

  8. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  9. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  10. Influence of ambient temperatures on performance of a CO2 heat pump water heating system

    International Nuclear Information System (INIS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Ito, Koichi; Takemura, Kazuhisa

    2007-01-01

    In residential applications, an air-to-water CO 2 heat pump is used in combination with a domestic hot water storage tank, and the performance of this system is affected significantly not only by instantaneous ambient air and city water temperatures but also by hourly changes of domestic hot water consumption and temperature distribution in the storage tank. In this paper, the performance of a CO 2 heat pump water heating system is analyzed by numerical simulation. A simulation model is created based on thermodynamic equations, and the values of model parameters are estimated based on measured data for existing devices. The calculated performance is compared with the measured one, and the simulation model is validated. The system performance is clarified in consideration of seasonal changes of ambient air and city water temperatures

  11. Combined solar collector and storage systems

    International Nuclear Information System (INIS)

    Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.

    2000-01-01

    The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

  12. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  13. Seasonal performance evaluation of electric air-to-water heat pump systems

    International Nuclear Information System (INIS)

    Dongellini, Matteo; Naldi, Claudia; Morini, Gian Luca

    2015-01-01

    A numerical model for the calculation of the seasonal performance of different kinds of electric air-to-water heat pumps is presented. The model is based on the procedure suggested by the European standard EN 14825 and the Italian standard UNI/TS 11300-4, which specify the guidelines for calculation of the seasonal performance of heat pumps during the heating season (SCOP), the cooling season (SEER) and for the production of domestic hot water. In order to consider the variation of outdoor conditions the developed model employs the bin-method. Different procedures are proposed in the paper for the analysis of the seasonal performance of mono-compressor, multi-compressor and variable speed compressor air-to-water heat pumps. The numerical results show the influence of the effective operating mode of the heat pumps on the SCOP value and put in evidence the impact of the design rules on the seasonal energy consumption of these devices. The study also highlights the importance of the correct sizing of the heat pump in order to obtain high seasonal efficiency and it shows that, for a fixed thermal load, inverter-driven and multi-compressor heat pumps have to be slightly oversized with respect to mono-compressor ones in order to obtain for the same building the highest SCOP values. - Highlights: • A model for the prediction of seasonal performance of HPs has been developed. • The model considers mono-compressor, multi-compressor and inverter-driven HPs. • The procedure takes into account HPs performances at partial load. • Optimization of heat pump sizing depending on its control system.

  14. An overview of the photovoltaic, wind power, solar water heating and small-scale hydropower supply industries in South Africa up to 1994/95

    International Nuclear Information System (INIS)

    Stassen, G.; Holm, D.

    1997-01-01

    This paper contains a broad overview of the South African photovoltaic, solar water heating, wind power and small-scale hydropower industries. Against the general lack of a comprehensive national database on renewable energy supply and demand, this overview attempts to provide general background information on these commercial industries, market trends, local sales figures, export volumes and installed capacity estimates. It also identifies the industry's major constraints, as well as their future outlook. (author). 12 refs., 13 tabs., 4 figs

  15. Financial viability study using a heat pump as an alternative to support solar collector for water heating in Southeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Roberts Vinicius de Melo; Oliveira, Raphael Nunes; Machado, Luiz; Koury, Ricardo Nassau N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. of Mechanical Engineering], E-mails: robertsreis@ufmg.br, luizm@demec.ufmg.br, koury@ufmg.br

    2010-07-01

    Along with related greenhouse effect environmental issues, constant problems changes in oil prices,make the use of solar energy an important renewable energy source. Brazil is a country which is privilege, considering the high rates of solar irradiation present throughout most of the entire national territory. Nevertheless, during certain times of the year, a solar energy deficit, leads solar systems to require electrical resistance support. The use of electrical resistance represents 23.5% of electric energy consumption and it presents a low residential energy efficiency. The purpose of this work is conducting a study of Brazilian States in the Southeastern region regarding the financial viability of replacing a resistive system combined with the use of solar collector and a heat pump. One such heat pump has been designed, constructed and tested experimentally. The average performance coefficient is equal to 2.10, a low value due to the use of a hermetic reciprocating compressor. Despite this low-moderate price coefficient of acquisition and installation of a heat pump, a return on investment in from 2.1 to 2.7 years can be expected. Whereas the equipment has a useful life of about 20 years, this period of return on investment is interesting. (author)

  16. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  17. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  18. Environmental benefits of domestic solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, Soteris A.

    2004-01-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO 2 and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gasses are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water system the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gasses are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future

  19. Solar heating systems for houses. A design handbook for solar combisystems

    International Nuclear Information System (INIS)

    Weiss, W.

    2003-11-01

    A handbook giving guidance on systems for providing combined solar space heating and solar water heating for houses has been produced by an international team. The guidance focuses on selection of the optimum combi-system for groups of single-family houses and multi-family houses. Standard classification and evaluation procedures are described. The book should be a valuable tool for building engineers, architects, solar manufacturers and installers of solar solar energy systems, and anyone interested in optimizing combined water and space heating solar systems

  20. Design of a thermochemical heat storage system for tap water heating in the built environment

    NARCIS (Netherlands)

    Gaeini, M.; de Jong, E.C.J.; Zondag, H.A.; Rindt, C.C.M.

    2014-01-01

    Replacing the use of fossil fuel by solar energy, as one of the most promising sustainable energy sources, is of high interest, because of climate change and depletion of fossil resources. However, to reach high solar fractions and to overcome the mismatch between supply and demand of solar heat,

  1. Where there's a tank, there's a solar system

    Energy Technology Data Exchange (ETDEWEB)

    Banse, Stephanie

    2011-07-01

    London-based consultants BRG have analysed the European market for water heating systems. The comprehensive collection of data on the storage tank market also permits conclusions to be drawn regarding the development of solar thermal systems in general. (orig.)

  2. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  3. High pressure, low pressure and hot water heating systems in hospitals. Hochdruck-, Niederdruck- und Warmwasserheizungsanlagen im Krankenhaus

    Energy Technology Data Exchange (ETDEWEB)

    Riedle, K [H. Riedle GmbH, Wiesbaden (Germany)

    1994-07-01

    In hospital nowadays the limitation of the use of steam boilers and their direct supply network to the possible minimum is aimed at when the heating system is exchanged or retrofitted. Independent of the fact whether high pressure or low pressure steam or hot water is used the optimum water treatment should be carried out with a minimum of chemical substances. Here hydroquinone, neutralizing amines, carbohydrazide, sodium sulphite and tannins can be used. The dimensioning of hot water heating circuits is shown with examples. (BWI)

  4. The annual number of days that solar heated water satisfies a specified demand temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland (United Kingdom); Popel, O.; Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 127412 (Russian Federation); Norton, B. [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2006-08-15

    An analysis of solar water heating systems determines the number of days in each month when solar heated water wholly meets demand above a set temperature. The approach has been used to investigate the potential contribution to water heating loads of solar water heating in two UK locations. Correlations between the approach developed and the use of solar fractions are discussed. (author)

  5. Adaptation process of hygiene routine of the manual milking materials after implantation of a solar water heating system in rural property; Processo de adaptacao da rotina higienica de materiais de ordenha manual apos implantacao de um sistema de aquecimento solar de agua com materiais reciclaveis em propriedade rural

    Energy Technology Data Exchange (ETDEWEB)

    Cremasco, Camila P. [Faculdade de Tecnologia (FATEC), Presidente Prudente, SP (Brazil); Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Bioestatistica], email: camila@fatecpp.edu.br; Choueri, Matheus [Faculdade de Tecnologia (FATEC), Presidente Prudente, SP (Brazil); Gabriel Filho, Luis Roberto Almeida [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Silva, Helenice de O. Florentino [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Bioestatistica

    2011-07-01

    In Brazil, most of the producers of cow milk were not adequate to Instruction No. 51 (IN51), which provides health conditions for obtaining the milk using warm water for washing. The study aimed to evaluate the process of hygiene materials in milking farm through solar panels made from recyclable materials (plastic bottles and milk cartons). To conduct the study, scenarios were established before and after the deployment of the solar heating of water used in the cleaning process. In the first stage, the producer must perform the routine work without any intervention, and collected a sample of the product. For the second stage (after implementation of the heater), the producer must follow the guidelines of the IN51 washes of materials relating to milking, to then collect another sample of the product. The study was designed with the testing of counts of colony forming units per milliliter of milk (CFU/ml) in the samples. Laboratory results sought to conclude that the method is effective in preventing the contamination of milk, indicating the use of the heater in such farms. (author)

  6. Numerical model of simulation for solar collector of water heating; Modelo de simulaco numerica para colector solar de aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A. C. G. C.; Dutra, J. C. C.; Henriquez, J. R.; Michalewicz, J. S.

    2008-07-01

    Before being installed a solar heater, It must be tested, numerical or experimentally to get his characteristic equation, which is the efficiency curve, plotted as a function on the temperature of entry and solar incident radiation on the collector. In this work was developed a tool for numerical simulation of heating water flat-plate solar collectors. This tool has been developed from a mathematical model which is composed of a system of equations. In the model are included equations of balance energy for the collector, equation of the first law, the law of cooling equation of Newton, convective heat transfer coefficient correlations, equations for calculating the solar incident radiation, and one equation that calculates of the water flow due to the siphon effect. The solution of the equations system was obtained by the multidimensional version of the Newton-Raphson method. the model was validated with experimental data from literature. The results shows, that it is a very interesting tool to simulate efficiency curve of the solar collector. (Author)

  7. Solar water heating at Ikea's Montreal store; Chauffage solaire de l'eau courante au magasin Ikea de Montreal

    Energy Technology Data Exchange (ETDEWEB)

    Lagana, A.; Sonmor, K. [Ecovision experts-conseils inc., Montreal, PQ (Canada)

    2010-01-01

    The Ikea store in Montreal has integrated an energy efficient solar water heater into its building infrastructure. In June 2010, 30 fixed solar panels were installed on the roof to recuperate energy from the sun for hot water use in the restaurant and store facilities. Prior to this installation, the store was using natural gas for water heating purposes. During a sunny summer day, the solar water heater can provide 100 percent of the hot water needs of the store, even though it was designed to provide only one-third of the heating requirements. The panels are made of copper and painted with black titanium paint. A solution of water and antifreeze circulates in the panels. Digital controls are used at the pumps to control the temperature. The Ikea store uses approximately 3,100 gallons of water per day. The panels provide more than 60 MWh of energy, and represent a savings of 8440 cubic metres of natural gas, and a savings of 19.7 tons of carbon dioxide. The panels cost $1,300 and the return on investment is estimated to be 15.6 years. 3 figs.

  8. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    Science.gov (United States)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  9. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  10. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  11. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions...

  12. Performance of a day/night water heat storage system for heating and cooling of semi-closed greenhouses in mild winter climate

    NARCIS (Netherlands)

    Baeza, E.J.; Pérez Parra, J.J.; López, J.C.; Gázquez, J.C.; Meca, D.E.; Stanghellini, C.; Kempkes, F.L.K.; Montero, J.I.

    2012-01-01

    A novel system for heating/cooling greenhouses based on air/water heat exchangers connected to a thermally stratified water storage tank was tested in a small greenhouse compartment at the Experimental Station of the Cajamar Foundation in Almería, Spain. The system maintained a closed greenhouse (no

  13. Solar Water Heater Systems for Building Trades Class.

    Science.gov (United States)

    Ryan, Milton; And Others

    This teaching unit serves as a guide for the installation of active solar water heating systems. It contains a project designed for use with secondary level students of a building trades class. Students typically would meet 2 to 3 hours per day and would be able to complete the activity within a 1-week time period. Objectives of this unit include:…

  14. FINANCIAL ANALYSIS OF SOLAR ENERGY APPLICATIONS WITH ENDOGENOUS SYSTEM SIZING

    OpenAIRE

    Gunter, Lewell F.; Smathers, Webb M., Jr.

    1984-01-01

    This paper is concerned with analysis of economic feasibility of solar energy systems. Methodology for estimating energy output from different sized systems is briefly presented, and this is used to determine technical coefficients for a mixed integer model which optimizes the size of the solar heating unit for a particular use. An empirical example of hot water heating on a Georgia dairy is presented. Cost curves are provided for the dairy example to illustrate the effect of sizing on the ec...

  15. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  16. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ping; Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Spitler, Jeffrey D. [School of Mechanical Engineering, Oklahoma State University (United States); Fang, Zhaohong [Ground Source Heat Pump Research Center, Shandong University of Architecture and Engineering, Jinan (China)

    2008-07-01

    A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong. (author)

  17. Owner of a solar craftsman's establishment installs solar thermal power system on his own roof; Bekenntnis auf eigenem Dach. Solarthermie

    Energy Technology Data Exchange (ETDEWEB)

    Mertel, B. [WESTFA Westfaelische Apparatebau- und Vertriebs GmbH, Hagen (Germany)

    2008-09-15

    Tourism and solar water heating go together well, says Hermann Bachmaier, who owns a solar craftsman's business as well as a bed and breakfast place. On this building, he installed a model solar system from which both of his businesses profit. (orig.)

  18. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  19. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  20. ENERGIA SOLAR TÉRMICA: INOVAÇÃO EM AQUECIMENTO DE ÁGUA PARA PROCESSOS INDUSTRIAIS / SOLAR THERMAL ENERGY: WATER HEATING INNOVATION FOR INDUSTRIAL PROCESSES

    OpenAIRE

    E. F. Carreira Junior; J. B. Sacomano; M. Mollo Neto

    2014-01-01

    O aumento do consumo mundial de energia tem gerado a busca de fontes alternativas, inclusive a solar, de fácil utilização, não exigindo equipamentos muito sofisticados nem complexos. Muitos processos industriais utilizam água em temperaturas até 100°C. O uso de energia solar na indústria ainda é baixo se comparado ao consumo energético total. O objetivo deste artigo é investigar possibilidades de usos de aquecimento solar de água em processos industriais, para o que foi utilizada pesquisa bib...

  1. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  2. Solar engine system

    International Nuclear Information System (INIS)

    Tan, K.K.; Bahrom Sanugi; Chen, L.C.; Chong, K.K.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Noriah Bidin; Omar Aliman; Sahar Salehan; Sheikh Ab Rezan Sheikh A H; Tam, C.M.; Chen, Y.T.

    2001-01-01

    This paper reports the revolutionary solar engine system in Universiti Teknologi Malaysia (UTM). The solar engine is a single cylinder stirling engine driven by solar thermal energy. A first prototype solar engine has been built and demonstrated. A new-concept non-imaging focusing heliostat and a recently invented optical receiver are used in the demonstration. Second generation of prototype solar engine is described briefly. In this paper, the solar engine system development is reported. Measurement for the first prototype engine speed, temperature and specifications are presented. The benefits and potential applications for the future solar engine system, especially for the electricity generating aspect are discussed. (Author)

  3. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  4. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  5. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  6. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  7. ENERGIA SOLAR TÉRMICA: INOVAÇÃO EM AQUECIMENTO DE ÁGUA PARA PROCESSOS INDUSTRIAIS / SOLAR THERMAL ENERGY: WATER HEATING INNOVATION FOR INDUSTRIAL PROCESSES

    Directory of Open Access Journals (Sweden)

    E. F. Carreira Junior

    2014-12-01

    Full Text Available O aumento do consumo mundial de energia tem gerado a busca de fontes alternativas, inclusive a solar, de fácil utilização, não exigindo equipamentos muito sofisticados nem complexos. Muitos processos industriais utilizam água em temperaturas até 100°C. O uso de energia solar na indústria ainda é baixo se comparado ao consumo energético total. O objetivo deste artigo é investigar possibilidades de usos de aquecimento solar de água em processos industriais, para o que foi utilizada pesquisa bibliográfica em artigos internacionais visando identificar o estágio atual dessas aplicações no mundo. Pesquisa exploratória de dados secundários do mercado brasileiro de sistemas de aquecimento solar no Departamento Nacional de Aquecimento Solar (DASOL, e no Plano Nacional de Eficiência Energética 2010-2030 (PNEf-2010 do Ministério de Minas e Energia, buscou caracterizar o estágio atual desse setor no Brasil. O estudo permite concluir que o uso de aquecimento solar de água em indústrias no Brasil é possível e representa uma alternativa que pode contribuir para a redução do custo e do consumo de energia em 30% a 40% dos processos de aquecimento em baixas temperaturas, especialmente nos setores de alimentos, bebidas, têxtil e químico.

  8. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  9. Solar collector systems - better than their reputation. Kollektoranlagen - besser als ihr Ruf

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, F. (Energietechnik Mueller GmbH und Co. KG, Satteldorf (Germany, F.R.))

    1989-04-01

    The actual value of stereotype standard opinions put forward by experts and specialists advising against solar systems is analyzed and commented on as follows: 'Insufficiency of sunshine duration and intensity' (in the Federal Republic of Germany insolation is about 1100 kW/m/sup 2//a, solar power plant test results are available, solar water heating), 'immaturity of solar systems' (two thirds of water heating energy demands can be covered by solar energy; high state of the art and maturity of solar engineering today), 'poor economic efficiency of solar systems' (tabular examples of the expenses involved, depreciation: 100 per cent/10 years). (HWJ).

  10. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  11. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  12. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    Science.gov (United States)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  13. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Science.gov (United States)

    2010-04-01

    ... PROGRAMS Minimum Property Standards § 200.950 Building product standards and certification program for...) concerning labeling of a product, the administrator's validation mark and the manufacturer's certification of... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Building product standards and...

  14. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  15. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  16. Homemade Solar Systems

    Science.gov (United States)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  17. Dimensioning of Solar Thermal Systems for Multi-Family Buildings in Lithuania: an Optimisation Study

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Vaičiūnas, Juozas; Perednis, Eugenijus

    2017-01-01

    Small-scale solar thermal domestic hot water (DHW) systems in Lithuania can produce up to 523 kWh per year per one square meter of solar collector area. It is therefore one of the most common solar thermal applications in the country with the expected payback period of approximately 10 years. However, the number of solar water heating systems (SWH) installed in the renovated multi-family buildings is quite limited. On the other hand, the potential of integrating solar thermal systems in these...

  18. Solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2007-01-01

    The focus in the present Ph.D. thesis is on the active use of solar energy for domestic hot water and space heating in so-called solar combi systems. Most efforts have been put into detailed investigations on the design of solar combi systems and on devices used for building up thermal...... the thermal behaviour of different components, and the theoretical investigations are used to study the influence of the thermal behaviour on the yearly thermal performance of solar combi systems. The experimental investigations imply detailed temperature measurements and flow visualization with the Particle...... Image Velocimetry measurement method. The theoretical investigations are based on the transient simulation program TrnSys and Computational Fluid Dynamics. The Ph.D. thesis demonstrates the influence on the thermal performance of solar combi systems of a number of different parameters...

  19. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  20. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  1. Thermodynamic analysis of solar assisted multi-functional trigeneration system

    Directory of Open Access Journals (Sweden)

    Önder KIZILKAN

    2016-02-01

    Full Text Available In this study, modelling and thermodynamic analysis of solar assisted trigeneration system was carried out. The required thermal energy for gas and vapor cycles were supplied from solar tower which is a new concept for gas cycle applications. Additionally, an absorption refrigeration cycle, vapor production process, drying process and water heating process were integrated to the system. Energy and exergy efficiencies of the trigeneration system were determined by the application of first and second law analyses. The results showed that the gas cycle efficiency was found to be 31%, vapor cycle efficiency was found to be 28% and coefficient of performance (COP values of the refrigeration system was found to be 0.77. Also the highest exergy destruction rate was found to be 4154 kW in solar tower.Keywords: Solar tower, Trigeneration, Gas cycle, Vapor cycle, Energy, Exergy

  2. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  3. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  4. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  5. The solar system

    International Nuclear Information System (INIS)

    Ryan, P.

    1981-01-01

    A comprehensive review is given of the most recent findings on the solar system. The physical processes in the sun are presented, their interactions in the interplanetary space, and the planets and moons of the solar system. The sun and its moon are discussed in great detail. The text is supplemented by excellent satellite pictures, including the latest pictures of Jupiter, Saturn, and their moons. (HM) [de

  6. Sustainable Buildings. Using Active Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, M. Keith [Univ. of Louisville, KY (United States); Barnett, Russell [Univ. of Louisville, KY (United States)

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  7. System design package for SIMS Prototype System 4, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

  8. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  9. Solar energy. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Benseman, R.

    1977-10-15

    The potential for solar space heating and solar water heating in New Zealand is discussed. Available solar energy in New Zealand is indicated, and the economics of solar space and water heating is considered. (WHK)

  10. The New Solar System

    Science.gov (United States)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to

  11. Discovering the Solar System

    Science.gov (United States)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  12. Profiles of five promising industries and apartment dwellings for solar systems trials planning

    Energy Technology Data Exchange (ETDEWEB)

    1891-12-01

    The objective of this study was to identify suitable types of large-scale applications for solar water-heating systems. The factors considered in industrial applications were the amount, type, and cost of energy used for heating water to temperatures <50/sup 0/C. It was found that five industries account for almost one-half of the industrial low-temperautre water-heating requirements. Since oil is the primary source of this energy in Eastern Canada and is soon to be the most costly conventional energy source, large businesses located in Quebec and the Atlantic Provinces were found to be the most promising establishments for solar applications. The report recommends contacting owners in all five industrial sectors to determine their attitudes to solar systems trials and to gather site-specific data. At the same time, the report indicates that apartments, especially those in Eastern Canada, may be more suitable than businesses for large-scale solar water heating. Low-rise apartments use approximately 17 PJ of oil energy for domestic hot water compared to the 11 PJ used by all five industrial subsectors for low-temperature water heating. 4 refs., 5 figs., 100 tabs.

  13. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  14. P50/P90 Analysis for Solar Energy Systems Using the System Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, A. P.; Gilman, P.; Kasberg, M.

    2012-06-01

    To secure competitive financing for a solar energy generation project, the economic risk associated with interannual solar resource variability must be quantified. One way to quantify this risk is to calculate exceedance probabilities representing the amount of energy expected to be produced by a plant. Many years of solar radiation and metereological data are required to determine these values, often called P50 or P90 values for the level of certainty they represent. This paper describes the two methods implemented in the National Renewable Energy Laboratory's System Advisor Model (SAM) to calculate P50 and P90 exceedance probabilities for solar energy projects. The methodology and supporting data sets are applicable to photovoltaic, solar water heating, and concentrating solar power (CSP) systems.

  15. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  16. Solar system exploration

    International Nuclear Information System (INIS)

    Briggs, G.A.; Quaide, W.L.

    1986-01-01

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described

  17. Baby Solar System

    Science.gov (United States)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  18. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  19. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  20. Solar System Dynamics

    Science.gov (United States)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  1. Development of domestic hot water systems in Costa Rica from solar energy

    International Nuclear Information System (INIS)

    Lizana-Moreno, Fernando

    2015-01-01

    A software tool is developed to implement the solar domestic hot water systems (DHW) in Costa Rica and to replace the electric water heating equipment. A database with information from the solar radiation is elaborated for different locations in Costa Rica. A manual of design DHW solar systems is realized for the country. An DHW solar system is designed for the type of average building the of country. A software is implemented to calculate the parameters and dimensions necessary for the solar installation of DHW, using the F-Chart method; in addition, the information of the mentioned database is included. A financial analysis is elaborated of the DHW solar systems in Costa Rica. The strategies are proposed for the implementation of DHW solar systems in Costa Rica [es

  2. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  3. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  4. The New Solar System

    Science.gov (United States)

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  5. Solar Water Heater Installation Package

    Science.gov (United States)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  6. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  7. Solar Water Heater

    Science.gov (United States)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  8. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  9. International production versus global competition. Bosch`s business area `water heating systems` meets the press; International im globalen Wettbewerb. Bosch Geschaeftsbereich Thermotechnik stellt sich der Fachpresse vor

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-08-01

    The business area `water heating systems` has developed into an internationally operating enterprise of the Bosch group. Its factories are distributed over seven countries: Junkers at Wernau (Germany), Worcester at Worcester (Great Britain), Radson at Houthalen (Belgium), Vulcano at Aveiro (Portugal), e.I.m. leblanc at Drancy and Brest (France) and at Lecong (PR China).- The article reports impressions gathered at a meeting of representatives of the technical press, organized by Bosch Thermotechnik at Aveiro, Portugal. This colloquy in a European site of production enabled representatives of the press to inform themselves on the spot on the internationality of the enterprise. (orig.) [Deutsch] Der Geschaeftsbereich Thermotechnik hat sich zu einem international operierenden Unternehmen der Bosch-Gruppe entwickelt. In sieben Laendern hat er Fertigungsstaetten, Junkers in Wernau (D), Worcester in Worcester (GB), Radson in Houthalen (B), Vulcano in Aveiro (P), e.l.m. Leblanc in Drancy und Brest (F) und in Lecong (VR China). Im folgenden wird ueber Eindruecke aus einem Fachpresse-Kolloquium berichtet, zu dem Bosch Thermotechnik Fachpressevertreter nach Aveiro in Portugal eingeladen hatte. Es fand also an einem der europaeischen Standorte statt, so dass sich die Pressevertreter vor Ort ein konkretes Bild zum Thema `Internationalitaet` verschaffen konnten. (orig.)

  10. Recycling technologies for sewarage systems. Reuse of water, heat, and sludge in Tokyo; Gesuido wo meguru risaikuru gijutsu. Tokyoto ni okeru mizu/netsu/odei no sairiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mino, T. [Tokyo Univ. (Japan)

    1996-03-10

    The recycling technology employed in Tokyo were reported. It will be useful for developing and introducing the recycling technology for water, heat, and sludge in the sewage treatment. Among various kinds of recycling technology, one of the most peculiar technology is the district heating and cooling system using the heat of sewage. The Japan`s first practical plant which uses the untreated sewage as the heat source was installed and is now operating in Korakuen pump station. In the station, the energy contained in the sewage is recovered by a heat exchanger. The heat pump produces warm water of 45{degree}C and cold water of 7{degree}C as well. Both are supplied to the area near by through the heat source supply pipeline. The Nanbu sludge plant has a sludge-resourcing plant, in which the sludge is converted into fuel, metro-bricks, and light-weight granules, as well as a conventional sludge treatment plant carrying out the concentration, dehydration, and incineration of sludge. The Ochiai sewage treatment plant reuses water after cleaning. The clean water is used as for the service water in addition to being discharged into the river stream. 7 figs., 1 tab.

  11. More solar systems thanks to 'Buyer Groups'

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2000-01-01

    The article describes how the founding of 'Buyer Groups' can help reduce the costs and raise the attractiveness of solar water heating. The success already enjoyed by groups that have been set up in Holland, Denmark, Sweden, Switzerland and Canada is used to illustrate the idea, which is being promoted globally be the International Energy Agency (IEA). The article describes the support offered by the Swiss Solar Energy Society (SSES) to the addressees of the campaign, including energy utilities, building co-operatives and real estate developers. An example is given of a 'Buyer Group' project in Basel, Switzerland, where a '222 solar roofs for Basel' campaign was successful implemented

  12. An Experiment on Heat Recovery Performance Improvements in Well-Water Heat-Pump Systems for a Traditional Japanese House

    Directory of Open Access Journals (Sweden)

    Chiemi Iba

    2018-04-01

    Full Text Available Concerns about resource depletion have prompted several countries to promote the usage of renewable energy, such as underground heat. In Japan, underground heat-pump technology has begun to be utilized in large-scale office buildings; however, several economic problems are observed to still exist, such as high initial costs that include drilling requirements. Further, most of the traditional dwellings “Kyo-machiya” in Kyoto, Japan have a shallow well. This study intends to propose an effective ground-source heat-pump system using the well water from a “Kyo-machiya” home that does not contain any drilling works. In previous research, it was depicted that the well-water temperature decreases as the heat pump (HP is operated and that the heat extraction efficiency steadily becomes lower. In this study, an experiment is conducted to improve efficiency using a drainage pump. Based on the experimental results, the effect of efficiency improvement and the increase in the electric power consumption of the drainage pump are examined. It is indicated that short-time drainage could help to improve efficiency without consuming excessive energy. Thus, continuous use of the heat pump becomes possible.

  13. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  14. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  15. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  16. Concentrating Solar Power Systems

    Science.gov (United States)

    Pitz-Paal, R.

    2017-07-01

    Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.

  17. Mississauga solar house (Mississauga, Ontario, Canada)

    National Research Council Canada - National Science Library

    Sasaki, J. R

    1978-01-01

    .... Winter space heating is favoured over annual water heating. A description is given of system components, including flat plate collectors, a solar heat exchanger, a water-to-air heat pump and concrete water tanks for heat storage...

  18. PV solar system feasibility study

    International Nuclear Information System (INIS)

    Ashhab, Moh’d Sami S.; Kaylani, Hazem; Abdallah, Abdallah

    2013-01-01

    Highlights: ► This research studies the feasibility of PV solar systems. ► The aim is to develop the theory and application of a hybrid system. ► Relevant research topics are reviewed and some of them are discussed in details. ► A prototype of the PV solar system is designed and built. - Abstract: This research studies the feasibility of PV solar systems and aims at developing the theory and application of a hybrid system that utilizes PV solar system and another supporting source of energy to provide affordable heating and air conditioning. Relevant research topics are reviewed and some of them are discussed in details. Solar heating and air conditioning research and technology exist in many developed countries. To date, the used solar energy has been proved to be inefficient. Solar energy is an abundant source of energy in Jordan and the Middle East; with increasing prices of oil this source is becoming more attractive alternative. A good candidate for the other system is absorption. The overall system is designed such that it utilizes solar energy as a main source. When the solar energy becomes insufficient, electricity or diesel source kicks in. A prototype of the PV solar system that operates an air conditioning unit is built and proper measurements are collected through a data logging system. The measured data are plotted and discussed, and conclusions regarding the system performance are extracted.

  19. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  20. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  1. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  2. Air-to-water heat pumps, business for refrigeration systems experts. Marketing of energy-efficient technology; Luft/Wasser-Waermepumpen. Ein Geschaeft fuer Kaelteanlagenbauer. Vermarktung von energieeffizienter Technik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-01-15

    Many providers of refrigerating systems are already active in the private customer market offering split systems. There are less of them in the field of air-to-water heat pumps although this is also a growing market, and some producers of the air conditioning sector are already offering complete solutions. The contribution presents some sales arguments, outlines marketing tools for fitters - illustrated by the example of one provider -, and closes with a short market review. (orig.)

  3. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  4. Origin of solar system

    Energy Technology Data Exchange (ETDEWEB)

    Pokorny, Z.

    1984-01-01

    The generally accepted concept has it that the Sun and the planets originated almost simultaneously from nebula (the nebular hypothesis). It is assumed that the temperature of the nebula decreased in the direction from the centre which led to the segregation of elements and to the different chemical composition of the individual planets. The planets formed either from the gravitational collapse of part of the nebula or by gradual accretion. In the scenario of the origin of the solar system there are many blank spots, namely as concerns the initial stages of development and the period when the formation of the planets had ''almost been completed''.

  5. Origin of solar system

    International Nuclear Information System (INIS)

    Pokorny, Z.

    1984-01-01

    The generally accepted concept has it that the Sun and the planets originated almost simultaneously from nebula (the nebular hypothesis). It is assumed that the temperature of the nebula decreased in the direction from the centre which led to the segregation of elements and to the different chemical composition of the individual planets. The planets formed either from the gravitational collapse of part of the nebula or by gradual accretion. In the scenario of the origin of the solar system there are many blank spots, namely as concerns the initial stages of development and the period when the formation of the planets had ''almost been completed''. (Ha)

  6. The solar system

    CERN Document Server

    Jones, B W

    2013-01-01

    Presents a contemporary picture of the solar system, including a description of the Earth, Mars, Venus, cratered worlds, exotic rocks and ices, and giant planets. It is pitched at an introductory level and assumes no previous knowledge of planetary astronomy. Little mathematics is used in the text and the numerous graphs and diagrams are kept as simple as possible. End of chapter exercises are provided. The book can be used as an end in itself, or as a preparation for more advanced study, for which references are given.

  7. Marketing and selling solar energy equipment

    International Nuclear Information System (INIS)

    Book, Tony

    1999-01-01

    The literature on creating consumer awareness and acceptance of solar water heating systems for marketing purposes is sparse. This paper discusses some of the sophisticated marketing techniques available and some results. Selling solar water heating systems in Northern European latitudes requires a degree of persistence and commitment that is probably not required in what are regarded as the 'sunny climes' around the Mediterranean., the Middle East, Africa, South East Asia and Australia. (Author)

  8. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  9. The Solar Energy Notebook.

    Science.gov (United States)

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  10. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  11. A review of health, planning, insurance and property value issues related to active solar heating systems

    International Nuclear Information System (INIS)

    Sadler, R.; Spencer, L.; Digby, G.; Battye, L.

    1996-01-01

    The research reported here considers the potential health risks, local authority planning implications, insurance and property value aspects of solar water heating systems. The United Kingdom market for this technology is also discussed. Methodologies employed, including literature reviews, telephone and postal survey and re-analysis of a 1995 survey, are explained. No major problems are identified in any of the target areas although recommendations for water temperature management and coordinated local authority policies on renewable energy are given. (UK)

  12. SOLAR HEAT TRANSFER THROUGH HDPC AND COPPER PIPE USING DIFFERENT FLUIDS

    OpenAIRE

    Muzamil Wani*, Karan Negi, Prince Mehandiratta

    2016-01-01

    Nowadays climate of growing energy needs and increasing environmental concern, alternatives to the use of non -renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy; solar water heating is the prime application of solar energy. The problem faced by the existing solar water heating system is periodic inspections, maintenance, time to time component may need repair or replacement and also sufficient quantity of hot water is not available during clou...

  13. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2005-01-01

    ). However, it is still too early to draw conclusions on the design of solar combi systems. Among others, the following questions needs to be answered: Is an external domestic hot water preparation more desirable than an internal domestic hot water preparation? Is a stratification manifold always more......A large variety of solar combi systems are on the marked to day. The best performing systems are highly advanced energy systems with thermal stratification manifolds, an efficient boiler and only one control system, which controls both the boiler and the solar collector loop (Weiss et al., 2003...... desirable than a fixed inlet position? This paper presents experimental investigations of an advanced solar combi system with thermal stratification manifold inlets both in the solar collector loop and in the space heating system and with an external domestic hot water preparation. Theoretical...

  14. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  15. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics: A Text for the Science of Planetary Systems covers the field of solar system astrophysics beginning with basic tools of spherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. After a basic treatment of the two- and restricted three-body system motions in Background Science and the Inner Solar System, perturbations are discussed, followed by the Earth's gravitational potential field and its effect on satellite orbits. This is followed by analysis of the Earth-Moon system and the interior planets. In Planetary Atmospheres and the Outer Solar System, the atmospheres chapters include detailed discussions of circulation, applicable also to the subsequent discussion of the gas giants. The giant planets are discussed together, and the thermal excesses of three of them are highlighted. This is followed by chapters on moons and rings, mainly in the context of dynamical stability, comets and meteors, m...

  16. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth’s gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, are pedagogically well written, providing cl...

  17. Dynamics of the solar system

    International Nuclear Information System (INIS)

    Sidlichovsky, M.

    1987-01-01

    The conference proceedings contains a total of 31 papers of which 7 have not been incorporated in INIS. The papers mainly discuss the mathematical methods of calculating the movement of planets, their satellites and asteroids in the solar system and the mathematical modelling of the past development of the solar system. Great attention is also devoted to resonance in the solar system and to the study of many celestial bodies. Four papers are devoted to planetary rings and three to modern astrometry. (M.D.). 63 figs., 10 tabs., 520 refs

  18. A CONCEPT OF SOLAR TRACKER SYSTEM DESIGN

    OpenAIRE

    Meita Rumbayan *, Muhamad Dwisnanto Putro

    2017-01-01

    Improvement of solar panel efficiency is an ongoing research work recently. Maximizing the output power by integrating with the solar tracker system becomes a interest point of the research. This paper presents the concept in designing a solar tracker system applied to solar panel. The development of solar panel tracker system design that consist of system display prototype design, hardware design, and algorithm design. This concept is useful as the control system for solar tracker to improve...

  19. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  20. Origin of the solar system

    International Nuclear Information System (INIS)

    Nakazawa, Kiyoshi; Nakagawa, Yoshitsugu

    1982-01-01

    Many studies on the origin of the solar system have so far been made until now. These are divided into three categories; Cameron's model, Safronov's model and Kyoto model. In Cameron's model, as an initial stage of the formation of the solar system, a massive solar nebula is assumed whose mass is as large as one solar mass. This solar nebula is unstable against gravitational fragmentation, which leads to massive gaseous protoplanets. On the other hand, in both models of Safronov and us, the mass of the nebula is of the order of a few percent of the solar mass or less. However, a significant difference between Safronov's and ours lies in the continuing accumulation process of planetesimals; in the former, the accumulation is assumed to proceed in a gas-free space, but in the latter, the gas drag effect of the solar nebula is fully taken into account on the planetary growth. In this paper, the scenario of Kyoto model is reviewed, which has been developed by Hayashi and his co-workers in Kyoto group for these ten years. We will see that the gas of the solar nebula has played extensively important roles on the various stages of the planetary formation. (author)

  1. Origin of the solar system

    International Nuclear Information System (INIS)

    Hayashi, Chushiro; Nakazawa, Kiyoshi; Miyama, S.M.

    1989-01-01

    The study on the origin of the solar system entered a stage of synthetic and positivistic science around 1960, as the observation and the theory of protostars began to develop, the solar chemical composition became almost definite, and the amounts of chemical and mineralogical data greatly increased. In accordance with this scientific situation, the first research meeting in Japan on the origin of the solar system was held in 1965 at the Research Institute for Fundamental Physics, Kyoto University. It was discussed how a variety of the data on the solar system can be explained in a unified way. Since 1977, the workshop on the origin has been held annually. Through a series of the workshops, so-called Kyoto model has been talked and discussed frequently. For three years from 1985, the workshop in Kyoto was supported by the Ministry of Education, Science and Culture, and one of the main items of this grant was to publish the results of the workshop as the Supplement of the Progress of Theoretical Physics. The chronology of the solar system, the formation processes of protostars, the stability of solar nebulae, the physical processes in solar nebulae, the physical processes related to planetary growth, the growth of planets, and the formation of asteroids and meteorites are described in this book. (K.I.)

  2. Eyes on the Solar System

    Data.gov (United States)

    National Aeronautics and Space Administration — Eyes on the Solar System is a software package developed by NASA Jet Propulsion Laboratory and the California Institute of Technology using data provided by NASA's...

  3. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  4. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  5. The solar system barometer

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Not all solar eclipses are fascinating visual spectacles. The 'eclipse' that the thermal solar sector underwent between the 1984 oil price's collapse and the beginning of the 90's almost succeeded in sending it straight into a 'black hole'. Luckily, the steadfastness of some sector professionals and the intrinsic qualities of an energy which can be adapted to a great number of different situations got the better of this difficult period. After ten lean years, the sector has been experiencing a new youth for the past four years now. (author)

  6. Solar home systems in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Henryson, Jessica; Haakansson, Teresa

    1999-04-01

    Photovoltaic (PV) technology is a clean and environmentally friendly technology that does not require any fuels. The high reliability of operation and little need for maintenance makes it ideally suited for rural areas. Today PV systems are used in Nepal to power telecommunications centres, navigational aids, in pumping systems for irrigation and drinking water, and for household electrification. A solar home system consists of a PV module, a battery, a charge controller and 3-4 fluorescent light bulbs with fixture. The system provides power for lighting and operation of household appliances for several hours. The success of donor supported programs have shown that solar home systems can be a practical solution for many rural households. In 1996 the Government of Nepal launched a subsidy program for solar home systems, which dramatically has increased the demand for solar home systems among rural customers. This report includes a survey of 52 households with solar home systems in two villages. The field-study shows that the villagers are very happy with their systems and the technical performance of the systems in both villages is satisfactory. The study also shows the positive impact electricity has on education, health, income generation and quality of life. The beneficiaries of introducing electricity in remote areas are the children and the women 39 refs, 18 tabs. Examination paper

  7. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  8. K2 & Solar System Science

    Science.gov (United States)

    Lissauer, Jack

    2015-01-01

    All of the fields that K2 observes are near the ecliptic plane in order to minimize the spin-up of the spacecraft in response to the effects of solar irradiation. The fields observed by K2 are thus rich in Solar System objects including planets, asteroids and trans-Neptunian objects (TNOs). K2 has already performed observations of Neptune and its large moon Triton, 68 Trojan and Hilda asteroids, 5 TNOs (including Pluto) and Comet C/2013 A1 (Siding Springs). About 10,000 main-belt asteroids that fell into the pixel masks of stars have been serendipitously observed. Observations of small bodies are especially useful for determining rotation periods. Uranus will be observed in a future campaign (C8), as will many more small Solar System bodies. The status of various K2 Solar System studies will be reviewed and placed within the context of our current knowledge of the objects being observed.

  9. Solar energy system performance evaluation: Seasonal report for Elcam Tempe Arizona State University, Tempe, Arizona

    Science.gov (United States)

    1980-01-01

    The solar system, Elcam-Tempe, was designed by Elcam Incorporated, Santa Barbara, California, to supply commercial domestic hot water heating systems to the Agriculture Department residence at Arizona State University. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The energy system's four modes of operation are described. Electrical energy savings at the site was a net of 5.54 million Btu after the 0.17 million Btu of operating energy required to operate collector loop circulating pump were subtracted. The energy savings due to solar was less than the system's potential. On an average, twice as much hot water could have been used with significant solar energy contribution. The system corrosion and deposits caused by using dissimilar metals in the collector loop was the only problem noted with the Elcam-Tempe system.

  10. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  11. Solar System Update

    CERN Document Server

    Blondel, Philippe

    2006-01-01

    This book, the first in a series of forthcoming volumes, consists of topical and timely reviews of a number of carefully selected topics in solar systemn science. Contributions, in form of up-to-date reviews, are mainly aimed at professional astronomers and planetary scientists wishing to inform themselves about progress in fields closely related to their own field of expertise.

  12. New views of the solar system

    CERN Document Server

    2009-01-01

    Is your library up to date on the Solar System? When the International Astronomical Union redefined the term "planet," Pluto was stripped of its designation as the solar system''s ninth planet. New Views of the Solar System looks at scientists'' changing perspectives on the solar system, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid and detailed images of the solar system.

  13. Origins of Inner Solar Systems

    Science.gov (United States)

    Dawson, Rebekah Ilene

    2017-06-01

    Over the past couple decades, thousands of extra-solar planetshave been discovered orbiting other stars. The exoplanets discovered to date exhibit a wide variety of orbital and compositional properties; most are dramatically different from the planets in our own Solar System. Our classical theories for the origins of planetary systems were crafted to account for the Solar System and fail to account for the diversity of planets now known. We are working to establish a new blueprint for the origin of planetary systems and identify the key parameters of planet formation and evolution that establish the distribution of planetary properties observed today. The new blueprint must account for the properties of planets in inner solar systems, regions of planetary systems closer to their star than Earth’s separation from the Sun and home to most exoplanets detected to data. I present work combining simulations and theory with data analysis and statistics of observed planets to test theories of the origins of inner solars, including hot Jupiters, warm Jupiters, and tightly-packed systems of super-Earths. Ultimately a comprehensive blueprint for planetary systems will allow us to better situate discovered planets in the context of their system’s formation and evolution, important factors in whether the planets may harbor life.

  14. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  15. Magnetotails in the solar system

    CERN Document Server

    Keiling, Andreas; Delamere, Peter

    2014-01-01

    All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess well developed magnetotails. It is not only the strongly magnetized planets that have magnetotails. Mars and Venus have no global intrinsic magnetic field, yet they possess induced magnetotails. Comets have magnetotails that are formed by the draping of the interplanetary magnetic field. In the case of planetary  satellites (moons), the magnetotail refers to the wake region behind the satellite in the flow of either the solar wind or the magnetosp

  16. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  17. 'Pioneer' - A controlled air-water heat pump for the replacement of oil-fired and electric heating systems; Geregelte Waermepumpe Pioneer. Geregelte Luft-Wasser-Waermepumpe fuer Sanierungen von Oel- und Elektroheizungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boeckh, P. von; Borer, M.; Borer, T. [Fachhochschule beider Basel FHBB, Dept. Industrie, Abtlg. Maschinenbau, Muttenz (Switzerland); Eggenberger, H.J. [Solartis GmbH, WP-Versuchslabor EICH, Fuellinsdorf (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that involved the development of an air-water heat pump system that could replace existing oil-fired and electric heating systems. The system features variable-frequency compressor and ventilator drives and was tested on a special test bed that provided appropriately prepared primary air. The measurements and optimisations made included the definition of optimal parameters for ventilator and de-icing system, measurement of performance coefficients and noise emissions as well as on the suitability of the system for hot-water generation. The authors quote figures that show that the performance of the variable-speed system is much better than systems running in stop-and-go mode.

  18. Solar tracking system

    Science.gov (United States)

    White, P. R.; Scott, D. R. (Inventor)

    1981-01-01

    A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.

  19. Chaos in the Solar System

    Science.gov (United States)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  20. Solar energy system performance evaluation: Scattergood School Recreation Center, West Branch, Iowa, September 1977--May 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    An operational summary is provided of the solar energy system performance at Scattergood School, West Branch, Iowa. This analysis is made by evaluation of measured system performance and by comparison of measured climatic data with long term average climatic conditions. Performance of major subsystems is also presented to illustrate their operation. The solar energy system, utilizing 2496 square feet of flat plate, air collectors, supplies a portion of the space heating and domestic hot water requirements for the 6900 square foot gymnasium and 1966 square feet of locker rooms at the Scattergood School, West Branch, Iowa. The solar energy system was installed during building construction. A 6000 bushel grain dryer, installed later, may also use the solar system during its operation. Included are: a brief system description, review of actual system performance during the report period, analysis of performance based on evaluation of climatic, load and operational conditions, and an overall discussion of results. The Scattergood solar energy system availability was 65 percent for the ECSS subsystem, 95 percent for the space heating subsystem and 55 percent for the hot water heating subsystem. The ECSS availability was affected by a malfunction of the total solar system during April 1--8 and April 14 through May 11. The hot water availability was greatly affected by the failure of the subsystem and resultant repair interval. The space heating subsystem operated throughout the entire reporting period except when the solar system was down in April and May.

  1. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  2. Noise abatement in air-water heat pump systems. Basic considerations, guidelines for practice; Laermreduktion bei Luft/Wasser-Waermepumpenanlagen. Grundlagen und Massnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.R.

    2002-07-01

    With increasing numbers of installations of air/water heat pumps the issue of noise emissions is becoming more of a concern. In reaction to this situation, the company Sulzer Innotec has developed these guidelines by order of the Swiss Federal Office of Energy. Typically, more than 90% of the noise emitted outdoors is produced by the fan. Due to the strong tonal components, the noise emitted is substantially more annoying than a reference broadband noise of the same intensity. For further noise reduction mainly the fan noise must be addressed. Despite the dominance of fan noise, other noise sources must not be neglected. The most promising countermeasures are: Reduction of fan noise by (i) low blade tip speed (prerequisite is a pressure drop in the air channels including the evaporator as low as possible), (ii) improvement of flow geometry in the vicinity of the fan, (iii) insulation of air ducts with acoustic foam (thickness 50 mm or more), (iv) elbows in the air duct line for sound dissipation. Reduction of compressor noise by (i) a highly effective acoustic enclosure, (ii) vibration insulation of structure-borne noise by elastic mounts, (iii) decoupling of refrigerant pipes. (author)

  3. Solar House Obdach: experiences with a solar ground-coupled storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, M; Blum, P; Held, E; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    Within the framework of the Solar House Obdach-project, a system consisting of a ground heat exchanger, a low-temperature collector, a water-glycol/water heat pump and a low-temperature heating system was examined with regard to its suitability as only heat source of a house. With the design chosen (1 m/sup 2/ ground collector area and 0.3 m/sup 2/ low-temperature collector area per 80 W load), a seasonal performance factor of 2.83 could be obtained. About 40% of the low-temperature heat supplied to the heat pump were delivered directly or indirectly (by means of short-term storage in the ground) by the low-temperature collector, whereas about 60% came from the natural sources of energy of the ground (air heat, radiation, precipitation, ground water and slope water). The results obtained are used to verify and improve a computer model design program for ground collectors and ground-coupled storage systems which should help to optimize the design of solar plants, particularly under difficult conditions.

  4. Solar thermophotovoltaic system using nanostructures.

    Science.gov (United States)

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  5. Origin of Outer Solar System

    Science.gov (United States)

    Holman, Matthew J.; Lindstrom, David (Technical Monitor)

    2005-01-01

    Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; ( 2 ) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; ( 5 ) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.

  6. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  7. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  8. Force convective solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ibarahim, Z.

    2006-01-01

    This paper presents design and performance of V-groove back-pass solar collector for solar drying system. In this study three V-groove back-pass solar collector each with dimension of 4.6 m x 1.0 m x 0.15 m have been fabricated for solar drying system. An outdoor test at mean solar intensity for 600-800 Wm -2 by using 0.15m 3 s -1 of air flow rate which also been suggested by (Zeroul et al. 1994) was carried out at Solar Research Energy Park. Universiti Kebangsaan Malaysia. Analysis on the collector performance based on daily data was reported that the value of FR ) e and FRUL was 0.709 ± 0.001 and 5.89 ± 0.31 Wm -2o C -1 respectively with 60-70 o C of output temperature (Ruslan et al. 2001). The three V-groove collectors each with dimension 4.6 m x 0.15 m were connected in series array mounted on the roof of a solar assisted drying system. By using two electric fans of 85W and 2700 rpm each, the speed of air was regulated at 0.11 kgs -1 to 0.31 kgs -1 using a voltage regulator. Performance of the collector based on the thermal analysis showed that at mean daily solar radiation 700 Wm -2 , the output temperature of 52 o C to 73 o C could be achieved using 0.11-0.31 kgs -1 of flow rate. Thermal analysis also showed that the efficiencies of 45% to 61% could be obtains using the same flow rate and solar radiation. Analysis of daily data showed that for radiation from 300 Wm -2 to 1000 Wm -2 the power generated from the collector was within 1.5 kW to 8.9 kW. The study concluded that the levels of the levels of the solar radiation and flow rate used influenced the performance of the collector

  9. Encyclopedia of the solar system

    CERN Document Server

    Spohn, Tilman; Johnson, Torrence

    2014-01-01

    The Encyclopedia of the Solar System, Third Edition-winner of the 2015 PROSE Award in Cosmology & Astronomy from the Association of American Publishers-provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and details about planetary bodies and how they interact-with an astounding breadth of content and breathtaking visual impact. The encyclopedia includes the latest explorations and observations, hundreds of color digital images and illustrations, and over 1,000 pages. It stands alone as the definitive work in this field, and will serve

  10. Our Solar System. Our Solar System Topic Set

    Science.gov (United States)

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  11. Encyclopedia of the solar system

    CERN Document Server

    Weissman, Paul; Johnson, Torrence

    1998-01-01

    The Encyclopedia of the Solar System provides a series of comprehensive and authoritative articles written by more than 50 eminent planetary and space scientists. Each chapter is self-contained yet linked by cross-references to other related chapters. This beautifully designed book is a must for the library of professional astronomers and amateur star-gazers alike, in fact for anyone who wishes to understand the nature of our solar system.Key Features* Cross-referenced throughout for easy comprehension* Superbly illustrated with over 700 photos, drawings, and diagrams, including 36 color plates* Provides 40 thematically organized chapters by more than 50 eminent contributors* Convenient glossaries of technical terms introduce each chapter* Academic Press maintains a web site for the Encyclopedia at www.academicpress.com/solar; Author-recommended web resources for additional information, images, and research developments related to each chapter of this volume, are available here

  12. Sizing up the Solar System

    Science.gov (United States)

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,…

  13. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  14. Solar system for soil drainage

    International Nuclear Information System (INIS)

    Kocic, Z.R.; Stojanovic, J.B.; Antic, M.A.; Pavlovic, T.M.

    1999-01-01

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  15. Solar active region display system

    Science.gov (United States)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  16. Solar Water-Heater Design and Installation

    Science.gov (United States)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  17. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  18. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  19. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  20. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  1. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  2. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  3. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  4. Wonders of the solar system

    CERN Document Server

    Cox, Brian

    2011-01-01

    The Sunday Times Bestseller In Wonders of the Solar System - the book of the acclaimed BBC TV series - Professor Brian Cox will take us on a journey of discovery where alien worlds from your imagination become places we can see, feel and visit. The Wonders of the Solar System - from the giant ice fountains of Enceladus to the liquid methane seas of Titan and from storms twice the size of the Earth to the tortured moon of Io with its giant super-volcanoes - is the Solar System as you have never seen it before. In this series, Professor Brian Cox will introduce us to the planets and moons beyond our world, finding the biggest, most bizarre, most powerful natural phenomena. Using the latest scientific imagery along with cutting edge CGI and some of the most spectacular and extreme locations on Earth, Brian will show us Wonders never thought possible. Employing his trademark clear, authoritative, yet down-to-earth approach, Brian will explore how these previously unseen phenomena have dramatically expanded our ho...

  5. Origin of the solar system

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-01-01

    The methodology of the problem of the origin and evolution of the Solar System is analysed and it is pointed out that one can approach it in two different ways. (1) One can postulate that long ago there was a certain more or less likely-state, and then calculate how this developed into the present state. In principle this approach is 'mythological' and it differs from the old myths mainly in the respect that it is formulated in a mathematical way. (2) One can start from the present state and reconstruct increasingly older states. This is what the geologists call the 'actualist approach' and is the only one which can claim to be scientific. The 'Laplacean' type of theories is criticized. There is no indication that there was a 'Laplacean' homogeneous disc as an intermediate state, and there is no acceptable mechanism through which the present solar system could be formed from such a disc. The solar system today has a band structure, the planets as well as the satellites all fall in certain bands characterized by certain values of the gravitational potential. The band structure is explained as a result of the ionization of infalling matter when its velocity has reached the 'critical velocity' for ionization. (Auth.)

  6. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  7. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  8. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  9. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  10. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    Directory of Open Access Journals (Sweden)

    Rokas Valančius

    2015-06-01

    Full Text Available Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the numerical simulation results. Three different medium-scale solar thermal systems in Lithuania were selected for the analysis varying in both equipment used (flat type solar collectors, evacuated tube collectors and type of energy user (swimming pool building, domestic hot water heating, district heating. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by SHW systems was approx. 11%. From the economical perspective, the system with flat type solar collectors used for domestic hot water production was proved to be most efficient. However, calculation of Internal Rate of Return showed that a grant of 35% is required for this project to be fully profitable.

  11. Investigations of medium sized solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    A large variety of solar combi systems are on the market, but it is still too early to draw conclusions on optimum design of solar combi systems. Among others, the following questions need to be answered: Is an external domestic hot water preparation more desirable than an internal? What...... is the advantage by using inlet stratifiers? To answer the questions, theoretical investigations are carried out for differently designed solar combi systems. The work is carried out within the Solar Heating and Cooling Programme of the International Energy Agency (IEA SHC), Task 32 Advanced storage concepts...... for solar houses and low energy buildings....

  12. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  13. Tracking system for solar collectors

    Science.gov (United States)

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  14. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  15. Avoidance of damage in hot water heating systems. Part 2. Corrosion and water, a status report; Vermeidung von Schaeden in Warmwasserheizungen. Teil 2. Korrosion und Heizungswasser - eine Standortbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, H.; Hannemann, M. [Deutsche Erfinderverband fuer Muenchen und Oberbayern (Germany); Deutsche Gewerbeverband fuer Markt Schwaben und die Region (Germany)

    2003-02-01

    Water is used in nearly every heating system, so it is important to know about the characteristics of this important heat carrier, its interactions with heating system materials, and other aspects. The contribution presents the main characteristics of common waters, their effects on heating systems, and common water treatement methods. [German] Praktisch in jeder Heizung wird Wasser als Waermetraeger verwendet. Aus diesem Grunde ist es in jedem Fall ratsam, die Eigenschaften dieses speziellen Waermetraegers, seine Wechselwirkungen mit den Heizungswerkstoffen und andere Besonderheiten zu kennen. In dem folgenden Artikel werden die wichtigsten Eigenschaften gebraeuchlicher Waesser und deren Auswirkungen auf die Heizungsanlagen dargelegt sowie die wichtigsten Behandlungsverfahren vorgestellt. (orig.)

  16. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  17. Isotopic ratios in the solar system

    International Nuclear Information System (INIS)

    1985-01-01

    This colloquium is aimed at presentation of isotope ratio measurements in different objects of solar system and surrounding interstellar space and evaluation of what information on composition and structure of primitive solar nebula and on chemical evolution of interstellar space in this part of the galaxy can be deduced from it. Isotope ratio in solar system got from laboratory study of extraterrestrial materials is a subject of this colloquium. Then isotope ratio measured in solar wind, planets and comets. Measurements either are made in-situ by mass spectrometry of ions in solar wind or planetery atmosphere gases either are remote measurements of spectra emitted by giant planets and comets. At last, planetology and astrophysics implications are presented and reviewed. Consraints for solar system formation model can be deduced from isotope ratio measurement. Particularly, isotope anomalies are marks of the processes, which have influenced the primitive solar nebula contraction [fr

  18. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  19. The active thermal solar; Le solaire thermique actif

    Energy Technology Data Exchange (ETDEWEB)

    Bedel, St.; Salomon, Th.

    2000-05-01

    This information paper recalls the different types of solar cells and their operating. It presents the possible utilizations for the buildings heating (air and water systems) and for the water heating in the residential houses (also for the heating of swimming pools) and the collective buildings. The drying of agricultural products and the solar cooling are also discussed. (A.L.B.)

  20. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Parker, Danny [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWHs) on space conditioning and water heating energy use in residential applications. Two identical HPWHs, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  1. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States); Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  2. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  3. Developing solar: PV solar system markets in Africa

    International Nuclear Information System (INIS)

    Asali, Karim

    2002-01-01

    Governments, NGO's and UN organisations are increasingly convinced that renewable energies not only help to solve energy problems in Africa but are indispensable in alleviating regional disparities, social problems and bridging the digital gap. Still, many years after introducing high efficiency solar PV systems the necessary breakthrough of implementing them on a mass scale is still not a reality. The author provides perspectives on developing solar PV in Africa. (Author)

  4. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  5. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  6. Biospheres and solar system exploration

    Science.gov (United States)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  7. Avoidance of damages in hot water heating systems. Part 1. Corrosion and hot water - locating; Vermeidung von Schaeden in Warmwasserheizungen. Teil 1. Korrosion und Heizungswasser - eine Standortbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, I.; Hannemann, M.

    2003-01-01

    In the following article the most important working fluids are presented, their influence on heating systems as also the most important water treatment possibilities are shown. (GL) [German] Praktisch in jeder Heizung wird Wasser als Waermetraeger verwendet. Aus diesem Grunde ist es in jedem Fall ratsam, die Eigenschaften dieses speziellen Waermetraegers, seine Wechselwirkungen mit den Heizungswerkstoffen und andere Besonderheiten zu kennen. In dem folgenden Artikel werden die wichtigsten Eigenschaften gebraeuchlicher Waesser und deren Auswirkungen auf die Heizungsanlagen dargelegt sowie die wichtigsten Behandlungsverfahren vorgestellt. (orig.)

  8. Examination of the influence of water-heated central heating systems on the levels of radon and radon progeny in the workplace

    International Nuclear Information System (INIS)

    Marley, F.; Denman, A.R.; Phillips, P.S.

    2000-01-01

    A series of continuous real-time radon and progeny measurements, together with passive etched-track detector measurements returning average values, were undertaken in commercial premises in Northamptonshire. Detailed measurements over several months in two separate buildings show that the level of both radon and progeny are determined to a major extent by the influence of the operation and timing of the central heating systems in place. Both buildings studied are similar in construction to many single-storey domestic properties. The operative heating system reduced the radon and progeny levels relative to the non-operating mode by over 40% during the heating period of a normal working day. The variation in temperature during this time was generally less than 3 deg. C, indicative of a heat retentive building. Because the equilibrium (F) fraction is reduced during the heating period, the reductions in radon and progeny are not uniform. In the workplaces studied, the work-cycle was normally limited to 0900-1700 hours Monday to Friday, the period when the lowest values were recorded. Average daily values would therefore overstate by more than 50% the maximum potential dose during normal attendance hours. The corollary is that living under similar circumstances in domestic environments, the operation and timing of this type of heating regime may well result in higher exposure in the home than at work

  9. Methanogens in the Solar System

    Science.gov (United States)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to

  10. Solar-energy drying systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Atul; Chen, C.R.; Vu Lan, Nguyen [Department of Mechanical Engineering, Kun Shan University, 949, Da-Wan Road, Yung-Kang City, Tainan Hsien 71003 (China)

    2009-08-15

    In many countries of the world, the use of solar thermal systems in the agricultural area to conserve vegetables, fruits, coffee and other crops has shown to be practical, economical and the responsible approach environmentally. Solar heating systems to dry food and other crops can improve the quality of the product, while reducing wasted produce and traditional fuels - thus improving the quality of life, however the availability of good information is lacking in many of the countries where solar food processing systems are most needed. Solar food dryers are available in a range of size and design and are used for drying various food products. It is found that various types of driers are available to suit the needs of farmers. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. A comprehensive review of the various designs, details of construction and operational principles of the wide variety of practically realized designs of solar-energy drying systems reported previously is presented. A systematic approach for the classification of solar-energy dryers has been evolved. Two generic groups of solar-energy dryers can be identified, viz. passive or natural-circulation solar-energy dryers and active or forced-convection solar-energy dryers. Some very recent developments in solar drying technology are highlighted. (author)

  11. Thermodynamic performance assessment of a novel environmentally-benign solar energy based integrated system

    International Nuclear Information System (INIS)

    Yuksel, Yunus Emre; Ozturk, Murat; Dincer, Ibrahim

    2016-01-01

    Highlights: • Development of a novel solar energy based system for multigenaration applications. • Evaluation of the exergy efficiency and destruction rate in each system component. • Investigation of the varying operating conditions on the system performance. • Evaluation of complete parametric studies and performance analysis of the system. - Abstract: In this paper, a novel solar energy based multigeneration system for producing electricity, hydrogen, hot water, heating and cooling is presented and analyzed thermodynamically for potential applications. The energy and exergy analyses are conducted for entire system and its sub-systems, which are a parabolic trough collector system, a double-stage organic Rankine cycle, a proton exchange membrane electrolyzer, a PEM fuel cycle and a quadruple effect absorption cooling system. The parametric studies are performed in order to indicate the impacts of some key indicators on the integrated system performance. These analyses are simulated by using the Engineering Equation Solver software. The results show that the increase in ambient temperature increases the exergetic coefficient performance of the Quadruple Effect Absorption Cooling System. In addition, the increase in solar intensity, temperature of absorber pipes inner surface and concentration of ammonia in working fluid mixture has the positive effect on produced electricity from the expanders and turbine, and hydrogen from the PEM electrolyzer. According to exergy analyses, the largest exergy destruction rates are obtained in the parabolic trough collector, PEM fuel cell and turbine. Therefore, any improvements in these components would lead to a better efficiency of the integrated system.

  12. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  13. Comparative technical-economical analysis of solar systems with liquid absorbent

    International Nuclear Information System (INIS)

    Kaloyanov, N.; Popova, I.

    2005-01-01

    An analyses of solar water heating systems with two types liquid absorbent is presented. A system with classic collector design is used for comparison. The dependence between the value of the collectors active area and the absorbent type, collectors slope and design parameters is discussed. Two economic indexes (payback period and index of actual net value, based on the electricity price) are used for comparison of the different variants of the system. The presented results shown that: 1) the payback period can be reduced twice if the collectors with liquid absorbent are used; 2) the index of actual net value of the systems using the collectors with fluid absorbent is about four times higher than this one with classic collectors; 3) the systems using distilled water like a liquid absorbent can not fulfil the requirements for the positive economic indicators

  14. The Solar System Origin Revisited

    Science.gov (United States)

    Johnson, Fred M.

    2016-10-01

    A novel theory will be presented based in part on astronomical observations, plasma physics experiments, principles of physics and forensic techniques. The new theory correctly predicts planetary distances with a 1% precision. It accounts for energy production mechanism inside all of the planets including our Earth. A log-log mass-luminosity plot of G2 class stars and solar system planets results in a straight line plot, whose slope implies that a fission rather than a proton-proton fusion energy production is operating. Furthermore, it is a confirmation that all our planets had originated from within our Sun. Other still-born planets continue to appear on the Sun's surface, they are mislabeled as sunspots.

  15. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  16. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  17. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  18. The origin of the solar system

    International Nuclear Information System (INIS)

    Dormand, J.R.; Woolfson, M.M.

    1989-01-01

    This book describes in detail the capture theory of the origin of the solar system. Traces the history of solar system theories from pre-Christian Greece through the late 1920's. The authors examine the shortcomings of modern theories, and show how new knowledge supports the capture hypothesis

  19. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  20. New views of the solar system

    CERN Document Server

    2007-01-01

    Suitable for ages 10-17, this work takes a look at the developments in research about the solar system, including articles on Pluto, the eight chief planets, and dwarf planets. It includes photos and drawings that showcase the planets, asteroids, comets, and also a collection of images of the solar system.

  1. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  2. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  3. Grid-connected distributed solar power systems

    Science.gov (United States)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  4. Integrating wind power using intelligent electric water heating

    International Nuclear Information System (INIS)

    Fitzgerald, Niall; Foley, Aoife M.; McKeogh, Eamon

    2012-01-01

    Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system benefits. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.

  5. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  6. The Solar System and Its Origin

    Science.gov (United States)

    Dormand, J. R.

    1973-01-01

    Presents a brief explanation of the solar system, including planets, asteroids, satellites, comets, planetary orbits, as well as, old and recent cosmogonic theories. Indicates that man is nearer a solution to the origin of the planetary system than ever before.

  7. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  8. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  9. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  10. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.

  11. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  12. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  13. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  14. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    Science.gov (United States)

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  15. Developing a solar panel testing system

    Directory of Open Access Journals (Sweden)

    Árpád Rácz

    2009-10-01

    Full Text Available Solar energy is increasingly used togenerate electricity for individual households. There isa wide variety of solar panel technologies, whichshould be tested at an individual level during theirlifetime. In this paper, the development of a testingstation at the University of Debrecen is presented. Thetesting system can be used for research andeducational purposes and for in field applicationsequally well.

  16. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  17. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  18. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  19. Certification of solar products - The Florida experience

    International Nuclear Information System (INIS)

    POST, HAROLD N.; ROLAND, JAMES D.; VENTRE, GERARD G.; HUGGINS, JAMES C.

    2000-01-01

    Florida legislation enacted in 1976 directed the Florida Solar Energy Center (FSEC) to develop standards for solar energy systems manufactured or sold in the state, establish criteria for testing the performance of solar energy systems, and provide a means to display compliance with approved performance tests for these systems. This mandate has been effectively implemented for both solar domestic water heating and solar pool heating systems. With growing interest and markets for photovoltaic systems, plans are presently being developed to expand the scope of the mandate to include photovoltaic technology. This paper discusses four complementary facets of a photovoltaic (PV) system certification program. They include PV module performance characterization and rating; PV system design review and approval; examination and authorization of photovoltaic system installers; and inspection and acceptance testing of PV system installation. The suggested photovoltaic system process builds on lessons learned from over 20 years of testing, certifying and labeling of solar thermal collectors, and the certification of solar thermal systems

  20. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  1. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  2. Possible mass distributions in the nebulae of other solar systems

    International Nuclear Information System (INIS)

    Brown, W.K.

    1987-01-01

    The supernova shell fragmentation model of solar system formation - previously shown to be successful in describing the mass distribution of our solar system - is used to calculate the mass distributions of other solar nebulae. (Auth.)

  3. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  4. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  5. Consumer attitudes towards domestic solar power systems

    International Nuclear Information System (INIS)

    Faiers, Adam; Neame, Charles

    2006-01-01

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified

  6. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  7. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  8. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  9. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model...... gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper....

  10. Origin of the solar system. I

    International Nuclear Information System (INIS)

    Prentice, A.J.R.

    1978-01-01

    A theory for the origin of the solar system, which is based on ideas of supersonic turbulent convection and indicates the possibility that the original Laplacian hypothesis may by valid, is presented. (Auth.)

  11. Tehachapi solar thermal system first annual report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  12. Solar thermochemical processing system and method

    Science.gov (United States)

    Wegeng, Robert S.; Humble, Paul H.; Krishnan, Shankar; Leith, Steven D.; Palo, Daniel R.; Dagle, Robert A.

    2018-04-24

    A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.

  13. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  14. What makes renewable energy successful in China? The case of the Shandong province solar water heater innovation system

    International Nuclear Information System (INIS)

    Goess, Simon; Jong, Martin de; Ravesteijn, Wim

    2015-01-01

    The Chinese province of Shandong, and more particularly its cities Dezhou, Jinan and Rizhao, have established an international reputation of being hotbeds for solar water heating (SWH) technology development and dissemination. The article aims to unveil the evolution of this innovative environment by applying the Functions of Innovation Systems (FIS) approach to the Chinese province of Shandong. It examines the actors, institutions and policy instruments that shape Shandong's innovation system for SWH, the dominant drivers and barriers during the evolution of the TIS and also assesses the applicability of the IS approach to China. It appears that the presence of influential interest organizations and proactive support from local governments have acted as strong drivers for the emergence of Shandong's innovation system for SWHs. On the other hand, the lack of adequate personnel and an overreliance on government policies act as main barriers. With regard to the Chinese specificities potentially detracting from the relevance of applying IS theory to China, we did not find that the central government acted as an initiator of innovation nor that state-owned enterprises had dominant positions in the market. In this innovative industry the impetus for development came from the bottom up and from private corporations. - Highlights: • Application of the functions of innovation systems framework to Chinese province. • Analysis of the evolution of Shandong's solar water heating industry and market. • Local governments and interest organizations make innovation environment successful. • Bottom-up development and dissemination of renewable energy in China.

  15. Experimental analysis on a novel solar collector system achieved by supercritical CO2 natural convection

    International Nuclear Information System (INIS)

    Chen, Lin; Zhang, Xin-Rong

    2014-01-01

    Highlights: • Supercritical CO 2 flow is proposed for natural circulation solar water heater system. • Experimental system established and consists of supercritical fluid high pressure side and water side. • Stable supercritical CO 2 natural convective flow is well induced and water heating process achieved. • Seasonal solar collector system efficiency above 60% achieved and optimization discussed. - Abstract: Solar collector has become a hot topic both in scientific research and engineering applications. Among the various applications, the hot water supply demand accounts for a large part of social energy consumption and has become one promising field. The present study deals with a novel solar thermal conversion and water heater system achieved by supercritical CO 2 natural circulation. Experimental systems are established and tested in Zhejiang Province (around N 30.0°, E 120.6°) of southeast China. The current system is designed to operate in the supercritical region, thus the system can be compactly made and achieve smooth high rate natural convective flow. During the tests, supercritical CO 2 pipe flow with Reynolds number higher than 6700 is found. The CO 2 fluid temperature in the heat exchanger can be as high as 80 °C and a stable supply of hot water above 45 °C is achieved. In the seasonal tests, relative high collector efficiency generally above 60.0% is obtained. Thermal and performance analysis is carried out with the experiment data. Comparisons between the present system and previous solar water heaters are also made in this paper

  16. New views of the solar system

    CERN Document Server

    2010-01-01

    Are you up to date on the solar system? When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  17. New views of the solar system

    CERN Document Server

    2013-01-01

    Are you up to date on the solar system?  When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System 2013 looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets, new missions, updates for ongoing missions, newly-discovered moons, and updated tables. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  18. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohitash, E-mail: dootrohit1976@gmail.com [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India); Kumar, Ravindra [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Dixit, Ambesh, E-mail: ambesh@iitj.ac.in [Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India)

    2016-05-06

    Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  19. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  20. Monitoring of Danish marketed solar heating systems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    1993-01-01

    The paper describes the monitoring of manufactured solar heating systems for domestic hot water combined with space heating and systems for domestic hot water only. Results from the monitoring of 5 marketed combined systems for domestic hot water and space heating are presented. The systems situated at one family houses at different sites in Denmark have been monitored from January/February 1992. For the detailed monitoring of manufactured systems only for domestic hot water a test facility for simultaneous monitoring of 5 solar heating systems has been established at the Thermal Insulation Laboratory. (au)

  1. Performance Analysis of Photovoltaic Panels with Earth Water Heat Exchanger Cooling

    Directory of Open Access Journals (Sweden)

    Jakhar Sanjeev

    2016-01-01

    Full Text Available The operating temperature is an important factor affecting the performance and life span of the Photovoltaic (PV panels. The rising temperature can be maintained within certain limit using proper cooling techniques. In the present research a novel system for cooling of PV panels named as Earth Water Heat Exchanger (EWHE is proposed and modelled in transient analysis simulation tool (TRNSYS v17.0 for the conditions of Pilani, Rajasthan (India.The various parameters which include cell temperature, PV power output and cell efficiency are observed with respect to variation in mass flow rate of fluid. Simulation results of the system without cooling show that the maximum PV panel temperature reached up to 79.31 °C with electrical efficiency dropped to 9% during peak sunshine hour. On the other hand, when PV panels are coupled with EWHE system, the panel temperature drops to 46.29 °C with an efficiency improving to 11% for a mass flow rate of 0.022 kg/s. In the end the cooling potential of EWHE is found to be in direct correlation with mass flow rate. The proposed system is very useful for the arid regions of western India which are blessed with high solar insolation throughout the year.

  2. Market development for active solar thermal systems (ASTS) in the institutional, commercial and industrial (ICI) sectors

    International Nuclear Information System (INIS)

    2000-01-01

    The market potential for active solar thermal systems in the institutional, commercial and industrial sectors of the Canadian economy was investigated, the objective being to identify markets and to prepare action plans as the foundation for developing these markets by Natural Resources Canada and the industry. In the process of researching the market, barriers to market development in these sectors of the economy were also identified as well as actions to overcome these barriers. Nine potential applications were modelled to determine their energy, economic and environmental performance. Of these four attractive applications have been selected for more detailed treatment. Separate action plans have been developed for Natural Resources Canada, the Canadian Solar Industries Association and the active solar thermal industry. The close cooperation of all three partners is considered essential for a successful marketing effort. A marketing plan which gives due consideration to the product, planning, packaging, price and promotion, is also considered to be a vital ingredient, as is a meticulous follow-up on 'leads' created by exposure to the target market. Solarwall'TM' for preheating of ventilation air to new school buildings and solar domestic hot water heating for camp grounds have been identified as the most attractive candidates for marketing at this time. Highlights of marketing plans for these two options are included for purposes of illustrating the essential ingredients of marketing plans. 1 fig

  3. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  4. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  5. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  6. Design and Implementation of Dual Axis Solar Tracking system

    OpenAIRE

    Sirigauri N,; Raghav S

    2015-01-01

    Solar energy is a promising technology that can have huge long term benefits. Solar cells convert the solar energy into electrical energy. Solar tracking system is the most suited technology to improve the efficiency and enhance the performance by utilizing maximum solar energy through the solar cell. In hardware development we utilize LDR’s as sensors and two servomotors to direct the position of the solar panel. The software part is implemented on a code written using an Arduino...

  7. 24 CFR 203.18a - Solar energy system.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  8. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  9. New Isotopic clues to solar system formation

    International Nuclear Information System (INIS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides 26 Al and 107 Pd with half-lives approx.10 6 years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rare gas and oxygen isotopic abundance variations [''anomalies''] relative to the ''cosmic'' composition were observed in a variety of planetary objects indicating that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthetic components permeate of the entire solar system. The correlated nuclear [''FUN''] anomalies in O, Mg, Si, Ca, Sr, Ba, Nd, and Sm were found in three rare inclusions in the Allende meteorite, which show large mass-dependent isotopic fractionation effects. The signature of the nuclear component required to explain these anomalies suggests a source which has received a catastrophic neutron burst [e.g., an r-process event]. These extinct nuclides and nucleosynthetic anomalies provide new clues to solar system formation. In particular, these results have led to the speculation that a nearby supernova had injected freshly synthesized material into the early solar nebula and possibly triggered the collapse of the proto-solar interstellar cloud. Furthermore, these new results have major implications on cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  10. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  11. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  12. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  13. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  14. Solar power generation system. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ohaku, T [Toshiba Corp., Kawasaki (Japan)

    1990-12-21

    In a conventional solar power generation system having shunt elements for controlling generated power and supplying the controlled power to a load, it is difficult to carry out a stable power control, because the shunt characteristics of an analogue shunt element driving circuit vary widely as compared with a digital shunt element driving circuit, as the temperature varies. According to the present invention, in a solar power generation system having a plurality of solar cells divided into two of the first and second cell groups and a first and a second shunt element driving means provided for the first and second cell groups, the first shunt element driving means is composed of a combination of a resisance and level shift diode arranged, and the second shunt element driving means is composed of a combination of a transistor and level shift diode arranged. A stable current control of the shunt elements can be therefore realized, because the control voltage range of the first and second shunt element driving means is changed so as to be expanded, as the temperature varies, so that their overlapped voltage range is kept constant. 7 figs.

  15. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  16. The solar system in close-up

    CERN Document Server

    Wilkinson, John

    2016-01-01

    In response to the new information gained about the Solar System from recent space probes and space telescopes, the experienced science author Dr. John Wilkinson presents the state-of-the art knowledge on the Sun, solar system planets and small solar system objects like comets and asteroids. He also describes space missions like the New Horizon’s space probe that provided never seen before pictures of the Pluto system; the Dawn space probe, having just visited the asteroid Vesta, and the dwarf planet Ceres; and the Rosetta probe inorbit around comet 67P/Churyumov–Gerasimenko that has sent extraordinary and most exciting pictures. Those and a number of other probes are also changing our understanding of the solar system and providing a wealth of new up close photos. This book will cover all these missions and discuss observed surface features of planets and moons like their compositions, geisers, aurorae, lightning phenomena etc. Presenting the fascinating aspects of solar system astronomy this book is a c...

  17. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  18. Development of a Solar System Concept Inventory

    Science.gov (United States)

    Hornstein, Seth D.; Duncan, D.; S, C. A. T.

    2009-01-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. Preliminary development of the SSCI was completed at the University of Colorado and involved over 400 students. A larger, national, multi-institutional field test is planned for Spring 2009 as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We present here the results from the preliminary development and proposed changes for the next stage of research. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  19. Development of the Solar System Concept Inventory

    Science.gov (United States)

    Hornstein, S.; Prather, E.

    2009-12-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. The SSCI has been through two semesters of national, multi-institutional field-testing, involving over 1500 students. After the first semester of testing, question statistics were used to flag ineffective questions and flagged questions were revised or eliminated. We will present an overall outline of the SSCI development as well as our question-flagging criteria and question analyses from the latest round of field-testing. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  20. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  1. Solar heating and cooling of buildings

    Science.gov (United States)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  2. Solar warming systems of water installed in Colombia. Photovoltaic solar systems installed in the Country

    International Nuclear Information System (INIS)

    Rodriguez P, F.

    1995-01-01

    Between the systems that operate as of solar energy, the solar collectors to heat water have had wide use and application in the Country. Basically, a solar collector is constituted by: Box, thermal insulator, ducts and transparent roof. Generally, the used materials are the following: As thermal insulator: Polyurethane or glass fiber; as absorbent plate: Copper or aluminum, painting in dull black or selective surfaces; for the ducts: Generally it is used copper pipeline; and for the cover: Common glass or temperate glass

  3. Application and design of solar photovoltaic system

    International Nuclear Information System (INIS)

    Li Tianze; Lu Hengwei; Jiang Chuan; Hou Luan; Zhang Xia

    2011-01-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  4. Consumer attitudes towards domestic solar power systems

    Energy Technology Data Exchange (ETDEWEB)

    Faiers, Adam [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: a.j.faiers.so2@cranfield.ac.uk; Neame, Charles [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: c.neame@cranfield.ac.uk

    2006-09-15

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified.

  5. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  6. Pump efficiency in solar-energy systems

    Science.gov (United States)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  7. Allowed planetary orbits in the solar system

    International Nuclear Information System (INIS)

    Pintr, P.; Perinova, V.; Luks, A.

    2008-01-01

    A new law of the Titius-Bode type for planetary distances from the Sun is proposed. These distances for each planet are determined using appropriate nodal circle of a vibrating membrane. Regularities in the distribution of bodies in the solar system and in the systems of giant planets and some exoplanets are pointed out

  8. The space-age solar system

    International Nuclear Information System (INIS)

    Baugher, J.F.

    1988-01-01

    This book is a description of the sun, planets, moons, asteroids, and comets in the solar system. Discussion is based heavily on results obtained from recent space probes to Mercury, Venus, Mars Jupiter, Saturn, and Uranus. Offers detailed descriptions of the moons of Jupiter and Saturn, and the results of the recent probes of Halley's comet. A discussion of meteorites leads to a description of the current models of the solar system. Introductory chapters present theories of the solar system from the ancient Greeks to the present day. Other topics covered include the sun, its structure, and how it generates energy; the surfaces, internal structures, and histories of the planets, from innermost Mercury to farthest Pluto, and their moons

  9. Cryovolcanism in the outer solar system

    Science.gov (United States)

    Geissler, Paul E.

    2015-01-01

    Cryovolcanism is defined as the extrusion of liquids and vapors of materials that would be frozen solid at the planetary surface temperatures of the icy bodies of the outer solar system. Active cryovolcanism is now known to occur on Saturn's moon Enceladus and on Neptune's moon Triton and is suspected on Jupiter's moon Europa, while evidence for past cryovolcanic activity is widespread throughout the outer solar system. This chapter examines the mechanisms and manifestations of cryovolcanism, beginning with a review of the materials that make up these unusual ‘‘magmas’’ and the means by which they might erupt and concluding with a volcanologist's tour of the farthest reaches of the solar system.

  10. An automated tool for solar power systems

    International Nuclear Information System (INIS)

    Natsheh, E.M.; Natsheh, A.R.; Albarbar, AH

    2014-01-01

    In this paper a novel model of smart grid-connected solar power system is developed. The model is implemented using MatLab/SIMULINK software package. Artificial neural network (ANN) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The dynamic behavior of the proposed model is examined under different operating conditions. Solar irradiance, and temperature data are gathered from a grid connected, 28.8 kW solar power system located in central Manchester. The developed system and its control strategy exhibit excellent performance with tracking efficiency exceed 94.5%. The proposed model and its control strategy offer a proper tool for smart grid performance optimization. (author)

  11. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification

    International Nuclear Information System (INIS)

    Deniz, Emrah; Çınar, Serkan

    2016-01-01

    Highlights: • Possibility of suppling all energy consumption from solar energy was tested. • Air and water-heated humidification-dehumidification desalination system was proposed. • Energy, exergy, economic and environmental analysis were performed. • Productivity and performance of the desalination system was analyzed. • Various operational parameters were investigated. - Abstract: A novel humidification-dehumidification (HDH) solar desalination system is designed and tested with actual conditions and solar energy was used to provide both thermal and electrical energy. Energy-exergy analyses of the system are made and economic and enviro-economic properties are investigated using data obtained from experimental studies. In this way, economic and environmental impacts of the HDH solar desalination systems have also been determined. The maximum daily energy efficiency of the system was calculated as 31.54% and the maximum exergy efficiency was found as 1.87%. The maximum fresh water production rate is obtained as 1117.3 g/h. The estimated cost of fresh water produced through the designed HDH system is 0.0981 USD/L and enviro-economic parameter is 2.4041 USD/annum.

  12. Solar System Evolution through Planetesmial Collisions

    Science.gov (United States)

    Trierweiler, Isabella; Laughlin, Greg

    2018-01-01

    Understanding planet formation is crucial to unraveling the history of our Solar System. Refining our theory of planet formation has become particularly important as the discovery of exoplanet systems through missions like Kepler have indicated that our system is incredibly unique. Compared to other systems around Sun-like stars, we are missing a significant amount of mass in the inner region of our solar system.A leading explanation for the low mass of the terrestrial planets is Jupiter’s Grand Tack. In this theory, the existence of the rocky planets is thought to be the result of the migration of Jupiter through the inner solar system. This migration could spark a collisional cascade of planetesimals, allowing planetesimals to drift inwards and shepherd an original set of massive planets into the Sun, thus explaining the absence of massive planets in our current system. The remnants of the planetesimals would them become the building blocks for a new generation of smaller, rocky planets.Using the N-body simulator REBOUND, we investigate the dynamics of the Grand Tack. We focus in particular on collisional cascades, which are thought to cause the inward planetesimal drift. We first modify the simulator to account for fragmentation outcomes in planetesimal collisions. Modeling disks of varying initial conditions, we then characterize the disk conditions needed to begin a cascade and shed light on the solar system’s dynamics just prior to the formation of the terrestrial planets.

  13. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  14. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  15. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  16. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  17. High throughput solar cell ablation system

    Science.gov (United States)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  18. Testing relativity with solar system dynamics

    Science.gov (United States)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  19. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate.

    Science.gov (United States)

    Balke, Elizabeth C; Healy, William M; Ullah, Tania

    2016-12-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COP sys ) of 2.87. The heat pump water heater alone results in a COP sys of 1.9, while the baseline resistance water heater has a COP sys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COP sys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COP sys , the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.

  20. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate

    Science.gov (United States)

    Balke, Elizabeth C.; Healy, William M.; Ullah, Tania

    2016-01-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning. PMID:27990058

  1. A hybrid system for solar irradiance specification

    Science.gov (United States)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  2. Canadian solar export market study. Export policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    This report outlines policies and recommendations on the export of Canadian solar equipment and technology, with a view toward stimulating the domestic solar industry. The current picture is of an industry which is relatively small, operates in a competitive domestic market with low profit margins, and needs assistance in order to break into the world market. A number of recommendations are therefore made on the main thrust of industry and government solar export development activities. An export development program is described which includes a strategy of concentrating on a limited number of product lines, namely: low-temperature solar heating systems for recreational applications, integrated residential water heating systems, prepackaged commercial water heating systems, and industrial pre-heat systems. It is also recommended that this strategy be directed only at a limited number of target countries where the market justifies such activity. Market research, international cooperation agreements, promotional services, and proper export organization are also needed.

  3. Building America Case Study: Effect of Ducted HPWH on Space Conditioning and Water Heating Energy Use - Central Florida Lab Home, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    C. Colon, E. Martin, and D. Parker

    2017-04-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  4. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  5. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  6. Thermal solar systems in domestic buildings. Evaluation of the Hessen state funding programme for thermal solar systems; Thermische Solaranlagen in Wohngebaeuden. Auswertung des Solarthermischen Foerderprogrammes des Landes Hessen fuer die Jahre 1992 - 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lackschewitz, U.

    1998-11-01

    The report presents statistical information on all solar systems that received state funds. Problems concerning the installation of solar systems are gone into. The report focuses on service water heating systems both for single-family buildings and multiple dwellings. Further, four enquiries were carried out among operators and producers of thermal solar systems, and 29 state-funded solar systems were visited and investigated in situ. Based on the analysis of the funding programme so far, further measures are suggested. [German] Nach einer fuenfjaehrigen Laufzeit des Solarthermischen Foerderprogramms fuer Wohngebaeude beauftragte das Hessische Ministerium fuer Umwelt, Energie, Jugend, Familie und Gesundheit die Gesellschaft fuer umweltfreundliche Technologie e.V. in Kassel mit einer Auswertung des Foerderprogrammes fuer die Jahre 1992 bis 1996. Die Auswertung gibtzunaechst einen Ueberblick ueber alle gefoerderten Solaranlagen. Darueber hinaus wurden wichtige Fragestellungen, die bei der Installation thermischer Solaranlagen in Wohngebaeuden auftreten, anhand einer groesseren Zahl gefoerderter Solaranlagen untersucht. Schwerpunkte dieser Untersuchung bilden Solaranlagen zur Brauchwassererwaermung zum einen in Einfamilienhaeusern und zum anderen in groesseren Mehrfamilienhaeusern. Neben der Auswertung der Foerderantraege wurden dazu vier Umfragen bei Betreibern und Anbietern thermischer Solaranlagen durchgefuehrt und 29 gefoerderte Solaranlagen besichtigt. Aufbauend auf der Analyse des bisherigen Foerderprogrammes werden Vorschlaege fuer weitere Massnahmen des Landes zur Foerderung thermischer Solaranlagen unterbreitet. (orig.)

  7. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  8. Exploring the Trans-Neptunian Solar System

    Science.gov (United States)

    1998-01-01

    A profound question for scientists, philosophers and, indeed, all humans concerns how the solar system originated and subsequently evolved. To understand the solar system's formation, it is necessary to document fully the chemical and physical makeup of its components today, particularly those parts thought to retain clues about primordial conditions and processes.] In the past decade, our knowledge of the outermost, or trans-neptunian, region of the solar system has been transformed as a result of Earth-based observations of the Pluto-Charon system, Voyager 2's encounter with Neptune and its satellite Triton, and recent discoveries of dozens of bodies near to or beyond the orbit of Neptune. As a class, these newly detected objects, along with Pluto, Charon, and Triton, occupy the inner region of a hitherto unexplored component of the solar system, the Kuiper Belt. The Kuiper Belt is believed to be a reservoir of primordial objects of the type that formed in the solar nebula and eventually accreted to form the major planets. The Kuiper Belt is also thought to be the source of short-period comets and a population of icy bodies, the Centaurs, with orbits among the giant planets. Additional components of the distant outer solar system, such as dust and the Oort comet cloud, as well as the planet Neptune itself, are not discussed in this report. Our increasing knowledge of the trans-neptunian solar system has been matched by a corresponding increase in our capabilities for remote and in situ observation of these distant regions. Over the next 10 to 15 years, a new generation of ground- and space-based instruments, including the Keck and Gemini telescopes and the Space Infrared Telescope Facility, will greatly expand our ability to search for and conduct physical and chemical studies on these distant bodies. Over the same time span, a new generation of lightweight spacecraft should become available and enable the first missions designed specifically to explore the icy

  9. Evaluation of thermal and photovoltaic solar systems in agricultural production units, Northern Huetar Region, Costa Rica

    Directory of Open Access Journals (Sweden)

    Tomás de Jesús Guzmán Hernández

    2017-09-01

    Full Text Available The dependence on fossil fuels urges society to seek for clean energy alternatives, in order to mitigate the effects of climate change. The objective of this study was to determine the potential of solar energy used for water heating and electricity generation. The study was conducted at the dairy of the Technology Institute of Costa Rica, San Carlos Headquarter, from May 15 to April 2016. The data related to the amount of the electricity produced and the temperature reached by water was obtained from the installed photovoltaic and thermal systems, the data was recorded by a computerized register. The obtained information about electricity production allowed researchers to calculate the amount of carbon dioxide equivalent that was not emitted into the atmosphere, and also the acquired economic saving on consumption. The use of these systems allowed the production unit have a self- sufficient source of electrical energy percentage, actually around 30 to 40% of the total electrical consumption. According to the energy production, the solar thermal system was capable to increase water temperature between 20 to 37 °C, temperature that represents more than 70% of the energy needed in order to reach the required water temperature (70 °C for cleaning and sanitizing the milking equipment, and also an economical saving around $90 per month was achieved. The results showed that these systems allow to improve the economical and productive efficiency of agricultural production units in the Northern Huetar Region of Costa Rica.

  10. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  11. Solar Irradiance & On Grid Solar Power Systems with Net Metering in Pakistan

    Directory of Open Access Journals (Sweden)

    Haleema Qamar

    2016-06-01

    Full Text Available This paper presents a case study of solar irradiance and scope of on-grid solar power systems with net-metering in Pakistan. Detailed analysis of solar irradiance in Pakistan is being carried out by developing the dedicated solar excel sheets. The need of on grid solar power systems for the present energy crisis in developing countries like Pakistan is also discussed. It also presents the inclination of many countries especially USA and Europe towards it. Identification of barriers for implementing on grid net metered solar power systems in Pakistan along with solutions of these barriers is carried out.

  12. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    Combined Photovoltaic and Solar-Thermal Systems (PV/T Systems) combine Photovoltaic (PV) and solar thermal technologies into one system with both electrical and thermal energy output. PV/T systems have several perceived advantages to stand-alone PV or solar-thermal systems. The increased efficiency and dual nature of the systems make suitable for situations where installation space is limited, and for homeowners who are forced to decide between meeting thermal or electrical needs. The financial benefit of the combined system is also significant, as the long payback of PV systems is joined with a relatively short payback of solar thermal systems. A background of PV/T was presented, with details of classifications and the International Energy Association's program to evaluate the technical status of PV/T systems and formulate a roadmap for future development. It was noted that input from the Solar Heating and Cooling Program (SHCP) is needed to help identify market barriers in PV/T systems. This paper reviewed existing and potential PV/T systems and their technical status, and reported on the methodology established by IEA group 35. The systems were grouped according to thermal collector types of unglazed water collectors, glazed water collectors, unglazed air collectors, glazed air collectors, air-flow windows, and concentrating collectors. It was noted that a number of new systems are currently being developed, including concentrating collectors with water and air heating, unglazed air heating systems, and unglazed water heating systems. It was noted that apart from technical barriers, efficient design and performance prediction are also problematic, as tools for predicting performance do not exist. The same tools will be used to optimize PV/T system designs. It was suggested that standardized reporting methods, simulation and sizing tools and demonstration products need to be created and that regional certification issues need to be identified. Environmental

  13. Solar system installation at Louisville, Kentucky

    Science.gov (United States)

    1978-01-01

    The installation of a solar space heating and domestic hot water system is described. The overall philosophy used was to install both a liquid and a hot air system retrofitted to existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. The two systems offer a unique opportunity to measure the performance and compare results of both air and liquid at one site.

  14. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    2008-01-01

    Presents a history of unmanned missions of exploration of our Solar System. This book provides technical descriptions of the spacecraft, of their mission designs and of instrumentations. It discusses scientific results together with details of mission management. It covers missions from the 1950s and some of the other missions and their results.

  15. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  16. Embodying Earth's Place in the Solar System

    Science.gov (United States)

    Plummer, Julia

    2015-01-01

    Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…

  17. Assessment of a Solar System Walk

    Science.gov (United States)

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  18. The Dimensions of the Solar System

    Science.gov (United States)

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…

  19. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her

    2017-01-01

    was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  20. Reliability and durability in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-10-01

    The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)

  1. New Low Cost Structure for Dual Axis Mount Solar Tracking System Using Adaptive Solar Sensor

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2010-01-01

    A solar tracking system is designed to optimize the operation of solar energy receivers. The objective of this paper is proposing a new tracking system structure with two axis. The success strategy of this new project focuses on the economical analysis of solar energy. Therefore it is important...... to determine the most cost effective design, to consider the costs of production and maintenance, and operating. The proposed tracking system uses a new solar sensor position with an adaptive feature....

  2. Investigations of fabric stratifiers for solar tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Fan, Jianhua

    2005-01-01

    The thermal performance of solar heating systems is strongly influenced by the thermal stratification in the heat storage. The higher the degree of thermal stratification is, the higher the thermal performance of the solar heating systems. Thermal stratification in water storages can be achieved...... in different ways. For instance, water heated by the solar collectors or water returning from the heating system can enter the water storage through stratification inlet devices in such a way that the water enters the tank in a level, where the tank temperature is the same as the temperature of the entering...

  3. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  4. How Normal is Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because

  5. A Solar System Perspective on Laboratory Astrophysics

    Science.gov (United States)

    Cruikshank, Dale P.

    2002-01-01

    Planetary science deals with a wide variety of natural materials in a wide variety of environments. These materials include metals, minerals, ices, gases, plasmas, and organic chemicals. In addition, the newly defined discipline of astrobiology introduces biological materials to planetary science. The environments range from the interiors of planets with megapascal pressures to planetary magnetospheres, encompassing planetary mantles, surfaces, atmospheres, and ionospheres. The interplanetary environment includes magnetic and electrical fields, plasma, and dust. In order to understand planetary processes over these vast ranges, the properties of materials must be known, and most of the necessary information comes from the laboratory. Observations of the bodies and materials in the Solar System are accomplished over the full range of the electromagnetic spectrum by remote sensing from Earth or spacecraft. Comets exemplify this; molecular and atomic identifications are made from the hard ultraviolet to radio wavelengths, while X-rays are emitted as comets interact with the solar wind. Gamma rays from the surfaces of the Moon and asteroids are diagnostic of the mineral and ice content of those bodies; eventually, gamma rays will also be observed by probes to comets. A number of planetary materials are available in the laboratory for extensive Study: rocks from the Moon, Mars, several asteroids, as well as dust from comets (and perhaps the Kuiper Belt) are closely studied at every level, including atomic (isotopic). Even pre-solar interstellar grains isolated from meteorites are scrutinized for composition and crystalline structure. Beyond the materials themselves, various agents and processes have altered them over the 4.6-Gy age of the Solar System. Solar radiation, solar wind particles, trapped magnetospheric particles, cosmic rays, and micrometeoroid impacts have produced chemical, physical, and morphological changes in the atmospheres and on the surfaces of all

  6. 10 CFR 434.518 - Service water heating.

    Science.gov (United States)

    2010-01-01

    ... buildings. The same service water heating load assumptions shall be made in calculating Design Energy... 1110 Restaurant 390 Health 135 Multi-family High Rise Residential 2 1700 1 This value is the number to...

  7. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  8. Evolution of the solar system in the presence of a solar companion star

    International Nuclear Information System (INIS)

    Hut, P.

    1986-01-01

    A review is presented of the dynamical implications of a companion star in a wide orbit around the sun, with a semimajor axis of about half a parsec. The motivation behind the hypothesis of a solar companion star is reviewed briefly along with alternative hypotheses, and the general problem of solar system dynamics with a solar companion star is discussed. Four principal questions are posed and answered concerning the consistency of the solar companion theory in providing the required modulation in comet arrival times: (1) What is the expected lifetime of a solar companion? (2) How stable is the orbital period? (3) Does a single perihelion passage of a solar companion perturb enough comets? (4) Do repeated perihelion passages of a solar companion perturb too many comets? Some applications outside the solar system involving wide binaries, interstellar clouds, and dark matter in the Galactic disk are discussed, and the viability of the solar companion theory is critically assessed

  9. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  10. Commercial dissemination approaches for solar home systems

    Energy Technology Data Exchange (ETDEWEB)

    Terrado, E.

    1997-12-01

    The author discusses the issue of providing solar home systems to primarily rural areas from the perspective of how to commercialize the process. He considers two different approaches, one an open market approach and the other an exclusive market approach. He describes examples of the exclusive market approach which are in process in Argentina and Brazil. Coming from a banking background, the business aspects are discussed in detail. He points out the strengths and weaknesses of both approaches toward developing such systems.

  11. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  12. SIMS prototype system 1: Design data brochure. [solar heating system

    Science.gov (United States)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  13. An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis

    International Nuclear Information System (INIS)

    Yue, Cheng-Dar; Huang, Guo-Rong

    2011-01-01

    Solar energy is widely regarded as a major renewable energy source, which in future energy systems will be able to contribute to the security of energy supply and the reduction of CO 2 emissions. This study combined an evaluation of solar energy resources in Taiwan with land use analysis, which allows the potentials and restrictions of solar energy exploitation resulting from local land use conditions to be considered. The findings unveiled in this study indicate that photovoltaic electricity generation and solar water heating have the potential of producing 36.1 and 10.2 TWh of electricity and thermal energy annually in Taiwan, accounting for 16.3% and 127.5% of the total domestic consumption of electricity and energy for household water heating in 2009, respectively. However, the exploited solar photovoltaic power generation in 2009 accounted for only 0.02% of total potential in Taiwan, while the exploited solar water heating accounted for 11.6% of total potential. Market price and investment incentive are the dominant factors that affect market acceptance of solar energy installation in Taiwan. The administrative barriers to the purchase and transmission of electricity generated from renewable energy sources have to be removed before the potential contribution of solar energy can be realized. - Highlights: ► Solar PV and solar water heating have a vital energy potential. ► Solar PV has an essential potential in CO 2 reduction. ► Investment incentives dominate market acceptance of solar energy. ► Appropriate urban building bulk facilitates energy autonomy using solar energy. ► Land use analysis is a viable tool to evaluate solar energy potential.

  14. Solar cosmic rays in the system of solar terrestrial relations

    Science.gov (United States)

    Miroshnichenko, Leonty I.

    2008-02-01

    In this brief review, we discuss a number of geophysical effects of solar energetic particles (SEPs) or solar cosmic rays (SCR). We concentrate mainly on the observational evidence and proposed mechanisms of some expected effects and/or poor-studied phenomena discovered within the last three decades, in particular, depletion of the ozone layer, perturbations in the global electric current, effects on the winter storm vorticity, change of the atmospheric transparency and production of nitrates. Some "archaeological" data on SCR fluxes in the past and upper limit of total energy induced by SEPs are also discussed. Due attention is paid to the periodicities in the solar particle fluxes. Actually, many solar, heliospheric and terrestrial parameters changing generally in phase with the solar activity are subjected to a temporary depression close to the solar maximum ("Gnevyshev Gap"). A similar gap has been found recently in the yearly numbers of the >10 MeV proton events. All the above-mentioned findings are evidently of great importance in the studies of general proton emissivity of the Sun and long-term trends in the behaviour of solar magnetic fields. In addition, these data can be very helpful for elaborating the methods for prediction of the radiation conditions in space and for estimation of the SEPs' contribution to solar effects on the geosphere, their relative role in the formation of terrestrial weather and climate and in the problem of solar-terrestrial relations (STR) on the whole.

  15. Elementary Students' Mental Models of the Solar System

    Science.gov (United States)

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  16. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  17. Program to monitor and evaluate a passive solar greenhouse/aquaculture system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A temperature monitoring program of Amity's solar greenhouse demonstrated that air, soil, and water temperatures can be maintained at optimal levels without supplemental heat. A foil reflector placed in front of the greenhouse glazing at an angle of between 0 and 5/sup 0/ above horizontal enhanced direct light entering the greenhouse by as much as 22%. Aquaculture in the water heat storage of a solar greenhouse has been a success. Fish reached harvest size in about seven months. The two species that were received the best by the public were African perch (Tilapia mossambica) and channel catfish (Ictalurus punctatus). Although carp (Cyprinus carpio) were the fastest growers they were not well received by the public. Linking hydroponics to greenhouse aquaculture shows a lot of promise. Different support medias were examined and tomatoes and European cucumbers were raised successfully. A savonius windmill was successfully linked to an aquaculture aeration system but because of the wind pattern in the Willamette valley the windmill system did not provide air in the evening when it was needed most. Alternate designs are discussed. Locally grown fish diets were evaluated for their ability to promote fish growth. Diets such as water hyacinth, duckweed, earthworms, beans, and comfrey were raised on the Amity site, pelleted with a hand grinder and solar dried. Duckweed and earthworms appear to hold promise for a nutritous, easy to grow and pelletize, food source. Amity's solar greenhouse, three coldframe designs and a PVC tunnel cloche were compared in a vegetable growing trial. Most impressive was the cloche design because it provided adequate protection, was inexpensive and very easy to build.

  18. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  19. Life in the solar system and beyond

    CERN Document Server

    Jones, Barrie W

    2004-01-01

    In Life in the Solar System and Beyond, Professor Jones has written a broad introduction to the subject, addressing important topics such as, what is life?, the origins of life and where to look for extraterrestrial life The chapters are arranged as follows Chapter 1 is a broad introduction to the cosmos, with an emphasis on where we might find life In Chapters 2 and 3 Professor Jones discusses life on Earth, the one place we know to be inhabited Chapter 4 is a brief tour of the Solar system, leading us in Chapters 5 and 6 to two promising potential habitats, Mars and Europa In Chapter 7 the author discusses the fate of life in the Solar system, which gives us extra reason to consider life further afield Chapter 8 focuses on the types of stars that might host habitable planets, and where in the Galaxy these might be concentrated Chapters 9 and 10 describe the instruments and techniques being employed to discover planets around other stars (exoplanetary systems), and those that will be employed in the near fut...

  20. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  1. Solar system constraints on disformal gravity theories

    International Nuclear Information System (INIS)

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy

    2015-01-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology

  2. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  3. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2018-01-30

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  4. The Science of Solar System Ices

    CERN Document Server

    Castillo-Rogez, Julie

    2013-01-01

    The Science of Solar System Ices The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the planetary ices science community, this book aims to foster focused collaborations among the observational, modeling, and laboratory research communities. The book is a compilation of articles from experts in ices: experimentalists, modelers, and observers (ground-based telescopes and space missions). Most of the contributors featured in this book are renowned experts in their respective fields. Many of these scientists h...

  5. Solar panel truss mounting systems and methods

    Science.gov (United States)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  6. A study of solar energy entrepreneurs and financing

    International Nuclear Information System (INIS)

    Agarwal, R.K.

    2005-12-01

    In this paper, a description is given about entrepreneurs to start a business of renewable energy technologies as solar photovoltaic, solar water heating systems which are well established products in the market. Some points are mentioned to establish a successful business as quality assurance, marketing and sell skills etc. The purpose of this study is to boost the confidence in solar energy entrepreneurs. Technical specifications of solar home systems, solar street lighting system, solar photovoltaic water pumping and 2.5 KW solar photovoltaic power plant have been provided in Annexure-I. The list of maximum prices has been given in Annexure-ll and a list of empanelled manufactures/suppliers of various solar photovoltaic (SPV) systems under the Ministry of Non-Conventional Energy Sources, MNES (Government of India) has been also mentioned in Annexure-lll. (author)

  7. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  8. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  9. Multistep Methods for Integrating the Solar System

    Science.gov (United States)

    1988-07-01

    Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects

  10. Solar-hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat : hydrogen production, storage, and utilisation

    National Research Council Canada - National Science Library

    Ōta, Tokio

    1979-01-01

    ... An Authoritative Review of Watersplitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilisation edited by TOKIO OHTA Professor of Materials Science and Energy System Yoko...

  11. The Cambridge Guide to the Solar System

    Science.gov (United States)

    Lang, Kenneth R.

    2003-10-01

    The Cambridge Guide to the Solar System provides a comprehensive, funamental, and up-to-date description of the solar system. It is written in a concise, light and uniform style, without being unnecessarily weighted down with specialized materials or the variable writing of multiple authors. It is filled with vital facts and information for astronomers of all types and for anyone with a scientific interest in the Earth, our Moon, all the other planets and their satellites, and related topics such as asteroids, comets, meteorites and meteors. The language, style, ideas and profuse illustrations will attract the general reader as well as professionals. A thorough report for general readers, it includes much compact reference data. Metaphors, similes and analogies will be of immense help to the lay person or non-science student, and they add to the enjoyment of the material. Vignettes containing historical, literary and even artistic material make this book unusual and interesting, and enhance its scientific content. Kenneth Lang is professor of astronomy in the Physics and Astronomy Department at Tufts University. He is the author of several astrophysics books, including The Sun from Space (Springer Verlag, 2000), Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics (Springer Verlag, 1999), Sun, Earth and Sky (Copernicus Books, 1997), Astrophysical Data: Planets and Stars (Springer Verlag, 1993), and Wanderers in Space: Exploration and Discovery in the Solar System (Cambridge, 1991),

  12. Spacewatch Survey of the Solar System

    Science.gov (United States)

    McMillan, Robert S.

    2000-01-01

    The purpose of the Spacewatch project is to explore the various populations of small objects throughout the solar system. Statistics on all classes of small bodies are needed to infer their physical and dynamical evolution. More Earth Approachers need to be found to assess the impact hazard. (We have adopted the term "Earth Approacher", EA, to include all those asteroids, nuclei of extinct short period comets, and short period comets that can approach close to Earth. The adjective "near" carries potential confusion, as we have found in communicating with the media, that the objects are always near Earth, following it like a cloud.) Persistent and voluminous accumulation of astrometry of incidentally observed main belt asteroids MBAs will eventually permit the Minor Planet Center (MPQ to determine the orbits of large numbers (tens of thousands) of asteroids. Such a large body of information will ultimately allow better resolution of orbit classes and the determinations of luminosity functions of the various classes, Comet and asteroid recoveries are essential services to planetary astronomy. Statistics of objects in the outer solar system (Centaurs, scattered-disk objects, and Trans-Neptunian Objects; TNOs) ultimately will tell part of the story of solar system evolution. Spacewatch led the development of sky surveying by electronic means and has acted as a responsible interface to the media and general public on this discipline and on the issue of the hazard from impacts by asteroids and comets.

  13. Gravitational anomalies in the solar system?

    Science.gov (United States)

    Iorio, Lorenzo

    2015-02-01

    Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.

  14. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  15. Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030

    International Nuclear Information System (INIS)

    1991-12-01

    This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE's Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets

  16. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  17. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  18. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  19. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  20. Ages of the solar system: Isotopic dating

    International Nuclear Information System (INIS)

    Turner, G.

    1982-01-01

    The major concern of this section will be to outline the ways in which measurements of isotope abundances have been used to determine the chronology of the origin and evolution of the solar system. In passing it should be remembered that the use of isotopic information is by no means restricted simply to the measurement of time scales and, particularly in recent years, isotope abundances have been used to investigate problems as diverse as the heat sources in the early solar nebula and the chemical evolution of the Earth's mantle. The fundamental property of isotopes which makes them especially useful for dating and other applications is the fact that, apart from a limited amount of mass fractionation, the composition of an isotopic mixture is unaffected by chemical processes. In those cases where mass fractionation does occur this effect may itself be useful, particularly as a source of information on temperatures. Since our main theme is time the events discussed in this section will be most conveniently presented as a chronological sequence, progressing from some time before the solar system existed down to the present day. (orig./WL)

  1. ATU/Fort Hood Solar Total Energy Military Large-Scale Experiment (LSE-1): system design and support activities. Final report, November 23, 1976-November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ATU/Fort Hood Solar Total Energy System will include a concentrating solar collector field of several acres. During periods of direct insolation, a heat-transfer fluid will be circulated through the collector field and thus heated to 500 to 600/sup 0/F. Some of the fluid will be circulated through a steam generator to drive a turbine-generator set; additional fluid will be stored in insulated tanks for use when solar energy is not available. The electrical output will satisfy a portion of the electrical load at Fort Hood's 87,000 Troop Housing Complex. Heat extracted from the turbine exhaust in the form of hot water will be used for space heating, absorption air conditioning, and domestic water heating at the 87,000 Complex. Storage tanks for the hot water are also included. The systems analysis and program support activities include studies of solar availability and energy requirements at Fort Hood, investigation of interfacing LSE-1 with existing energy systems at the 87,000 Complex, and preliminary studies of environmental, health, and safety considerations. An extensive survey of available concentrating solar collectors and modifications to a computerized system simulation model for LSE-1 use are also reported. Important program support activities are military liaison and information dissemination. The engineering test program reported involved completion of the Solar Engineering Test Module (SETM) and extensive performance testing of a single module of the linear-focusing collector.

  2. Bright Idea: Solar Energy Primer.

    Science.gov (United States)

    Missouri State Dept. of Natural Resources, Jefferson City.

    This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)

  3. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  4. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  5. Solar Thermal System Evaluation in China

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2015-01-01

    Full Text Available More than 581 solar thermal systems (STSs, 98 counties, and 47 renewable application demonstration cites in China need to be inspected by the end of 2015. In this study, the baseline for performance and economic evaluation of STSs are presented based on the site test data and related references. An index used to evaluate STSs was selected, and methods to acquire the parameters used to calculate the related index were set. The requirements for sensors for testing were specified. The evaluation method was applied to three systems and the result shows that the evaluation method is suitable for the evaluation of STSs in China.

  6. Chaotic diffusion in the Solar System

    OpenAIRE

    Laskar, Jacques

    2008-01-01

    A statistical analysis is performed over more than 1001 different integrations of the secular equations of the Solar system over 5 Gyr. With this secular system, the probability of the eccentricity of Mercury to reach 0.6 in 5 Gyr is about 1 to 2 %. In order to compare with (Ito and Tanikawa, 2002), we have performed the same analysis without general relativity, and obtained even more orbits of large eccentricity for Mercury. We have performed as well a direct integration of the planetary orb...

  7. Interactions in the early solar system

    International Nuclear Information System (INIS)

    Dormand, J.R.; Woolfson, M.M.

    1977-01-01

    The capture theory of the origin of the solar system predicts protoplanets formed in near coplanar elliptical orbits with fairly high eccentricities. A resisting medium, which would be a byproduct of the capture event, would serve to round-off the orbits in a time which is short compared to the age of the solar system. It is shown that such a medium would also give rise to differential rotations of the lines of apses of the early planetary orbits, leading to a high probability of close interactions or collisions between planets. The consequences of a collision between two planets are considered. It is found that the larger planet could, in some cases, be expelled from the solar system and that the fragments of the small planet could give rise to some of the terrestrial planets. Moreover, it is suggested that the Earth-Moon system could be formed as as result of the capture of a major satellite of one of the colliding planets by a large fragment of the other planet. Mars is also identified in the satellite system of the ejected planet. Various types of debris from the collision could have produced the asteroids, meteorites and comets. An alternative explanation, in terms of the original event, is also given for the comets. The hypothesis is examined that Pluto is a byproduct of the collision, reaching its present orbit by interactions with Neptune. It is shown that as a consequence of such an interaction, Triton could have been perturbed sufficiently to reverse an initially prograde orbital motion. The transfer of Pluto from the collision region to the vicinity of Neptune could have occurred through multiple planetary perturbation. The outer satellites of Jupiter and Saturn are discussed in relation to the proposition that they originated from the debris of asteroid collisions within the spheres of influence of those planets. (author)

  8. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  9. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  10. Space Object and Light Attribute Rendering (SOLAR) Projection System

    Science.gov (United States)

    2017-05-08

    depicting the proposed SOLAR projection system. The installation process is shown in Fig. 3. SOLAR system comprises of a dome that houses Digitairum’s...imaging process. A fiberglass dome system was erected to make the SOLAR system a self contained facility. Calibration process was carried out to register...Separate software solutions were implemented to model the light transport processes involved in the imaging process. A fiberglass dome system was erected to

  11. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  12. Economic and policy analysis for solar PV systems in Indiana

    International Nuclear Information System (INIS)

    Jung, Jinho; Tyner, Wallace E.

    2014-01-01

    In recent years, the energy market in the US and globally is expanding the production of renewable energy. Solar energy for electricity is also expanding in the US. Indiana is one of the states expanding solar energy with solar photovoltaic (PV) systems. Therefore, we conduct benefit cost analysis with several uncertain input variables to determine the economics of adopting solar PV systems in Indiana based on policy instruments that could increase adoption of solar PV systems. The specific objectives are analyses of the cost distribution of solar PV systems compared with grid electricity in homes and estimating the probability that solar can be cheaper than electricity from grids under different policy combinations. We first do the analysis under current policy and then the analysis under potential policy options for a variety of scenarios. Also, the results inform government policy makers on how effective the alternative policies for encouraging solar PV systems are. The results show that current policies are important in reducing the cost of solar PV systems. However, with current policies, there is only 50–50 chance of solar being cheaper than electricity from grids. If potential policies are implemented, solar PV systems can be more economical than grid electricity. - Highlights: • We investigate the economics of solar PV systems based on policy instruments. • We do scenario analyses under different combinations of policies. • We examine the probability of solar being cheaper than grid electricity for each scenario. • With current policies, there is 50–50 chance of solar being cheaper than the grid. • With depreciation and carbon tax, solar is much more economical than the grid

  13. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  14. Environmental performance evaluation of hot water supplying systems for domestic use

    OpenAIRE

    Luiz Alexandre Kulay; Rafael Selvaggio Viñas; Ivanildo Hespanhol

    2015-01-01

    The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmenta...

  15. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  16. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  17. Job creation potential of solar

    International Nuclear Information System (INIS)

    McMonagle, R.

    2005-01-01

    This document defines the size of the job market within Canada's solar industry and presents a preliminary forecast of the employment opportunities through to 2025. The issue of job potential within Canada's solar technologies is complicated by the wide range of different fields and technologies within the solar industry. The largest energy generator of the solar technologies is passive solar, but the jobs in this sector are generally in the construction trades and window manufacturers. The Canadian Solar Industries Association estimates that there are about 360 to 500 firms in Canada with the primary business of solar technologies, employing between 900 to 1,200 employees. However, most solar manufacturing jobs in Canada are for products exports as demonstrated by the 5 main solar manufacturers in Canada who estimate that 50 to 95 per cent of their products are exported. The main reason for their high export ratio is the lack of a Canadian market for their products. The 3 categories of job classifications within the solar industry include manufacturing, installation, and operations and maintenance. The indirect jobs include photovoltaic system hardware, solar hot water heating, solar air ventilation, and glass/metal framing. 17 refs., 3 tabs., 2 figs

  18. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  19. Electron Radiation Belts of the Solar System

    Science.gov (United States)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  20. Material cycling solar system modeled ecosystem; Seitaikei wo model to shita busshitsu junkangata solar system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    It is proposed to establish an integrated system close to a natural ecosystem for an industrial complex, taking that in Hachinohe City, Aomori Pref. as the conceptual site. It is a system in which materials are recycled by solar energy and industrial waste heat for a complex food industry. The conceptual site, although blessed with various marine products, are sometimes attacked by cold weather. Waste heat from a 250,000kW power plant, if transported by EHD heat pipes to the site, could provide roughly 400 times the heat required for production of agricultural and marine products, such as cabbages and fish meat. The waste heat, coupled with solar energy, should solve the problems resulting from hot waste water, if they could be utilized for the industrial purposes. The food industrial site that produces agricultural and marine products is considered to be suited as the center of the solar industrial complex incorporating farms. 5 refs., 3 figs.

  1. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  2. Combined heat and power solar system

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    An Australian-designed photovoltaic (PV) power system that also supplies hot water is close to commercial release. PVs have been around for decades and solar concentrators have been efficiently heating water for nearly a century. The Australian National University, Department of Engineering - Centre for Sustainable Energy systems (CSES), has designed a domestic scale modular system that not only generates electricity but also provides concentrated thermal energy to heat water for a Solahart hot water system and is designed to be deployed into small to medium scale applications such as hospitals, schools and dwellings with an easily assembled galvanised steel frame. A market research was carried out and is envisaged that at least 7,500 units will be installed annually by the year 2005 and up to 25,000 units by 2008

  3. Development of solar thermophotovoltaic systems = Desarrollo de sistemas termofotovoltaicos solares

    OpenAIRE

    Datas Medina, Alejandro

    2011-01-01

    Esta tesis aborda el análisis, tanto teórico como experimental, de los sitemas termofotovoltaicos solares. En estos sistemas, un material (emisor) se calienta hasta la incandescencia mediante radiaci ón solar. La radiación térmica emitida por dicho material se dirige hacia una célula fotovoltaica, que convierte dicha radiación en electricidad. En esta configuración, se pueden emplear elementos de control espectral para lograr que los fotones no útiles para el proceso de conversión fotovoltáic...

  4. A Charge Controller Design For Solar Power System

    OpenAIRE

    Nandar Oo; Kyaw Soe Lwin; Hla Myo Tun

    2015-01-01

    This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart...

  5. Dark matter in the outer solar system

    Science.gov (United States)

    Owen, T.; Cruikshank, D.; De Bergh, C.; Geballe, T.

    1994-01-01

    There are now a large number of small bodies in the outer solar system that are known to be covered with dark material. Attempts to identify that material have been thwarted by the absence of discrete absorption features in the reflection spectra of these planetesimals. An absorption at 2.2 micrometers that appeared to be present in several objects has not been confirmed by new observations. Three absorptions in the spectrum of the unusually red planetesimal 5145 Pholus are well-established, but their identity remains a mystery.

  6. Solar System Moons Discovery and Mythology

    CERN Document Server

    Blunck, Jürgen

    2010-01-01

    Starting from Mars outward this concise handbook provides thorough information on the satellites of the planets in the solar system. Each chapter begins with a section on the discovery and the naming of the planet's satellites or rings. This is followed by a section presenting the historic sources of those names. The book contains tables with the orbital and physical parameters of all satellites and is illustrated throughout with modern photos of the planets and their moons as well as historical and mythological drawings. The Cyrillic transcriptions of the satellite names are provided in a register. Readers interested in the history of astronomy and its mythological backgrounds will enjoy this beautiful volume.

  7. SPHEREx: Science Opportunities for Solar System Astronomy

    Science.gov (United States)

    Lisse, Carey Michael; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 µm in R = 41 filters, and with R = 135 coverage from 4.2 - 5.0 µm, reaching L ~ 19 (5-sigma).SPHEREx has high potential for solar system science. The 96-band survey will cover the entire sky 4 times over the course of 2 years, including thousands of foreground solar system asteroids, comets, Trojans, and KBOs. By canvassing the entire solar system for 2 years, SPHEREx has the potential not only to achieve a relatively complete sensitivity limited survey of the solar system's bodies, but also some capability to search for variation in these bodies over time.For example, the large legacy dataset of SPHEREx will update the WISE catalogue of asteroid sizes and albedos by providing a spectral survey of tens of thousands of bodies. It will provide spectral classification of hundreds of Trojan asteroids, allowing for direct comparison to the asteroid results. It will extend optical surveys of comet composition by dynamical type to hundreds of objects in the NIR, while determining water/dust/CO/CO2 activity vs distance. SPHEREx will also map in great temporal and spatial detail the zodiacal dust debris disk cloud that these bodies produce, providing an unprecedented level of information concerning the sources and sinks of this material.In this paper, we discuss the data release schedule and some example science studies the planetary astronomy community will be able to access using the SPHEREx database. We also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies, enabling a large number of scientific studies while finding interesting targets for follow

  8. Energy Saving in an ETC Solar System to Produce High Temperature Water

    Directory of Open Access Journals (Sweden)

    Carlos J. Porras-Prieto

    2018-04-01

    Full Text Available The use of solar water heating systems (SWHS based on evacuated tube collectors (ETC has experienced rapid growth in the residential sector. In contrast, the implementation of these systems in the industrial sector is very limited, due in part to the demand of a higher temperature in water. Taking into account that the final energy of the industrial sector is similar to the residential sector, to increase the generation of renewable energy and energy saving in cities, efforts in this sector should be redoubled. Therefore, the present work characterises the behaviour of a SWHS-ETC with active circulation to produce hot water at 90 °C, determining its performance, energy saving and profitability in different scenarios in Europe. The annual energy savings generated by the SWHS Range between 741 and 435 kWh m−2 (reduction of emissions between 215 and 88 kg CO2 m−2. The results of the analysis of profitability, studying the variation of the conventional energy price, the cost of the investment, the useful life and the energy supplied, in thousands of scenarios, are a valuable tool for correct decision making, as they can be of great utility to increase the implementation of these systems in the industrial sector.

  9. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  10. An innovative deployable solar panel system for Cubesats

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  11. Thermal study of a residential water solar heating system with two different absorbing surface configurations; Estudo termico de um sistema solar de aquecimento de agua residencial para duas configuracoes de superficie absorvedora

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Rivaldo Ferreira

    2009-10-15

    A solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly is presented. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, it is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint fiat black for better absorption of sunlight. The system worked on a thermosyphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. The most efficient configuration for the connect purpose was determined. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied. (author)

  12. Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.

    2004-07-01

    Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)

  13. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  14. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  15. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  16. Quarterly overviews of thermal solar energy systems 1993

    International Nuclear Information System (INIS)

    Warmerdam, J.M.; Stap, C.A.M.

    1994-08-01

    The title overviews were compiled to support the market introduction campaign for solar water heaters in the Netherlands. Use has been made of the data-banks of the Dutch subsidy administrator 'Senter'. 88% of the 1,883 systems, that were installed in 1993, are solar water heaters. Considering the solar collector surface the largest contribution is from the use of mainly uncovered collectors in swimming pools: 51% (37% for the collector surface of solar water heaters). Energy utilities are involved in the installation of 70% of the solar heating systems (even 77% for the solar water heaters). Next to the quarterly overviews, the subsidy data for the period 1988 up to and including 1993 are analyzed. 70% of the installed systems has been purchased and 30% was rented. At the end of 1993 preparations were made to install more than 3,000 solar boilers in 1994 and 1995. 3 figs., 21 tabs

  17. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    Science.gov (United States)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  18. Dark matter, neutrinos, and our solar system

    CERN Document Server

    Prakash, Nirmala

    2013-01-01

    Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done, from the year 1913 when they were found as byproducts of beta decay -- until the discovery in 2007 which confirmed that neutrino flavors were not more than three (as speculated by some). The last chapter of the book details t...

  19. Solar-System Tests of Gravitational Theories

    Science.gov (United States)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  20. Analysis of a solar powered absorption system

    International Nuclear Information System (INIS)

    Said, S.A.M.; El-Shaarawi, M.A.I.; Siddiqui, M.U.

    2015-01-01

    Highlights: • Conventional absorption system modified to increase COP. • Results indicated increase of 10% in COP due to dephlegmator heat recovery. • Results indicated increase of 8% in COP due to refrigerant storage unit. • Results indicated increase of 18% in COP due to combined effect of modifications. • Simulation results indicated a very good agreement with the measured results. - Abstract: Today, fossil fuel is the primary extensively used source of energy. However, its negative impact on the environment have forced the energy research continuity to seriously consider renewable sources of energy. Solar energy, in particular, has been the main focus in this regard because it is a source of clean energy and naturally available. This study presents the design and analysis of a solar powered absorption refrigeration system modified to increase its coefficient of performance (COP). The modifications include recovering of waste heat from a dephlegmator and utilization of a refrigerant storage unit. The simulation results indicate an increase of 10% in the COP of the conventional design using dephlegmator heat recovery and an increase of 8% in the COP of the conventional design due to the use of a refrigerant storage. The analysis for the combined effect of modifications indicates an increase of 18% in the COP compared to conventional design. Calculated values of coefficient of performance indicate a very good agreement with the ones obtained based on measurement