WorldWideScience

Sample records for solar ultraviolet uv

  1. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    Science.gov (United States)

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Solar ultraviolet hazards

    International Nuclear Information System (INIS)

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  3. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    Science.gov (United States)

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  4. Accelerated Solar-UV Test Chamber

    Science.gov (United States)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  5. Solar ultraviolet radiation cataract.

    Science.gov (United States)

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  6. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  7. Evolution of solar ultraviolet luminosity

    International Nuclear Information System (INIS)

    Zahnle, K.J.; Walker, J.C.G.

    1982-01-01

    In view of the major role of the sun in defining the properties of planetary atmospheres, their evolution cannot be fully understood outside the context of an evolving sun. The ultraviolet radiation is especially interesting because of its strong interaction with planetary atmospheres. We use astronomical observation of stars that are analogous to the sun in order to reconstruct a tentative account of the evolution of solar UV luminosity. A wealth of evidence indicates that the young sun was a much more powerful source of energetic particles and radiation than it is today. While on the main sequence, solar activity has declined as an inverse power law of age (between t -5 and t/sup -1.2/) as a consequence of angular momentum loss to the solar wind. Recent IUE satellite observations of premain sequence stars suggest that before the sun reached the main sequence (at an age of about 50 m.y.), it may have emitted as much as 10 4 times as much ultraviolet radiation (γ<2000 A) than it does today. These results could impact our understanding of the photochemistry and escape of constituents of primordial planetary atmospheres

  8. Global Solar UV Index (invited paper)

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    2000-01-01

    Excessive solar ultraviolet (UV) radiation exposure produces a significant burden of disease to the skin, eyes and immune system. Effective programmes for the reduction of UV exposure are needed to reduce this disease burden and the associated health care costs. The UV index is seen as an effective tool for communicating important protection information to the public through its use in media news and weather information. The index is described and it is suggested that universally common messages should be associated with its ranges. (author)

  9. Ultraviolet radiation exposure from UV-transilluminators.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  10. Biological Sensors for Solar Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André P. Schuch

    2011-04-01

    Full Text Available Solar ultraviolet (UV radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products.

  11. Long-term visual health risks from solar ultraviolet radiation

    International Nuclear Information System (INIS)

    Waxler, M.

    1987-01-01

    Ocular exposure to the ultraviolet radiation (UV) contained in sunlight may result in long-term visual health problems. UV plays a role in the etiology of cataracts and possibly in the etiology of visual impairments associated with solar retinopathy, retinopathy of prematurity, ocular aging, cystoid macular edema, retinitis pigmentosa, and senile macular degeneration. The exact does relationships between known UV bioeffects and these ocular problems is, however, uncertain. Thus, there are questions about the extent to which protective measures should be taken to reduce UV exposure of the eye. This paper identifies the long-term visual health problems potentially associated with ocular exposure to solar UV; proposes worst-case assumptions for the role of solar UV in these visual problems; and recommends protective measures based on damage thresholds and worst-case assumptions

  12. Exposure to solar UV in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K; Leszczynski, K; Visuri, R; Ylianttila, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1996-12-31

    Exceptionally low total ozone, up to 40 % below the normal level, was measured over Northern Europe during winter and spring in 1992 and 1993. In 1993 the depletion persisted up to the end of May, resulting in a significant increase in biologically effective ultraviolet (UV) radiation. The increases were significantly smaller in 1992 and 1994 than in 1993. A special interest in Northern Europe is the effect of high reflection of UV from the snow. The period from the mid March to the mid May is critical in Northern Finland, because in that time the UV radiation is intense enough to cause significant biological effects, and the UV enhancing snow still covers the ground. Moreover, there is some evidence of increasing springtime depletions of ozone over Arctic regions. In this study the increase of UV exposure associated with the ozone depletions was examined with measurements and theoretical calculations. The measurements were carried out with spectroradiometrically calibrated Solar Light Model 500 and 501 UV radiometers which measure the erythemally effective UV doses and dose rates. The theoretical UV doses and dose rates were computed with the clear sky model of Green

  13. Exposure to solar UV in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K.; Leszczynski, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-12-31

    Exceptionally low total ozone, up to 40 % below the normal level, was measured over Northern Europe during winter and spring in 1992 and 1993. In 1993 the depletion persisted up to the end of May, resulting in a significant increase in biologically effective ultraviolet (UV) radiation. The increases were significantly smaller in 1992 and 1994 than in 1993. A special interest in Northern Europe is the effect of high reflection of UV from the snow. The period from the mid March to the mid May is critical in Northern Finland, because in that time the UV radiation is intense enough to cause significant biological effects, and the UV enhancing snow still covers the ground. Moreover, there is some evidence of increasing springtime depletions of ozone over Arctic regions. In this study the increase of UV exposure associated with the ozone depletions was examined with measurements and theoretical calculations. The measurements were carried out with spectroradiometrically calibrated Solar Light Model 500 and 501 UV radiometers which measure the erythemally effective UV doses and dose rates. The theoretical UV doses and dose rates were computed with the clear sky model of Green

  14. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    Science.gov (United States)

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  15. Effects of solar ultraviolet radiation on tropical algal communities

    International Nuclear Information System (INIS)

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity

  16. Ultraviolet-B-effects on plants: Spectra of harmful effects, primary damage and UV protective mechanisms

    International Nuclear Information System (INIS)

    Wellmann, E.; Beggs, C.; Moehle, B.; Schneider-Ziebert, U.; Steinmetz, V.; Koch, U.

    1986-01-01

    In two model systems of higher plants, damage caused by ultraviolet-B-radiation was analysed as to its mechanism of action and the spectral quantum efficiency. These investigations were to provide information on the relevance of such UV effects in cases of increased ultraviolet-B-irradiation owing to the destruction of ozone. The results indicate the very high tolerance of the plants to ultraviolet-B-radiation which obviously is the result of very effective protective mechanisms, and show at the same time that potential damage must already be reckoned with, given the current share of ultraviolet-B-radiation in solar radiation. Should ultraviolet-B-radiation be increased, then indirect damage to the plant from the destruction of ultraviolet protective mechanisms through UV-B-radiation will probably constitute a particular risk. (orig./MG) [de

  17. Quality assessment of solar UV irradiance measured with array spectroradiometers

    Science.gov (United States)

    Egli, Luca; Gröbner, Julian; Hülsen, Gregor; Bachmann, Luciano; Blumthaler, Mario; Dubard, Jimmy; Khazova, Marina; Kift, Richard; Hoogendijk, Kees; Serrano, Antonio; Smedley, Andrew; Vilaplana, José-Manuel

    2016-04-01

    The reliable quantification of ultraviolet (UV) radiation at the earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance measurements. Within the European EMRP ENV03 project "Solar UV", new devices, guidelines and characterization methods have been developed to improve solar UV measurements with ASRMs, and support to the end user community has been provided. In order to assess the quality of 14 end user ASRMs, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the blind intercomparison revealed that ASRMs, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema-weighted UV index - in particular at large solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available ASRMs within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range of solar zenith angles. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 and 400 nm under all atmospheric conditions.

  18. SimUVEx v2 : a numeric tool to predict anatomical solar ultraviolet exposure

    OpenAIRE

    Religi, Arianna; Moccozet, Laurent; Farahmand, Meghdad; Vuilleumier, L.aurent; Vernez, David; Milon, Antoine; Backes, Claudine; Bulliard, Jean-Luc

    2016-01-01

    Solar ultraviolet (UV) radiation has a dual effect on human health: low UV doses promote the photosynthesis of vitamin D and regulate calcium and phosphorus metabolism, while an excessive UV exposure is the main cause of skin cancer, along with eye diseases and premature skin ageing. The link between UV radiation levels and UV exposure is not fully understood since exposure data are limited and individual anatomical variations in UV doses are significant. SimUVEx is a numeric simulation tool ...

  19. The role of solar ultraviolet radiation in 'natural' water purification

    International Nuclear Information System (INIS)

    Calkins, J.; Buckles, J.D.; Moeller, J.R.

    1976-01-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated. (author)

  20. Role of solar ultraviolet radiation in 'natural' water purification

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, J; Buckles, J D; Moeller, J R [Kentucky Univ., Lexington (USA)

    1976-07-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.

  1. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  2. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  3. Assessment and comparison of methods for solar ultraviolet radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.).

  4. Assessment and comparison of methods for solar ultraviolet radiation measurements

    International Nuclear Information System (INIS)

    Leszczynski, K.

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.)

  5. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Yu, Peter K N; Butson, Martin J

    2013-01-01

    Measurement of solar ultraviolet (UV) radiation is an important aspect of dosimetry for the improved knowledge of UV exposure and its associated health related issues. EBT2 Gafchromic film has been designed by its manufacturers as an improved tool for ionizing radiation dosimetry. The film is stated as exhibiting a significant reduction in UV response. However, results have shown that when exposed to UV from the ‘bottom side’ i.e. from the thick laminate side, the film exhibits a sensitivity to solar UV radiation which is both measurable and accurate for UV dosimetry. Films were irradiated in this position to known solar UV exposures and results are quantified showing a reproducibility of measurement to within ±7% (1 SD) when compared to calibrated UV meters. With an exposure of 20 J cm −2 broad spectrum solar UV, the films net OD change was found to be 0.248 OD ± 0.021 OD when analysing the results using the red channel region of an Epson V700 desktop scanner. This was compared to 0.0294 OD ± 0.0053 OD change with exposure to the same UV exposure from the top side. This means that solar UV dosimetry can be performed using EBT2 Gafchromic film utilizing the underside of the film for dosimetry. The main advantages of this film type for measurement of UV exposure is the visible colour change and thus easy analysis using a desktop scanner as well as its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  6. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  7. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    Background. The detrimental effects of excess personal solar ultraviolet (UV) radiation exposure include sunburn, immunosuppression and skin cancer. In South Africa, individuals with minimum natural protection from melanin, including fair-skinned individuals and African albinos, and people spending extended ...

  8. UV radiation hardness of silicon inversion layer solar cells

    International Nuclear Information System (INIS)

    Hezel, R.

    1990-01-01

    For full utilization of the high spectral response of inversion layer solar cells in the very-short-wavelength range of the solar spectrum sufficient ultraviolet-radiation hardness is required. In addition to the charge-induced passivation achieved by cesium incorporation into the silicon nitride AR coating, in this paper the following means for further drastic reduction of UV light-induced effects in inversion layer solar cells without encapsulation are introduced and interpretations are given: increasing the nitride deposition temperature, silicon surface oxidation at low temperatures, and texture etching and using higher substrate resistivities. High UV radiation tolerance and improvement of the cell efficiency could be obtained simultaneously

  9. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  10. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  11. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters

    DEFF Research Database (Denmark)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim

    2017-01-01

    radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. Methods: We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high......-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale...... with our specialist knowledge as occupational physicians. Conclusions: Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support...

  12. Ambient solar UV radiation and seasonal trends in potential sunburn risk among schoolchildren in South Africa

    CSIR Research Space (South Africa)

    Wright, CY

    2011-07-01

    Full Text Available The detrimental effects of excess personal solar ultraviolet (UV) radiation exposure include sunburn, immunosuppression and skin cancer. In South Africa, individuals with minimum natural protection from melanin, including fair-skinned individuals...

  13. Ultraviolet (UV) Disinfection for Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  14. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    Science.gov (United States)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  15. Protective mechanisms and acclimation to solar ultraviolet-b radiation in oenothera stricta. Final report

    International Nuclear Information System (INIS)

    Robberecht, R.; Caldwell, M.M.

    1981-12-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated

  16. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    Science.gov (United States)

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  17. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  18. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    Science.gov (United States)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  19. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids.

    Science.gov (United States)

    Barnes, Paul W; Tobler, Mark A; Keefover-Ring, Ken; Flint, Stephan D; Barkley, Anne E; Ryel, Ronald J; Lindroth, Richard L

    2016-01-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments. © 2015 John Wiley & Sons Ltd.

  20. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS: III. PREDICTION OF IMPACTS IN SELECTED NORTHERN MIDWESTERN WETLANDS

    Science.gov (United States)

    The deleterious effects of solar ultraviolet radiation, especially the UV-B portion of sunlight, have been hypothesized to reduce survival, increase the frequency of malformations, and contribute to the apparent worldwide decline of many amphibian species.

  1. Cutaneous solar ultraviolet exposure and clinical aspects of photodamage

    Directory of Open Access Journals (Sweden)

    Claire Battie

    2012-01-01

    Full Text Available Solar ultraviolet (UV radiation reaching the earth is a combination of UVB (290-320 nm and UVA (320-400 nm wavelengths. Since UVA is less energetic than UVB, UVB has long been thought to be the factor responsible for the damaging effects of solar radiation. But with modern tools such as in vitro models, it has been proven that UVA plays a major role. The objective of this review is to show how skin may be exposed to UV light and to highlight the clinical aspects of UV-induced skin damages with the respective contribution of UVB or UVA. Even if UVA is less energetic than UVB, it is more abundant and penetrates deeper into the skin, reaching as far as the dermis. Various factors also influence skin exposure to UV light: the latitude, season, and time of the day. Acute as well as chronic sun exposure induces short- and long-term clinical damages. Erythema and pigmentation are immediate responses of normal human skin exposed to UV radiation. The long-term effects are photoaging and photocarcinogenesis. In particular, UVA appears to play a major role in the deterioration of dermal structure leading to the photoaged appearance of the skin.

  2. A mechanism for solar ultraviolet flux variability

    International Nuclear Information System (INIS)

    Schatten, K.H.; Heath, D.F.

    1981-01-01

    Solar UV emission observed by a filter photometer on Nimbus IV from 1969 to 1973 is examined in an attempt to understand the short term (27 day) and secular variability. Two models are discussed to explain the variations - a calcium plage model and a chromospheric network (faculae and spicule) structure model. Both relate to the remnant magnetic fields of active regions. An association between UV brightenings and the large scale magnetic field has been found consistent with the network model. An increase in UV emittance can be achieved by raising the effective chromospheric temperature closer to a photospheric level. If the Sun's luminosity is constant on these time intervals the enhanced UV radiation could be partially offset by an overall decrease in photospheric temperature as measured by Livingston in visible photospheric profiles. Total solar luminosity may then show less variability, however, the UV to visible luminosity variation may have significant planetary influences. Lockwood and Thompson (1979) report a relation between solar activity and planetary albedos, and Schatten (1979) discussed a long-suspected relationship between solar activity and the Great Red Spot appearance. (orig.)

  3. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    Science.gov (United States)

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  4. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    Science.gov (United States)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  5. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  6. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  7. An inexpensive setup for assessing the impact of ambient solar ultraviolet radiation on seedlings

    International Nuclear Information System (INIS)

    Adamse, P.; Reed, H.E.; Krizek, D.T.; Britz, S.J.; Mirecki, R.M.

    1997-01-01

    Because of reductions in stratospheric ozone levels due to chlorofluoromethanes and other trace gases, there has been growing concern about the impact of possible increases in ultraviolet-B (UV-B) radiation. Until recently, most studies have focused on the effects of enhanced UV-B levels, however, these have inherent technical difficulties. Ultraviolet-B exclusion studies afford the investigator a rapid means of assessing the effects of present levels of solar UV-B radiation. Unlike UV-B enhancement, UV-B exclusion studies use the sun as the source of UV-B radiation and selective filters to transmit or absorb this portion of sunlight. This article describes a simple, inexpensive system that was used over a 3-yr period to determine seedling response of cucumber (Cucumis sativus L.), soybean (Glycine max (L.) Merr.), and New Zealand spinach ((Tetragonia tetragonoides (Pallas) Kuntze) to UV-B exclusion. Plants of all three species grown outdoors under UV-B absorbing polyester showed an increase in leaf enlargement and biomass accumulation in comparison to those grown under UV-B transmitting cellulose acetate filters. The bask materials used consist of plastic window boxes, plastic filters that transmit or absorb in the UV-B region, wire supports, and binder clips. This setup can be used to demonstrate bask principles of photobiology and stress physiology. It is ideal for students interested in conducting short-term science projects on the effects of solar UV radiation

  8. Solar ultraviolet radiation and the risk of infectious disease: summary of a workshop

    International Nuclear Information System (INIS)

    Chapman, R.S.; Cooper, K.D.; De Faro, E.C.

    1995-01-01

    This invited review summarizes papers presented in a workshop on solar radiation and the risk of infectious disease. Nine reviewers cover the current state of knowledge in the following relevant fields:-ultraviolet climatology, infectious disease in humans, effects of U.V. from artificial light sources on animal and human immune systems, the influence of solar U.V. on animal and human immune systems, (lab, field, and clinical studies), biological consequences of unrepaired solar induced human DNA damage, and epidemiological considerations. Group discussions preceded the preparation of summary statements on each topic. Extensive bibliography. (UK)

  9. The Global Solar UV Index used in the United Kingdom

    International Nuclear Information System (INIS)

    New, C.; Driscoll, C.M.H.; Kitchen, K.; Miners, B.

    2000-01-01

    Weather forecast bulletins on television, radio and in the newspapers in the UK now include advice about the strength of the ultraviolet (UV) radiation from the sun in terms of the Global Solar UV Index. A numerical scale of 1 to 20 is used to quote the Index for anywhere in the world and the Index addresses all ethnic groups. The Index replaces the sunburn warning system. The daily UV Index is calculated by the Met. Office from documented UV radiation levels and current atmospheric data and takes into account cloud cover forecast. Armed with the knowledge of the UV Index the public will be able to assess their personal risk of sun damage at home or abroad depending on their natural skin colour. Four categories of skin colour are identified with the Index; white skin that sunburns easily, white skin that tans readily, brown skin and black skin. A colour-coded rating from low to very high is used to identify personal risk with these skin colour categories. The Global UV Index forms an important part of the 'Sun Safety Code' developed by health organisations within the UK. (author)

  10. The Global Solar UV Index used in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    New, C.; Driscoll, C.M.H.; Kitchen, K.; Miners, B

    2000-07-01

    Weather forecast bulletins on television, radio and in the newspapers in the UK now include advice about the strength of the ultraviolet (UV) radiation from the sun in terms of the Global Solar UV Index. A numerical scale of 1 to 20 is used to quote the Index for anywhere in the world and the Index addresses all ethnic groups. The Index replaces the sunburn warning system. The daily UV Index is calculated by the Met. Office from documented UV radiation levels and current atmospheric data and takes into account cloud cover forecast. Armed with the knowledge of the UV Index the public will be able to assess their personal risk of sun damage at home or abroad depending on their natural skin colour. Four categories of skin colour are identified with the Index; white skin that sunburns easily, white skin that tans readily, brown skin and black skin. A colour-coded rating from low to very high is used to identify personal risk with these skin colour categories. The Global UV Index forms an important part of the 'Sun Safety Code' developed by health organisations within the UK. (author)

  11. Solar-blind ultraviolet band-pass filter based on metal—dielectric multilayer structures

    International Nuclear Information System (INIS)

    Wang Tian-Jiao; Xu Wei-Zong; Lu Hai; Ren Fang-Fang; Chen Dun-Jun; Zhang Rong; Zheng You-Dou

    2014-01-01

    Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military applications, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of “transparent metal”. The filter consisting of Al/SiO 2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. UV spectra, bombs, and the solar atmosphere

    OpenAIRE

    Judge, Philip G.

    2015-01-01

    A recent analysis of UV data from the Interface Region Imaging Spectrograph {\\em IRIS} reports plasma "bombs" with temperatures near \\hot{} within the solar photosphere. This is a curious result, firstly because most bomb plasma pressures $p$ (the largest reported case exceeds $10^3$ dyn~cm$^{-2}$) fall well below photospheric pressures ($> 7\\times10^3$), and secondly, UV radiation cannot easily escape from the photosphere. In the present paper the {\\em IRIS} data is independently analyzed. I...

  13. Ultraviolet Radiation in the Solar System

    CERN Document Server

    Vázquez, M

    2006-01-01

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequ...

  14. Measuring solar UV radiation with EBT radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Cheung Tsang; Yu, Peter K N; Butson, Martin J

    2010-01-01

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m -2 UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m -2 (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  15. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  16. Solar maximum ultraviolet spectrometer and polarimeter

    Science.gov (United States)

    Tandberg-Hanssen, E.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Hyder, C. L.; Michalitsianos, A. G.; Shine, R. A.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.

    1979-01-01

    The objectives of the UVSP experiment are to study solar ultraviolet radiations, particularly from flares and active regions, and to measure constituents in the terrestrial atmosphere by the extinction of sunlight at satellite dawn and dusk. The instrument is designed to observe the Sun at a variety of spectral and spatial resolutions in the range from 1150 to 3600 A. A Gregorian telescope with effective focal length of 1.8 m is used to feed a 1 m Ebert-Fastie spectrometer. A polarimeter containing rotatable magnesium fluoride waveplates is included behind the spectrometer entrance slit and will allow all four Stokes parameters to be determined. Velocities on the Sun can also be measured. The instrument is controlled by a computer which can interact with the data stream to modify the observing program. The observing modes, including rasters, spectral scans, velocity measurements, and polarimetry, are also described along with plans for mission operations, data handling, and analysis of the observations.

  17. Protection from solar ultraviolet radiation by clothing

    Energy Technology Data Exchange (ETDEWEB)

    Pailthorpe, M. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 `Sun Protective Clothing - Evaluation and Classification` specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia`s most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 `sunsuits` have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin.

  18. Protection from solar ultraviolet radiation by clothing

    International Nuclear Information System (INIS)

    Pailthorpe, M.

    1996-01-01

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 'Sun Protective Clothing - Evaluation and Classification' specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia's most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 'sunsuits' have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin

  19. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  20. SUMO: Solar Ultraviolet Monitor and Ozone Nanosatellite

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Godin-Beekman, S.; Rogers, D. J.; Bove, P.; Lagage, P. O.; DeWitte, S.

    2014-12-01

    SUMO is an innovative proof-of-concept nanosatellite aiming to measure on the same platform the different components of the Earth radiation budget (ERB), the solar energy input and the energy reemitted at the top of the Earth atmosphere, with a particular focus on the far UV (FUV) part of the spectrum and on the ozone layer. The FUV is the only wavelength band with energy absorbed in the high atmosphere (stratosphere), in the ozone (Herzberg continuum, 200-220 nm) and oxygen bands, and its high variability is most probably at the origin of a climate influence (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and tropopause). A simultaneous observation of incoming FUV and ozone production would bring an invaluable information on this process of solar-climate forcing. Space instruments have already measured the different components of the ERB but this is the first time that all instruments will operate on the same platform. This characteristic by itself guarantees original scientific results. SUMO is a 3.6 kg, 3W, 10x10x30 cm3 nanosatellite ("3U"), with a "1U" payload of definition has been completed (platform and payload AIT are possible in 24 months). SUMO is proposed for the nanosatellite program of Polytechnic School and CNES (following QB50) for a flight in 2018. Follow-up is 2 fold: on one part more complete measurements using SUMO miniaturized instruments on a larger satellite; on the other part, increase of the coverage in local time and latitude using a constellation of SUMO nanosatellites around the Earth to further geolocalize the Sun influence on our planet. Nanosatellites, with cost and risk limited, are also excellent platforms to evaluate technologies for future missions, e.g. nanotechnology ZnO protection barriers to limit contamination from solar panels in the UV and reduce reflection losses in the visible, or MgZnO solar blind detectors (R

  1. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  2. Dichotomy in response to indomethacin in uv-C and uv-B induced ultraviolet light inflammation

    International Nuclear Information System (INIS)

    Eaglstein, W.H.; Marsico, A.R.

    1975-01-01

    In subjects irradiated with both UV-C and UV-B ultraviolet light (UVL), 10 μg of intradermal indomethacin decreased the redness in all 13 of the UV-B irradiated areas but in only 2 of 13 of the UV-C irradiated areas. Higher doses of intradermal indomethacin (50 μg and 100 μg) decreased the redness produced by UV-C irradiation in 6 subjects. It is suggested that the failure of 10 μg of indomethacin to decrease the redness of the UV-C induced inflammation, while decreasing the redness in the UV-B induced inflammation, is consistent with the possibility that prostaglandins participate in UV-B but not UV-C induced inflammation

  3. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    Science.gov (United States)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  4. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    International Nuclear Information System (INIS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-01-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs. (invited article)

  5. Higher plant acclimation to solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Robberecht, R.

    1981-01-01

    The objectives of this study were to determine: (1) the relationship between plant sensitivity and epidermal uv attenuation, (2) the effect of phenotypic changes in the leaf epidermis, resulting from uv-B exposure, on plant sensitivity to uv radiation, and (3) the platicity of these changes in the epidermis leading to plant acclimation to uv-B radiation. A mechanism of uv-B attenuation, possibly involving the biosynthesis of uv-absorbing flavonoid compounds in the epidermis and mesophyll under the stress of uv-B radiation, and a subsequent increase in the uv-B attenuation capacity of the epidermis, is suggested. The degree of plant sensitivity and acclimation to natural and intensified solar uv-B radiation may involve a dynamic balance between the capacity for uv-B attenuation and uv-radiation-repair mechanisms in the leaf

  6. Ultraviolet solar radiation and the prevention of erythema

    International Nuclear Information System (INIS)

    Tena, F.; Martinez-Lozano, J.A.; Utrillas, M.P.

    1998-01-01

    An ultraviolet index appropriate for its use in Spain is studied on the basis of those already available in other countries. The suitability of this index to characterise ultraviolet solar radiation and, particularly, the potential risks to human health are discussed. Finally, the main factors affecting this index are identified and their influence is studied. (Author) 43 refs

  7. A study of ultraviolet solar radiation at Cairo urban area, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Robaa, S.M. [Cairo Univ., Giza (Egypt). Dept. of Astronomy and Meterology

    2004-07-01

    The monthly mean values of global, G, and ultraviolet, UV, solar radiation incident on a horizontal surface at Cairo urban area during the two different periods (1969-1973) and (1993-1997) are presented, analyzed and compared. The effect of urbanization processes on the solar radiation components is investigated and discussed. It was found that the total radiation of the two components, G and UV received at the urban area of Cairo during the period (1969-1973) highly exceeds the radiation received during the period (1993-1997) for all months of the year. The mean relative reduction of G and UV reached 17.4% and 27.4% respectively. A significant correlation between G and UV radiation has been established and the recommended correlation equation has been stated to estimate the values of UV radiation that are difficult to measure at any site in the zone of Lower Egypt. Also, a comparative study of the two radiation components, G and UV, at urban (Cairo) and rural (Bahtim) areas during the period (1993-1997) revealed that the urban area always has values of G and UV radiation distinctly lower than that found in rural area for all months of the year. Urban-rural mean reduction of G and UV reached 7.0% and 17.9% respectively. The ratio of the ultraviolet to global radiation (UV/G) are calculated and compared with other sites in the Arabian Peninsula. The effect of atmospheric dust on the measured solar radiation components is also investigated and discussed. (author)

  8. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  9. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  10. Solar ultraviolet radiation induced variations in the stratosphere and mesosphere

    Science.gov (United States)

    Hood, L. L.

    1987-01-01

    The detectability and interpretation of short-term solar UV induced responses of middle atmospheric ozone, temperature, and dynamics are reviewed. The detectability of solar UV induced perturbations in the middle atmosphere is studied in terms of seasonal and endogenic dynamical variations. The interpretation of low-latitude ozone and possible temperature responses on the solar rotation time scale is examined. The use of these data to constrain or test photochemical model predictions is discussed.

  11. Induction of UV photoproducts and DNA damage by solar simulator UV irradiation

    International Nuclear Information System (INIS)

    Wolfreys, A.; Henderson, L.; Clingen, P.

    1997-01-01

    The recent increased incidence of skin cancer and the depletion of the ozone layer has increased interest in the ultraviolet (UV) component of natural sunlight and its role in the induction of skin cancer. Previous research on UV radiation has concentrated on UVC (254nm) but, as only UVB and UVA are present in natural sunlight, its relevance is unknown. We have investigated the induction of two forms of direct DNA damage - the pyrimidine dimer and the (6-4) photoproduct - in human DNA repair deficient XP-G (Xeroderma pigmentosum group G) lymphoblastoid cells following exposure to simulated sunlight. As exposure to natural sunlight is highly variable, a solar simulator lamp was used which is known to mimic natural sunlight at midday in Central Europe. Cells were irradiated on ice to minimise DNA repair and the relative induction of pyrimidine dimers and (6-4) photoproducts was measured using specific monoclonal antibodies and a computer assisted image analysis system. A time dependent increase in both cyclobutane dimer and (6-4) photoproduct antibody binding sites was seen. The increases in pyrimidine dimer and (6-4) photoproduct antibody binding sites differed to that reported with natural sunlight in the UK but was similar to that seen with a similar solar simulator lamp

  12. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia. ohoud-aljawi@hotmail.com (Malaysia)

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  13. Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves.

    Science.gov (United States)

    Guruprasad, Kadur; Kadur, Guruprasad; Bhattacharjee, Swapan; Swapan, Bhattacharjee; Kataria, Sunita; Sunita, Kataria; Yadav, Sanjeev; Sanjeev, Yadav; Tiwari, Arjun; Arjun, Tiwari; Baroniya, Sanjay; Sanjay, Baroniya; Rajiv, Abhinav; Abhinav, Rajiv; Mohanty, Prasanna

    2007-01-01

    Exclusion of UV (280-380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34-46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants.

  14. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

    Science.gov (United States)

    Robson, T Matthew; Hartikainen, Saara M; Aphalo, Pedro J

    2015-05-01

    We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive. © 2014 John Wiley & Sons Ltd.

  15. Measurement of solar ultraviolet radiation intensity type A and B in Qazvin (2013-14

    Directory of Open Access Journals (Sweden)

    SAR. Babaee

    2016-08-01

    Full Text Available Background: Solar ultraviolet radiation (UVR is considered one of the most important biological risk factors in the world. Most health damages from solar ultraviolet radiation at ground level are mainly caused by UVA and UVB spectrums. Objective: The aim of this study was to Measure the solar ultraviolet radiation intensity type A and B in Qazvin city. Methods: In this cross-sectional study, the intensity of solar ultraviolet radiation type A and B was measured in Qazvin on years of 2013-14 (during one year every monthly at three times, in the morning, afternoon and evening by using a UV Radiometer. Data were analyzed using descriptive statistics. Findings: The maximum average intensity of UVA and UVB rays during the one year with 28.36±1.88 W/m2 and 0.156±0.035 W/m2 respectively was in Tir month (June 22–July 22 and the minimum average intensity of UVA and UVB rays with 10.36±0.83 W/m2 and 0.041±0.010 W/m2 respectively was in Dai month (December 22–January 20. Conclusion: With regards to the results, it is recommended that individuals were less exposed to exposure time with direct sunshine and use appropriate protective measures such as; wear appropriate clothing, sunglasses, and sunscreen.

  16. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses.

    Science.gov (United States)

    Carbonell-Bejerano, Pablo; Diago, Maria-Paz; Martínez-Abaigar, Javier; Martínez-Zapater, José M; Tardáguila, Javier; Núñez-Olivera, Encarnación

    2014-07-09

    Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and

  17. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    Science.gov (United States)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed

  18. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  19. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  20. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    Science.gov (United States)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  1. Hope and challenge: the importance of ultraviolet (UV) radiation for cutaneous vitamin D synthesis and skin cancer.

    Science.gov (United States)

    Reichrath, Jörg; Reichrath, Sandra

    2012-01-01

    Abstract Solar ultraviolet (UV)-radiation is the most important environmental risk factor for the development of non-melanoma skin cancer (most importantly basal and squamous cell carcinomas), that represent the most common malignancies in Caucasian populations. To prevent these malignancies, public health campaigns were developed to improve the awareness of the general population of the role of UV-radiation. The requirements of vitamin D is mainly achieved by UV-B-induced cutaneous photosynthesis, and the vitamin D-mediated positive effects of UV-radiation were not always adequately considered in these campaigns; a strict "no sun policy" might lead to vitamin D-deficiency. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases has been convincingly demonstrated. It is crucial that guidelines for UV-exposure (e.g. in skin cancer prevention campaigns) consider these facts and give recommendations how to prevent vitamin D-deficiency. In this review, we analyze the present literature to help developing well-balanced guidelines on UV-protection that ensure an adequate vitamin D-status without increasing the risk to develop UV-induced skin cancer.

  2. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  3. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  4. Ecological and nonhuman biological effects of solar UV-B radiation

    International Nuclear Information System (INIS)

    Worrest, R.C.

    1984-01-01

    Recent studies regarding the impact of UV-B radiation upon ecological and nonhuman biological systems is the subject of the report. For years scientists and laymen alike have causally noted the impact of solar ultraviolet radiation upon the nonhuman component of the biosphere. Stratospheric ozone functions effectively as an ultraviolet screen by filtering out solar radiation in the 220-320 nm waveband as it penetrates through the atmosphere, thus allowing only small amounts of the longer wavelengths of radiation in the waveband to leak through to the surface of the earth. Although this radiation (UV-B radiation, 290-320 nm) comprises only a small fraction (lesser tha 1%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA, absorb UV-B radiation which can initiate photochemical reactions. It is life's ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated concern over the potential depletion of stratospheric ozone

  5. Solar Coronal UV Spectroscopy for Solar Wind and SEP Acceleration Investigations

    Science.gov (United States)

    Moses, John Daniel; Ko, Yuan-Kuen; Laming, John Martin; Strachan, Leonard; Tun Beltran, Samuel

    2015-04-01

    Of all the new areas of solar physics opened by the landmark SOHO mission, the scientific discoveries of the Ultraviolet Coronagraph Spectrometer (UVCS) are unique in both the importance of the new questions raised by these observations and the lack of subsequent investigations to resolve these questions. For example, the first direct evidence of wave-particle coupling as an acceleration mechanism for the solar wind was obtained from UVCS spectro-coronagraphic observations, yet the real limits on the ratio of the parallel to perpendicular ion temperatures (with respect to the magnetic field) in coronal holes and streamers is still unresolved. Another unresolved issue is the role of suprathermal seed particles in rapid diffusive shock acceleration of SEPs. Although the theory has been placed on firmer theoretical ground by recent in situ investigations, observations of these suprathermal particles in the corona was never conclusively obtained with UVCS.Any follow-on UV Spectro-coronagraph must possess two improvements over UVCS in order to address the questions raised during the SOHO mission: 1) increased effective aperture and 2) improved spectrographic contrast (i.e. reduced scattered light). Technological developments in optics, optical design, UV detectors, composite structures, cleanliness control and electronics make it possible to achieve the requisite improvements in a next-generation UV spectro-coronagraph within the constraints of an affordable mission. We discuss specific instrument and mission approaches developed over the last 5 years and the feasibility of implementing them within the next 5 years.

  6. Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs

    NARCIS (Netherlands)

    Lange, de H.J.; Morris, D.P.; Williamson, C.E.

    2003-01-01

    The UV component in solar radiation increased the availability of DOC for bacterial growth, and led to an increase in bacterial and bacterivore abundance in laboratory plankton cultures. UV radiation may thus stimulate ecosystem productivity by increasing dissolved organic carbon lability and

  7. Design of autotrack detecting instrument for solar UV radiation

    Science.gov (United States)

    Xia, Jiangtao; Mao, Xiaoli; Zhao, Jing

    2009-11-01

    In order to autotrack the object and detect the solar UV index, a reliable real-time high-precise instrument is proposed in this paper. This instrument involves two subsystems: the autotrack and detecting modules. The autotrack module consists of four-quadrant photo detector, multi-channel signal processing circuit and precise stepping system. The detecting module designed for dada measurement and acquisition is made up of the ultraviolet sensor UV460 and high precision A/D converter MAX1162. The key component of the entire instrument is ultralow-power microprocessor MSP430 which is used for entire system controlling and data processing. The lower system of autotracking and measurement is communicated with upper PC computer by RS232 module. In the experiment, the tracking precision of two-dimensional motion revolving stage is calibrated to be less than 0.05°. Experimental results indicate that the system designed could realize the precise autotracking and detecting function well, and the measure precision of system has reached the desirable target.

  8. AUMENTO DEL ÍNDICE SOLAR ULTRAVIOLETA CON LA ALTURA SOLAR ULTRAVIOLET INDEX INCREASE WITH ALTITUDE

    Directory of Open Access Journals (Sweden)

    Miguel Rivas A

    2008-09-01

    Full Text Available En este trabajo se presentan los resultados obtenidos al realizar comparaciones entre mediciones experimentales de Índice solar ultravioleta (IUV obtenido a partir de datos experimentales y también de resultados teóricos proveniente del cálculo del IUV mediante el modelo TUV (modelo ultravioleta troposféricol. En especial se destacan los aumentos de la irradianza solar ultravioleta B (UVB 280-320 nm que se reciben a nivel del suelo debido a los aumentos de la altitud del lugar sobre el nivel del mar (efecto altitudinal. Los cálculos mediante el modelo TUV se realizaron en un período comprendido entre los años 1996-2003, introduciendo los parámetros de los lugares geográficos en que se hicieron las mediciones experimentales. Dado que una de las variables importantes de la que depende el IUV es la altitud sobre el nivel del mar y considerando que la zona norte de Chile es un lugar con características especiales para realizar este tipo de estudios, es que se han realizado experimentos para medir la irradianza solar UVB entre 0-3.200 m de altura, y a partir de estos datos se ha obtenido el IUV. La importancia de estos resultados radica en el hecho que a partir de ellos se pueden cuantificar el incremento de la irradianza UVB por cada 1.000 m de altitud sobre el nivel del mar. Un número creciente de personas se desplazan continuamente entre el nivel del mar y altitudes cercanas a los 5.000 m, debido a trabajos relacionados con: minería, turismo, transporte. En todos estos casos estas personas reciben importantes incrementos de irradianza solar UV, que pueden afectar gravemente su salud si no se informan de los riesgos para que puedan tomar precauciones.In this work we present results from ultraviolet solar index (IUV comparisons between values obtained from experimental measurements, with theoretical results obtained from tropospherical ultraviolet model (TUV. It is important to emphasise the observed increase in solar ultraviolet B (UVB

  9. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.

    Science.gov (United States)

    Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen

    2018-03-30

    Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  10. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  11. Solar ultraviolet radiation in a changing climate

    Science.gov (United States)

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  12. Duality of solar UV-B radiation and relevant dosimetry: vitamin D synthesis versus skin erythema

    Science.gov (United States)

    Terenetskaya, Irina P.

    2003-06-01

    Solar ultraviolet radiation (UVR) gives rise to beneficial or adverse health effects depending on the dose. Excessive UV exposures are associated with acute and chronic health effect but in appropriate doses UV sunlight is advisable. Important biological function of UVR is initiation of endogenous synthesis of vitamin D in human skin. A useful method based on an in vitro model of vitamin D synthesis ('D-dosimeter') has been specially developed to measure the vitamin D synthetic capacity of sunlight in situ. For the first time laboratory and field tests have been performed to link commonly used erythemal units (MEDs) and previtamin D accumulation.

  13. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    Science.gov (United States)

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  14. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    Science.gov (United States)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  15. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox

    International Nuclear Information System (INIS)

    Ballare, C.L.; Scopel, A.L.; Stapleton, A.E.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV0B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferrox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. 56 refs., 7 figs

  16. Ultraviolet (UV)-reflective paint with ultraviolet germicidal irradiation (UVGI) improves decontamination of nosocomial bacteria on hospital room surfaces.

    Science.gov (United States)

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2017-06-01

    An ultraviolet germicidal irradiation (UVGI) generator (the TORCH, ClorDiSys Solutions, Inc.) was used to compare the disinfection of surface coupons (plastic from a bedrail, stainless steel, and chrome-plated light switch cover) in a hospital room with walls coated with ultraviolet (UV)-reflective paint (Lumacept) or standard paint. Each surface coupon was inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE), placed at 6 different sites within a hospital room coated with UV-reflective paint or standard paint, and treated by 10 min UVC exposure (UVC dose of 0-688 mJ/cm 2 between sites with standard paint and 0-553 mJ/cm 2 with UV-reflective paint) in 8 total trials. Aggregated MRSA concentrations on plastic bedrail surface coupons were reduced on average by 3.0 log 10 (1.8 log 10 Geometric Standard Deviation [GSD]) with standard paint and 4.3 log 10 (1.3 log 10 GSD) with UV-reflective paint (p = 0.0005) with no significant reduction differences between paints on stainless steel and chrome. Average VRE concentrations were reduced by ≥4.9 log 10 (surface types with UV-reflective paint and ≤4.1 log 10 (hospital bed from the UVGI generator, MRSA concentrations on average were reduced by 1.3 log 10 (1.7 log 10 GSD) with standard paint and 4.7 log 10 (1.3 log 10 GSD) with UV-reflective paint (p hospital room walls with UV-reflective paint enhanced UVGI disinfection of nosocomial bacteria on various surfaces compared to standard paint, particularly at a surface placement site indirectly exposed to UVC light.

  17. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica).

    Science.gov (United States)

    Henry-Kirk, Rebecca A; Plunkett, Blue; Hall, Miriam; McGhie, Tony; Allan, Andrew C; Wargent, Jason J; Espley, Richard V

    2018-03-01

    Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV. © 2018 John Wiley & Sons Ltd.

  18. Effects of increased solar ultraviolet radiation on terrestrial plants

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Teramura, A.H.; Tevini, M.; Bornman, J.F.; Björn, L.O.; Kulandaivelu, G.

    1995-01-01

    Physiological and developmental processes of plants are affected by UV-B radiation, even by the amount of UV-B in present-day sunlight. Plants also have several mechanisms to ameliorate or repair these effects and may acclimate to a certain extent to increased levels of UV-B. Nevertheless, plant growth can be directly affected by UV-B radiation. Response to UV-B also varies considerably among species and also cultivars of the same species. In agriculture, this may necessitate using more UV-B-tolerant cultivars and breeding new ones. In forests and grasslands, this will likely result in changes in species composition; therefore there are implications for the biodiversity in different ecosystems. Indirect changes caused by UV-B-such as changes in plant form, biomass allocation to parts of the plant, timing of developmental phases and secondary metabolism-may be equally, or sometimes more important than damaging effects of UV-B. These changes can have important implications for plant competitive balance, herbivory, plant pathogens, and biogeochemical cycles. These ecosystem-level effects can be anticipated, but not easily predicted or evaluated. Research at the ecosystem level for solar UV-B is barely beginning. Other factors, including those involved in climate change such as increasing CO2, also interact with UV-B. Such reactions are not easily predicted, but are of obvious importance in both agriculture and in nonagricultural ecosystems

  19. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. [Analysis of the cumulative solar ultraviolet radiation in Mexico].

    Science.gov (United States)

    Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Portales-González, Bárbara; Martínez-Rosales, Karla; Hernández-Blanco, Diana

    2016-01-01

    The incidence of skin cancer has increased in Mexico in recent years. Ultraviolet radiation is the main risk factor associated. Due to the need to develop strategies to prevent skin cancer, the aim of the study was to estimate the UV intensity in several representative regions of Mexico, the average annual UV dose of these populations, and the potential benefit of applying sunscreen at different ages. The intensity of UV radiation was quantified by remote and terrestrial radiometry. The dose of UV exposure was measured in minimal erythema doses using validated models for face and arms. The benefit of using a sunscreen was calculated with the use of a sunscreen with SPF 15 from birth to age 70. The UV radiation is lower in December and greater in the period from May to July. The region with a lower annual dose is Tijuana; and the higher annual dose is in the Mexico City area. The annual difference between these regions was 58 %. Through life, a low SPF sunscreen can reduce up to 66 % of the received UV dose. The geographical location is a risk factor for accumulation of UV radiation in Mexico. Since childhood, people receive high amounts of it; however, most of this dose can be reduced using any commercially available sunscreen, if applied strategically.

  1. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    Science.gov (United States)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  2. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  3. SOLAR ULTRAVIOLET EXPOSURE AND MORTALITY FROM SKIN TUMORS

    Science.gov (United States)

    Berwick, Marianne; Pestak, Claire; Thomas, Nancy

    2015-01-01

    Solar UV radiation (UVR) exposure is clearly associated with increased mortality from nonmelanoma skin cancer—usually squamous cell carcinoma. However, the association with cutaneous melanoma is unclear from the evidence in ecologic studies and several analytic studies have conflicting results regarding the effect of high levels of intermittent UV exposure prior to diagnosis on mortality. Understanding this conundrum is critical to present coherent public health messages and to improve the mortality rates from melanoma. PMID:25207375

  4. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  5. Effects of Ultraviolet (UV) Radiations at Different Wave Lengths on ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The effects of UV-radiation on the bacterial load and yeast viability of palm wine were ... shelf life due to the uncontrolled metabolic activities of yeast and bacteria. .... Process. Biochemistry International 8:23-220. Okafor, N. (2007). Palm Wine ...

  6. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America.

    Science.gov (United States)

    Corrêa, Marcelo de Paula

    2015-01-01

    The beneficial and harmful effects of human exposure to solar ultraviolet radiation (UV-R) are topics that arouse great interest not only among physicians and scientists, but also the general public and the media. Currently, discussions on vitamin D synthesis (beneficial effect) are confronted with the high and growing number of new cases of non-melanoma skin cancer and other diseases of the skin and eyes (harmful effect) diagnosed each year in Brazil. However, the lack of scientific knowledge on the UV-R in Brazil and South America leads to adoption of protective measures based on studies conducted in Europe and USA, where the amounts of UV-R available at surface and the sun-exposure habits and characteristics of the population are significantly different from those observed in Brazil. In order to circumvent this problem, the Brazilian Society of Dermatology recently published the Brazilian Consensus of Photoprotection based on recent studies performed locally. The main goal of this article is to provide detailed educational information on the main properties and characteristics of UV-R and UV index in a simple language. It also provides: a) a summary of UV-R measurements recently performed in Brazil; b) a comparison with those performed in Europe; and, c) an evaluation to further clarify the assessment of potential harm and health effects owing to chronic exposures.

  7. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America*

    Science.gov (United States)

    Corrêa, Marcelo de Paula

    2015-01-01

    The beneficial and harmful effects of human exposure to solar ultraviolet radiation (UV-R) are topics that arouse great interest not only among physicians and scientists, but also the general public and the media. Currently, discussions on vitamin D synthesis (beneficial effect) are confronted with the high and growing number of new cases of non-melanoma skin cancer and other diseases of the skin and eyes (harmful effect) diagnosed each year in Brazil. However, the lack of scientific knowledge on the UV-R in Brazil and South America leads to adoption of protective measures based on studies conducted in Europe and USA, where the amounts of UV-R available at surface and the sun-exposure habits and characteristics of the population are significantly different from those observed in Brazil. In order to circumvent this problem, the Brazilian Society of Dermatology recently published the Brazilian Consensus of Photoprotection based on recent studies performed locally. The main goal of this article is to provide detailed educational information on the main properties and characteristics of UV-R and UV index in a simple language. It also provides: a) a summary of UV-R measurements recently performed in Brazil; b) a comparison with those performed in Europe; and, c) an evaluation to further clarify the assessment of potential harm and health effects owing to chronic exposures. PMID:26131858

  8. Exposure to solar ultraviolet radiation: a hot topic?

    International Nuclear Information System (INIS)

    Vernez, David; Backes, Claudine; Milon, Antoine

    2016-01-01

    The Sun can be harmful to human health, about a certain threshold. More than occasional exposures, it is chronic exposures that are responsible for the majority of the UV-related skin cancers that affect numerous outdoor workers. Solar exposure should not merely be a public health issue, it should also be raised in the working world. (authors)

  9. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  10. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  11. MgII Observations Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the scientific goals of our sounding rocket program, the Solar Ultraviolet Magnetograph Investigation (SUMI). This paper will present a brief description of the optics that were developed to meet SUMI's scientific goals, discuss the spectral, spatial and polarization characteristics of SUMI s optics, describe SUMI's flight which was launched 7/30/2010, and discuss what we have learned from that flight.

  12. Interrelations of UV-global/global/diffuse solar irradiance components and UV-global attenuation on air pollution episode days in Athens, Greece

    International Nuclear Information System (INIS)

    Koronakis, P.S.; Sfantos, G.K.

    2002-01-01

    An investigation of global ultraviolet (G UV ), global (G) and diffuse (G d ) solar intensities, continuously recorded over a period of five years at a station in Athens, Greece, and stored on the basis of hourly time intervals since 1996, has revealed the following: (a) UV-global irradiation, associated with the 290-395 nm wavelength region, constitutes 4.1% of global solar. (b) UV-global irradiance ranges from an average minimum of 2.4 W m -2 and 3.1% of global solar in January to an average maximum of 45 W m -2 and 7.8%, respectively, in June, both considered at 13:00, solar time. (c) There exists a good correlation among the two dimensionless irradiance ratios G UV /G d and G d /G in the form of an exponential relationship. (d) UV-global monthly irradiation data show evidence of temporal variability in Athens, from 1996 to 2000. (e) Anthropogenic and photochemical atmospheric pollutant agents (O 3 , CO, SO 2 , NO x , smoke) causing air pollution episodes seem to affect differently solar irradiance components. The main results of analysis (measurements within ± 2 h from solar noon) indicate that a buildup of O 3 and NO x inside the urban Athens plume during cloudless and windless warm days could cause: (i) UV-global irradiance depletion between 5.4% and 14.4%. (ii) Diffuse solar irradiance enhancement up to 38.1%. (iii) Global solar irradiance attenuation ranging up to 6.3%. (author)

  13. MEASUREMENT OF SURFACE SOLAR UV-B RADIATION AT TROPICAL COASTAL STATION BAKKHALI IN WEST BENGAL, INDIA

    OpenAIRE

    R. BHATTACHARYA; A. BHOUMICK

    2012-01-01

    Surface solar ultraviolet irradiance has been measured at Bakkhali (21.8ºN, 87.8ºE), a tropical rural station on the coast of Bay of Bengal, India in West Bengal. The measurements show a remarkable variation in UV-B load exists with a peak value at noon. The blockage of direct UV radiation in mangrove forest of costal site appears low when compared with UV load beneath the multiple trees of Mangifera indica in an inland site of Kalyani (22058' N, 88028' E), West Bengal. Mangrove forests have ...

  14. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  15. The effect of ultraviolet (UV)-B radiation on primary producers

    International Nuclear Information System (INIS)

    Germ, M.

    2003-01-01

    Ozone layer in stratosphere is thinning and consequently UV-B radiation on the Earth surface is increasing. Although there is a small portion of UV-B radiation in the solar radiation, it has strong influence on organisms. Targets of UV-B radiation and protective mechanisms in primary producers are described. In the framework of the international project we studied the effect of UV-B radiation on blue-greens, algae, mosses, lichens and vascular plants on the National Institute of Biology

  16. The Solar Ultraviolet Environment at the Ocean.

    Science.gov (United States)

    Mobley, Curtis D; Diffey, Brian L

    2018-05-01

    Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for 10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.

  17. Applying spaceborne reflectivity measurements for calculation of the solar ultraviolet radiation at ground level

    Directory of Open Access Journals (Sweden)

    P. N. den Outer

    2012-12-01

    Full Text Available Long-term analysis of cloud effects on ultraviolet (UV radiation on the ground using spaceborne observations requires the use of instruments that have operated consecutively. The longest data record can be built from the reflectivity measurements produced by the instruments Total Ozone Mapping Spectrometers (TOMS flown on Nimbus 7 from 1979 to 1992, TOMS on Earth Probe from 1996 to 2005, and the Ozone Monitoring Instrument (OMI flown on EOS Aura since 2004. The reflectivity data produced by TOMS on Earth Probe is only included until 2002. A comparison is made with cloud effects inferred from ground-based pyranometer measurements at over 83 World Radiation Data Centre stations. Modelled UV irradiances utilizing the standard reflectivity are compared with measurements of UV irradiances at eight European low-elevation stations. The reflectivity data of the two TOMS instruments shows a consistent agreement, and the required corrections are of low percentage, i.e. 2–3%. In contrast, the reflectivity product of OMI requires correction of 7–10%, and a solar angle dependency therein is more pronounced. These corrections were inferred from a comparison with pyranometer data, and tested using the UV measurements. The average reduction of UV radiation due to clouds for all sites together indicates a small trend: a diminishing cloudiness, in line with ground-based UV observations. Uncorrected implementation of the reflectivity data would have indicated the opposite.

    An optimal area was established for reflectivity data for the calculation of daily sums of UV radiation. It measures approximately 1.25° in latitudinal direction for square-shaped areas overhead the ground-based UV stations. Such an area can be traversed within 5 to 7 h at the average wind speeds found for the West European continent.

  18. The research on a novel type of the solar-blind UV head-mounted displays

    Science.gov (United States)

    Zhao, Shun-long

    2011-08-01

    Ultraviolet technology of detecting is playing a more and more important role in the field of civil application, especially in the corona discharge detection, in modern society. Now the UV imaging detector is one of the most important equipments in power equipment flaws detection. And the modern head-mounted displays (HMDs) have shown the applications in the fields of military, industry production, medical treatment, entertainment, 3D visualization, education and training. We applied the system of head-mounted displays to the UV image detection, and a novel type of head-mounted displays is presented: the solar-blind UV head-mounted displays. And the structure is given. By the solar-blind UV head-mounted displays, a real-time, isometric and visible image of the corona discharge is correctly displayed upon the background scene where it exists. The user will see the visible image of the corona discharge on the real scene rather than on a small screen. Then the user can easily find out the power equipment flaws and repair them. Compared with the traditional UV imaging detector, the introducing of the HMDs simplifies the structure of the whole system. The original visible spectrum optical system is replaced by the eye in the solar-blind UV head-mounted displays. And the optical image fusion technology would be used rather than the digital image fusion system which is necessary in traditional UV imaging detector. That means the visible spectrum optical system and digital image fusion system are not necessary. This makes the whole system cheaper than the traditional UV imaging detector. Another advantage of the solar-blind UV head-mounted displays is that the two hands of user will be free. So while observing the corona discharge the user can do some things about it. Therefore the solar-blind UV head-mounted displays can make the corona discharge expose itself to the user in a better way, and it will play an important role in corona detection in the future.

  19. New high-resolution rocket-ultraviolet filtergrams of the solar disc

    Science.gov (United States)

    Foing, B.; Bonnet, R.-M.; Bruner, M.

    1986-01-01

    A rocket-borne solar ultraviolet telescope named Transition Region Camera was launched successfully for the third on July 13, 1982. High quality calibrated photographic images of the sun were obtained at Lyman alpha and in the continuum at 160 nm and 220 nm. The angular resolution achieved is better than one arcsec. A flare, active regions, sunspots, the 8 Mm mesostructure, the chromospheric network, bright UV grains and coronal loops were observed during the flight. The results are presented and the evolution with height in the solar atmosphere of the various structures observed is followed from one wavelength to the other, showing distinct differences. The value of the field's intensity of magnetic flux tubes is deduced from the observations.

  20. Design of tunable ultraviolet (UV) absorbance by controlling the Agsbnd Al co-sputtering deposition

    Science.gov (United States)

    Zhang, Xin-Yuan; Chen, Lei; Wang, Yaxin; Zhang, Yongjun; Yang, Jinghai; Choi, Hyun Chul; Jung, Young Mee

    2018-05-01

    Changing the structure and composition of a material can alter its properties; hence, the controlled fabrication of metal nanostructures plays a key role in a wide range of applications. In this study, the structure of Agsbnd Al ordered arrays fabricated by co-sputtering deposition onto a monolayer colloidal crystal significantly increased its ultraviolet (UV) absorbance owing to a tunable localized surface plasmon resonance (LSPR) effect. By increasing the spacing between two nanospheres and the content of aluminum, absorbance in the UV region could be changed from UVA (320-400 nm) to UVC (200-275 nm), and the LSPR peak in the visible region gradually shifted to the UV region. This provides the potential for surface-enhanced Raman scattering (SERS) in both the UV and visible regions.

  1. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning.

    Science.gov (United States)

    Qureshi, Zubair; Yassin, Mohamed H

    2013-06-01

    Ultraviolet (UV) radiation is capable of disinfecting surfaces, water and air. The UV technology was used for many years. However, safer and more effective delivery systems of UV radiation, make it a very useful option for disinfection. Effective disinfection of environmental surfaces is a key step in the prevention of spread of infectious agents. The traditional manual cleaning is essential in assuring adequate elimination of contamination. However, terminal cleaning is frequently suboptimal or unpredictable in many circumstances. UV-C radiation is an adjunctive disinfectant new technology that could kill a wide array of microorganisms including both vegetative and spore forming pathogens. The technology is getting more affordable and has produced consistent reproducible significant reduction of bacterial contamination.

  2. Spectral signature of ultraviolet solar irradiance in Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo V, J. L; Mireles G, F; Rios M, C; Quirino T, L. L; Davila R, J. I [Universidad Autonoma de Zacatecas, Zacatecas, Zacatecas (Mexico)

    2006-10-15

    This study presents an analysis of the global ultraviolet spectral irradiance (290-400 nm) registered in Zacatecas, a city near the Tropic of Cancer, located at 2500 m above sea level, latitude of 22 degrees N and longitude of 102 degrees W. The spectra have been measured using a Bentham radiometer with a 0.5 nm step in wavelength. The measurements show relatively high levels of ultraviolet irradiance (UV), which may be characteristic of areas close to the Tropic of Cancer. Faced with an increase of the incidence of skin cancer among the population of Zacatecas, these measurements highlight that a damage prevention plan is required. [Spanish] En este trabajo se presenta un analisis de la radiacion espectral global ultravioleta (290-400 nm) registrada en Zacatecas, una ciudad vecina al tropico de cancer, situada a 2500 m sobre el nivel del mar, latitud de 22 grados N y longitud de 102 grados O. Los espectros correspondientes han sido medidos mediante un espectroradiometro Bentham con un paso de 0.5 nm de longitud de onda. Las mediciones muestran niveles de radiacion ultravioleta (UV) relativamente elevados, que pueden ser caracteristicos de las zonas vecinas al tropico de cancer. Frente al aumento de incidencia de cancer en la piel en la poblacion del estado de Zacatecas, estas mediciones ponen en relieve la necesidad de formular un plan preventivo de danos.

  3. A spectroscopic study on the effect of ultra-violet solar radiation in Antarctica on the human skin fibroblast cells

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Yamamoto

    2013-11-01

    Full Text Available A study on the effect of the solar ultra-violet radiation on the human skin fibroblast cells revealed that the production of matrix metalloproteinase-2 was inhibited by the radiation. A CO2 incubator connected by optical fibers to a reflector telescope for collecting the solar light was built at Syowa station by the 49th Japanese Antarctica Research Expedition. The direction of the telescope was continuously controlled by a sun-tracker to follow the movement of the Sun automatically. The intensity of the collected light was monitored by a portable spectrophotometer housed inside. The human skin fibroblast cells were incubated in the CO2 chamber to investigate the effect of the solar radiation at Syowa station and were compared with those reference experiments at a laboratory in Japan. The results showed cell damage by strong UV radiation. The production of matrix metalloproteinase-2 was prompted by the moderate UV-B, but was inhibited by the strong UV-B radiation, as studied under laboratory conditions in Japan. The effect of strong solar radiation at Syowa station involving the radiation of UV-B region was estimated to be of the same extent of the radiation caused by an artificial UV-B light with the intensity more than 50 mJ/cm2.

  4. Compact solar UV burst triggered in a magnetic field with a fan-spine topology

    Science.gov (United States)

    Chitta, L. P.; Peter, H.; Young, P. R.; Huang, Y.-M.

    2017-09-01

    Context. Solar ultraviolet (UV) bursts are small-scale features that exhibit intermittent brightenings that are thought to be due to magnetic reconnection. They are observed abundantly in the chromosphere and transition region, in particular in active regions. Aims: We investigate in detail a UV burst related to a magnetic feature that is advected by the moat flow from a sunspot towards a pore. The moving feature is parasitic in that its magnetic polarity is opposite to that of the spot and the pore. This comparably simple photospheric magnetic field distribution allows for an unambiguous interpretation of the magnetic geometry leading to the onset of the observed UV burst. Methods: We used UV spectroscopic and slit-jaw observations from the Interface Region Imaging Spectrograph (IRIS) to identify and study chromospheric and transition region spectral signatures of said UV burst. To investigate the magnetic topology surrounding the UV burst, we used a two-hour-long time sequence of simultaneous line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) and performed data-driven 3D magnetic field extrapolations by means of a magnetofrictional relaxation technique. We can connect UV burst signatures to the overlying extreme UV (EUV) coronal loops observed by the Atmospheric Imaging Assembly (AIA). Results: The UV burst shows a variety of extremely broad line profiles indicating plasma flows in excess of ±200 km s-1 at times. The whole structure is divided into two spatially distinct zones of predominantly up- and downflows. The magnetic field extrapolations show a persistent fan-spine magnetic topology at the UV burst. The associated 3D magnetic null point exists at a height of about 500 km above the photosphere and evolves co-spatially with the observed UV burst. The EUV emission at the footpoints of coronal loops is correlated with the evolution of the underlying UV burst. Conclusions: The magnetic field around the null point is sheared by

  5. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  6. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    Science.gov (United States)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  7. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang (Cornell); (Guangdong); (UMM)

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  8. Cross-calibration of far UV spectra of solar system objects and the heliosphere

    CERN Document Server

    Snow, Martin; Bonnet, Roger-Maurice

    2013-01-01

    This book is the result of a working group sponsored by ISSI in Bern, which was initially created to study possible ways to calibrate a Far Ultraviolet (FUV) instrument after launch. In most cases, ultraviolet instruments are well calibrated on the ground, but unfortunately, optics and detectors in the FUV are very sensitive to contaminants and it is very challenging to prevent contamination before and during the test and launch sequences of a space mission. Therefore, ground calibrations need to be confirmed after launch and it is necessary to keep track of the temporal evolution of the sensitivity of the instrument during the mission. The studies presented here cover various fields of FUV spectroscopy with the exclusion of direct solar UV spectroscopy, including a catalog of stellar spectra, data-sets of lunar Irradiance, observations of comets and measurements of the interplanetary background. Detailed modeling of the interplanetary background is presented as well. This work also includes comparisons of ol...

  9. The role of solar UV radiation in the ecology of alpine lakes.

    Science.gov (United States)

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  10. The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Brandt, J. C.; Kalet, M. W.; Kenny, P. J.; Tandberg-Hanssen, E. A.; Bruner, E. C.; Beckers, J. M.; Henze, W.; Knox, E. D.; Hyder, C. L.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 A with better than 2 arcsec spatial resolution, raster range 256 x 256 sq arcsec, and 20 mA spectral resolution in second order. Observations can be made with specific sets of four lines simultaneously, or with both sides of two lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.

  11. The ultraviolet spectrometer and polarimeter on the solar maximum mission

    International Nuclear Information System (INIS)

    Woodgate, B.E.; Brandt, J.C.; Kalet, M.W.; Kenny, P.J.; Beckers, J.M.; Henze, W.; Hyder, C.L.; Knox, E.D.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design. performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 Angstreom with better than 2 arc sec spatial resolution, raster range 256 x 256 arc sec 2 , and 20 m Angstroem spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere. (orig.)

  12. Exposure of Finnish population to solar UV radiation and consequent carcinogenic effects

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Jansen, C. [Turku Univ. Hospital, Turku (Finland); Jokela, K. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1996-12-31

    Depletion of stratospheric ozone increases irradiance of terrestrial ultraviolet (UV) radiation at short wavelengths, which may be harmful to the human health. To understand quantitatively the risks caused by increasing UV radiation to the Finnish population, the actual UV exposure of the population has to be assessed. It was shown that the snow reflection increases the UV exposure to the face and eyes particularly in the northern Finland. In 1993 exceptionally low ozone levels persisted up to the end of May, which resulted in a theoretical increase in the annual UV dose ranging from 8 % to 13 % in Finland. The maximal increase in the measured erythemally effective dose rate was 34 % on 23 April, when compared with the theoretical normal value. During this study exposure models have been developed. The models have been combined them with Green`s radiation transfer model to estimate annual facial UV doses received by different groups of Finnish population. Also, an updated estimate for increase in skin cancer incidence due to the ozone depletion is presented. It is estimated that the maximal increase in UV doses caused by the depletion of the stratospheric ozone will be 12 % in the first years of the next century in Finland. This may result in increase in skin carcinomas by 20-30 % if the people do not improve their protection against solar UV radiation. At the moment the annual facial UV dose of the Finnish indoor worker varies from 3 % to 6 % of the annual ambient dose. In the worst case an outdoor worker may receive even 16% of the annual ambient dose. However, the doses received by indoor workers during vacation to an untanned skin may be more harmful due to the increased risk of malignant melanoma.

  13. Exposure of Finnish population to solar UV radiation and consequent carcinogenic effects

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L; Jansen, C [Turku Univ. Hospital, Turku (Finland); Jokela, K [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Depletion of stratospheric ozone increases irradiance of terrestrial ultraviolet (UV) radiation at short wavelengths, which may be harmful to the human health. To understand quantitatively the risks caused by increasing UV radiation to the Finnish population, the actual UV exposure of the population has to be assessed. It was shown that the snow reflection increases the UV exposure to the face and eyes particularly in the northern Finland. In 1993 exceptionally low ozone levels persisted up to the end of May, which resulted in a theoretical increase in the annual UV dose ranging from 8 % to 13 % in Finland. The maximal increase in the measured erythemally effective dose rate was 34 % on 23 April, when compared with the theoretical normal value. During this study exposure models have been developed. The models have been combined them with Green`s radiation transfer model to estimate annual facial UV doses received by different groups of Finnish population. Also, an updated estimate for increase in skin cancer incidence due to the ozone depletion is presented. It is estimated that the maximal increase in UV doses caused by the depletion of the stratospheric ozone will be 12 % in the first years of the next century in Finland. This may result in increase in skin carcinomas by 20-30 % if the people do not improve their protection against solar UV radiation. At the moment the annual facial UV dose of the Finnish indoor worker varies from 3 % to 6 % of the annual ambient dose. In the worst case an outdoor worker may receive even 16% of the annual ambient dose. However, the doses received by indoor workers during vacation to an untanned skin may be more harmful due to the increased risk of malignant melanoma.

  14. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  15. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    Science.gov (United States)

    Jorgensen, Gary; Gee, Randall C.; White, David

    2017-05-02

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  16. Solar ultraviolet radiation alters alder and birch litter chemistry that in turn affects decomposers and soil respiration.

    Science.gov (United States)

    Kotilainen, Titta; Haimi, Jari; Tegelberg, Riitta; Julkunen-Tiitto, Riitta; Vapaavuori, Elina; Aphalo, Pedro Jose

    2009-10-01

    Solar ultraviolet (UV)-A and UV-B radiation were excluded from branches of grey alder (Alnus incana) and white birch (Betula pubescens) trees in a field experiment. Leaf litter collected from these trees was used in microcosm experiments under laboratory conditions. The aim was to evaluate the effects of the different UV treatments on litter chemical quality (phenolic compounds, C, N and lignin) and the subsequent effects of these changes on soil fauna and decomposition processes. We measured the decomposition rate of litter, growth of woodlice (Porcellio scaber), soil microbial respiration and abundance of nematodes and enchytraeid worms. In addition, the chemical quality of woodlice feces was analyzed. The exclusion of both UV-A and UV-B had several effects on litter chemistry. Exclusion of UV-B radiation decreased the C content in litter in both tree species. In alder litter, UV exclusion affected concentration of phenolic groups variably, whereas in birch litter there were no significant differences in phenolic compounds. Moreover, further effects on microbial respiration and chemical quality of woodlice feces were apparent. In both tree species, microbial CO(2) evolution was lower in soil with litter produced under exclusion of both UV-A and UV-B radiation when compared to soil with control litter. The N content was higher in the feces of woodlice eating alder litter produced under exclusion of both UV-A and UV-B compared to the control. In addition, there were small changes in the concentration of individual phenolic compounds analyzed from woodlice feces. Our results demonstrate that both UV-A and UV-B alter litter chemistry which in turn affects decomposition processes.

  17. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean.

    Science.gov (United States)

    Dillon, Francisco M; Chludil, Hugo D; Zavala, Jorge A

    2017-09-01

    Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS 2 . We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection

    Directory of Open Access Journals (Sweden)

    Claire Marionnet

    2014-12-01

    Full Text Available The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV rays (UVA, 320–400 nm and UVB, 280–320 nm. The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1 the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2 description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3 analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  19. Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection.

    Science.gov (United States)

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Françoise

    2014-12-23

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320-400 nm and UVB, 280-320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  20. How do environmental and behavioral factors impact ultraviolet radiation effects on health: the RISC-UV Project

    Science.gov (United States)

    Correa, M. P.; Godin-Beekmann, S.; Haeffelin, M.; Saiag, P.; Mahe, E.; Brogniez, C.; Dupont, J. C.; Pazmiño, A.; Auriol, F.; Bonnel, B.

    2009-04-01

    Introduction: RISC-UV is a research project on "Impact of climate change on ultraviolet radiation and risks for health", a research project in which physicists, meteorologists and physicians work together to assess the relative role played by environmental and behavioral factors in the UV-related diseases as skin cancer and vitamin D deficiency. Environmental factors are related to the role played by the alteration in intensity of UV radiation at the Earth's surface resulting from variation in several factors affected by climate change and human activities: stratospheric ozone, cloud cover, aerosols and the reflectivity of the surface. On the other hand, behavioral factors are related to the sun over/underexposure and the correct use of sun-protection (hats, caps, sunglasses, sunscreen lotion, etc.). RISC-UV is organized around three main areas: 1) Organization of a workshop, scheduled for January 2009, which aims to describe the state of the art in the subject within each community and define the requirements of pathologists for epidemiological studies; 2) A pilot study intended to evaluate the consistency between UV measurements delivered simultaneously by satellite-based instruments, ground instruments, radiometers and individual dosimeters. This study is based on measurements campaigns and an analysis of the long-term consistency of data series relating to UV radiation and associated parameters; and 3) Analysis of the weights of medical, behavioral and environmental parameters involved in skin carcinogenesis. A detailed description of these areas can be found in http://www.gisclimat.fr/Doc/GB/D_projects/RISC-UV_GB.html. This presentation focuses on the first results of the UV experimental measurements performed between September 8th and October 8th 2008 in Palaiseau, France (48.7˚ N; 2.2˚ E; 170m - Haeffelin et al., 2005). A second campaign is foreseen for the spring of 2009. The purpose of these campaigns is to obtain, analyze and quantitatively link the

  1. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.

    Science.gov (United States)

    Telford, William G

    2004-09-01

    Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.

  2. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K.; Jokela, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1996-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  3. Calibration of the solar UV radiometers in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K; Jokela, K; Visuri, R; Ylianttila, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Non-Ionizing Radiation Lab.

    1997-12-31

    In this report, the main emphasis is given to (1) the problems associated with the basic calibration of the spectroradiometer and (2) the year-to-year variability of the calibrations of the solar UV network radiometers. Also, the results from intercomparisons of the Brewer and OL 742 spectroradiometers are included

  4. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses

    International Nuclear Information System (INIS)

    Mazza, C.A.; Battista, D.; Zima, A.M.; Szwarcberg-Bracchitta, M.; Giordano, C.V.; Acevedo, A.; Scopel, A.L.; Ballare, C.L.

    1999-01-01

    There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance. (author)

  5. Observed solar near UV variability: A contribution to variations of the solar constant

    International Nuclear Information System (INIS)

    London, J.; Pap, J.; Rottman, G.J.

    1989-01-01

    Continuous Measurements of the Solar UV have been made by an instrument on the Solar Mesosphere Explorer (SME) since October 1981. The results for the wavelength interval 200 to 300 nm show an irradiance decrease to a minimum in early 1987 and a subsequent increase to mid-April 1989. The observed UV changes during part of solar cycles 21 to 22 represent approx. 35 percent (during the decreasing phase) and 25 percent (during the increasing phase) of the observed variations of the solar constant for the same time period as the SME measurements

  6. Effects of the ultraviolet-B radiation (UV-B) on conifers: a review

    International Nuclear Information System (INIS)

    Laakso, K.; Huttunen, S.

    1998-01-01

    The current knowledge on conifer responses to enhanced ultraviolet-B (UV-B) radiation is mainly based on greenhouse or growth chamber experiments of one growing season in duration. However, the biomass losses observed in greenhouses do not occur in field-grown trees in their natural habitats. Moreover, the majority of the 20 conifer species studied have been 1-year-old seedlings, and no studies have been undertaken on mature trees. Fully grown needles, with their glaucous waxy surfaces and thick epidermal cells with both soluble and wall-bound UV-B screening metabolites, are well protected against UV-B radiation. However, it is not known whether these are sufficient protectants in young emerging needles or during the early spring period of high UV-B levels reflected from snow. In order to understand all the mechanisms that result in the protection of conifer needles against UV-B radiation, future research should focus on the epidermal layer, separating the waxes, cuticle and epidermal and hypodermal cells. Parallel studies should consist of wall-bound and soluble secondary metabolite analysis, antioxidant measurements and microscopic observations. (author)

  7. The Ultraviolet radiation (UV-C for the microbiological stabilization of red wine

    Directory of Open Access Journals (Sweden)

    Matias Fábio

    2016-01-01

    Full Text Available The traditional procedure for the control of the microbiological stability of wine consists of the addition of sulfur dioxide (SO2, which acts as an antimicrobial agent and also as an antioxidant. The search for alternative methods of microbiological control is important and necessary, since SO2 is a potential allergen and consumers are increasingly looking for healthier and preservative free products. Ultraviolet radiation was tested as an innovative technology that can help reduce the amount of sulphur dioxide used in winemaking. The object of this study was to optimize the process conditions compared to the results obtained previously, and to evaluate the efficiency of microbiological stabilization and its influence on the physico-chemical characteristics, the phenolic composition and sensory profile. Thus, red wine with very low content of sulphur dioxide was subjected to UV-C radiation in two different doses 424J/l e 778J/l, and the preparation of a control wine was carried out to which 30 mg/l sulfur dioxide was added. The wines (control=UV0, UV1 and UV2 were analyzed over time (from 0 to 4 months. The results show that treatment with a lower dosage is effective in the microbiological control of the product. The wines subjected to treatment with UV-C showed an increase in intensity of colour, and the treatment does not affect the flavour and taste of the wine.

  8. A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency.

    Science.gov (United States)

    Chen, Weijie; Zhang, Jingwen; Xu, Guiying; Xue, Rongming; Li, Yaowen; Zhou, Yinhua; Hou, Jianhui; Li, Yongfang

    2018-05-01

    Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr 3 perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr 3 photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr 2 with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr 3 -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultraviolet and solar photocatalytic ozonation of municipal wastewater: Catalyst reuse, energy requirements and toxicity assessment.

    Science.gov (United States)

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-11-01

    The present study evaluated the treatment of municipal wastewater containing phenol using solar and ultraviolet (UV) light photocatalytic ozonation processes to explore comparative performance. Important aspects such as catalyst reuse, mineralization of pollutants, energy requirements, and toxicity of treated wastewater which are crucial for practical implementation of the processes were explored. The activity of the photocatalysts did not change significantly even after three consecutive uses despite approximately 2% of the initial quantity of catalyst being lost in each run. Analysis of the change in average oxidation state (AOS) demonstrated the formation of more oxidized degradation products (ΔAOS values of 1.0-1.7) due to mineralization. The energy requirements were determined in terms of electrical energy per order (E EO ) and the collector area per order (A CO ). The E EO (kWh m -3  Order -1 ) values were 26.2 for ozonation, 38-47 for UV photocatalysis and 7-22 for UV photocatalytic ozonation processes. On the other hand, A CO (m 2  m -3  order -1 ) values were 31-69 for solar photocatalysis and 8-13 for solar photocatalytic ozonation. Thus photocatalytic ozonation processes required less energy input compared to the individual processes. The cytotoxicity of the wastewater was analysed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay with Vero cells. The cell viability increased from 28.7% in untreated wastewater to 80% in treated wastewater; thus showing that the treated wastewater was less toxic. The effectiveness of photocatalytic ozonation, recovery and reusability of the photocatalysts, as well as detoxification of the wastewater make this low energy consumption process attractive for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stable Solar-Blind Ultraviolet III-Nitride Photocathode for Astronomy Applications

    Science.gov (United States)

    Bell, Lloyd

    In this effort, we propose to develop a new type of cesium-free photocathode using III- nitride materials (GaN, AlN, and their alloys) to achieve highly efficient, solar blind, and stable ultraviolet (UV) response. Currently, detectors used in UV instruments utilize a photocathode to convert UV photons into electrons that are subsequently detected by microchannel plate or CCD. The performance of these detectors critically depends on the efficiency and stability of their photocathodes. In particular, photocathode instability is responsible for many of the fabrication difficulties commonly experienced with this class of detectors. In recent years, III-nitride (in particular GaN) photocathodes have been demonstrated with very high quantum efficiency (>50%) in parts of UV spectral range; however, these photocathodes still rely on cesiation for activation. The proposed photocathode structure will achieve activation through methods for band structure engineering such as delta- doping and polarization field engineering. Compared to the current state-of-the-art in flight-ready microchannel plate/Cs2Te sealed tubes, photocathodes based on III-nitride materials will increase the quantum efficiency by nearly an order of magnitude and significantly enhance both fabrication yield and reliability, since they will not require cesium or other highly reactive materials for activation. This performance will enable a next-generation UV spectroscopic and imaging mission that is of high scientific priority for NASA. This photocathode uses near-surface band-structure engineering to create a permanently activated surface, with high efficiency and air-stable UV response. We will combine this III-nitride structure with our unique III-nitride processing technology to optimize the efficiency and uniformity of the photocathode. In addition, through our design, growth, and processing techniques, we will extend the application of these photocathodes into far UV for both semitransparent and

  11. Five years of solar UV-radiation monitoring in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Weine

    1996-10-01

    A network of five stations measuring the solar UV-radiation has been operated for about five years. Data are presented as plotted time-series of monthly and yearly values for the sites. A general climatology can be deduced from these data. Daily and hourly maximum values are shown for each month as indicators of the potential extreme exposure levels. The large annual variation at high latitudes is easily seen in the data set. This illustrates the importance of the solar elevation on the level of the UV-irradiance. Influence of cloud variation and of larger changes in ozone is also detectable. A few examples of the daily variation also show the strong solar elevation dependence of the UV-irradiance. The quantity and unit of the UV-radiation in this presentation is CIE-weighted irradiance expressed as MED (minimum erythermal dose), where one MED equals 210 Jm{sup -2}. The values have been recomputed to refer to the international intercomparison of broad-band meters in Helsinki in 1995. In the following named WMO-STUK 1995 scale. As will be seen there are many sources of error and detailed studies are prevented by the large uncertainty connected with these data. Due to the short period of the record and the low accuracy no attempt to study trends is done. 6 refs, 27 figs, 4 tabs

  12. Remotely Triggered Solar Blind Signaling Using Deep Ultraviolet (UV) LEDs

    Science.gov (United States)

    2011-06-01

    observer, providing a means of visual communication even if the direct path is blocked...propogate toward the observer, providing a means of visual communication even if the direct path is blocked. 47 B. NLOS DETECTION USING LOCK-IN

  13. Effect of solar UV/EUV heating on the intensity and spatial distribution of Jupiter's synchrotron radiation

    Science.gov (United States)

    Kita, H.; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2013-10-01

    We analyzed the Very Large Array archived data observed in 2000 to determine whether solar ultraviolet (UV)/extreme ultraviolet (EUV) heating of the Jovian thermosphere causes variations in the total flux density and dawn-dusk asymmetry (the characteristic differences between the peak emissions at dawn and dusk) of Jupiter's synchrotron radiation (JSR). The total flux density varied by 10% over 6 days of observations and accorded with theoretical expectations. The average dawn-dusk peak emission ratio indicated that the dawn side emissions were brighter than those on the dusk side and this was expected to have been caused by diurnal wind induced by the solar UV/EUV. The daily variations in the dawn-dusk ratio did not correspond to the solar UV/EUV, and this finding did not support the theoretical expectation that the dawn-dusk ratio and diurnal wind velocity varies in correspondence with the solar UV/EUV. We tried to determine whether the average dawn-dusk ratio could be explained by a reasonable diurnal wind velocity. We constructed an equatorial brightness distribution model of JSR using the revised Divine-Garrett particle distribution model and used it to derive a relation between the dawn-dusk ratio and diurnal wind velocity. The estimated diurnal wind velocity reasonably corresponded to a numerical simulation of the Jovian thermosphere. We also found that realistic changes in the diurnal wind velocity could not cause the daily variations in the dawn-dusk ratio. Hence, we propose that the solar UV/EUV related variations were below the detection limit and some other processes dominated the daily variations in the dawn-dusk ratio.

  14. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber

    International Nuclear Information System (INIS)

    Krizek, D.T.; Mirecki, R.M.; Britz, S.J.

    1997-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species. (author)

  15. Ultraviolet/visible and Fourier transform infrared spectroscopic investigations of organic–inorganic hybrid layers for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Präfke, Christiane, E-mail: christiane.praefke@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany); Schulz, Ulrike, E-mail: ulrike.schulz@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Kaiser, Norbert, E-mail: norbert.kaiser@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Tünnermann, Andreas, E-mail: andreas.tuennermann@iof.fraunhofer.de [Fraunhofer Institute of Applied Optics and Precision Engineering, Optical Coatings Department, Albert-Einstein-Straße 7, 07745 Jena (Germany); Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena (Germany)

    2013-04-01

    A study of vacuum-deposited organic–inorganic hybrid coatings for ultraviolet (UV) protection of polycarbonate is presented. For this purpose, UV-absorbing organic molecules were embedded in a silica matrix by thermal co-evaporation. Typical UV absorbers, namely a benzotriazole, a hydroxyphenyltriazine, and a cyanoacrylate, were used as organic materials. The hybrid layers were investigated by means of ultraviolet/visible (UV/VIS) and Fourier transform infrared spectroscopy (FTIR) concerning their UV/VIS absorption properties and the influence of the silica network on the organic molecules. The porosity and silica–organic interactions are discussed with reference to the infrared spectra. UV irradiation experiments were carried out to demonstrate the UV protection ability of the hybrid layers. Hybrid layers containing the hydroxyphenyltriazine compound showed the best results. - Highlights: ► Vacuum deposited organic–inorganic UV protective coatings for polycarbonate ► Thermal co-evaporation of organic UV absorbing compounds with silica ► Matrix materials and the absorber concentration influence the absorption behavior. ► The coatings on PC show improved UV stability under artificial irradiation. ► The hydroxyphenyltriazine–silica layer shows best UV protection results.

  16. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra

    Science.gov (United States)

    Rosenberg, Jake; Parker, W. Ryan; Cammarata, Michael B.; Brodbelt, Jennifer S.

    2018-04-01

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu. UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT. [Figure not available: see fulltext.

  17. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra.

    Science.gov (United States)

    Rosenberg, Jake; Parker, W Ryan; Cammarata, Michael B; Brodbelt, Jennifer S

    2018-04-06

    UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.

  18. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    Science.gov (United States)

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  19. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    Science.gov (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  20. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Nishizuka, N.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M. [Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Sugiura, K., E-mail: nishizuka.naoto@nict.go.jp [Advanced Speech Translation Research and Development Promotion Center, National Institute of Information and Communications Technology (Japan)

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  1. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    International Nuclear Information System (INIS)

    Nishizuka, N.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.; Sugiura, K.

    2017-01-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  2. Erythemal solar UV measurement network in New Zealand

    International Nuclear Information System (INIS)

    Smith, G.J.

    1993-01-01

    Measured daily total erythemal doses for 1989, 1990 and 1991 were presented and the cloudless-sky daily dose at the autumn equinox was approximately 30-50% higher than at the spring equinox as a result of the seasonal variation in ozone levels. In addition a substantially lower spring equinox erythemal dose was observed in 1991, probably as a result of increased aerosols arising from the Pinatubo eruption. An asymmetry in the diurnal pattern of irradiances about solar noon has been observed on cloudless days. Higher UV irradiances have been usually observed in the afternoons than in the mornings. Measurement of erythemal radiation is needed for skin cancer epidemiology projects. Given the uncertainties relating to the exposure of individuals to solar erythemal radiation, personal dosimeters may be very useful in providing more reliable personal UV exposure data. (author). 4 refs

  3. Solar ultraviolet radiation in Africa: a systematic review and critical evaluation of the health risks and use of photoprotection.

    Science.gov (United States)

    Lucas, Robyn M; Norval, Mary; Wright, Caradee Y

    2016-01-01

    Most information on the harmful health effects of solar ultraviolet radiation (UVR) has been obtained in populations in which the majority has fair skin. Here a systematic review of evidence on diseases related to solar UVR in Africa was undertaken, and the appropriateness of effective photoprotection for these people considered. There are few population-based studies on UV-induced skin cancers (melanoma, squamous and basal cell carcinomas) in Africa, although limited reports indicated that they occur, even in people with deeply pigmented skin. The incidence of melanoma is particularly high in the white population living in the Western Cape of South Africa and has increased significantly in recent years. Cataract is extremely common in people of all skin colours and is a frequent cause of blindness, particularly in the elderly. For both skin cancer and cataract, the proportion of the disease risk that is attributable to exposure to solar UVR in African populations, and therefore the health burden caused by UV irradiation is unclear. There was little published information on the use of sun protection in Africa. The potential disease burden attributable to solar UVR exposure of Africans is high, although accurate data to quantify this are sparse. Information is required on the incidence, prevalence and mortality for the range of UV-related diseases in different populations living throughout Africa. Photoprotection is clearly required, at least for those subpopulations at particularly high risk, but may be limited by cost and cultural acceptability.

  4. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bastian, T. S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Chintzoglou, G.; De Pontieu, B.; Schmit, D. [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Shimojo, M. [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Leenaarts, J. [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Loukitcheva, M., E-mail: tbastian@nrao.edu [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States)

    2017-08-20

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T{sub B} and the Mg ii h line radiation temperature T {sub rad} is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T{sub B} (1.25 mm) and mean T {sub rad} (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T {sub rad} and the ALMA T {sub B} region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  5. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    International Nuclear Information System (INIS)

    Bastian, T. S.; Chintzoglou, G.; De Pontieu, B.; Schmit, D.; Shimojo, M.; Leenaarts, J.; Loukitcheva, M.

    2017-01-01

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T_B and the Mg ii h line radiation temperature T _r_a_d is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T_B (1.25 mm) and mean T _r_a_d (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T _r_a_d and the ALMA T _B region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  6. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002

    Directory of Open Access Journals (Sweden)

    Boscoe Francis P

    2006-11-01

    Full Text Available Abstract Background An inverse relationship between solar ultraviolet-B (UV-B exposure and non-skin cancer mortality has long been reported. Vitamin D, acquired primarily through exposure to the sun via the skin, is believed to inhibit tumor development and growth and reduce mortality for certain cancers. Methods We extend the analysis of this relationship to include cancer incidence as well as mortality, using higher quality and higher resolution data sets than have typically been available. Over three million incident cancer cases between 1998 and 2002 and three million cancer deaths between 1993 and 2002 in the continental United States were regressed against daily satellite-measured solar UV-B levels, adjusting for numerous confounders. Relative risks of reduced solar UV-B exposure were calculated for thirty-two different cancer sites. Results For non-Hispanic whites, an inverse relationship between solar UV-B exposure and cancer incidence and mortality was observed for ten sites: bladder, colon, Hodgkin lymphoma, myeloma, other biliary, prostate, rectum, stomach, uterus, and vulva. Weaker evidence of an inverse relationship was observed for six sites: breast, kidney, leukemia, non-Hodgkin lymphoma, pancreas, and small intestine. For three sites, inverse relationships were seen that varied markedly by sex: esophagus (stronger in males than females, gallbladder (stronger in females than males, and thyroid (only seen in females. No association was found for bone and joint, brain, larynx, liver, nasal cavity, ovary, soft tissue, male thyroid, and miscellaneous cancers. A positive association between solar UV-B exposure and cancer mortality and incidence was found for anus, cervix, oral cavity, melanoma, and other non-epithelial skin cancer. Conclusion This paper adds to the mounting evidence for the influential role of solar UV-B exposure on cancer, particularly for some of the less-well studied digestive cancers. The relative risks for cancer

  7. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002

    International Nuclear Information System (INIS)

    Boscoe, Francis P; Schymura, Maria J

    2006-01-01

    An inverse relationship between solar ultraviolet-B (UV-B) exposure and non-skin cancer mortality has long been reported. Vitamin D, acquired primarily through exposure to the sun via the skin, is believed to inhibit tumor development and growth and reduce mortality for certain cancers. We extend the analysis of this relationship to include cancer incidence as well as mortality, using higher quality and higher resolution data sets than have typically been available. Over three million incident cancer cases between 1998 and 2002 and three million cancer deaths between 1993 and 2002 in the continental United States were regressed against daily satellite-measured solar UV-B levels, adjusting for numerous confounders. Relative risks of reduced solar UV-B exposure were calculated for thirty-two different cancer sites. For non-Hispanic whites, an inverse relationship between solar UV-B exposure and cancer incidence and mortality was observed for ten sites: bladder, colon, Hodgkin lymphoma, myeloma, other biliary, prostate, rectum, stomach, uterus, and vulva. Weaker evidence of an inverse relationship was observed for six sites: breast, kidney, leukemia, non-Hodgkin lymphoma, pancreas, and small intestine. For three sites, inverse relationships were seen that varied markedly by sex: esophagus (stronger in males than females), gallbladder (stronger in females than males), and thyroid (only seen in females). No association was found for bone and joint, brain, larynx, liver, nasal cavity, ovary, soft tissue, male thyroid, and miscellaneous cancers. A positive association between solar UV-B exposure and cancer mortality and incidence was found for anus, cervix, oral cavity, melanoma, and other non-epithelial skin cancer. This paper adds to the mounting evidence for the influential role of solar UV-B exposure on cancer, particularly for some of the less-well studied digestive cancers. The relative risks for cancer incidence are similar to those for cancer mortality for most

  8. Rocksalt MgS solar blind ultra-violet detectors

    Directory of Open Access Journals (Sweden)

    Ying-Hoi Lai

    2012-03-01

    Full Text Available Studies using in-situ Auger electron spectroscopy and reflection high energy electron diffraction, and ex-situ high resolution X-ray diffraction and electron backscatter diffraction reveal that a MgS thin film grown directly on a GaAs (100 substrate by molecular beam epitaxy adopts its most stable phase, the rocksalt structure, with a lattice constant of 5.20 Å. A Au/MgS/n+-GaAs (100 Schottky-barrier photodiode was fabricated and its room temperature photoresponse was measured to have a sharp fall-off edge at 235 nm with rejection of more than three orders at 400 nm and higher than five orders at 500 nm, promising for various solar-blind UV detection applications.

  9. Outdoor Exposure to Solar Ultraviolet Radiation and Legislation in Brazil.

    Science.gov (United States)

    Silva, Abel A

    2016-06-01

    The total ozone column of 265 ± 11 Dobson Units in the tropical-equatorial zones and 283 ± 16 Dobson Units in the subtropics of Brazil are among the lowest on Earth, and as a result, the prevalence of skin cancer due to solar ultraviolet radiation is among the highest. Daily erythemal doses in Brazil can be over 7,500 J m. Erythemal dose rates on cloudless days of winter and summer are typically about 0.147 W m and 0.332 W m, respectively. However, radiation enhancement events yielded by clouds have been reported with erythemal dose rates of 0.486 W m. Daily doses of the diffuse component of erythemal radiation have been determined with values of 5,053 J m and diffuse erythemal dose rates of 0.312 W m. Unfortunately, Brazilians still behave in ways that lead to overexposure to the sun. The annual personal ultraviolet radiation ambient dose among Brazilian youths can be about 5.3%. Skin cancer in Brazil is prevalent, with annual rates of 31.6% (non-melanoma) and 1.0% (melanoma). Governmental and non-governmental initiatives have been taken to increase public awareness of photoprotection behaviors. Resolution #56 by the Agência Nacional de Vigilância Sanitária has banned tanning devices in Brazil. In addition, Projects of Law (PL), like PL 3730/2004, propose that the Sistema Único de Saúde should distribute sunscreen to members of the public, while PL 4027/2012 proposes that employers should provide outdoor workers with sunscreen during professional outdoor activities. Similar laws have already been passed in some municipalities. These are presented and discussed in this study.

  10. Implementation of innovative pulsed xenon ultraviolet (PX-UV environmental cleaning in an acute care hospital

    Directory of Open Access Journals (Sweden)

    Fornwalt L

    2014-01-01

    Full Text Available Lori Fornwalt,1 Brad Riddell1,2 1Departments of Infection Prevention and Environmental Services, Trinity Medical Centre, Birmingham, AL, 2Environmental Services, Medical University of South Carolina, Charleston, SC, USA Abstract: It is widely acknowledged that the hospital environment is an important reservoir for many of the pathogenic microbes associated with health care-associated infections (HAIs. Environmental cleaning plays an important role in the prevention and containment of HAIs, in patient safety, and the overall experience of health care facilities. New technologies, such as pulsed xenon ultraviolet (PX-UV light systems are an innovative development for enhanced cleaning and decontamination of hospital environments. A portable PX-UV disinfection device delivers pulsed UV light to destroy microbial pathogens and spores, and can be used in conjunction with manual environmental cleaning. In addition, this technology facilitates thorough disinfection of hospital rooms in 10–15 minutes. The current study was conducted to evaluate whether the introduction of the PX-UV device had a positive impact on patient satisfaction. Satisfaction was measured using the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS survey. In 2011, prior to the introduction of the PX-UV system, patient HCAHPS scores for cleanliness averaged 75.75%. In the first full quarter after enhanced cleaning of the facility was introduced, this improved to 83%. Overall scores for the hospital rose from 76% (first quarter, 2011 to 87.6% (fourth quarter, 2012. As a result of this improvement, the hospital received 1% of at-risk reimbursement from the inpatient prospective payment system as well as additional funding. Cleanliness of the hospital environment is one of the questions included in the HCAHPS survey and one measure of patient satisfaction. After the introduction of the PX-UV system, the score for cleanliness and the overall rating of the

  11. Comets in UV

    Science.gov (United States)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  12. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    Science.gov (United States)

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    , such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such

  13. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey.

    Science.gov (United States)

    Greenfield, Jamie A; Park, Philip S; Farahani, Ellie; Malik, Suneil; Vieth, Reinhold; McFarlane, Norman A; Shepherd, Theodore G; Knight, Julia A

    2012-08-15

    Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n = 4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m² increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P = 0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight.

  14. A method for optimizing the cosine response of solar UV diffusers

    Science.gov (United States)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  15. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Flint, S.D.; Caldwell, M.M.

    1984-01-01

    Pollen from four temperate-latitude taxa were treated with UV radiation in a portion of the UV-B (280-320 nm) waveband during in vitro germination. Inhibition of germination was noted in this pollen compared to samples treated identically except for the exclusion of the UV-B portion of the spectrum. Levels similar to maximum solar UV-B found in temperate-latitude areas failed to inhibit pollen germination significantly, while levels similar to maximum solar UV-B found in equatorial alpine locations caused partial inhibition of germination in three of the four taxa examined

  16. Response of the middle atmosphere to solar UV and dynamical perturbations

    International Nuclear Information System (INIS)

    Chandra, S.

    1989-01-01

    Recent studies of solar UV related changes of ozone and temperature have considerably improved the understanding of the solar UV and ozone relationship in the middle atmosphere on time scales of a solar rotation. These studies have shown that during periods of high solar activity, ozone in the upper stratosphere has a measurable response to changes in the solar UV flux in accordance with theoretical predictions. The problem of measuring solar response of the stratospheric ozone and temperature on time scales of a solar cycle is more difficult. In the altitude range of 2 mb, the model based calculations, based on plausible scenarios of solar UV variation, suggest a change of less than 4 percent in ozone mixing ratio and 1 to 2 K in temperature. The relative response was studied of the middle atmosphere to solar forcing at 155 and 27 day periods as indicated from the spectral analyses of a number of solar indices

  17. Drinking water disinfection by means of ultraviolet radiation. Desinfektion von Trinkwasser durch UV-Bestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gelzhaeuser, P; Bewig, F; Holm, K; Kryschi, R; Reich, G; Steuer, W

    1985-01-01

    The book presents all lectures held during a course at Technical Academy Esslingen, on September 10, 1985, on the subject of 'Drinking water disinfection by means of ultraviolet radiation'. The methods hitherto used for disinfection are no longer suitable because of the increasing amounts of organic pollutants found in the untreated water, and because of the necessity to make drinking water disinfection less expensive, non-polluting and thus environmentally compatible. U.V. irradiation is a method allowing technically simple and safe disinfection of the water, and also does not have any effect on the natural taste of the drinking water. The lectures presented discuss all aspects of the method, the equipment, and the performance of irradiation systems in practice.

  18. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    International Nuclear Information System (INIS)

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-01-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  19. Enhancement of root growth and nitrogen fixation in Trigonella by UV-exclusion from solar radiation.

    Science.gov (United States)

    Sharma, Sonika; Guruprasad, K N

    2012-12-01

    A field experiment was conducted to study the impact of solar UV on root growth and nitrogen fixation in Trigonella foenum-graecum. Plants were grown in iron mesh cages covered with polyester filters that could specifically cut off UV-B (280-315 nm) or UV-A + B (280-400 nm) part of the solar spectrum. The control plants were grown under a polythene filter transmissible to UV. Root biomass, number of nodules and nodule fresh weight were enhanced after exclusion of solar UV. Nitrogenase activity was significantly enhanced by 120% and 80% in the UV-B and UV-A + B excluded plants respectively. Along with nitrogenase there was concomitant increase in leghemoglobin and hemechrome content in the nodules after exclusion of solar UV. These components of sunlight limits nitrogen fixation and their elimination can enhance nitrogen fixation with agricultural advantages like reduction in the use of fertilizers. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    International Nuclear Information System (INIS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-01-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm–320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ∼75% UV absorption and hot electron excitation can be achieved within the mean free path of ∼20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices. (paper)

  1. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    Science.gov (United States)

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. METIS: the visible and UV coronagraph for solar orbiter

    Science.gov (United States)

    Romoli, M.; Landini, F.; Antonucci, E.; Andretta, V.; Berlicki, A.; Fineschi, S.; Moses, J. D.; Naletto, G.; Nicolosi, P.; Nicolini, G.; Spadaro, D.; Teriaca, L.; Baccani, C.; Focardi, M.; Pancrazzi, M.; Pucci, S.; Abbo, L.; Bemporad, A.; Capobianco, G.; Massone, G.; Telloni, D.; Magli, E.; Da Deppo, V.; Frassetto, F.; Pelizzo, M. G.; Poletto, L.; Uslenghi, M.; Vives, S.; Malvezzi, M.

    2017-11-01

    METIS coronagraph is designed to observe the solar corona with an annular field of view from 1.5 to 2.9 degrees in the visible broadband (580-640 nm) and in the UV HI Lyman-alpha, during the Sun close approaching and high latitude tilting orbit of Solar Orbiter. The big challenge for a coronagraph is the stray light rejection. In this paper after a description of the present METIS optical design, the stray light rejection design is presented in detail together with METIS off-pointing strategies throughout the mission. Data shown in this paper derive from the optimization of the optical design performed with Zemax ray tracing and from laboratory breadboards of the occultation system and of the polarimeter.

  3. General Astrophysics Science Enabled by the HabEx Ultraviolet Spectrograph (UVS)

    Science.gov (United States)

    Scowen, Paul; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Martin, Stefan; Somerville, Rachel; Stern, Daniel; HabEx Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of the four large mission concepts being studied by NASA as input to the upcoming 2020 Decadal Survey. The mission implements two world-class General Astrophysics instruments as part of its complement of instrumentation to enable compelling science using the 4m aperture. The Ultraviolet Spectrograph has been designed to address cutting edge far ultraviolet (FUV) science that has not been possible with the Hubble Space Telescope, and to open up a wide range of capabilities that will advance astrophysics as we look into the 2030s. Our poster discusses some of those science drivers and possible applications, which range from Solar System science, to nearby and more distant studies of star formation, to studies of the circumgalactic and intergalactic mediums where the ecology of mass and energy transfer are vital to understanding stellar and galactic evolution. We discuss the performance features of the instrument that include a large 3’x3’ field of view for multi-object spectroscopy, and some 20 grating modes for a variety of spectral resolution and coverage.

  4. Solar ultraviolet and the occupational radiant exposure of Queensland school teachers: A comparative study between teaching classifications and behavior patterns.

    Science.gov (United States)

    Downs, Nathan J; Harrison, Simone L; Chavez, Daniel R Garzon; Parisi, Alfio V

    2016-05-01

    Classroom teachers located in Queensland, Australia are exposed to high levels of ambient solar ultraviolet as part of the occupational requirement to provide supervision of children during lunch and break times. We investigated the relationship between periods of outdoor occupational radiant exposure and available ambient solar radiation across different teaching classifications and schools relative to the daily occupational solar ultraviolet radiation (HICNIRP) protection standard of 30J/m(2). Self-reported daily sun exposure habits (n=480) and personal radiant exposures were monitored using calibrated polysulphone dosimeters (n=474) in 57 teaching staff from 6 different schools located in tropical north and southern Queensland. Daily radiant exposure patterns among teaching groups were compared to the ambient UV-Index. Personal sun exposures were stratified among teaching classifications, school location, school ownership (government vs non-government), and type (primary vs secondary). Median daily radiant exposures were 15J/m(2) and 5J/m(2)HICNIRP for schools located in northern and southern Queensland respectively. Of the 474 analyzed dosimeter-days, 23.0% were found to exceed the solar radiation protection standard, with the highest prevalence found among physical education teachers (57.4% dosimeter-days), followed by teacher aides (22.6% dosimeter-days) and classroom teachers (18.1% dosimeter-days). In Queensland, peak outdoor exposure times of teaching staff correspond with periods of extreme UV-Index. The daily occupational HICNIRP radiant exposure standard was exceeded in all schools and in all teaching classifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    Science.gov (United States)

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  6. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available Solar ultraviolet radiation (UVR) levels are affected by airborne aerosols, such as particles and gases released during biomass burning events. Two large-scale fires in South Africa were identified and selected based on their proximity to solar UVR...

  7. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter. [for Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hassen, E.; Cheng, C. C.; Athay, R. G.; Beckers, J. M.; Brandt, J. C.; Chapman, R. D.; Bruner, E. C.; Henze, W.; Hyder, C. L.; Gurman, J. B.

    1981-01-01

    New observation with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first three months of Solar Maximum Mission operations are presented. Attention is given to polarimetry in sunspots, oscillations above sunspots, density diagnostics of transition-zone plasmas in active regions, and the eruptive prominence - coronal transient link.

  8. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  9. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid.

    Science.gov (United States)

    Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén

    2016-12-01

    High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    Science.gov (United States)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  11. High Quantum Efficiency Back-Illuminated AlGaN-Based Solar-Blind Ultraviolet p—i—n Photodetectors

    International Nuclear Information System (INIS)

    Wang Guo-Sheng; Lu Hai; Xie Feng; Chen Dun-Jun; Ren Fang-Fang; Zhang Rong; Zheng You-Dou

    2012-01-01

    AlGaN-based back-illuminated solar-blind ultraviolet (UV) p—i—n photodetectors (PDs) with high quantum efficiency are fabricated on sapphire substrates. To improve the overall performance of the PD, a series of structural design considerations and growth procedures are implemented in the epitaxy process. A distinct wavelength-selective photo-response peak of the PD is obtained in the solar-blind region. When operating in photovoltaic mode, the PD exhibits a solar-blind/UV rejection ratio of up to 4 orders of magnitude and a peak responsivity of ∼113.5 mA/W at 270 nm, which corresponds to an external quantum efficiency of ∼52%. Under a reverse bias of −5 V, the PD shows a low dark current of ∼1.8 pA and an enhanced peak quantum efficiency of ∼64%. The thermal noise limited detectivity is estimated to be ∼ 3.3 × 10 13 cm·Hz 1/2 W −1

  12. Solar UV-assisted sample preparation of river water for ultra-trace determination of uranium by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Woldemichael, G.; Tulu, T.; Flechsig, G.-U.

    2012-01-01

    The article describes how solar ultraviolet-A radiation can be used to digest samples as needed for voltammetric ultratrace determination of uranium(VI) in river water. We applied adsorptive stripping voltammetry (AdSV) using chloranilic acid as the complexing agent. Samples from the river Warnow in Rostock (Germany) were pretreated with either soft solar UV or wit artificial hard UV from a 30-W source emitting 254-nm light. Samples were irradiated for 12 h, and both methods yielded the same results. We were able to detect around 1 μg.L -1 of uranium(VI) in a sample of river water that also contained dissolved organic carbon at a higher mg.L -1 levels. No AdSV signal was obtained for U(VI) without any UV pre-treatment. Pseudo-polarographic experiments confirmed the dramatic effect of both digestion techniques the the AdSV response. The new method is recommended for use in mobile ultratrace voltammetry of heavy metals for most kinds of natural water samples including tap, spring, ground, sea, and river waters. The direct use of solar radiation for sample pre-treatment represents a sustainable technique for sample preparation that does not consume large quantities of chemicals or energy. (author)

  13. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    International Nuclear Information System (INIS)

    Thorseth, Trond Morten

    2000-01-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe

  14. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, Trond Morten

    2000-07-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe.

  15. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  16. Effects of solar PAR and UV radiation on tropical biofouling communities

    KAUST Repository

    Dobretsov, SV; Gosselin, L; Qian, P

    2010-01-01

    We investigated the effect of solar ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) on the development of tropical micro- and macrofouling communities for 30 d. The experimental design involved 3 treatments: full spectrum

  17. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  18. Climatology of UVA and ozone variations and the global solar UV-index

    International Nuclear Information System (INIS)

    Roy, C.R.; Gies, H.P.; Toomey, S.J.

    1996-01-01

    Human overexposure to solar ultraviolet radiation (UVR) can result in acute and chronic adverse health effects on both the skin and the eye. Skin cancer (both non-melanoma and malignant melanoma) and cataract impose a huge social and cost burden on many societies throughout the world. Such human health problems can be avoided if the individual reduces their UVR exposure. Unfortunately enlightenment may not help persons who have experienced high episodic exposures during childhood as this appears to be an important causal factor in melanoma. In some countries public educational campaigns have been underway for decades in other countries they are just beginning; the global solar uv-index provides a globally consistent means of reporting or predicting UVR as part of public education on UVR exposure. There are now indications that some of these programs have been effective in halting the climb in melanoma incidence. The UVR, and in particular UVB, reaching the earth's surface varies with both latitude and time (both of the day and year). The transmission of the extraterrestrial radiation through the atmosphere is determined by ozone clouds, aerosols and to a lesser extent, trace gases. In recent decades there has been considerable concern that long-term changes in ozone and perhaps clouds and aerosols may result in changes in the UVB at the earth's surface. (author)

  19. Photolytic degradation of polybromodiphenyl ethers under UV-lamp and solar irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yang-hsin, E-mail: yhs@nchu.edu.tw [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Wang, Chun-Kang [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China)

    2009-06-15

    Polybromodiphenyl ethers (PBDEs) are widely used flame retardant additives and have been mainly used in polymers for many plastic and electronic products. PBDEs have been found to bioaccumulate in both aquatic and terrestrial ecosystems and even human bodies. The technical product with the highest use is decabrominated diphenyl ether (BDE-209). Therefore, we chose to examine the solar and UV-lamp degradation of BDE-209. A linear increase of the photodegradation rate constant for BDE-209 was observed with the solar light intensity. The degradation reactions follow the pseudo-first-order kinetics. The photodegradation of BDE-209 produced other less brominated diphenyl ethers under ultraviolet light exposure, suggesting that the photodegradation of BDE-209 is a sequential dehalogenation mechanism. BDE-209 underwent rapid reductive debromination in these photodecomposition experiments. The formation rate constants of three nonabromodiphenyl ethers increase with the order of BDE-206, BDE-207 and BDE-208, indicating debromination mainly occurred at para > meta > ortho positions. These findings of the process properties and reductive debromination mechanism of the photolytic degradation of PBDEs can facilitate the design of remediation processes and also aid in predicting their fate in the environment.

  20. The influence of meteorological factors on solar ultraviolet radiation over Pretoria, South Africa for the year 2012

    CSIR Research Space (South Africa)

    Makgabutlane, M

    2013-09-01

    Full Text Available Pretoria receives a fair amount of solar ultraviolet radiation (UVR). Certain meteorological factors affect the amount of solar UVR that reaches the ground. The most dominant influencing meteorological factors are stratospheric ozone, cloud cover...

  1. Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and carbendazim

    International Nuclear Information System (INIS)

    Ribeiro, Fabianne; Ferreira, Nuno C.G.; Ferreira, Abel; Soares, Amadeu M.V.M.; Loureiro, Susana

    2011-01-01

    The toxicological assessment of chemical compounds released to the environment is more accurate when mixtures of chemicals and/or interactions between chemicals and natural stressors are considered. Ultraviolet radiation can be taken as a natural stressor since the levels of UV are increasing due to the decrease of its natural filter, the stratospheric ozone concentration. Therefore, a combination of chemical exposures and increasing UV irradiance in aquatic environments is likely to occur. In the current study, combined effects of carbendazim and ultraviolet radiation were evaluated, using selected life traits as endpoints on Daphnia magna. To design combined exposures, first single chemical and natural stressor bioassays were performed: a reproduction test with carbendazim and a reproduction, feeding inhibition and Energy budget test with ultraviolet radiation. Following single exposures, the combinations of stressors included exposures to UV radiation and carbendazim for a maximum exposure time of 4 h, followed by a post-exposure period in chemically contaminated medium for a maximum of 15 days, depending on the endpoint, where the effects of the combined exposures were investigated. Statistical analyses of the data set were performed using the MixTox tool and were based on the conceptual model of Independent Action (IA) and possible deviations to synergism or antagonism, dose-ratio or dose-level response pattern. Both ultraviolet radiation and carbendazim as single stressors had negative impacts on the measured life traits of daphnids, a decrease on both feeding rates and reproduction was observed. Feeding rates and reproduction of D. magna submitted to combined exposures of ultraviolet radiation and carbendazim showed a dose-ratio deviation from the conceptual model as the best description of the data set, for both endpoints. For feeding inhibition, antagonism was observed when the UV radiation was the dominant item in combination, and for reproduction

  2. Occupational exposure to solar ultraviolet radiation and the risk of prostate cancer.

    Science.gov (United States)

    Peters, Cheryl E; Demers, Paul A; Kalia, Sunil; Hystad, Perry; Villeneuve, Paul J; Nicol, Anne-Marie; Kreiger, Nancy; Koehoorn, Mieke W

    2016-11-01

    Preventable risk factors for prostate cancer are poorly understood; sun exposure is a possible protective factor. The goal of this study was to investigate prostate cancer risk in outdoor workers, a population with high sun exposure. Prostate cancer cases and controls from a large study (conducted between 1994 and 1997) were used for this analysis. A job exposure matrix (JEM) was used to assign solar ultraviolet radiation (UVR) at work as moderate (2 to hours outside/day) or high (≥6 hours). Average daily satellite UV-B measures were linked to the latitude/longitude of the residences of each participant. Several other exposure metrics were also examined, including ever/never exposed and standard erythemal dose by years (SED×years). Logistic regression was used to evaluate the association between solar UVR exposure and the odds of prostate cancer. A total of 1638 cases and 1697 controls were included. Men of Indian and Asian descent had reduced odds of prostate cancer (ORs 0.17 (0.08 to 0.35) and 0.25 (0.15 to 0.41), respectively) compared with Caucasian men, as did single men (OR 0.76 (0.58 to 0.98)) compared with married men. Overall, no statistically significant associations were observed between sun exposure and prostate cancer with 1 exception. In the satellite-enhanced JEM that considered exposure in high category jobs only, prostate cancer odds in the highest quartile of cumulative exposure was decreased compared with unexposed men (OR 0.68 (0.51 to 0.92)). This study found limited evidence for an association with prostate cancer, with the exception of 1 statistically significant finding of a decreased risk among workers with the longest term and highest sun exposure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Effectiveness of Sunscreen at Preventing Solar UV-Induced Alterations of Human Stratum Corneum

    Science.gov (United States)

    Martinez, O.; Dauskardt, R.; Biniek, K.; Novoa, F.

    2012-12-01

    The outermost layer of the epidermis, the stratum corneum, protects the body from harmful environmental conditions by serving as a selective barrier. Solar ultraviolet (UV) radiation is one of the most common conditions the body encounters and is responsible for many negative skin responses, including compromised barrier function. UV exposure has dramatic effects on stratum corneum cell cohesion and mechanical integrity that are related to its effects on the stratum corneum's intercellular lipids. Hypothesis Sunscreen contains chemicals that absorb UV radiation to prevent the radiation from penetrating the skin. Thus, it is expected that the application of sunscreen on human stratum corneum will reduce UV-induced alterations of human stratum corneum. Procedures/Equipment Human tissue was processed in order to isolate the stratum corneum, the top layer of the epidermis. Double cantilever beam (DCB) testing was used to study the effect of UV radiation on human stratum corneum. Two different types of DCB samples were created: control DCB samples with the application of carrier and UV light to the stratum corneum and DCB samples with the application of sunscreen and UV light to the stratum corneum. For the control sample, one side of the stratum corneum was glued to a polycarbonate beam and carrier was applied. Then, the sample was placed 10 cm away from the UV lamp inside of the environmental chamber and were exposed to UV dosages of about 800 J/cm2. Once this step was complete, a second polycarbonate beam was glued to the other side of the stratum corneum. The steps were similar for the DCB sample that had sunscreen applied and that was exposed to UV light. After gluing one side of the stratum corneum to a polycarbonate beam, Octinoxate sunscreen was applied. The next steps were similar to those of the control sample. All DCB samples were then let out to dry for two hours in a dry box in order for the moisture from the lab to be extracted. Each DCB sample was tested

  4. Solar Maximum Mission Experiment - Ultraviolet Spectroscopy and Polarimetry on the Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hanssen, E.; Cheng, C. C.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.; Gurman, J. B.; Hyder, C. L.

    1981-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft is described. It is pointed out that the instrument, which operates in the wavelength range 1150-3600 A, has a spatial resolution of 2-3 arcsec and a spectral resolution of 0.02 A FWHM in second order. A Gregorian telescope, with a focal length of 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit; it permits all four Stokes parameters to be determined. Among the observing modes are rasters, spectral scans, velocity measurements, and polarimetry. Examples of initial observations made since launch are presented.

  5. Abscisic acid and ethylene in mutants of Arabidopsis thaliana differing in their resistance to ultraviolet (UV-B) radiation stress

    International Nuclear Information System (INIS)

    Rakitina, T.Ya.; Vlasov, P.V.; Jalilova, F.Kh.; Kefeli, V.I.

    1994-01-01

    The effects of ultraviolet irradiation (between 280 and 320 nm) on plant survival, ethylene evolution, and abscisic acid (ABA) content were studied in Arabidopsis thaliana (L.) Heunh. plants. Three genetic lines of Arabidopsis differing in their resistance to ultraviolet (UV-B) radiation stress were used. UV-B irradiation had detrimental effects on plant survival, enhanced ethylene evolution, and increased ABA content in the plants of all three lines. The higher ultraviolet dose was absorbed, the less was the number of surviving plants and the higher were the levels of both phytohormones. The maximum ethylene evolution occurred during the initial two to four hours after irradiation, but the ABA content peaked only after 24 h. The most resistant line showed the highest ABA content and the fastest ethylene evolution, whereas, in the susceptible line, both indices were the lowest. After UV-B treatment, the ABA-deficient Arabidopsis mutant evolved four to six times more ethylene than the plants with normal ABA content. Stress ethylene production evidently did not depend on the level of endogenous ABA as the kinetics of ethylene evolution was similar in the ABA-deficient mutant and in other studied Arabidopsis lines

  6. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    Science.gov (United States)

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-08-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

  7. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum

    Science.gov (United States)

    Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin

    2017-08-01

    Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.

  8. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    Science.gov (United States)

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  9. New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass

    Science.gov (United States)

    Roh, Hee-Suk; Han, Gill Sang; Lee, Seongha; Kim, Sanghyun; Choi, Sungwoo; Yoon, Chulsoo; Lee, Jung-Kun

    2018-06-01

    Degradation of hybrid lead halide perovskite by UV light is a crucial issue that limits the commercialization of lead halide perovskite solar cells (PSCs). To address this problem, phosphor-in-glass (PiG) is used to convert UV to visible light. Down-conversion of UV light by PiG dramatically increases UV-stability of PSCs and enables PSCs to harvest UV light that is currently wasted. Performance of PSCs with PiG layer does not change significantly during 100 h-long UV-irradiation, while conventional PSCs degrade quickly by 1 h-long UV-irradiation. After 100 h long UV-irradiation, power conversion efficiency of PSCs with PiG is 440% larger than that of conventional PSCs. This result points a direction toward PSCs which are very stable and highly efficient under UV light.

  10. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-01-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition

  11. Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under Ultraviolet Light (UV) exposure

    International Nuclear Information System (INIS)

    Wu, Bing; Zhuang, Wei-Qin; Sahu, Manoranjan; Biswas, Pratim; Tang, Yinjie J.

    2011-01-01

    It has been shown that photocatalytic TiO 2 nanoparticles (NPs) can be used as an efficient anti-microbial agent under UV light due to generation of reactive oxygen species (ROS), while Shewanella oneidensis MR-1 is a metal-reducing bacterium highly susceptible to UV radiation. Interestingly, we found that the presence of Cu-doped TiO 2 NPs in the cultural medium dramatically increased the survival rates (based on colony-forming unit) of strain MR-1 by over 10,000-fold (incubation without shaking) and ∼ 200 fold (incubation with shaking) after a 2-h exposure to UV light. Gene expression results (via qPCR measurement) indicated that the DNA repair gene recA in MR-1 was significantly induced by UV exposure (indicating cellular damage under UV stress), but the influence of NPs on recA expression was not statistically evident. Plausible explanations to NP attenuation of UV stresses are: 1. TiO 2 based NPs are capable of scattering and absorbing UV light and thus create a shading effect to protect MR-1 from UV radiation; 2. more importantly, Cu-doped TiO 2 NPs can co-agglomerate with MR-1 to form large flocs that improves cells' survival against the environmental stresses. This study improves our understanding of NP ecological impacts under natural solar radiation and provides useful insights to application of photocatalytic-NPs for bacterial disinfection.

  12. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    Science.gov (United States)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  13. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  14. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  15. DNA damage and photosynthetic inhibition induced by solar ultraviolet radiation in tropical phytoplankton (Lake Titicaca, Bolivia)

    NARCIS (Netherlands)

    Helbling, EW; Villafane, VE; Buma, AGJ; Andrade, M; Zaratti, F

    Experiments were conducted during October 1998 in Lake Titicaca, Bolivia (16 degrees S, 68 degrees W, 3810 m a.s.l), to determine the effects of solar ultraviolet radiation (UVR) on phytoplankton photosynthetic rates and DNA damage. Water samples were taken daily and incubated ir? situ or in

  16. Effect of ultraviolet-B radiation on biochemical and antioxidant ...

    African Journals Online (AJOL)

    user

    The stratospheric ozone depletion and enhanced solar ultraviolet-B (UV-B) ... mechanism produced by enzymatic antioxidant such as catalase, peroxidase, ... absorb UV-B and prevent it from penetrating into the leaf mosophyll cells. The aim of this work was to investigate the effects of UV-B radiation on Indigofera tinctoria ...

  17. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  18. Ultraviolet - status of knowledge on exposure and health risks

    International Nuclear Information System (INIS)

    Dervault, Anne Marie; Secretan, Beatrice; Guinot, Christiane; Bazex, Jacques; Donadieu, Jean; Dore, Jean Francois; Cesarini, Jean Pierre; Aleth Richard, Marie; Leccia, Marie Therese; Autier, Philippe; Cesarini, Jean Pierre; Beani, Jean Claude; Grob, Jean Jacques; Wald, Lucien; Dore, Jean Francois; Casiniere, Alain de la; Dixsaut, Gilles; Guenel, Pascal; Choulika, Sophie; Pirard, Philippe; Bastuji-Garin, S.; Beani, J.C.; Brin, A.J.; Cadet, J.; Corre, M.F.; Frelon, J.H.; Grob, Jean Jacques; Jeanmougin, M.; Martini-Morel, M.C.; Meunier, L.; Marty, J.P.; Revuz, J.; Reynier, J.P.; Roelands, R.; Stoebner, A.; Vian, L.

    2005-05-01

    After having recalled some physical aspects of ultraviolet radiations (presence in solar radiation, artificial UV radiation, measurement, metrology, UV index, boundary limits), this report describes the biological and health effects of UV radiations (analysis methodology, recall of previous expert reports, biological effects, health effects), addresses human behaviour with respect to UV radiation and exposure to UV radiation, discusses the relationship between cosmetics and UV radiation. It presents the various European and international positions with respect to UV emitting devices (evolution of standards, regulations). Some recommendations are made regarding solar exposure, sun-tanning installations, and other domestic or industrial sources

  19. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  20. Luminescence of Ce3+ at two different sites in ?-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation

    NARCIS (Netherlands)

    Hou, D.; Han, B.; Chen, W.; Liang, H.; Su, Q.; Dorenbos, P.; Huang, Y.; Gao, Z.; Tao, Y.

    2010-01-01

    A series of Ce3+ doped ?-Sr2?2xCexNaxP2O7 phosphor compounds has been prepared using a high-temperature solid-state reaction technique. The luminescence properties under vacuum ultraviolet-UV and x-ray excitation were studied. Luminescence spectra reveal three UV-emitting peaks at about 310, 330,

  1. ACCURATELY CALCULATING THE SOLAR ORIENTATION OF THE TIANGONG-2 ULTRAVIOLET FORWARD SPECTROMETER

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-04-01

    Full Text Available The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit, and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  2. Estimation of hourly ultraviolet solar irradiance in the semi-arid northeast region of Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ricardo C. de; Tiba, Chigueru [Dept. de Energia Nuclear da Univ. Federal de Pernambuco, Recife, Pernambuco (Brazil)

    2008-07-01

    Two computational codes, SPCTRAL2 and SMARTS2, were used for estimating ultraviolet solar irradiance in a locality of the semi-arid region of the Northeast of Brazil. The softwares presented simplicity of use, precision and relative ease in obtaining the input variables: zenith angle, atmospheric pressure in relation to sea level, relative humidity of the air, amount of precipitable water, total ozone and the aerosol optic depths (AOD). All these variables are measured in conventional meteorological stations, except for the aerosol optic depth. The AOD was measured with an apparatus that was constructed with a narrow band LED sensor, centered in 555nm which measures the monochromatic radiation transmission through the terrestrial atmosphere, which can be described by Beer's law. The measurements for obtaining the AOD were carried out during the months of December, 2006 and January, 2007 for Pesqueira-PE (Longitude -36.77 and Latitude 8.4 ) semi-arid region of Pernambuco, at intervals of 10 and 10 minutes, simultaneously. The ultraviolet solar irradiation was measured with a TURV (Total Ultraviolet Radiometer) Eppley Pyranometer on a minute scale. The computational simulations with SPCTRAL2 and SMARTS2 were made considering the following cases: (a) obtention of daily AOD, or be it, coming from the linear extrapolation of all the data along the day (b) obtention of hourly AOD, or be it the linearization by parts (piecewise). In the first case, the results of the simulations of ultraviolet solar irradiance and ultraviolet radiation index show an error of 4% and 13% for solar midday, and 78% at end of afternoon, when compared with the values measured with the TURV pyranometer. These results were significantly improved when using the AOD obtained on hourly bases: an error of 6.7 % for solar midday, a maximum error of 10% between 11 and 13 h, a maximum error of 20% between 10 and 14h and finally a maximum error of 30% between 9 and 15h. (orig.)

  3. Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... New concepts for next generation instrumentation include imaging ultraviolet spectrocoronagraphs and large aperture ultraviolet coronagraph spectrometers. An imaging instrument would be the first to obtain absolute spectral line intensities of the extended corona over a wide field of view. Such images ...

  4. DNA repair synthesis in human skin exposed to ultraviolet radiation used in PUVA (psoralen and UV-A) therapy for psoriasis

    International Nuclear Information System (INIS)

    Bishop, S.C.

    1979-01-01

    The ultraviolet radiation used in psoralen and UV-A (PUVA) therapy stimulated DNA repair activity in normal human skin and in the uninvolved skin from psoriatic patients. The activity detected by autoradiography increased linearly with exposure time. No stimulation was observed when the UV-B component was removed from the incident radiation by filtration through glass. Therefore UV-B damage to DNA was found responsible for the activity detected following exposure to the unfiltered PUVA light source. (author)

  5. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    International Nuclear Information System (INIS)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M.

    1998-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au)

  6. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M. [Climate Stress Laboratory, Beltsville, MD (United States)

    1998-05-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au) 34 refs.

  7. Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells

    KAUST Repository

    Rolston, Nicholas; Printz, Adam D.; Dupont, Stephanie R.; Voroshazi, Eszter; Dauskardt, Reinhold H.

    2017-01-01

    Organic solar cells subjected to environmental stressors such as heat, moisture, and UV radiation can undergo significant mechanical degradation, leading to delamination of layers and device failure. This paper reports the effect these stressors

  8. Spectral variations of UV-A and PAR solar radiation in estuarine waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Silveira, N.; Desa, E.; Matondkar, S; Lotlikar, A

    radiation (400 to 700 nm), PAR and ultraviolet radiation in the range 350-400 nm (UV-A) are presented here. The mean PAR values at the surface were 327 W/m sup(2) and reduced to 84 W/m sup(2) at first optical depth, Z sub(90) (m) in water. The first optical...

  9. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  10. Disinfection of hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: comparison of UV-susceptibilty

    Energy Technology Data Exchange (ETDEWEB)

    Wiedenmann, A; Fischer, B; Straub, U; Wang, C -H; Flehmig, B [Tuebingen Univ. (Germany). Hygiene-Inst.; Schoenen, D [Bonn Univ. (Germany). Hygiene-Inst.

    1993-01-01

    Ultraviolet irradiation is gaining importance as a disinfection procedure for drinking water and in waste water treatment. Since water is one of the main transmission routes of hepatitis A virus the susceptibility of Hepatitis A Virus (HAV) to UV rays is of special interest. MS-2 coliphage resembles HAV in size and structure, is easy to handle, and might therefore serve as indicator organism for the assessment of water quality and for evaluating the quality of water treatment processes. Hepatitis A virus and MS-2 coliphage were suspended in 0.9% sodium chloride solution and were irradiated in a 20-ml quartz cuvette at 254 nm. For a reduction rate of four log units a three times higher UV dose was required with MS-2 than with HAV. (author).

  11. Disinfection of hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: comparison of UV-susceptibilty

    International Nuclear Information System (INIS)

    Wiedenmann, A.; Fischer, B.; Straub, U.; Wang, C.-H.; Flehmig, B.; Schoenen, D.

    1993-01-01

    Ultraviolet irradiation is gaining importance as a disinfection procedure for drinking water and in waste water treatment. Since water is one of the main transmission routes of hepatitis A virus the susceptibility of Hepatitis A Virus (HAV) to UV rays is of special interest. MS-2 coliphage resembles HAV in size and structure, is easy to handle, and might therefore serve as indicator organism for the assessment of water quality and for evaluating the quality of water treatment processes. Hepatitis A virus and MS-2 coliphage were suspended in 0.9% sodium chloride solution and were irradiated in a 20-ml quartz cuvette at 254 nm. For a reduction rate of four log units a three times higher UV dose was required with MS-2 than with HAV. (author)

  12. Disinfection of hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: comparison of UV-susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Widenmann, A.; Fischer, B.; Straub, U.; Wang, C. H.; Flehmig, B.; Schoenen, D. [Abteilung für Allgemeine Hygiene und Umwelthygiene, Hygiene-Institut der Universitat Tubingen, D-7400 Tubingen (Germany)

    1993-07-01

    Ultraviolet irradiation is gaining importance as a disinfection procedure for drinking water and in waste water treatment. Since water is one of the main transmission routes of hepatitis A virus the susceptibility of HAV to UV rays is of special interest. MS-2 coliphage resembles HAV in size and structure, is easy to handle, and might tlierefore serve as indicator organism for the assessment of water quality and for evaluating the quality of water treatment processes. Hepatitis A virus and MS-2 coliphage were suspended in 0.9% sodium chloride solution and were irradiated in a 20-ml quarz cuvette at 254 nm. For a reduction rate of four log units a three times lighter UV dose was required with MS-2 than with HAV.

  13. Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera

    Directory of Open Access Journals (Sweden)

    Thomas C. Wilkes

    2016-10-01

    Full Text Available Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements.

  14. Solar Backscatter UV (SBUV total ozone and profile algorithm

    Directory of Open Access Journals (Sweden)

    P. K. Bhartia

    2013-10-01

    Full Text Available We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8 algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6 is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total

  15. UV-C 13-50 ultraviolet irradiation unit for surface sterilization

    International Nuclear Information System (INIS)

    Bachmann, R.

    1979-01-01

    Brown Boveri have developed new watertight ultraviolet irradiation units for surface sterilization. Their main application is in packing techniques in the foodstuffs and pharmaceutical industries. This article describes the construction, germicidal effect, and applications of these irradiation units. (Auth.)

  16. The solar UV exposure time required for vitamin D3 synthesis in the human body estimated by numerical simulation and observation in Japan

    Science.gov (United States)

    Nakajima, Hideaki; Miyauchi, Masaatsu; Hirai, Chizuko

    2013-04-01

    After the discovery of Antarctic ozone hole, the negative effect of exposure of human body to harmful solar ultraviolet (UV) radiation is widely known. However, there is positive effect of exposure to UV radiation, i.e., vitamin D synthesis. Although the importance of solar UV radiation for vitamin D3 synthesis in the human body is well known, the solar exposure time required to prevent vitamin D deficiency has not been well determined. This study attempted to identify the time of solar exposure required for vitamin D3 synthesis in the body by season, time of day, and geographic location (Sapporo, Tsukuba, and Naha, in Japan) using both numerical simulations and observations. According to the numerical simulation for Tsukuba at noon in July under a cloudless sky, 2.3 min of solar exposure are required to produce 5.5 μg vitamin D3 per 600 cm2 skin. This quantity of vitamin D represents the recommended intake for an adult by the Ministry of Health, Labour and Welfare, and the 2010 Japanese Dietary Reference Intakes (DRIs). In contrast, it took 49.5 min to produce the same amount of vitamin D3 at Sapporo in the northern part of Japan in December, at noon under a cloudless sky. The necessary exposure time varied considerably with the time of the day. For Tsukuba at noon in December, 14.5 min were required, but at 09:00 68.7 min were required and at 15:00 175.8 min were required for the same meteorological conditions. Naha receives high levels of UV radiation allowing vitamin D3 synthesis almost throughout the year. According to our results, we are further developing an index to quantify the necessary time of UV radiation exposure to produce required amount of vitamin D3 from a UV radiation data.

  17. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  18. Solar photocatalytic generation of hydrogen under ultraviolet-visible ...

    Indian Academy of Sciences (India)

    Administrator

    solar energy has been regarded as an attractive solution to resolve the global energy ... simultaneous hydrogen production and H2S decomposi- tion is a highly ... of CdCO3 and ZnCO3 in dilute acetic acid at 60–70°C. Mixing slowly the hot ...

  19. Next Generation UV Coronagraph Instrumentation for Solar Cycle ...

    Indian Academy of Sciences (India)

    ultraviolet coronagraph observations provide the constraints needed to test ... and suprathermal seed particle populations needed for CME shock acceleration ... region magnetic loops, is it ambient coronal gas compressed by a shock, or is it a.

  20. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  1. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    Science.gov (United States)

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  2. Thermal Effect on a CIGS Thin-Film Solar Cell P2 Layer by Using a UV Laser

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-07-01

    Full Text Available This study used ANSYS simulation software for analyzing an ultraviolet (UV (355 nm laser processing system. The laser apparatus was used in a stainless steel CIGS solar cell P2 layer for simulation analysis. CIGS films process order according to SiO2 layer, molybdenum electrode, CIGS absorbed layer, CdS buffered layer, i-ZnO penetrate light layer, TCO front electrode, MgF resist reflected materials, andelectrode materials. The simulation and experimental results were compared to obtain a laser-delineated P2 laser with a low melting and vaporization temperature. According to the simulation results, the laser function time was 135 μs, the UV laser was 0.5 W, and the P2 layer thin films were removed. The experimental results indicated that the electrode pattern of the experiment was similar to that of the simulation result, and the laser process did not damage the base plate. The analysis results confirm that the laser apparatus is effective when applied to a stainless steel CIGS solar cell P2 layer.

  3. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2.

    Science.gov (United States)

    Tao, Shasha; Park, Sophia L; Rojo de la Vega, Montserrat; Zhang, Donna D; Wondrak, Georg T

    2015-12-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and an urgent need exists for improved molecular photoprotective strategies different from (or synergistic with) photon absorption. Recent studies suggest a photoprotective role of cutaneous gene expression orchestrated by the transcription factor NRF2 (nuclear factor-E2-related factor 2). Here we have explored the molecular mechanism underlying carotenoid-based systemic skin photoprotection in SKH-1 mice and provide genetic evidence that photoprotection achieved by the FDA-approved apocarotenoid and food additive bixin depends on NRF2 activation. Bixin activates NRF2 through the critical Cys-151 sensor residue in KEAP1, orchestrating a broad cytoprotective response in cultured human keratinocytes as revealed by antioxidant gene expression array analysis. Following dose optimization studies for cutaneous NRF2 activation by systemic administration of bixin, feasibility of bixin-based suppression of acute cutaneous photodamage from solar UV exposure was investigated in Nrf2(+/+) versus Nrf2(-/-) SKH-1 mice. Systemic administration of bixin suppressed skin photodamage, attenuating epidermal oxidative DNA damage and inflammatory responses in Nrf2(+/+) but not in Nrf2(-/-) mice, confirming the NRF2-dependence of bixin-based cytoprotection. Taken together, these data demonstrate feasibility of achieving NRF2-dependent cutaneous photoprotection by systemic administration of the apocarotenoid bixin, a natural food additive consumed worldwide. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    Science.gov (United States)

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  5. Ultraviolet radiation levels associated with the use of fluorescent general lighting, UV-A and UV-B lamps in the workplace and home

    CERN Document Server

    Whillock, M; MacKinlay, Alistair F; Mundy, S J; Todd, Carl David

    1988-01-01

    A detailed programme of measurements was undertaken by NRPB to determine the ultraviolet irradiance levels likely to be encountered in the workplace and in the home, where fluorescent lighting is used. Assessments have been made of the possible potential risk of the induction of acute effects (photokeratitis, erythema) and of inducing malignant melanoma and non-malignant melanoma skin cancers resulting from exposure to commonly used fluorescent lamps. The optical absorption properties of materials commonly used in diffusers and controllers in commercial and domestic lighting units were also measured. Irradiance data, both weighted (for biological effectiveness) and unweighted, for various lamp types are presented in the report, together with some typical spectral output distributions. The results show that at commonly used illumination levels the UVR emissions from general and special fluorescent lamps presented neither an acute nor a significant chronic hazard. High UV-B emission levels were measured from 'U...

  6. The impact of solar ultraviolet radiation on human health in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Caradee Y. Wright

    2012-10-01

    Full Text Available Photoprotection messages and ‘SunSmart’ programmes exist mainly to prevent skin cancers and, more recently, to encourage adequate personal sun exposure to elicit a vitamin D response for healthy bone and immune systems. Several developed countries maintain intensive research networks and monitor solar UV radiation to support awareness campaigns and intervention development. The situation is different in sub-Saharan Africa. Adequate empirical evidence of the impact of solar UV radiation on human health, even for melanomas and cataracts, is lacking, and is overshadowed by other factors such as communicable diseases, especially HIV, AIDS and tuberculosis. In addition, the established photoprotection messages used in developed countries have been adopted and implemented in a limited number of sub-Saharan countries but with minimal understanding of local conditions and behaviours. In this review, we consider the current evidence for sun-related effects on human health in sub-Saharan Africa, summarise published research and identify key issues. Data on the prevalence of human diseases affected by solar UV radiation in all subpopulations are not generally available, financial support is insufficient and the infrastructure to address these and other related topics is inadequate. Despite these limitations, considerable progress may be made regarding the management of solar UV radiation related health outcomes in sub-Saharan Africa, provided researchers collaborate and resources are allocated appropriately.

  7. New advances in protection against solar ultraviolet radiation in textiles for summer clothing.

    Science.gov (United States)

    Aguilera, José; de Gálvez, María Victoria; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2014-01-01

    Clothing is considered one of the most important tools for photoprotection against harmful solar ultraviolet radiation (UVR). The standard for sun-protective clothing is based on erythema despite other biological effects of UVR on the skin. We analyzed the potential protection against UVR in fabrics destined for summer clothing based on several action spectra. We examined 50 garments classified by type of fabric composition, structure of the fiber yarn and color. The ultraviolet protection factor was calculated based on fabric ultraviolet transmittance corrected for erythema according to the EU standard E-13758 as well as the UVA transmittance of fabrics. UVR protection was also analyzed in base of different action spectra as for previtamin D3, nonmelanoma skin cancer, photoimmunosuppression and photoaging. Most knitted fabrics used for sports T-shirts offered excellent ratings for ultraviolet protection while normal shirts showed very low ratings, particularly against photoaging. The cover is the most influential variable in fabric photoprotection, having an exponential relationship with the UPF. The relation between cover and UVA protection was linearly negative. Information about ultraviolet protection in textiles used for summer clothing should be included in labeling as some types of fabrics, especially those used for shirts, offer very low UVR protection. © 2014 The American Society of Photobiology.

  8. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz [Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic)

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  9. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  10. Evaluation of UV-permeability and photo-oxidisability of organic ultraviolet radiation-absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Neng; Chen, Yuhe, E-mail: yuhec@sina.com; Bao, Yongjie; Zhang, Zeqian; Wu, Zaixing; Chen, Zhangmin

    2015-03-30

    Highlights: • We investigate organic UV radiation-absorbing coatings for use on bamboo surfaces. • The size of glass exactly inserted into sample cell of UV-Vis spectrophotometer. • A model was made to predict UV absorption of coatings. • We examine carbonyl groups change of coatings after ageing. • Two formulations which could effectively protect coating were obtained. - Abstract: Enhancing the durability of the coatings used on bamboo products is essential for increasing their use in outdoor environments. In this study, we investigated organic UV radiation-absorbing coatings for use on bamboo surfaces. The degree of resistance of the coatings, which contained 2-(2-hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chlorinated benzotriazole (BTZ-1), to UV radiation degradation was determined through spectroscopic analysis. The critical BTZ-1 loading amount was determined by analysing the spectroscopic data. Fourier transform infrared spectroscopy was used to elucidate the relationship between the degree of photooxidation of the coatings and their BTZ-1 concentration. The experimental results showed that the coatings provided a high degree of shielding from UV radiation. The critical loading amount was determined to be 1.82 ± 0.05 g BTZ-1/m{sup 2}. The coatings formed using the formulations that contained 3 and 5 wt% BTZ-1 exhibited the lowest degree of photooxidation after exposure to UV radiation.

  11. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation

    OpenAIRE

    Sanjay Singh Baroniya; Sunita Kataria; Govind Prakash Pandey; Kadur N. Guruprasad

    2014-01-01

    A field experiment was conducted to study the impact of the exclusion of the solar UV components on growth, photosynthesis and nitrogen metabolism in soybean (Glycine max) varieties PK-472, Pusa-24, JS 71-05, JS-335, NRC-7 and Kalitur. The plants were grown in specially designed UV exclusion chambers wrapped with filters to exclude UV-B or UV-A/B and transmitted all UV. Exclusion of UV significantly enhanced the growth of the aerial parts as well as the growth of the below ground parts in all...

  12. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  13. Seasonal responses of six Poaceae to differential levels of solar UV-B radiation

    International Nuclear Information System (INIS)

    Deckmyn, G.; Impens, I.

    1999-01-01

    The effects of changes in solar UV-B on the growth and pigmentation of six grass species from cold-temperate grasslands (Lolium perenne, Lolium multiflorum, Festuca arundinacea, Festuca rubra, Phleum pratense and Dactylis glomerata) in spring and summer were studied. The grasses were grown in greenhouses with different foils, resulting in three treatments: no UV-B, 80% of ambient and 90% of ambient UV-BBE (biologically effective UV-B). The results indicated important effects of ambient UV-B levels on grass, but the different species reacted in very different ways. Both morphology and biomass production were influenced by UV-B in some species. However, changes in biomass production did not necessarily occur within the same species as changes in morphology. The grasses were more sensitive in summer. Overall, only F. rubra was positively influenced by UV-B under all circumstances. The biomass of D. glomerata and L. perenne was reduced by UV-B in spring and summer. Morphological changes included reduced height and increased tillering. The sensitivity of the different species was partially explained by their ability to reduce their specific leaf area in response to UV-B. Only the more sensitive species showed increased production of protective pigments. Overall, there were important differences between the effect of a low level of UV-B, and the further increase in UV-B, indicating that several mechanisms are operating at different light levels. (author)

  14. Development of UV-curable liquid for in-liquid fluorescence alignment in ultraviolet nanoimprint lithography

    Science.gov (United States)

    Ochiai, Kento; Kikuchi, Eri; Ishito, Yota; Kumagai, Mari; Nakamura, Takahiro; Nakagawa, Masaru

    2018-06-01

    We studied a fluorescent UV-curable resin suitable for fluorescence alignment in UV nanoimprinting. The addition of a cationic fluorescent dye caused radical photopolymerization of a UV-curable resin by exposure to visible excitation light for fluorescence microscope observation. The microscope observation of a resin film prepared by pressing resin droplets on a silica substrate with a fluorinated silica superstrate revealed that the cationic dye molecules were preferably adsorbed onto the silica surface. It was indicated that the dye molecules concentrated on the silica surface may cause the photocuring. A nonionic fluorescent dye was selected owing to its low polar symmetrical structure and its solubility parameter close to monomers. The fluorescent UV-curable resin with the nonionic dye showed uncured stability to exposure to visible excitation light for 30 min with a light intensity of 8.5 mW cm‑2 detected at 530 nm.

  15. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    Science.gov (United States)

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & sur...

  16. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  17. Ultraviolet radiation levels associated with the use of fluorescent general lighting, UV-A and UV-B lamps in the workplace and home

    International Nuclear Information System (INIS)

    Whillock, M.; Clark, I.E.; McKinlay, A.F.; Todd, C.D.; Mundy, S.J.

    1988-09-01

    A detailed programme of measurements was undertaken by NRPB to determine the ultraviolet irradiance levels likely to be encountered in the workplace and in the home, where fluorescent lighting is used. Assessments have been made of the possible potential risk of the induction of acute effects (photokeratitis, erythema) and of inducing malignant melanoma and non-malignant melanoma skin cancers resulting from exposure to commonly used fluorescent lamps. The optical absorption properties of materials commonly used in diffusers and controllers in commercial and domestic lighting units were also measured. Irradiance data, both weighted (for biological effectiveness) and unweighted, for various lamp types are presented in the report, together with some typical spectral output distributions. The results show that at commonly used illumination levels the UVR emissions from general and special fluorescent lamps presented neither an acute nor a significant chronic hazard. High UV-B emission levels were measured from 'UV-B' lamps used in this study, and exposure to these lamps would result in acute injury within a short time. Great care should be taken in the use of these lamps, and advice should be provided to workers to ensure safe working conditions and procedures. (author)

  18. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  19. CR-39 (PADC) Reflection and Transmission of Light in the Ultraviolet-Near-Infrared (UV-NIR) Range.

    Science.gov (United States)

    Traynor, Nathan B J; McLauchlin, Christopher; Dodge, Kenneth; McGarrah, James E; Padalino, Stephen J; McCluskey, Michelle; Sangster, T C; McLean, James G

    2018-04-01

    The spectral reflection (specular and diffuse) and transmission of Columbia Resin 39 (CR-39) were measured for incoherent light with wavelengths in the range of 200-2500 nm. These results will be of use for the optical characterization of CR-39, as well as in investigations of the chemical modifications of the polymer caused by ultraviolet (UV) exposure. A Varian Cary 5000 was used to perform spectroscopy on several different thicknesses of CR-39. With proper analysis for the interdependence of reflectance and transmittance, results are consistent across all samples. The reflectivity from each CR-39-air boundary reveals an increase in the index of refraction in the near-UV. Absorption observations are consistent with the Beer-Lambert law. Strong absorption of UV light of wavelength shorter than 350 nm suggests an optical band gap of 3.5 eV, although the standard analysis is not conclusive. Absorption features observed in the near infrared are assigned to molecular vibrations, including some that are new to the literature.

  20. Solar Ultraviolet-B radiation monitoring in Khorram Abad city in Iran

    International Nuclear Information System (INIS)

    Gholami, M.; Yoosefi, L.

    2009-01-01

    The increasing evidences show that global depletion of stratospheric ozone layer is caused by pollutant and growing incidence of the skin cancer and cataract is related to the amounts of solar UV radiation reaching the earth's surface. Therefore, the main driving force behind such efforts has been the lack of an appropriate network in scope monitoring of the terrestrial UV radiation. Materials and Methods: The present work was performed at Khorram Abad province, Lorestan, Iran. Khorram Abad (48 d egree ' ,21' E and 30 d egree , 23' N) is approximately 1171m above the mean sea level. UV radiation was measured using a UV-Biometer Model 501, from November 2005 till November 2006. Results: Hourly average UV- index, the effective power and other parameters such as effective UV dose have been m oderate f rom April until the end of August 2006 and very low from November till January 2006. However, in some days, the maximum UVI was in the range of H igh , especially in May. Conclusion: It was observed that the monthly average hourly UV index values in Khorram Abad were never at the extreme range. Chronic UVB exposure could be the major cause of eye's and skin disease in months from April to August, during which most people's activities were performed outdoor in the province of Lorestan.

  1. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    International Nuclear Information System (INIS)

    Inagaki, S; Sueoka, S; Harafuji, K

    2017-01-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress. (paper)

  2. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    Science.gov (United States)

    Inagaki, S.; Sueoka, S.; Harafuji, K.

    2017-06-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.

  3. Pollen and spores as biological recorders of past ultraviolet irradiance

    NARCIS (Netherlands)

    Jardine, P.E.; Fraser, W.T.; Lomax, B.H.; Sephton, M.A.; Shanahan, T.M.; Miller, C.S.; Gosling, W.D.

    2016-01-01

    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our

  4. Combined impact of solar UV-B radiation and selenium treatment on respiratory potential in pumpkins (Cucurbita pepo L.)

    International Nuclear Information System (INIS)

    Germ, M.

    2005-01-01

    The effects of ambient and filtered solar UV-B radiation and of selenium treatment on respiratory potential measured by electron transport system (ETS) activity in pumpkins, Cucurbita pepo L. were studied. Measurements were conducted three times in the growth period. Solar UV-B radiation decreased ETS activity in plants, regardless selenium treatment. The results suggested that the solar UV-B radiation impaired flow of electrons in the respiratory chain. Selenium decreased ETS activity in plants exposed to solar UV-B radiation in the end of the vegetation period

  5. Improving Assessment of Lifetime Solar Ultraviolet Radiation Exposure in Epidemiologic Studies: Comparison of Ultraviolet Exposure Assessment Methods in a Nationwide United States Occupational Cohort.

    Science.gov (United States)

    Little, Mark P; Tatalovich, Zaria; Linet, Martha S; Fang, Michelle; Kendall, Gerald M; Kimlin, Michael G

    2018-06-13

    Solar ultraviolet radiation is the primary risk factor for skin cancers and sun-related eye disorders. Estimates of individual ambient ultraviolet irradiance derived from ground-based solar measurements and from satellite measurements have rarely been compared. Using self-reported residential history from 67,189 persons in a nationwide occupational US radiologic technologists cohort, we estimated ambient solar irradiance using data from ground-based meters and noontime satellite measurements. The mean distance-moved from city of longest residence in childhood increased from 137.6 km at ages 13-19 to 870.3 km at ages ≥65, with corresponding increases in absolute latitude-difference moved. At ages 20/40/60/80, the Pearson/Spearman correlation coefficients of ground-based and satellite-derived solar potential ultraviolet exposure, using irradiance and cumulative radiant-exposure metrics, were high (=0.87-0.92). There was also moderate correlation (Pearson/Spearman correlation coefficients=0.51-0.60) between irradiance at birth and at last-known address, for ground-based and satellite data. Satellite-based lifetime estimates of ultraviolet radiation were generally 14-15% lower than ground-based estimates, albeit with substantial uncertainties, possibly because ground-based estimates incorporate fluctuations in cloud and ozone, which are incompletely incorporated in the single noontime satellite-overpass ultraviolet value. If confirmed elsewhere, the findings suggest that ground-based estimates may improve exposure-assessment accuracy and potentially provide new insights into ultraviolet-radiation-disease relationships in epidemiologic studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si

    International Nuclear Information System (INIS)

    Zhang, Dongyuan; Uchida, Kazuo; Nozaki, Shinji

    2015-01-01

    A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 10 16  cm −3 , and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C −2 –V characteristic confirmed an abrupt pn junction. The photoresponse showed a visible blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO 2 formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO 2 interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO 2 interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was found to be rich in oxygen and

  7. Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongyuan; Uchida, Kazuo; Nozaki, Shinji, E-mail: nozaki@ee.uec.ac.jp [Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu-shi, Tokyo 182-8585 (Japan)

    2015-09-07

    A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 10{sup 16 }cm{sup −3}, and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C{sup −2}–V characteristic confirmed an abrupt pn junction. The photoresponse showed a visible blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO{sub 2} formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO{sub 2} interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO{sub 2} interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was found

  8. Optical and thermal design of 1.5-m aperture solar UV visible and IR observing telescope for Solar-C mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.

    2017-11-01

    The next Japanese solar mission, SOLAR-C, which has been envisaged after successful science operation of Hinode (SOLAR-B) mission, is perusing two plans: plan-A and plan-B, and under extensive study from science objectives as well as engineering point of view. The plan-A aims at performing out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to originate. A baseline orbit for plan-A is a circular orbit of 1 AU distance from the Sun with its inclination at around or greater than 40 degrees. The plan-B aims to study small-scale plasma processes and structures in the solar atmosphere which attract researchers' growing interest, followed by many Hinode discoveries [1], for understanding fully dynamism and magnetic nature of the atmosphere. With plan-B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. The orbit of plan-B is either a solar synchronous polar orbit of altitude around 600 km or a geosynchronous orbit to ensure continuous solar observations. After the decision of any one of the two plans, the SOLAR-C will be proposed for launch in mid-2010s. In this paper, we will present a basic design of one of major planned instrumental payload for the plan-B: the Solar Ultra-violet Visible and near IR observing Telescope (hereafter referred to as SUVIT). The basic concept in designing the SUVIT is to utilize as much as possible a heritage of successful telescope of the Solar Optical Telescope (SOT) aboard Hinode [2]. Major differences of SUVIT from SOT are the three times larger aperture of 1.5 m, which enables to collect one

  9. Ultraviolet radiation response of two heterotropy Antarctic marine bacterial

    International Nuclear Information System (INIS)

    Hernandez, Edgardo A.; Ferreyra, Gustavo A.; Mac Cormack, Walter P.

    2004-01-01

    Two Antarctic marine bacterial strains, were exposed to different irradiance of ultraviolet (UV) solar radiation using several experimental protocols and interferential filters. Results showed that both, UV-A and UV-B radiation produce deleterious effects on two tested bacterial strains. The mortality values under UVB treatments were higher than those observed under UVA treatments. UVvi strain proved to be more resistant to UV radiation than the UVps strain. (author) [es

  10. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  11. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  12. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  13. Electrophysiological and growing aspects of ultraviolet (UV-C) radiation action

    International Nuclear Information System (INIS)

    Karcz, W.

    1992-01-01

    Effects of UV-C (254 nm) radiation on electrical parameters and growth processes in plant cells were studied. It was found in Nitellopsis obtusa cells the UV-C radiation caused transient depolarization of plasmalemma and tonoplast and simultaneous increase in electric conductance. These effects were partly reversible and the degree of the recovery depended on the duration of the exposure, temperature of the medium and area of the irradiation. Exposure of Nitellopsis obtusa cells with large potential difference between vacuole and external medium (more negative than - 140 mV) brought about the generation of an action potential, whose shape depended on the duration of irradiation. In the cells pretreated with IAA in the dark or exposed to visible light, the UV-C irradiation not only abolished the hyper polarization induced by IAA or visible light, but caused a further depolarization. Similar effects of IAA and UV-C on membrane potential were demonstrated in cells of Zea mays L. coleoptile segments. The hyper polarized state created by visible light in Sagittaria leaf cells was also fully suppressed by the radiation. The growth experiments were based on elongation growth of Zea mays L. coleoptile segments and simultaneously measured changes of pH of the incubation medium. It was shown that for high doses of irradiation (1170, 3900, and 5850 J m -2 ) UV-C inhibited elongation growth, whereas at 195 J m -2 stimulation of growth was observed. The administration of IAA (10 -5 M) and FC (10 -6 M) to the incubation medium of coleoptile segments partially abolished the inhibitory effect of UV-C. The pH of the incubation medium showed that the exposure of the segments to UV-C caused inhibition H + -extrusion (or stimulation of H + uptake). The presence of IAA (10 -5 M) or FC (10 -6 M) in the incubation medium of irradiated coleoptile segments promoted H + -extrusion to a level comparable with that produced by IAA or FC in non-irradiated coleoptile segments. It is suggested

  14. The effect of solar ultraviolet radiation (UVR on induction of skin cancers

    Directory of Open Access Journals (Sweden)

    Marta Pacholczyk

    2016-04-01

    Full Text Available Ultraviolet radiation is a physical mutagenic and cancerogenic factor. About 95% of ultraviolet A (UVA (320–400 nm and 5% of UVB (280–320 nm reach the Earth’s surface. Melanin is a natural skin protective factor against UV radiation. Skin cancers associated with long-term exposure to UV radiation are: basal cell carcinoma (BCC, squamous cell carcinoma (SCC and cutaneous malignant melanoma (CMM. The high risk of BCC development is related to acute and repeated exposure to UV causing sunburn. Molecular studies of BBC demonstrated disorders in sonic hedgehog (SHH cell signaling regulation pathway, associated with the suppressor protein patched homolog 1 gene (PTCH1 mutations. The risk of the BCC development is related to the polymorphism of melanokortin-1 receptor gene (MC1R. Tumor P53 gene mutations observed in BCC cells has been classified as secondary genetic changes. In SCC cells UV-induced mutations were mostly related to P53 gene. Increased expression of cyclooxigenase- 2 gene (COX-2 plays a significant role in the development of SCC. Other pathogenetic factors include intensification of the synthesis of pro-inflammatory cytokines (tumor necrosis factor α (TNF-α, interleukin-1 α (IL-1α, IL-1β and IL-6. Currently, the role of UVB has been recognized in the pathogenesis of CMM. In CMM cells the following gene mutations were noted: cyclindependent kinase inhibitor 2A INK4A (p16INK4A, cyclin-dependent kinase 4 (CDK4, Ras, phosphatase and tensin homolog deleted on chromosome 10 (PTEN and proto-oncogene B-Raf (BRAF. The BRAF gene mutations were observed in ~50% of CMM cases. Mutations of P53 gene are not characteristic of CMM cells. Med Pr 2016;67(2:255–266

  15. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  16. Solar ultraviolet radiation measurements at South African and Reunion Island Coastal Sites: An indicator of public sun protection

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available Solar ultraviolet radiation (UVR) has the potential to cause biological harm to humans. Intensity of solar UVR at the Earth’s surface depends on several factors, such as total column ozone and cloud cover, and temporal trends are usually dependent...

  17. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 < A < 300 nm), WG-3 - Far-ultraviolet (lambda greater than 100 and lambda less than 200 nanometers), WG-4 - extreme-ultraviolet (lambda greater than 10 and lambda less than 100 nm), and WG-5 - X-ray (lambda greater than 1 and lambda less than 10 nano meters). The overarching goals of SOLERS22 are to: 1) establish daily solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  18. Real-time measurement of outdoor worker's exposure to solar ultraviolet radiation in Pretoria, South Africa

    Directory of Open Access Journals (Sweden)

    Mmathapelo Makgabutlane

    2015-05-01

    Full Text Available The city of Pretoria in South Africa receives considerable solar ultraviolet radiation (UVR because of its low latitude (22–35°S and relatively clear skies. Certain meteorological factors affect the amount of solar UVR that reaches the ground; the most dominant factors being stratospheric ozone, cloud cover and solar zenith angle. It is known that overexposure to solar UVR may lead to the development of adverse health conditions, the most significant being skin cancer. Outdoor workers spend a significant amount of time outside and are thus susceptible to this risk. In this case study, we estimated, for the first time, the real-time solar UVR exposure of an outdoor worker in Pretoria. Measurements were made on 27 and 28 May 2013 using a handheld ultraviolet index (UVI meter calibrated against a science-grade biometer at the South African Weather Service in Pretoria. Personal exposure estimation was used to discern the pattern in diurnal and annual sunburn risk for the outdoor worker. Ambient UVR levels ranged from 0 UVI to 4.66 UVI and the outdoor worker’s potential exposure estimates regularly exceeded 80% of these levels depending on the time of day. The risk of sunburn was evident; however, actual incidents would depend on individual skin photosensitivity and melanin content, as well as sun protection used. Further research is needed to determine the personal exposure estimations of outdoor workers in other provinces in which solar UVR levels may be equally high, or higher than those in Pretoria.

  19. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems - presentation

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  20. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  1. Treatment of landfill leachate using Solar UV facilitated ...

    African Journals Online (AJOL)

    The use of heterogeneous photocatalytic degradation for the treatment of landfill leachate was investigated in this study. The photocatalytic degradation studies were carried out using Zinc oxide (ZnO) as photocatalyst and the process was facilitated by ultra violet radiation (UV) from sunlight. Characterisation of the raw ...

  2. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.

    Science.gov (United States)

    Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M

    2017-05-01

    Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θ s ) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θ s as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (E NS ), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model

  3. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  4. Thermoluminescent monitoring of the solar ultraviolet radiation with KCl: Eu2+ crystals

    International Nuclear Information System (INIS)

    Chernov, V.; Melendrez, R.; Barboza F, M.

    2000-01-01

    In this work it has been investigating the Tl properties of KCl: Eu 2+ subjected to solar direct radiation. Also it was realized irradiation with the Deuterium and Xenon lamps. It was used a set of filters and a Katos monochromator 0.25 M to determine the spectral response to Tl peaks and a study of them with respect to the duration of the Sun irradiation. After of the Sun irradiation the Tl curves show several peaks between the ambient temperature and 673 K. The relation between peaks depends strongly of the irradiation time and the different solar light wavelength. It is possible to divide the Tl peaks in two groups. The first one (T 473 K) is not too sensitive but is more stable under optical whitening. Here the obtained results are discussed with respect to UV dosemeters development for environment which facilitate to obtain direct measurements of the UV index. (Author)

  5. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. L. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); Yu, P. K. N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong (Hong Kong)

    2014-10-01

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm⁻²p or J m⁻²). The useful range was from ~0.2 to ~30 J cm⁻². The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm⁻², the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recorded values within 15%.

  6. Immunologic effects of whole body ultraviolet (uv) irradiation. II. Defect in splenic adherent cell antigen presentation for stimulation of T cell proliferation

    International Nuclear Information System (INIS)

    Letvin, N.L.; Fox, I.J.; Greene, M.I.; Benacerraf, B.; Germain, R.N.

    1980-01-01

    Ultraviolet (uv) irradiation has been shown to alter many parameters of the immunologic reactivity of mice. The altered responsiveness of uv-irradiated mice, as measured by delayed-type hypersensitivity (DTH) and primary in vitro plaque-forming cell (PFC) responses to T-dependent antigens, has recently been correlated with a functional defect in the splenic adherent cell population of these animals. The present studies describe a model of this altered responsiveness, which allows further clarification of the effects of external uv irradiation on the splenic antigen-presenting cell (APC) in its interactions with T cells

  7. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation

    Directory of Open Access Journals (Sweden)

    Sanjay Singh Baroniya

    2014-12-01

    Full Text Available A field experiment was conducted to study the impact of the exclusion of the solar UV components on growth, photosynthesis and nitrogen metabolism in soybean (Glycine max varieties PK-472, Pusa-24, JS 71-05, JS-335, NRC-7 and Kalitur. The plants were grown in specially designed UV exclusion chambers wrapped with filters to exclude UV-B or UV-A/B and transmitted all UV. Exclusion of UV significantly enhanced the growth of the aerial parts as well as the growth of the below ground parts in all of the six soybean varieties. Nitrate reductase activity (NRA was significantly reduced, whereas leghemoglobin (Lb content, total soluble protein, net photosynthesis (Pn and α-tocopherol content were enhanced after UV exclusion. The exclusion of solar UV-A/B enhanced all parameters to a larger extent than the exclusion of solar UV-B in four of the six varieties of soybean except for NRC-7 and Kalitur. These two varieties responded more to UV-B exclusion compared to UV-A/B exclusion. A significant inverse correlation between the NRA and the number of nodules per plant was observed. The extent of response in all parameters was greater in PK-472 and JS71-05 than that in Kalitur and JS-335 after UV exclusion. The exclusion of UV augmented the growth of nodules, Lb content and α-tocopherol levels and conferred higher rates of Pn to support better growth of nodules. Control plants (+ UV-A/B seemed to fulfill their N demand through the assimilation of NO3− resulting in lower symbiotic nitrogen fixation and higher NR activity.

  8. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  9. An in vitro strategy to evaluate the phototoxicity of solar UV at the molecular and cellular level: application to photoprotection assessment.

    Science.gov (United States)

    Marrot, L; Belaidi, J P; Chaubo, C; Meunier, J R; Perez, P; Agapakis-Causse, C

    1998-09-01

    Skin cancers are among the most common human cancers and have an increasing incidence. The ultraviolet radiation components of sunlight play a major role in skin tumor induction and development. Cellular DNA has been identified as a target for most of the biological effects of UV, and the induction of photodamage is considered as the initiating step of photocarcinogenesis. Thus, effective photoprotection of DNA against harmful overex-posure to solar UV is a critical issue. The efficiency of a sunscreen is usually tested with respect to its ability to prevent skin erythema, but conceivably, more data are required at the molecular and cellular level in order to ascertain protection against photocarcinogenic risk. In the present study, we define a strategy based on the use of various in vitro models and solar-simulated light to evaluate photodamage and photoprotection: -Supercoiled circular plasmid DNA for detection of structural alterations. -The yeast Saccharomyces cerevisiae to evaluate cytotoxicity and genotoxicity. -The single-cell gel electrophoresis or comet assay to determine DNA damage and DNA repair in human keratinocytes. -p53 expression as a hallmark for genotoxic stress. -Induction of pigmentation in human melanocytes. In conditions where light source, spectrum and control of radiation delivery were precisely defined, we have demonstrated that the wide spectrum UVA sunscreen Mexoryl SX protects from the cytotoxicity and genotoxicity of solar UV.

  10. Images in the rocket ultraviolet - UV fluxes of M31 globular clusters

    International Nuclear Information System (INIS)

    Bohlin, R.C.; Cornett, R.H.; Hill, J.K.; Hill, R.S.; Stecher, T.P.

    1988-01-01

    Images obtained by a rocket-borne UV imaging telescope are used here to determine near-UV fluxes for 17 sources in M31 that are optical globular-cluster candidates and for the bright open cluster vdB0 in M31. Far-UV fluxes or flux limits are determined for the same clusters. The m(NUV)-V colors for M31 clusters are similar to those of Galactic clusters, except for the high-metallicity M31 cluster Bo 171. Four of the detected clusters have optical, m(NUV) - V, and m(FUV) - V colors indicating ages of about 100 million years. These four clusters are probably similar to the so-called 'blue globular' clusters of the LMC. The existence of young LMC-type blue globulars and the possible existence of middle-aged metal-rich globulars may indicate that M31 has continued to form globular clusters throughout its life. 39 references

  11. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  12. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer.

    Science.gov (United States)

    Grigalavicius, Mantas; Moan, Johan; Dahlback, Arne; Juzeniene, Asta

    2016-01-01

    Solar ultraviolet (UV) radiation varies with latitude, time of day, and season. Both spectral UV composition and ambient UV dose lead to different health outcomes at different latitudes. Finding the optimal time for sun exposure, whereby the positive effects of UV exposure (vitamin D) are facilitated and the negative effects (skin cancer, photoimmunosuppression) avoided are the most important consideration in modern skin cancer prevention programs. This paper focuses on the latitude dependency of UVB, UVA, vitamin D production, and skin cancer risk in Caucasians. Biologically effective UVB (280-315 nm) and UVA (315-400 nm) doses were calculated using radiative transfer models with appropriate climatologic data for selected locations. Incidences of squamous cell carcinoma (SCC) and cutaneous melanoma (CM) were retrieved from cancer registries and published articles. Annual doses of UVA radiation decrease much less with increasing latitude than annual doses of UVB. Incidences of CM also decrease less steeply with increasing latitude than incidences of SCC. As SCC is caused mainly by UVB, these observations support the assumption that UVA plays an important role in the development of CM. The variations in UVA (relevant to CM) and UVB (relevant to vitamin D production) over 1 day differ: the UVB : UVA ratio is maximal at noon. The best way to obtain a given dose of vitamin D with minimal carcinogenic risk is through a non-burning exposure in the middle of the day, rather than in the afternoon or morning. © 2015 The International Society of Dermatology.

  13. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    Science.gov (United States)

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  14. 77 FR 22331 - Submission for OMB Review; Comment Request; Solar Cell: A Mobile UV Manager for Smart Phones...

    Science.gov (United States)

    2012-04-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Submission for OMB Review; Comment Request; Solar Cell: A Mobile UV Manager for Smart Phones Phase II (NCI) Summary: Under the... control number. Proposed Collection: Title: Solar Cell: A Mobile UV Manager for Smart Phones Phase II (NCI...

  15. Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2011-12-01

    Full Text Available Spectral ultraviolet (UV irradiance has been observed near Barrow, Alaska (71° N, 157° W between 1991 and 2011 with an SUV-100 spectroradiometer. The instrument was historically part of the US National Science Foundation's UV Monitoring Network and is now a component of NSF's Arctic Observing Network. From these measurements, trends in monthly average irradiance and their uncertainties were calculated. The analysis focuses on two quantities, the UV Index (which is affected by atmospheric ozone concentrations and irradiance at 345 nm (which is virtually insensitive to ozone. Uncertainties of trend estimates depend on variations in the data due to (1 natural variability, (2 systematic and random errors of the measurements, and (3 uncertainties caused by gaps in the time series. Using radiative transfer model calculations, systematic errors of the measurements were detected and corrected. Different correction schemes were tested to quantify the sensitivity of the trend estimates on the treatment of systematic errors. Depending on the correction method, estimates of decadal trends changed between 1.5% and 2.9%. Uncertainties in the trend estimates caused by error sources (2 and (3 were set into relation with the overall uncertainty of the trend determinations. Results show that these error sources are only relevant for February, March, and April when natural variability is low due to high surface albedo. This method of addressing measurement uncertainties in time series analysis is also applicable to other geophysical parameters. Trend estimates varied between −14% and +5% per decade and were significant (95.45% confidence level only for the month of October. Depending on the correction method, October trends varied between −11.4% and −13.7% for irradiance at 345 nm and between −11.7% and −14.1% for the UV Index. These large trends are consistent with trends in short-wave (0.3–3.0 μm solar irradiance measured with pyranometers at NOAA

  16. UV-induced skin damage

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T.

    2003-01-01

    Solar radiation induces acute and chronic reactions in human and animal skin. Chronic repeated exposures are the primary cause of benign and malignant skin tumors, including malignant melanoma. Among types of solar radiation, ultraviolet B (290-320 nm) radiation is highly mutagenic and carcinogenic in animal experiments compared to ultraviolet A (320-400 nm) radiation. Epidemiological studies suggest that solar UV radiation is responsible for skin tumor development via gene mutations and immunosuppression, and possibly for photoaging. In this review, recent understanding of DNA damage caused by direct UV radiation and by indirect stress via reactive oxygen species (ROS) and DNA repair mechanisms, particularly nucleotide excision repair of human cells, are discussed. In addition, mutations induced by solar UV radiation in p53, ras and patched genes of non-melanoma skin cancer cells, and the role of ROS as both a promoter in UV-carcinogenesis and an inducer of UV-apoptosis, are described based primarily on the findings reported during the last decade. Furthermore, the effect of UV on immunological reaction in the skin is discussed. Finally, possible prevention of UV-induced skin cancer by feeding or topical use of antioxidants, such as polyphenols, vitamin C, and vitamin E, is discussed

  17. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  18. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels

    DEFF Research Database (Denmark)

    Boesgaard, Kristine Stove; Albert, Kristian Rost; Ro-Poulsen, Helge

    2012-01-01

    Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion s...

  19. Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation

    International Nuclear Information System (INIS)

    Häder, D.P.; Watanabe, M.; Furuya, M.

    1986-01-01

    The effect of solar radiation and monochromatic UV radiation on the motility of the filamentous cyanobacterium Phormidium uncinatum was determined. Solar radiation (mid-day, in midsummer at a location near Lisboa, Portugal) was found to impair motility within about 30 min. This effect is neither a result of a temperature increase nor of visible light. The spectral sensitivity determined using the Okazaki Largé Spectrograph shows the maximal effectiveness of radiation of ≤300 nm. The short time requirement for the response and the lack of any photoreactivation of motility argues against DNA being the UV target. Investigations using reagents diagnostic of superoxide free radicals and singlet oxygen failed to confirm the involvement of photodynamic effects as the molecular mechanism causing UV inhibition of motility

  20. Cell-cycle kinetics and ultraviolet light survival in UV-1, a Chinese hamster ovary cell mutant defective in post-replication recovery

    International Nuclear Information System (INIS)

    Collins, A.

    1982-01-01

    UV-I, an ultraviolet-sensitive mutant of CHO-KI, is abnormally slow to recover from the inhibition of DNA synthesis caused by u.v. irradiation. When synchronized UV-I cells are irradiated in G 1 , their movement into S phase is unaltered, but thymidine incorporation is depressed. When irradiated in S phase, again incorporation is more depressed, and S phase suffers a greater delay in UV-I than in the parent cell. UV-I and its parent have similar capacities for excision repair of u.v.-induced damage inflicted in G 1 , and so enter S phase with similar amounts of unrepaired damage. The single-cell survival was measured after irradiation at different points in the cell cycle. The mutant and parent cells have similar values of D 0 (mean lethal dose) except in mitosis, when the parent cell shows markedly greater resistance to u.v. irradiation. Dsub(q) (quasi-threshold dose) is fairly constant for the parent cell, but in UV-I it falls to a minimum in S phase. The responses of UV-I to u.v. irradiation are generally consistent with its known defect in post-replication recovery, i.e. the ability to join up the abnormally small DNA fragments synthesized on a u.v.-damaged template. (author)

  1. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.

  2. Challenge and perspective: the relevance of ultraviolet (UV) radiation and the vitamin D endocrine system (VDES) for psoriasis and other inflammatory skin diseases.

    Science.gov (United States)

    Reichrath, Jörg; Saternus, Roman; Vogt, Thomas

    2017-03-16

    During evolution, the ability of many organisms to synthesize vitamin D photochemically represented, and still represents, a major driving factor for the development of life on earth. In humans because not more than 10-20% of the requirement of vitamin D can be satisfied by the diet (under most living conditions in the US and Europe), the remaining 80-90% need to be photochemically synthesized in the skin through the action of solar or artificial ultraviolet-B (UV-B) radiation. The skin is a key organ of the human body's vitamin D endocrine system (VDES), representing both the site of vitamin D synthesis and a target tissue for biologically active vitamin D metabolites. Human keratinocytes contain the enzymatic machinery (CYP27B1) for the synthesis of the biologically most active natural vitamin D metabolite 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), representing an autonomous vitamin D 3 pathway. Cutaneous production of 1,25(OH) 2 D 3 may mediate intracrine, autocrine and paracrine effects on keratinocytes and on neighboring cells. Many skin cells (including keratinocytes, sebocytes, fibroblasts, melanocytes, macrophages and other skin immune cells) express the vitamin D receptor (VDR), an absolute pre-requisite for exerting genomic effects of 1,25(OH) 2 D 3 and analogs. The VDR is a member of the superfamily of trans-acting transcriptional regulatory factors, which also contains the steroid and thyroid hormone receptors as well as the retinoid-X receptors (RXR) and retinoic acid receptors (RAR). A large body of evidence, including cDNA microarray analyses of mRNAs, indicates that as many as 500-1000 genes may be controlled by VDR ligands that regulate a broad variety of cellular functions including growth, differentiation, and apoptosis. Clinical and laboratory investigations, including the observation that 1,25(OH) 2 D 3 is very effective in inducing the terminal differentiation and in inhibiting the proliferation of cultured human keratinocytes have resulted

  3. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    Science.gov (United States)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  4. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    International Nuclear Information System (INIS)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.; Bonnet, R.M.; NASA, Marshall Space Flight Center, Huntsville, AL; ESA, Paris, France)

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references

  5. The First JFET-based Silicon Carbide Active Pixel Sensor UV Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is critically important in the fields of space astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc....

  6. The First JFET-Based Silicon Carbide Active Pixel Sensor UV Imager, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is needed in the fields of astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc. proposes to develop a...

  7. Solar Extreme UV radiation and quark nugget dark matter model

    Science.gov (United States)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  8. The minimal melanogenesis dose/minimal erythema dose ratio declines with increasing skin pigmentation using solar simulator and narrowband ultraviolet B exposure

    DEFF Research Database (Denmark)

    Ravnbak, Mette H; Philipsen, Peter A; Wulf, Hans Christian

    2010-01-01

    To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure.......To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure....

  9. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  10. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  11. GALEX FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Worseck, Gabor; Prochaska, J. Xavier

    2011-01-01

    We study the small population of high-redshift (z em >2.7) quasars detected by the Galaxy Evolution Explorer(GALEX), whose far-UV emission is not extinguished by intervening H I Lyman limit systems. These quasars are of particular importance to detect intergalactic He II absorption along their sight lines. We correlate almost all verified z em >2.7 quasars to the GALEX GR4 source catalog covering ∼ 25,000 deg 2 , yielding 304 sources detected at signal-to-noise ratio (S/N) >3. However, ∼50% of these are only detected in the GALEX NUV band, signaling the truncation of the FUV flux by low-redshift optically thick Lyman limit systems. We exploit the GALEX UV color m FUV - m NUV to cull the most promising targets for follow-up studies, with blue (red) GALEX colors indicating transparent (opaque) sight lines. Extensive Monte Carlo simulations indicate an He II detection rate of ∼60% for quasars with m FUV - m NUV ∼ em ∼ 3 to be most promising for Hubble Space Telescope follow-up, with an additional 114 quasars if we consider S/N >2 detections in the FUV. Combining the statistical properties of H I absorbers with the Sloan Digital Sky Survey (SDSS) quasar luminosity function, we predict a large all-sky population of ∼200 quasars with z em >2.7 and i ∼ 304 em ∼ em ∼ em ∼< 3.5 quasars have likely underestimated their space density by selecting intergalactic medium sight lines with an excess of strong H I absorbers.

  12. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    Science.gov (United States)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  13. Solar ultraviolet light potentiates stannous chloride effects as a DNA damaging agent: a spectrophotometrical study

    International Nuclear Information System (INIS)

    Mattos, J.C.P. de; Bernardo-Filho, M.; Leitao, A.C.; Caldeira-de-Araujo, A.; Lage, C.; Leitao, A.C.

    1997-01-01

    Full text. Stannous chloride (Sn Cl 2 ) is a reducing agent widely used to reduce 99m Tc in several radio pharmaceuticals compounds. In spite of being used in nuclear medicine, its genotoxic effects are under investigation in our laboratory. In E. coli, Sn Cl 2 has been shown to have lethal and mutagenic effects, which are thought to occur mainly via active oxygen species. In order to detect some possible direct influence of Sn Cl 2 on nucleic acid, DNA, nucleotides and isolated bases were allowed to react with S N Cl 2 in an in vitro system and the effects analyzed spectro photometrically. Since Sn Cl 2 absorbs light in the UV region, we expected that UV could modify the Sn Cl 2 effects on DNA. Our results indicate that: a. Sn Cl 2 or UV (312 nm, 10 5 J/m 2 ) alone caused only slight alterations in the 260-nm absorption peak of supercoiled plasmid DNA (p U C 9.1); b. Sn Cl 2 + UV (312 nm, 10 5 J/m 2 ) led DNA (p U C 9.1) to a complete loss of its characteristic absorption in the 260-nm region; and c. when reacting with isolated A T P or T T P, Sn Cl 2 + UV (312 nm, 5 x 10 4 J/m 2 ) caused a significant decrease in their 260-nm absorption peaks, as compared to Sn CL 2 alone. Put together, our results indicate that Sn Cl 2 effects are potentiated by the action of solar UV light

  14. Beneficial and Detrimental Effects of UV on Aquatic Organisms: Implications of Spectral Variation

    NARCIS (Netherlands)

    Williamson, C.E.; Neale, P.J.; Grad, G.; Lange, de H.J.; Hargreaves, B.R.

    2001-01-01

    Solar ultraviolet radiation (UVR) may have beneficial as well as detrimental effects on living systems. For example, UV-B radiation (280¿320 nm) is generally damaging, while UV-A radiation (320¿400 nm) may cause damage or stimulate beneficial photorepair of UV-B damage. The nature of both direct and

  15. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  16. Robust Ultraviolet-Visible (UV-Vis) Partial Least-Squares (PLS) Models for Tannin Quantification in Red Wine.

    Science.gov (United States)

    Aleixandre-Tudo, José Luis; Nieuwoudt, Helené; Aleixandre, José Luis; Du Toit, Wessel J

    2015-02-04

    The validation of ultraviolet-visible (UV-vis) spectroscopy combined with partial least-squares (PLS) regression to quantify red wine tannins is reported. The methylcellulose precipitable (MCP) tannin assay and the bovine serum albumin (BSA) tannin assay were used as reference methods. To take the high variability of wine tannins into account when the calibration models were built, a diverse data set was collected from samples of South African red wines that consisted of 18 different cultivars, from regions spanning the wine grape-growing areas of South Africa with their various sites, climates, and soils, ranging in vintage from 2000 to 2012. A total of 240 wine samples were analyzed, and these were divided into a calibration set (n = 120) and a validation set (n = 120) to evaluate the predictive ability of the models. To test the robustness of the PLS calibration models, the predictive ability of the classifying variables cultivar, vintage year, and experimental versus commercial wines was also tested. In general, the statistics obtained when BSA was used as a reference method were slightly better than those obtained with MCP. Despite this, the MCP tannin assay should also be considered as a valid reference method for developing PLS calibrations. The best calibration statistics for the prediction of new samples were coefficient of correlation (R 2 val) = 0.89, root mean standard error of prediction (RMSEP) = 0.16, and residual predictive deviation (RPD) = 3.49 for MCP and R 2 val = 0.93, RMSEP = 0.08, and RPD = 4.07 for BSA, when only the UV region (260-310 nm) was selected, which also led to a faster analysis time. In addition, a difference in the results obtained when the predictive ability of the classifying variables vintage, cultivar, or commercial versus experimental wines was studied suggests that tannin composition is highly affected by many factors. This study also discusses the correlations in tannin values between the methylcellulose and protein

  17. Personal exposure distribution of solar erythemal ultraviolet radiation in tree shade over summer

    International Nuclear Information System (INIS)

    Parisi, A.V.; Wong, J.C.F.

    2000-01-01

    The personal radiant exposure distribution of solar erythemal UV in tree shade for an upright posture was measured, with measurements over the whole summer for a total of 17 trees. For each tree, the personal radiant exposure distribution was measured for both the morning and afternoon periods. The exposure ratios averaged over all the trees and over the morning and afternoon periods ranged from 0.16 to 0.49 for the different anatomical sites. A numerical model was employed to estimate the UV radiant exposure to humans in tree shade over the entire summer. The body sites with the higher exposure ratios in the tree shade were the vertex of the head, shoulders and forearms with radiant exposures over the summer of 1300 MED to the vertex of the head and 1100 MED to the shoulders and forearms. These radiant exposures in the shade are substantially higher than the ambient erythemal UV measured in full sun on a horizontal plane over a full summer at a more temperate northern hemisphere latitude. The average radiant exposures per day to each anatomical site for a complete day in the tree shade ranged from 4.6 to 14.6 MED. This research has provided new data that is essential to quantify human UV exposure during outdoor activities. (author)

  18. Effects of thermal treatment on the MgxZn1−xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors

    International Nuclear Information System (INIS)

    Tian, Chunguang; Jiang, Dayong; Tan, Zhendong; Duan, Qian; Liu, Rusheng; Sun, Long; Qin, Jieming; Hou, Jianhua; Gao, Shang; Liang, Qingcheng; Zhao, Jianxun

    2014-01-01

    Highlights: • Single-phase wurtzite/cubic Mg x Zn 1−x O films were grown by RF magnetron sputtering technique. • We focus on the red-shift caused by annealing the Mg x Zn 1−x O films. • MSM-structured visible-blind and solar-blind UV photodetectors were fabricated. - Abstract: A series of single-phase Mg x Zn 1−x O films with different Mg contents were prepared on quartz substrates by RF magnetron sputtering technique using different MgZnO targets, and annealed under the atmospheric environment. The absorption edges of Mg x Zn 1−x O films can cover the whole near ultraviolet and even the whole solar-blind spectra range, and the solar-blind wurtzite/cubic Mg x Zn 1−x O films have been realized successfully by the same method. In addition, the absorption edges of annealed films shift to a long wavelength, which is caused by the diffusion of Zn atoms gathering at the surface during the thermal treatment process. Finally, the truly solar-blind metal-semiconductor-metal structured photodetectors based on wurtzite Mg 0.445 Zn 0.555 O and cubic Mg 0.728 Zn 0.272 O films were fabricated. The corresponding peak responsivities are 17 mA/W at 275 nm and 0.53 mA/W at 250 nm under a 120 V bias, respectively

  19. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water

    International Nuclear Information System (INIS)

    Ren, Zhijun; Zhang, Lin; Shi, Yue; Leng, Xiaodong; Shao, Jingchao

    2016-01-01

    The patented technology of a High Gradient Magnetic Separation (HGMS)-Ultraviolet (UV) composite process was used to treat ballast water. Staphylococcus aureus (S. aureus) was selected as the reference bacteria. After treatment by the HGMS-UV process, the concentration of S. aureus on the log 10 scale was lower than 2 at different flow rates, S. aureus suffered the most serious damage, and K + leakage of the bacteria was 1.73 mg/L higher than separate 60 min UV irradiation (1.17 mg/L) and HGMS (0.12 mg/L) processes. These results demonstrated that the HGMS-UV composite process was an effective approach to treat ballast water. Further, the HGMS process had synergistic action on the subsequent UV irradiation process and accelerated cell membrane damage. Meanwhile, the results of superoxide dismutase (SOD) activities of bacteria and DNA band analyses indicated that the inactivation mechanisms were different for HGMS and UV irradiation. - Highlights: •The HGMS process had synergistic action on the subsequent UV irradiation process. •HGMS directly influenced the active center of a metal enzyme and did not cause damage to DNA. •UV irradiation was found to depend on the production of free radicals to affect the bacterial DNA and enzyme activity.

  20. Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis

    International Nuclear Information System (INIS)

    Haeder, D.-P.

    1986-01-01

    The effect of solar irradiation on the percentage of motile cells, their average speed and their phototactic orientation to white actinic light was studied in the flagellate, Euglena gracilis. Unfiltered solar radiation in midsummer during mid-day at a location near Lisboa, Portugal, was found to impair motility within 2 h. This effect is exclusively due to the UV-B component of the radiation and not due to UV-A, visible light or a temperature increase. Likewise, phototactic orientation was drastically impaired. Reduction of the solar UV-B irradiation by insertion of an ozone-flooded plexiglass cuvette partially reduced the inhibition and covering the cuvettes with glass prevented any decrease in motility and photoorientation. Similar results were found with artificial irradiation (Xe lamps). After inoculation, the motility of the population follows an optimum curve (optimum at 8 days). Also, the UV-B effect on motility was smallest after about one week and increased for younger and older cultures. (author)

  1. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Rafelski, Marc [NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Acquaviva, Viviana [New York City College of Technology, Brooklyn, NY 11201 (United States); Brown, Thomas M.; Coe, Dan; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lee, Kyoung-soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Siana, Brian D. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-09-20

    We estimate the UV continuum slope, β, for 923 galaxies in the range 1 < z < 8 in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at 1 < z < 2 down to an absolute magnitude M{sub UV}=−14(∼0.006 L{sub z=1}{sup ∗};0.02 L{sub z=0}{sup ∗}), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range 1 < z < 2 are significantly bluer than local dwarf galaxies. We find their mean (median) values <β > = – 1.382(– 1.830) ± 0.002 (random) ± 0.1 (systematic). We find comparable scatter in β (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than z > 2 galaxies. We study the trends of β with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, dβ/dM = –0.11 ± 0.01, and no evolution in dβ/dM with redshift. A modest increase in dust reddening with redshift and luminosity, ΔE(B – V) ∼ 0.1, and a comparable increase in the dispersion of dust reddening at z < 2, appears likely to explain the observed trends. At z > 2, we find trends that are consistent with previous works; combining our data with the literature in the range 1 < z < 8, we find a color evolution with redshift, dβ/dz = –0.09 ± 0.01 for low luminosity (0.05 L{sub z=3}{sup ∗}), and dβ/dz = –0.06 ± 0.01 for medium luminosity (0.25 L{sub z=3}{sup ∗}) galaxies.

  2. Solar Extreme UV radiation and quark nugget dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  3. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection

    OpenAIRE

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Fran?oise

    2014-01-01

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320–400 nm and UVB, 280–320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinic...

  5. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune

    International Nuclear Information System (INIS)

    Scherer, S.; Chen, T.W.; Boeger, P.

    1988-01-01

    A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported

  6. Survey Efficiency of Ultraviolet and Zinc Oxide Process (UV/ZnO for Removal of Diazinon Pesticide from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2015-03-01

    Full Text Available The presence of persistent organic pollutants and toxics (e.g., pesticides in ground, surface, and drinking water resources combined with the inability of conventional treatment methods to remove these pollutants have led to the development of advanced oxidation processes. Nowadays, nanophotocatalyst processes are considered as clean and environmentally-friendly treatment methods that can be extensively used for removing contaminants. The objective of the present study was to determine the efficiency of the ultraviolet and zinc oxide (UV/ZnO process in the removal of diazinon pesticide from aqueous solutions. For the purposes of this study, samples were adjusted in a batch reactor at five different detention times. The pH levels used were 3, 7, and 9. Irradiation was performed using a 125 W medium-pressure mercury lamp. The diazinon concentrations of the samples were 100 and 500 µg/L and the concentrations of zinc oxide nanoparticles were 50, 100, and 150 mg/L. The highest degradation efficiency was observed at pH 7 (mean = 80.92 30.3, while the lowest was observed for pH 3 (mean 67.11 24.49. Results showed that the optimal concentration of nanoparticles (6-12 nm was 100 mg L-1.

  7. The use of epoxidised palm oil products (EPOP) for the synthesis of radiation curable resins. II. Ultraviolet (UV) curing of epoxidised RBD palm oil acrylate (EPOLA)

    International Nuclear Information System (INIS)

    Mohd Hilmi bin Mahmood; Hussin bin Mohd Nor; Hamirin bin Kifli; Masni bin Abdul Ragman; Azman bin Rafei

    1991-01-01

    Epoxidised RBD palm olein acrylate (EPOLA) and polyurethane acrylate (PUA) prepared at UTN laboratory were used as base polymers or oligomers in the formulations of ultraviolet (UV) curable resins. Mono-, di- and trifunctional monomers were utilized both as crosslinkers as well as for diluents. Curing was done by means of 20 cm wide IST UV machine with the conditions of 8A current and 4m/min conveyor speed. The properties of the cured films were investigated by using pencil hardness tester and gel content analysis

  8. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    Science.gov (United States)

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a

  9. Comparison of Five Modeling Approaches to Quantify and Estimate the Effect of Clouds on the Radiation Amplification Factor (RAF) for Solar Ultraviolet Radiation

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ultraviolet Radiation (UV) data collected at 21 US Environmental Protection Agency sites throughout the continental US, Alaska, Hawaii, and the US Virgin Islands...

  10. Cytogenetic, cellular, and developmental responses in antarctic sea urchins (Sterechinus neumayeri) following laboratory ultraviolet-B and ambient solar radiation exposures

    International Nuclear Information System (INIS)

    Anderson, S.; Hoffman, J.; Wild, G.; Bosch, I.; Karentz, D.

    1993-01-01

    Increasing ultraviolet-B radiation as a consequence of springtime ozone depletion, could harm antarctic ecosystems. This study uses several techniques for studying genotoxic effects to evaluate UV-B effects in sea urchins from Antarctica. 6 refs., 2 figs

  11. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    Science.gov (United States)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  12. Ultraviolet (UV and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Jin Yao

    2013-05-01

    Full Text Available Ultraviolet (UV radiation and reactive oxygen species (ROS impair the physiological functions of retinal pigment epithelium (RPE cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD. The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER stress-AMP activated protein kinase (AMPK signaling axis in UV and hydrogen peroxide (H2O2-treated RPE cells. UV and H2O2 induced an early ceramide production, profound ER stress and AMPK activation. Pharmacological inhibitors against ER stress (salubrinal, ceramide production (fumonisin B1 and AMPK activation (compound C suppressed UV- and H2O2-induced RPE cell apoptosis. Conversely, cell permeable short-chain C6 ceramide and AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide mimicked UV and H2O2’s effects and promoted RPE cell apoptosis. Together, these results suggest that UV/H2O2 activates the ceramide-ER stress-AMPK signaling axis to promote RPE cell apoptosis.

  13. Effects of enhanced ultraviolet-B radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances in two different moss species.

    Science.gov (United States)

    Hui, Rong; Zhao, Ruiming; Song, Guang; Li, Yixuan; Zhao, Yang; Wang, Yanli

    2018-05-01

    A simulation experiment was conducted to explore the influence of enhanced ultraviolet-B (UV-B) radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances of mosses Bryum argenteum and Didymodon vinealis isolated from biological soil crusts (BSCs) growing in a revegetated area of the Tengger Desert, China. Four levels of UV-B radiation and two gradients of water regime were employed. Compared with their controls, amounts of total flavonoids, chlorophyll, carotenoids, soluble sugars, and soluble proteins significantly decreased (p argenteum, D. vinealis was more resistant to enhanced UV-B and water deficit singly and in combination. These results suggest that the damage of enhanced UV-B on both species might be alleviated by water deficit. This alleviation is important for understanding the response of BSCs to UV-B radiation in future global climate change. This also provides novel insights into assessment damages of UV-B to BSC stability in arid and semiarid regions.

  14. Ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, P. J.; Abraham, N. L.; Braesicke, P.; Pyle, J. A.

    2015-11-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term Solar Radiation Management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks such as ozone changes under this scenario. Including the composition changes, we find large reductions in surface UV-B irradiance, with implications for vitamin D production, and increases in surface ozone concentrations, both of which could be important for human health. We highlight that both tropospheric and stratospheric ozone changes should be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  15. Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.

    Science.gov (United States)

    Tousey, R; Limansky, I

    1972-05-01

    A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.

  16. Solar ultraviolet radiation in Syria measurements and relationship with skin cancer incidence

    International Nuclear Information System (INIS)

    Othman, I; Baydon, S.A.; Dawood, S.

    1994-11-01

    Seasonal variations of solar UVB (285-320) and UVA (320-400) were measured in three sites in Syria (33-37 N sup O) for two years: 1992-1993. UVB measurements were performed using polysulphone films and Robertson-Berger meter, while UVA measurements were done by NVA intensity meter. Two sets of measurements were carried out : - Maximal daily doses three times a week (every other day) - Diurnal variations from sun-rise to sun-set every two hours twice a month (every fortnight). The biological consequences of ultraviolet radiation withreference to some epidemiological data of skin cancer incidence in Syria since 1980 were discussed .(author). 36 refs., 21 figs., 11 tabs

  17. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    Science.gov (United States)

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide. © 2016 Phycological Society of America.

  18. A study on the relationship between incoming solar UV radiation and cloud cover

    International Nuclear Information System (INIS)

    Daoo, V.J.

    1992-01-01

    In this study an empirical relationship between the incoming solar UV radiation and concurrently measured cloud cover at Bombay (19 o 01'N, 72 o 55'E), based on data pertaining to two year (1986-1987) period is established. It is compared with a similar relationship used elsewhere and found to differ in its form as well as in the regression coefficients. Possible reasons for this discrepancy are discussed. Conditions under which the two relationships agree are also examined. (author)

  19. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  20. 77 FR 4334 - Proposed Collection; Comment Request; Solar Cell: A Mobile UV Manager for Smart Phones (NCI)

    Science.gov (United States)

    2012-01-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request; Solar Cell: A Mobile UV Manager for Smart Phones (NCI) SUMMARY: In compliance with the... Manager for Smart Phones [[Page 4335

  1. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight

    Science.gov (United States)

    Nicholson, Wayne L.; Schuerger, Andrew C.; Setlow, Peter

    2005-01-01

    The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.

  2. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight

    International Nuclear Information System (INIS)

    Nicholson, Wayne L.; Schuerger, Andrew C.; Setlow, Peter

    2005-01-01

    The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments

  3. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Wayne L. [Department of Microbiology and Cell Science, University of Florida, Mail Code UF-1, Building M6-1025/SLSL, Kennedy Space Center, FL 32899 (United States)]. E-mail: WLN@ufl.edu; Schuerger, Andrew C. [Department of Plant Pathology, University of Florida, Mail Code UF-1, Space Life Sciences Laboratory, Kennedy Space Center, FL 32899 (United States)]. E-mail: acschuerger@ifas.ufl.edu; Setlow, Peter [Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030 (United States)]. E-mail: setlow@nso2.uchc.edu

    2005-04-01

    The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.

  4. Determination of daily solar ultraviolet radiation using statistical models and artificial neural networks

    Directory of Open Access Journals (Sweden)

    F. J. Barbero

    2006-09-01

    Full Text Available In this study, two different methodologies are used to develop two models for estimating daily solar UV radiation. The first is based on traditional statistical techniques whereas the second is based on artificial neural network methods. Both models use daily solar global broadband radiation as the only measured input. The statistical model is derived from a relationship between the daily UV and the global clearness indices but modulated by the relative optical air mass. The inputs to the neural network model were determined from a large number of radiometric and atmospheric parameters using the automatic relevance determination method, although only the daily solar global irradiation, daily global clearness index and relative optical air mass were shown to be the optimal input variables. Both statistical and neural network models were developed using data measured at Almería (Spain, a semiarid and coastal climate, and tested against data from Table Mountain (Golden, CO, USA, a mountainous and dry environment. Results show that the statistical model performs adequately in both sites for all weather conditions, especially when only snow-free days at Golden were considered (RMSE=4.6%, MBE= –0.1%. The neural network based model provides the best overall estimates in the site where it has been trained, but presents an inadequate performance for the Golden site when snow-covered days are included (RMSE=6.5%, MBE= –3.0%. This result confirms that the neural network model does not adequately respond on those ranges of the input parameters which were not used for its development.

  5. Improved UV-B screening capacity does not prevent negative effects of ambient UV irradiance on PSII performance in High Arctic plants. Results from a six year UV exclusion study

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2010-01-01

    Long-term responses of ambient solar ultraviolet (UV) radiation were investigated on Salix arctica and Vaccinium uliginosum in a High Arctic heath ecosystem in Zackenberg, northeast Greenland. Over a period of six years, UV exclusion was conducted in the growing season by means of filters: 60% UV......, exposing the vegetation to high spring UV-B, and to be present in the future to the degree the ozone layer is not fully recovered....

  6. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    1995-06-01

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  7. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  8. Thermoluminescent monitoring of the solar ultraviolet radiation with KCl: Eu{sup 2+} crystals; Monitoreo termoluminiscente de la radiacion solar ultravioleta con cristales de KCl: Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.; Melendrez, R.; Barboza F, M. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-88, Hermosillo, Sonora (Mexico)

    2000-07-01

    In this work it has been investigating the Tl properties of KCl: Eu{sup 2+} subjected to solar direct radiation. Also it was realized irradiation with the Deuterium and Xenon lamps. It was used a set of filters and a Katos monochromator 0.25 M to determine the spectral response to Tl peaks and a study of them with respect to the duration of the Sun irradiation. After of the Sun irradiation the Tl curves show several peaks between the ambient temperature and 673 K. The relation between peaks depends strongly of the irradiation time and the different solar light wavelength. It is possible to divide the Tl peaks in two groups. The first one (T<473 K) is very sensitive to ultraviolet radiation but it is strongly affected by visible light. The second one (T>473 K) is not too sensitive but is more stable under optical whitening. Here the obtained results are discussed with respect to UV dosemeters development for environment which facilitate to obtain direct measurements of the UV index. (Author)

  9. Development of a safe ultraviolet camera system to enhance awareness by showing effects of UV radiation and UV protection of the skin (Conference Presentation)

    Science.gov (United States)

    Verdaasdonk, Rudolf M.; Wedzinga, Rosaline; van Montfrans, Bibi; Stok, Mirte; Klaessens, John; van der Veen, Albert

    2016-03-01

    The significant increase of skin cancer occurring in the western world is attributed to longer sun expose during leisure time. For prevention, people should become aware of the risks of UV light exposure by showing skin damage and the protective effect of sunscreen with an UV camera. An UV awareness imaging system optimized for 365 nm (UV-A) was develop using consumer components being interactive, safe and mobile. A Sony NEX5t camera was adapted to full spectral range. In addition, UV transparent lenses and filters were selected based on spectral characteristics measured (Schott S8612 and Hoya U-340 filters) to obtain the highest contrast for e.g. melanin spots and wrinkles on the skin. For uniform UV illumination, 2 facial tanner units were adapted with UV 365 nm black light fluorescent tubes. Safety of the UV illumination was determined relative to the sun and with absolute irradiance measurements at the working distance. A maximum exposure time over 15 minutes was calculate according the international safety standards. The UV camera was successfully demonstrated during the Dutch National Skin Cancer day and was well received by dermatologists and participating public. Especially, the 'black paint' effect putting sun screen on the face was dramatic and contributed to the awareness of regions on the face what are likely to be missed applying sunscreen. The UV imaging system shows to be promising for diagnostics and clinical studies in dermatology and potentially in other areas (dentistry and ophthalmology)

  10. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Science.gov (United States)

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  11. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  12. First performance results of two novel spectroradiometers developed for fast scanning of solar spectra UV irradiance

    Science.gov (United States)

    Feister, Uwe; Kaifel, Anton K.; Grewe, Rolf-Dieter; Kaptur, Jasmine; Reutter, Oliver; Wohlfart, Michael; Gericke, Klaus

    2003-11-01

    Two recently developed different types of fast spectroradiometers measuring solar UV irradiance have been compared in a field campaign: i) the UV spectroradiometer on filter model basis (UV-SPRAFIMO) and ii) the modified version of the spectroradiometer SPECTRO 320D by Instrument Systems. The all-weather UV-SPRAFIMO instrument combines a UV filter radiometer with 5 narrow-band (FBHM ~ 2.0 to 2.5 nm) filters centered within +/- 0.01 nm at 303.5, 309.0, 314.5, 327.0 and 387.0 nm, and an advanced neural network-based model. It allows up to 5 measurements per second to be taken that are averaged within time intervals between 5 and 30 s. The neural networks model that is embedded in the PC-based processing software converts the 5 measured irradiances into a full spectrum from 280 to 450 nm at small wavelength steps (>= 0.05 nm). These spectra can be convoluted with user-defined slit function and integrated to broad-band and action-spectra-weighted irradiance values. Users can access the data stored in the internal data logger by a serial RS232 interface or by a modem and display them on a PC-based Graphical User Interface. The spectroradiometer SPECTRO320D consists of a grating double monochromator with a cooled (-20°C) PMT receiver. The modified instrument version run by DWD uses a Schreder type cosine diffuser that directs the solar global irradiance via quartz fiber optics onto the spectroradiometer's entrance slit. The spectroradiometer used at the campaign was installed in a thermostatted (22 +/- 0.02)°C aluminum box. The modified instrument version performs a spectral scan over the whole UV region in two subsequent parts, with a lower speed in the UV-B than in the UV-A to account for the exponential changes of solar irradiance with increasing wavelengths in the UV-B and for the almost linear change in the UV-A region. In the configuration applied in the comparison, i.e. wavelength steps of 0.2 nm within the scan range from 290 nm to 450 nm, the resulting scan

  13. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  14. Impact of solar ultraviolet radiation on atopic dermatitis symptoms in young children: A longitudinal study.

    Science.gov (United States)

    Kim, Young-Min; Kim, Jihyun; Lee, Ji Young; Kim, Minji; Kim, Hyunmi; Jung, Kwon; Eo, Soomi; Ahn, Mijin; Ahn, Kangmo

    2017-09-01

    There are controversial data about the effects of sun exposure on atopic dermatitis (AD). We evaluated the association between solar ultraviolet radiation (UVR) exposure and AD symptoms in children. Eighty-two children under 6 years (48 boys and 34 girls) with AD living in Seoul, Korea, were enrolled and followed for 12 months between September 2013 and August 2014. Daily symptoms were recorded to describe the degree of itching, sleep disturbance, erythema, dryness, oozing, and edema. We assessed solar UVR by measuring radiation heat flux over the 290-400 nm wavelength range using thermopiles. A generalized linear mixed model and a generalized additive mixed model were used to evaluate the effects of UVR exposure on AD symptoms after adjusting for age, sex, outdoor temperature, outdoor humidity, and ambient air pollution. Symptom records of 12 915 person-days were analyzed. UVR showed a significantly positive relationship with AD symptoms. Over the study period, an increase in UVR by 10 W/cm 2 was associated with a 1.46% increase in AD symptoms (95% CI: 0.85-2.07) on the exposure day. An increase in the 6-day average level of UVR of the previous 5 days and the current day by 10 W/cm 2 was associated with a 3.58% (95% CI: 2.60-4.56) increase in AD symptoms. UVR exposure significantly increased AD symptoms in autumn, but decreased them in winter. Atopic dermatitis symptoms in children are likely to be affected by exposure to solar UVR with a cumulative effect, and this effect is different according to season. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  15. Effects of solar UV radiation on photosynthesis and enzyme activities (carbonic anhydrase and nitrate reductase in marine macroalgae from southern Spain Efectos de la radiación solar UV sobre la fotosíntesis y actividades enzimáticas (anhidrasa carbónica y nitrato reductasa en macralgas marinas del sur de España

    Directory of Open Access Journals (Sweden)

    FÉLIX L. FIGUEROA

    2001-06-01

    Full Text Available The effects of solar ultraviolet (UV radiation during daily cycles on photosynthesis and two key enzymes involved in carbon incorporation, the carbonic anhydrase, and in inorganic nitrogen reduction, the nitrate reductase, of macroalgae from southern Spain are presented. During daily cycles, photoinhibition in several intertidal macroalgae, expressed as decrease in the effective quantum yield from the morning to noon time, was linearly dependent on the daily integrated irradiance. However, recovery, expressed as the increase in the effective quantum yield from noon to the afternoon, presented a different pattern; full recovery was found below daily integrated irradiance of 1.0 x10(4 kJ m-2. However, recovery reached only 50 % at higher irradiances. The existence of daily photoinhibition and full recovery in intertidal algae suggests that photoinhibition is a photoprotective mechanism against high solar radiation as in higher plants, and that patterns of photoinhibition and recovery are affected by accumulative doses. Activities of carbonic anhidrase and nitrate reductase were determined in three marine macroalgae (Plocamium cartilagineum, Ulva rigida and Fucus spiralis under full (PAR + UV-A + UV-B and excluded UV solar radiation (PAR. Under PAR + UV-A + UV-B, peaks of enzyme activity were found in P. cartilagineum during the evening, and accordingly to data previously published for other red macroalgae. This situation was modified by the absence of UV radiation since the increase in the activities was delayed several hours. In the three macroalgae and under full solar radiation, a significant and negative correlation was found only when data from nitrate reductase activity was shifted in time during at least four hours. This correlation is lost in Ulva rigida when UV radiation is excluded. The existence of these daily variations with a negative correlation of both enzyme activities could reflect a complex regulatory link between carbon and

  16. Implementation of an AlGaN-based solar-blind UV four-quadrant detector

    Energy Technology Data Exchange (ETDEWEB)

    Schalkwyk, L. van, E-mail: Louwrens.VanSchalkwyk@up.ac.za; Meyer, W.E.; Nel, J.M.; Auret, F.D.; Ngoepe, P.N.M.

    2014-04-15

    An AlGaN-based front illuminated intrinsically solar-blind ultraviolet four-quadrant Schottky detector was fabricated and characterized. A layered ohmic structure was deposited followed by a multi-step annealing method. Ultraviolet transmissive iridium oxide was used as the Schottky barrier material and formed by a two-step annealing method. Au contacts were deposited on the Schottky contacts and annealed. The detector was mounted onto a commercial chip carrier and wires were epoxy bonded from the ohmic and Au contacts to the carrier strips. The detector had an average ideality factor of 1.97±0.08, a Schottky barrier height of (1.22±0.07) eV, a reverse leakage current density of (2.1±4) nA/cm{sup 2}, a series resistance of (120±30)Ω and a free carrier concentration of (1.6±0.3)×10{sup 18}cm{sup −3}. Spectral characterization on the photosensitive area of 7.3×10{sup −3}cm{sup 2} yielded a cut-off wavelength at (275±5)nm (4.59 eV to 4.23 eV) for each quadrant, corresponding to the absorption edge of a (46±3)% Al content AlGaN-based material. The detector had an average responsivity of (28±2) mA/W and a quantum efficiency of (14±1)% at 250 nm. The ultraviolet-to-visible and near-infrared rejection ratio was between 10{sup 3} and 10{sup 5} for most of the quadrants. Characterization showed uniformity across the quadrants, proving the detector feasible for implementation in future ultraviolet-sensitive electro-optic devices.

  17. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Directory of Open Access Journals (Sweden)

    P. J. Nowack

    2016-03-01

    Full Text Available Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM. Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  18. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian

    2016-03-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  19. The sun protection factor (SPF) inadequately defines broad spectrum photoprotection: demonstration using skin reconstructed in vitro exposed to UVA, UVBor UV-solar simulated radiation.

    Science.gov (United States)

    Bernerd, Françoise; Vioux, Corinne; Lejeune, François; Asselineau, Daniel

    2003-01-01

    Wavelength specific biological damage has been previously identified in human skin reconstructed in vitro. Sunburn cell and pyrimidine dimers were found after UVB exposure, and alterations of dermal fibroblasts after UVA exposure. These damages permitted us to discriminate UVB and UVA single absorbers. The present study shows that these biological effects can be obtained simultaneously by a combined UVB + UVA exposure using ultraviolet solar simulated light (UV-SSR), which represents a relevant UV source. In addition, the protection afforded by two broad spectrum sunscreen complex formulations was assessed after topical application. These two formulations displayed the same sun protection factor but different UVA protection factors determined by the persistent pigment darkening (PPD) method. Dose response experiments of UVA or UV-SSR showed that the preparation with the highest PF-UVA provided a better protection with regard to dermal damage compared to the other formulation. Using an original UVB source to obtain the UVB portion of SSR spectrum, the preparations provided the same protection. This study strikingly illustrates the fact that the photoprotection afforded by two sunscreen formulations having similar SPF values is not equal with regard to dermal damage related to photoaging.

  20. Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations

    Science.gov (United States)

    Dolei, S.; Susino, R.; Sasso, C.; Bemporad, A.; Andretta, V.; Spadaro, D.; Ventura, R.; Antonucci, E.; Abbo, L.; Da Deppo, V.; Fineschi, S.; Focardi, M.; Frassetto, F.; Giordano, S.; Landini, F.; Naletto, G.; Nicolini, G.; Nicolosi, P.; Pancrazzi, M.; Romoli, M.; Telloni, D.

    2018-05-01

    We investigated the capability of mapping the solar wind outflow velocity of neutral hydrogen atoms by using synergistic visible-light and ultraviolet observations. We used polarised brightness images acquired by the LASCO/SOHO and Mk3/MLSO coronagraphs, and synoptic Lyα line observations of the UVCS/SOHO spectrometer to obtain daily maps of solar wind H I outflow velocity between 1.5 and 4.0 R⊙ on the SOHO plane of the sky during a complete solar rotation (from 1997 June 1 to 1997 June 28). The 28-days data sequence allows us to construct coronal off-limb Carrington maps of the resulting velocities at different heliocentric distances to investigate the space and time evolution of the outflowing solar plasma. In addition, we performed a parameter space exploration in order to study the dependence of the derived outflow velocities on the physical quantities characterising the Lyα emitting process in the corona. Our results are important in anticipation of the future science with the Metis instrument, selected to be part of the Solar Orbiter scientific payload. It was conceived to carry out near-sun coronagraphy, performing for the first time simultaneous imaging in polarised visible-light and ultraviolet H I Lyα line, so providing an unprecedented view of the solar wind acceleration region in the inner corona. The movie (see Sect. 4.2) is available at https://www.aanda.org

  1. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    Science.gov (United States)

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  2. Chromosomal analysis in mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) and methyl and ethyl methanesulfonate (MMS and EMS)

    International Nuclear Information System (INIS)

    Matsuda, Y.; Tobari, I.

    1988-01-01

    Chromosome aberrations were analyzed at the first-cleavage metaphase of mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) as well as to methyl and ethyl methanesulfonate (MMS and EMS). The frequencies of chromosome aberrations markedly increased with dose of UV as well as with concentration of MMS and EMS. In the UV-irradiation group, the frequency of chromosome-type aberrations was much higher than that of chromatid-type aberrations. About 90% of chromosome aberrations observed in the eggs following MMS and EMS treatment to sperm were chromosome type in which the frequency of chromosome fragments was the highest. The effects of UV on the induction of chromosome aberrations were clearly potentiated by post-treatment incubation of fertilized eggs in the presence of Ara-C or caffeine, but the effects of MMS and EMS were not pronounced by post-treatment of Ara-C or caffeine. The results indicate a possibility that UV damage induced in mouse sperm DNA is reparable in the eggs during the period between the entry of sperm into the egg cytoplasm and the first-cleavage metaphase. 35 refs.; 5 figs.; 4 tabs

  3. Effects of ultraviolet irradiation on the cell cycle in normal and UV-sensitive cell lines with reference to the nature of the defect in xeroderma pigmentosum variant

    International Nuclear Information System (INIS)

    Imray, P.; Mangan, T.; Saul, A.; Kidson, C.

    1983-01-01

    Analysis of the distribution of cells through the phases of the cell cycle by DNA flow cytofluorimetry has been utilized to investigate the effects of ultraviolet (UV) irradiation on cell-cycle progression in normal and UV-sensitive lymphoblastoid cell lines. In time-course studies only slight perturbation of DNA distribution was seen in normal cells, or UV-sensitive familial melanoma (FM) lines in the 48 h following irradiation. Xeroderma pigmentosum (XPA) excision-deficient cells showed a large increase in the proportion of cells in S phase 16-40 h post-irradiation. XP variant (XPV) cells were blocked in G 1 and S phases with the complete absence of cells with G 2 DNA content 16-28 h after irradiation. By 48 h post-irradiation the DNA distribution of XPA and XPV cells had returned to that of an unirradiated control. When colcemid was added to the cultures immediately after irradiation to prevent mitotic cells dividing and re-entering the cell cycle, progression through the first cycle after irradiation was followed. UV irradiation did not affect the rate of movement of cells out of G 1 into S phase in normal, FM or XPA cells. The proportion of cells in S phase was increased in UV-irradiated cultures in these cell types and the number of cells entering the G 2 +M compartment was reduced. (orig./AJ)

  4. Flares on dMe stars: IUE and optical observations of At Mic, and comparison of far-ultraviolet stellar and solar flares

    International Nuclear Information System (INIS)

    Bromage, G.E.; Phillips, K.J.H.; Dufton, P.L.; Kingston, A.E.

    1986-01-01

    The paper concerns observations of a large flare event on the dMe star At Mic, detected by the International Ultraviolet Explorer. The far-ultraviolet spectra of the flare is compared with those of other stellar flares, and also with a large solar flare recorded by the Skylab mission in 1973. The quiescent-phase optical and ultraviolet spectrum of the same dMe flare star is discussed. (U.K.)

  5. Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi.

    Science.gov (United States)

    Xu, Kai; Gao, Kunshan

    2015-01-01

    Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280-400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 μatm; with pH(NBS) 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315-400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280-315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi. © 2014 The American Society of Photobiology.

  6. Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Correia, C.M.; Torres-Pereira, M.S.; Torres-Pereira, J.M.G.

    1999-01-01

    Wheat plants (Triticum aestivum L.) were exposed to two levels of UV-B radiation (ambient UV-B and high UV-B, simulating a 20% reduction in the ozone layer) under mediterranean field-growth conditions. After 4 months of UV-B treatment, total plant biomass of high UV-B plants was 18% lower compared to control plants. The decrease of biomass appears to be the result of changes in morphological and physiological processes. High UV-B treatment induces decreases in leaf area, net photosynthesis rate, transpiration rate and water use efficiency. Pigment analysis of leaf extracts showed increases in chlorophyll content and no effect on accumulation of UV-B absorbing pigments. The underlying mechanisms for these results are discussed. (author)

  7. Solar ultraviolet continuum radiation: The photosphere, the low chromosphere, and the temperature-minimum region

    International Nuclear Information System (INIS)

    Samain, D.

    1980-01-01

    A comparison of solar disk-center intensity measurements with theoretical values calculated for atmospheric models derived from the temperature distributions found by J. Vernazza and his colleagues indicates that generally good agreement is found with an atmospheric model having a minimum temperature of about 4150 K or possibly higher. Empirical opacity values including LTE departures and absorption coefficients which best represent the radiation field in the range 1460 A-2100 A are given. Precise values are obtained for the required opacity distribution, presumably due to lines, longward of 1682 A. It is found that a contribution to the opacity from Fe I almost equal to the Si I opacity allows to explain the observed center-to-limb contrast between 1525 A and 1570 A and its fast change through 1570 A. However, the strong measured limb-darkening as compared with the calculated variation from 1600 A to 1682 A cannot completely be accounted for in terms of opacity, and still preserve the agreement with the absolute center intensities. These differences might be interpreted as having been caused by solar inhomogeneities. Alternatively the differences may indicate that the UV continuum is closer to LTE than current theoretical calculations indicate. If so, our Sun center data would imply a minimum temperature higher than 4150 K

  8. Ultraviolet-B (UV-B) radiation as an elicitor of flavonoid production in callus cultures of jatropha (Jatropha curcas L.)

    International Nuclear Information System (INIS)

    Alvero-Bascos, E.M.; Ungson, L.B.

    2012-01-01

    Callus cultures of jatropha (Jatropha curcas L.) grown in Murashige and Skoog's (MS) medium supplemented with naphthalene-acetic acid (NAA, 20 microM) and 6-furfurylaminopurine (kinetin, 20 microM) were exposed to ultraviolet-B (UV-B) radiation to investigate its potential as an abiotic elicitor of flavonoid production. Prior to irradiation, the levels of the flavonoids, apigenin, vitexin and isovitexin in the leaf and callus extracts were determined through high performance liquid chromatography (HPLC). Results showed that vitexin and isovitexin were the dominant flavonoids in the leaves while only apigenin was detected in the calli, suggesting a correlation between the degree of differentiation and biosynthesis of flavonoids in plant tissues. Irradiation of callus cultures for 7 d using two UV-B doses (12.6 and 25.3 kJ/sq m) induced synthesis of all three flavonoids (up to 780 micro g/g dw increase) to levels similar to or higher than those found in whole leaves. The combined levels of the three flavonoids in the cultures treated with the higher UV-B dose were 20-fold higher than the control and were comparable to concentrations found in leaves while a 10-fold increase in combined flavonoid levels was observed in calli irradiated with the lower UV-B dose. Furthermore, random amplified polymorphic DNA (RAPD) analyses of DNA extracts from the leaves and calli revealed that UV-B irradiation enhanced flavonoid synthesis without altering DNA sequence. These results further support the supposed involvement of UV-B in the transcriptional regulation of the expression of flavonoid biosysnthetic genes. Overall, the findings showed that elicitation through UV-B irradiation is an effective strategy to induce flavonoid production in dedifferentiated J. curcas cultures that have lost their capacity to produce the flavonoids normally synthesized in intact organs. (author)

  9. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  10. Solar-simulated ultraviolet irradiation induces selective influx of CD4+ T lymphocytes in normal human skin

    NARCIS (Netherlands)

    Di Nuzzo, S.; de Rie, M. A.; van der Loos, C. M.; Bos, J. D.; Teunissen, M. B.

    1996-01-01

    The proportion and composition of the human cutaneous CD3+ T lymphocyte population was determined in situ following a single exposure to physiological, erythema-inducing doses of simulated solar radiation, mainly consisting of UV radiation. Biopsies were taken 1, 2 and 7 days after local irradiation

  11. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  12. Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagrostis epigeios

    International Nuclear Information System (INIS)

    Tosserams, M.; Rozema, J.

    1995-01-01

    Seedlings of Calamagrostis epigeios were exposed to four levels of UV-B radiation (280-320 nm), simulating up to 44% reduction of stratospheric ozone concentration during summertime in The Netherlands, to determine the response of this plant species to UV-B irradiation. After six weeks of UV-B treatment, total biomass of all UV-B treated plants was higher, compared to plants that had received no UV-B radiation. The increase of biomass did not appear to be the result of a stimulation of net photosynthesis. Also, transpiration rate and water use efficiency were not altered by UV-B at any exposure level. Pigment analysis of leaf extracts showed no effect of enhanced UV-B radiation on chlorophyll content and accumulation of UV absorbing pigments. UV-B irradiance, however, did reduce the transmittance of visible light (400-700 nm) of intact attached leaves, suggesting a change in anatomical characteristics of the leaves. Additionally, the importance of including an ambient UV-B treatment in indoor experiments is discussed

  13. Study on the resistance of haloferax radiotolerans, an extreme Halophilic archaebacterium from Uromia lake against ultraviolet (UV) light and 60Co gamma-rays

    International Nuclear Information System (INIS)

    Asgarni, E.; Shirzad, M.; Soudi, M. R.; Shahmohammadi, H. R.; Falsafi, T.

    2006-01-01

    In this work, the capacity of an extreme halophilic archaebacterium, isolated from Uromia lake, Haloferax radiotolerans to withstand the lethal effects of ultraviolet light (UV),and 60 Co r-rays has been studied. The resistibility of this organism against the DNA-damaging agents was evaluated by calculating of the survival fractions at different dose rates of W and 60 Co r-rays radiations and compared with those of Escherichia coli B/r (a radioresistant strain of E. coli). D 37 values for Haloferax radiotolerans and E. coli B/r were 23 1, and 9 J/m 2 , respectively, by exposure to the UV light. They were 645, and 99 Gy, respectively, by exposure to 60 Co r-rays. Against these agents, Haloferax radiotolerans shows much more resistance compare to that of E. coli B/r. This is categorized as the first report of resistibility in the member of Archaea

  14. ADA-07 Suppresses Solar Ultraviolet-Induced Skin Carcinogenesis by Directly Inhibiting TOPK.

    Science.gov (United States)

    Gao, Ge; Zhang, Tianshun; Wang, Qiushi; Reddy, Kanamata; Chen, Hanyong; Yao, Ke; Wang, Keke; Roh, Eunmiri; Zykova, Tatyana; Ma, Weiya; Ryu, Joohyun; Curiel-Lewandrowski, Clara; Alberts, David; Dickinson, Sally E; Bode, Ann M; Xing, Ying; Dong, Zigang

    2017-09-01

    Cumulative exposure to solar ultraviolet (SUV) irradiation is regarded as the major etiologic factor in the development of skin cancer. The activation of the MAPK cascades occurs rapidly and is vital in the regulation of SUV-induced cellular responses. The T-LAK cell-originated protein kinase (TOPK), an upstream activator of MAPKs, is heavily involved in inflammation, DNA damage, and tumor development. However, the chemopreventive and therapeutic effects of specific TOPK inhibitors in SUV-induced skin cancer have not yet been elucidated. In the current study, ADA-07, a novel TOPK inhibitor, was synthesized and characterized. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that ADA-07 interacted with TOPK at the ATP-binding pocket and inhibited its kinase activity. Western blot analysis showed that ADA-07 suppressed SUV-induced phosphorylation of ERK1/2, p38, and JNKs and subsequently inhibited AP-1 activity. Importantly, topical treatment with ADA-07 dramatically attenuated tumor incidence, multiplicity, and volume in SKH-1 hairless mice exposed to chronic SUV. Our findings suggest that ADA-07 is a promising chemopreventive or potential therapeutic agent against SUV-induced skin carcinogenesis that acts by specifically targeting TOPK. Mol Cancer Ther; 16(9); 1843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Ultraviolet radiation and cyanobacteria.

    Science.gov (United States)

    Rastogi, Rajesh Prasad; Sinha, Rajeshwar P; Moh, Sang Hyun; Lee, Taek Kyun; Kottuparambil, Sreejith; Kim, Youn-Jung; Rhee, Jae-Sung; Choi, Eun-Mi; Brown, Murray T; Häder, Donat-Peter; Han, Taejun

    2014-12-01

    Cyanobacteria are the dominant photosynthetic prokaryotes from an ecological, economical, or evolutionary perspective, and depend on solar energy to conduct their normal life processes. However, the marked increase in solar ultraviolet radiation (UVR) caused by the continuous depletion of the stratospheric ozone shield has fueled serious concerns about the ecological consequences for all living organisms, including cyanobacteria. UV-B radiation can damage cellular DNA and several physiological and biochemical processes in cyanobacterial cells, either directly, through its interaction with certain biomolecules that absorb in the UV range, or indirectly, with the oxidative stress exerted by reactive oxygen species. However, cyanobacteria have a long history of survival on Earth, and they predate the existence of the present ozone shield. To withstand the detrimental effects of solar UVR, these prokaryotes have evolved several lines of defense and various tolerance mechanisms, including avoidance, antioxidant production, DNA repair, protein resynthesis, programmed cell death, and the synthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. This study critically reviews the current information on the effects of UVR on several physiological and biochemical processes of cyanobacteria and the various tolerance mechanisms they have developed. Genomic insights into the biosynthesis of MAAs and scytonemin and recent advances in our understanding of the roles of exopolysaccharides and heat shock proteins in photoprotection are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Vitamin C affects the antioxidative/oxidative status in rats irradiated with ultraviolet (UV) and infrared (IR) light

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2006-01-01

    Four grups of twenty growing Wistar rats were irradiated with either UV, IR, UV+IR light or were not irradiated (control). Ten rats from each group received a diet supplemented with 0.6% of L-ascorbic acid. The effects of the mega-dose of vitamin C were evaluated by changes in the antioxidative....../oxidative status. UV and IR radiation promoted oxidative DNA degradation in rat livers and supplementation with ascorbic acid strengthened the prooxidative effects on DNA oxidation in rats irradiated with UV or IR light. Vitamin C also increased the tiobarbituric acid reactive substances (TBARS) concentration...

  17. Molecular cloning of the human gene SUVCC3 associated with the formation of DNA-protein crosslinks following exposure to solar UV radiation

    International Nuclear Information System (INIS)

    Rosenstein, B.S.; Vaslet, C.A.

    1995-01-01

    DRP 153 cells, which are hypersensitive to solar UV and deficient in the formation of DNA-protein crosslinks (DPC) following irradiation, were transfected with human DNA and a secondary transformant obtained in which a normal DPC response and solar UV sensitivity reestablished. DNA from this secondary transformant was used to construct a genomic DNA library from which a recombinant phage was isolated containing the human gene capable of restoring a normal DPC response and solar UV sensitivity to DRP 153. This gene has been designated SUVCC3 to denote solar UV cross-complementing gene number 3. 27 refs., 5 figs., 2 tabs

  18. Acute Toxicity and Ecological Risk Assessment of Benzophenone-3 (BP-3 and Benzophenone-4 (BP-4 in Ultraviolet (UV-Filters

    Directory of Open Access Journals (Sweden)

    Yang Du

    2017-11-01

    Full Text Available Ultraviolet (UV-absorbing chemicals (UV filters are used in personal care products for the protection of human skin and hair from damage by UV radiation. Although these substances are released into the environment in the production and consumption processes, little is known about their ecotoxicology effects. The acute toxicity and potential ecological risk of UV filters benzophenone-3 (BP-3 and benzophenone-4 (BP-4 on Chlorella vulgaris, Daphnia magna, and Brachydanio rerio were analyzed in the present study. The EC50 values (96 h of BP-3 and BP-4 on C. vulgaris were 2.98 and 201.00 mg/L, respectively. The 48 h-LC50 of BP-3 and BP-4 on D. magna were 1.09 and 47.47 mg/L, respectively. The 96 h-LC50 of BP-3 and BP-4 on B. rerio were 3.89 and 633.00 mg/L, respectively. The toxicity of a mixture of BP-3 and BP-4 on C. vulgaris, D. magna, and B. rerio all showed antagonistic effects. The induced predicted no-effect concentrations of BP-3 and BP-4 by the assessment factor method were 1.80 × 10−3 and 0.47 mg/L, respectively, by assessment factor (AF method, which were both lower than the concentrations detected in the environment at present, verifying that BP-3 and BP-4 remain low-risk chemicals to the aquatic ecosystem.

  19. Immunogenicity of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) following inactivation by betapropiolactone (BPL) and ultraviolet (UV) light

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, T.M.; Studdert, M.J.; Blackney, M.H. (Melbourne Univ., Parkville (Australia). School of Veterinary Science)

    1982-12-01

    Some kinetic data on the inactivation of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) by betapropiolactone (BPL) and ultraviolet (UV) irradiation are reported. 0.25% BPL at 37/sup 0/C for 1 h reduced the titre of EHV1 by > 10sup(3.4) and of ERhV1 by > 10sup(4.1) TCID/sub 50//ml. UV irradiation (334 ..mu..W/cm/sup 2/) produced similar reductions in titre after 2 min. These data were used as a basis for inactivating EHV1 and ERhV1 by the combined action of BPL and UV irradiation. Viruses were exposed to 0.1% BPL for 1 h at 4/sup 0/C with constant stirring, followed by UV irradiation for 2 min, followed by incubation for 3 h at 37/sup 0/C. Inactivated EHV1 elicted secondary immune responses only in horses whereas ERhV1 produced primary immune responses in mice (including athymic nu/nu mice), rabbits and probably in horses.

  20. Immunogenicity of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) following inactivation by betapropiolactone (BPL) and ultraviolet (UV) light

    International Nuclear Information System (INIS)

    Campbell, T.M.; Studdert, M.J.; Blackney, M.H.

    1982-01-01

    Some kinetic data on the inactivation of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) by betapropiolactone (BPL) and ultraviolet (UV) irradiation are reported. 0.25% BPL at 37 0 C for 1 h reduced the titre of EHV1 by > 10sup(3.4) and of ERhV1 by > 10sup(4.1) TCID 50 /ml. UV irradiation (334 μW/cm 2 ) produced similar reductions in titre after 2 min. These data were used as a basis for inactivating EHV1 and ERhV1 by the combined action of BPL and UV irradiation. Viruses were exposed to 0.1% BPL for 1 h at 4 0 C with constant stirring, followed by UV irradiation for 2 min, followed by incubation for 3 h at 37 0 C. Inactivated EHV1 elicted secondary immune responses only in horses whereas ERhV1 produced primary immune responses in mice (including athymic nu/nu mice), rabbits and probably in horses. (Auth.)

  1. The angular distributions of ultraviolet spectral irradiance at different solar elevation angles under clear sky conditions

    Science.gov (United States)

    Liu, Yan; Hu, LiWen; Wang, Fang; Gao, YanYan; Zheng, Yang; Wang, Yu; Liu, Yang

    2016-01-01

    To investigate the angular distributions of UVA, UVB, and effective UV for erythema and vitamin D (vitD) synthesis, the UV spectral irradiances were measured at ten inclined angles (from 0° to 90°) and seven azimuths (from 0° to 180°) at solar elevation angle (SEA) that ranged from 18.8° to 80° in Shanghai (31.22° N, 121.55° E) under clear sky and the albedo of ground was 0.1. The results demonstrated that in the mean azimuths and with the back to the sun, the UVA, UVB, and erythemally and vitD-weighted irradiances increased with the inclined angles and an increase in SEA. When facing toward the sun at 0°-60° inclined angles, the UVA first increased and then decreased with an increase in SEA; at other inclined angles, the UVA increased with SEA. At 0°-40° inclined angles, the UVB and erythemally and vitD-weighted irradiances first increased and then decreased with an increase in SEA, and their maximums were achieved at SEA 68.7°; at other inclined angles, the above three irradiances increased with an increase in SEA. The maximum UVA, UVB, and erythemally and vitD-weighted irradiances were achieved at an 80° inclined angle at SEA 80° (the highest in our measurements); the cumulative exposure of the half day achieved the maximum at a 60° inclined angle, but not on the horizontal. This study provides support for the assessment of human skin sun exposure.

  2. The total ozone and UV solar radiation over Stara Zagora, Bulgaria

    Science.gov (United States)

    Mendeva, B. D.; Gogosheva, Ts. N.; Petkov, B. H.; Krastev, D. G.

    The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25'N, 25° 37'E), Bulgaria are presented. During the period 1999-2003 the TOC data show seasonal variations, typical for the middle latitudes - maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them. A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant ( r = -0.62 ± 0.18) at 98% confidence level. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = -2.7%. The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.

  3. UV exposure in cars.

    Science.gov (United States)

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  4. Effects of solar UV radiation on diatom assemblages of the Mediterranean

    International Nuclear Information System (INIS)

    Santas, Regas; Lianou, Charalambia; Haeder, D.-P.

    1996-01-01

    Three UV treatments (PAR; PAR + UVA; PAR + UVA + UVB) were performed by placing different UV-absorbing filters over communities developing on ceramic tiles in a natural marine habitat near Korinthos, Greece. The experiment was repeated at three depths (0.5 m, 1 m, 1.5 m) below the surface of the sea. Differences in community structure due to UV radiation exposure were more pronounced during the early stages of community development. After the first 3 weeks of growth, the productivity of the PAR + UVA + UVB treatment was significantly lower than the PAR + UVA but not than the PAR treatment. This difference did not persist thereafter. At 5 weeks of growth, the productivity at 0.5 m was significantly lower than at 1.0 m. No other significant differences were observed. The findings of the present study suggest that periphytic communities occurring at the upper layers of the euphotic zone may be capable of adjusting to changes in environmental stresses such as by increased solar UVB irradiance. (Author)

  5. Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells

    KAUST Repository

    Rolston, Nicholas

    2017-06-15

    Organic solar cells subjected to environmental stressors such as heat, moisture, and UV radiation can undergo significant mechanical degradation, leading to delamination of layers and device failure. This paper reports the effect these stressors have on the mechanical integrity of active layers and interfaces as measured by subcritical debonding tests, and the in situ evolution of defects and fracture processes is characterized. At elevated temperatures below 50 °C in inert conditions, significant device weakening was observed, an effect we attributed to a temperature-induced P3HT:PCBM delamination mechanism from the underlying ZnO. At 50 °C in ambient conditions with UV exposure—selected to better simulate real-world environments—devices were more resistant to fracture because of an interfacial strengthening effect from increased hydrogen bonding where UV-induced Zn(OH)2 formation reinforced the interface with P3HT:PCBM. This photoinduced hydroxylation mechanism was determined from a decrease in the Zn/O ratio with increased UVA or UVB exposure, and hydroxylation was shown to directly correlate with the resistance to fracture in devices.

  6. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil.

    Science.gov (United States)

    Tribedi, Prosun; Dey, Samrat

    2017-11-09

    Polyethylene represents nearly 64% of all the synthetic plastics produced and are mainly used for domestic and industrial applications. Their extensive use poses a serious environmental threat because of their non-biodegradable nature. Among all the polyethylene remediation strategies, in situ bioremediation happens to be the safest and efficient one. In the current study, efforts had been given to compare the extent of LDPE degradation under UV-treated and UV-untreated conditions by soil microcosm. Landfill soil was collected and UV-treated and UV-untreated LDPE were added separately to the soil following incubation under similar conditions. Electron microscopic images as well as the weight loss and the tensile strength results clearly revealed that UV-treated LDPE showed better degradation than the non-treated ones in soil. To elucidate the mechanism of this enhanced biodegradation, the bond spectra of differentially treated LDPE were analyzed by FTIR. The results obtained from bond spectra studies revealed that UV treatment increases both carbonyl and terminal double-bond index of the LDPE, thereby making it highly susceptible for microbial degradation. Moreover, incubation of UV-treated LDPE with soil favors better adherence of metabolically active and significantly higher number of microorganisms on it. Taken together, all these results demonstrate the higher microbial association and their better metabolic potential to the UV-treated LDPE that lead to enhanced degradation of the LDPE by the soil microorganisms.

  7. Solar UV-radiation, vitamin D and skin cancer surveillance in organ transplant recipients (OTRs).

    Science.gov (United States)

    Reichrath, Jörg; Nürnberg, Bernd

    2008-01-01

    The introduction of organ transplantation in clinical medicine has resulted in a constantly increasing, large population of patients that are chronically on immunosuppressive medication. It is well known that skin cancer, especially SCC, in this population has higher incidence rates, behaves more aggressively and has higher rates of metastasis. OTRs who have been treated for many years with immunosuppressive medication are at the highest risk for developing malignant skin tumors. Therefore, the intensity of surveillance for cutaneous lesions is of high importance in OTRs. A full-body skin exam at least once a year and more frequently if skin cancer or precancerous cutaneous lesions develop is recommended. Clinicians should not hesitate to biopsy or to surgically excise any suspicious skin lesion. Of high importance is also the education of OTRs about their increased risk. Protection against solar and artificial UV-radiation and monthly self-examinations are good ways to prevent and to recognize any new suspicious skin lesions. Patients are advised to always wear solar UV-radiation protection (e.g., clothing, sunscreen) before going outdoors. However, investigations have revealed that solar UV-B-exposure and serum 25(OH)D levels positively correlate with decreased risk for various internal malignancies (e.g., breast, colon, prostate and ovarian cancer) and other severe diseases. As we have shown previously, renal transplant recipients are at high risk of vitamin D deficiency. A sunscreen with a sun protection factor (SPF)-8 reduces the skin's production of vitamin D by 95%. Clothing completely blocks all solar UVB-radiation and this prevents any vitamin D production. Therefore, it is important to detect and treat vitamin D deficiency in solid organ transplant recipients. Optimal management of these patients requires communication between the transplant teams and the treating dermatologist and other clinicians. For advanced or metastatic disease, collaboration

  8. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

    Directory of Open Access Journals (Sweden)

    Dahle Jostein

    2005-01-01

    Full Text Available Abstract Background Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability. Methods Delayed mutations in the hypoxanthine phosphoribosyl transferase (hprt gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies. Results The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione. Conclusion The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of

  9. Solar Ultraviolet Radiation Exposure of South African Marathon Runners During Competition Marathon Runs and Training Sessions: A Feasibility Study.

    Science.gov (United States)

    Nurse, Victoria; Wright, Caradee Y; Allen, Martin; McKenzie, Richard L

    2015-01-01

    Marathon runners spend considerable time in outdoor training for and participating in marathons. Outdoor runners may experience high solar ultraviolet radiation (UVR) exposure. South Africa, where running is popular, experiences high ambient solar UVR levels that may be associated with adverse health effects. This feasibility study explores the use of personal dosimeters to determine solar UVR exposure patterns and possible related acute health risks of four marathon runners during marathons and training sessions in Cape Town and Pretoria. Runners running marathons that started early in the day, and that did not exceed 4 hours, yielded low total solar UVR exposure doses (mean 0.093 SED per exposure period run, median 0.088 SED, range 0.062-0.136 SED; average of 16.54% of ambient solar UVR). Training sessions run during early morning and late afternoon presented similar results. Several challenges hindered analysis including accounting for anatomical position of personal dosimeter and natural shade. To assess health risks, hazard quotients (HQs) were calculated using a hypothetical runner's schedule. Cumulative, annual solar UVR exposure-calculated acute health risks were low (HQ = 0.024) for training sessions and moderate (HQ = 4.922) for marathon runs. While these data and calculations are based on 18 person-days, one can measure marathon runners' personal solar UVR exposure although several challenges must be overcome. © 2015 The American Society of Photobiology.

  10. A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton

    OpenAIRE

    Brillas, Enric

    2014-01-01

    This paper presents a review on emerging electrochemical advanced oxidation processes (EAOPs) such as UV photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) in which the irradiation of the effluent with UV light and sunlight, respectively, causes a synergistic effect on the degradation process of organic pollutants by the formation of more •OH and/or the photolysis of complexes of Fe(III) with generated carboxylic acids. Fundamentals of these EAOPs are explained to clarify their pe...

  11. Solar ultraviolet radiation affects the activity of ribulose-1, 5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L.

    NARCIS (Netherlands)

    Bischof, K; Krabs, G; Wiencke, C; Hanelt, D

    The effect of solar UV radiation on the physiology of the intertidal green macroalga Ulva lactuca L. was investigated. A natural Ulm community at the shore of Helgoland was covered with screening foils, excluding UV-B or UV-B + UV-A from the solar spectrum. In the sampled material, changes in the

  12. Very high resolution UV and x-ray spectroscopy and imagery of solar active regions. Final report

    International Nuclear Information System (INIS)

    Bruner, M.; Brown, W.A.; Haisch, B.M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft x-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the x-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical x-ray observations using this new technique

  13. An extreme ultraviolet wave associated with a failed eruption observed by the Solar Dynamics Observatory

    Science.gov (United States)

    Zheng, R.; Jiang, Y.; Yang, J.; Bi, Y.; Hong, J.; Yang, B.; Yang, D.

    2012-05-01

    Aims: Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present an extreme ultraviolet (EUV) wave associated with a failed filament eruption that generated no coronal mass ejection (CME) on 2011 March 1. We aim at understanding the nature and origin of this EUV wave. Methods: Combining the high-quality observations in the photosphere, the chromosphere, and the corona, we studied the characteristics of the wave and its relations to the associated eruption. Results: The event occurred at an ephemeral region near a small active region. The continuous magnetic flux cancelation in the ephemeral region produced pre-eruption brightenings and two EUV jets, and excited the filament eruption, accompanying it with a microflare. After the eruption, the filament material appeared far from the eruption center, and the ambient loops seemed to be intact. It was evident that the filament eruption had failed and was not associated with a CME. The wave happened just after the north jet arrived, and apparently emanated ahead of the north jet, far from the eruption center. The wave propagated at nearly constant velocities in the range of 260-350 km s-1, with a slight negative acceleration in the last phase. Remarkably, the wave continued to propagate, and a loop in its passage was intact when wave and loop met. Conclusions: Our analysis confirms that the EUV wave is a true wave, which we interpret as a fast-mode wave. In addition, the close temporal and spatial relationship between the wave and the jet provides evidence that the wave was likely triggered by the jet when the CME failed to happen. Three movies are available in electronic form at http://www.aanda.org

  14. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water

    International Nuclear Information System (INIS)

    Zhou, Chao; Gao, Naiyun; Deng, Yang; Chu, Wenhai; Rong, Wenlei; Zhou, Shengdong

    2012-01-01

    Highlights: ► NAms with three-induced toxicity, as emerging DBPs, has caused a great public attention. ► No paper regards UV/H 2 O 2 oxidation of mixed NAms in an aquatic environment. ► The treatment effect is typically affected by a few factors in water. ► NPIP and NDPhA are the most readily and difficult to be degraded due to unique structure. ► All the NAms degradation exhibited a pseudo-first-order kinetics pattern. - Abstract: Disinfection by-products (DBPs) are a great challenge to our drinking water security. Particularly, nitrosamines (NAms), as emerging DBPs, are potently carcinogenic, mutagenic, and teratogenic, and have increasingly attained public attention. This study was to evaluate the performance of the NAms degradation by the ultraviolet (UV) irradiation (253.7 nm) in the presence of hydrogen peroxide (H 2 O 2 ). In the UV/H 2 O 2 system, hydroxyl radicals (OH·), a type of nonselective and powerful oxidant, was produced to attack the molecules of NAms. Factors affecting the treatment efficiency, including the H 2 O 2 dosage, initial NAms concentration, UV irradiation intensity, initial solution pH, and inorganic anions present in water, were evaluated. All the NAms degradation exhibited a pseudo-first-order kinetics pattern. Within 60 min, 0.1 mg/L of any NAms could be almost decomposed except NDPhA that required 120 min for complete removal, at 25 μmol/L H 2 O 2 and at initial pH 7. Results demonstrate that the UV/H 2 O 2 treatment is a viable option to control NAms in water.

  15. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    International Nuclear Information System (INIS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-01-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  16. Effects of solar PAR and UV radiation on tropical biofouling communities

    KAUST Repository

    Dobretsov, SV

    2010-03-08

    We investigated the effect of solar ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) on the development of tropical micro- and macrofouling communities for 30 d. The experimental design involved 3 treatments: full spectrum (PAR+UVR), PAR only, and minimal light (reduced PAR and UVR). Terminal restriction fragment length polymorphism analysis demonstrated that different light conditions resulted in the formation of highly different microbial communities. The lowest densities of bacteria were found under the full spectrum treatment, while the lowest densities of diatoms were found in the minimal light treatment. Macrofouling communities consisted of 13 species and differed among light treatments. In the presence of UVR, communities had low species diversity, evenness, and richness, while in minimal light and PAR treatments, communities had high species diversity, evenness, and richness. Similarity percentage (SIMPER) analysis revealed that the tubeworm Hydroides elegans, the alga Ulva (Enteromorpha) sp., and the bivalve Perna viridis were the species responsible for most of the dissimilarities in macrofouling communities among treatments. While densities of H. elegans were similar in the PAR and minimal light treatments, this polychaete had higher growth rates under minimal light conditions. We conclude that UVR and PAR directly control the development of shallow micro- and macrofouling communities by inhibiting the recruitment and growth of sensitive species and promoting the growth of resistant species, but also that these forms of solar radiation influence the surface cues available to competent larvae by altering the development of the microbial community.

  17. Design of wideband solar ultraviolet radiation intensity monitoring and control system

    Science.gov (United States)

    Ye, Linmao; Wu, Zhigang; Li, Yusheng; Yu, Guohe; Jin, Qi

    2009-08-01

    According to the principle of SCM (Single Chip Microcomputer) and computer communication technique, the system is composed of chips such as ATML89C51, ADL0809, integrated circuit and sensors for UV radiation, which is designed for monitoring and controlling the UV index. This system can automatically collect the UV index data, analyze and check the history database, research the law of UV radiation in the region.

  18. Effects of Relative Humidity and Spraying Medium on Ultraviolet (UV) Decontamination of Filters Loaded with Viral Aerosols

    Science.gov (United States)

    2012-02-01

    as can chloramines (F. J. Madeline, personal communication). The use of direct microwave irradiation to kill microorganisms through thermal and...transmission modes as a function of UV irradiation time in different nebulizer media. UV Disinfection of Filters August 2012 Volume 78 Number 16 aem.asm.org...at contact. The equation for evaporation time is the following (11): tevaporation time Rpdd 2 8DvM pdTd p T (2) where R is the ideal gas law

  19. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    Science.gov (United States)

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  20. First ultraviolet observations of the transition regions of X-ray bright solar-type stars in the Pleiades

    Science.gov (United States)

    Caillault, J.-P.; Vilhu, O.; Linsky, J. L.

    1990-01-01

    Results are reported from A UV study of the transition regions of two X-ray-bright solar-type stars from the Pleiades, in an attempt to extend the main sequence age baseline for the transition-region activity-age relation over more than two orders of magnitude. However, no emission lines were detected from either star; the upper limits to the fluxes are consistent with previously determined saturation levels, but do not help to further constrain evolutionary models.

  1. Loss of inducible photorepair in a frog cell line hypersensitive to solar UV light

    International Nuclear Information System (INIS)

    Chao, C.C.-K.

    1987-01-01

    The induction of enzymatic photorepair (EPR) in ICR 2A frog cells and a derived mutant cell line DRP36 hypersensitive to solar UV was studied. Using clonogenic assays, when induced wild-type cells demonstrated an 8-fold increase of EPR the mutant cells displayed a near-background level of inducible EPR. The constitutive EPR in mutant cells, however, was the same as in wild-type cells. A mixed culture of ICR 2A and DRP36 cells showed an intermediate inducible EPR depending upon the cell ratio. Inducible EPR was also detected at the DNA level in wild-type cells, but not in mutant cells. 29 refs.; 2 figs.; 2 tabs

  2. Long term variations in erythema effective solar UV at Chilton, UK, from 1991 to 2015.

    Science.gov (United States)

    Hooke, R J; Higlett, M P; Hunter, N; O'Hagan, J B

    2017-11-08

    In this paper erythema effective UV radiant exposure data from the PHE solar network Chilton site for the 25 year period from 1991 to 2015 are presented. The year with the highest average daily erythema effective radiant exposure was 2003 at 1577 J m -2 and the year with the lowest average daily radiant exposure was 2010 at 1149 J m -2 . Overall, the average daily radiant exposure per year ranged from 5655 J m -2 to 9.98 J m -2 with the average being 1306 J m -2 . A preliminary analysis of the data set is carried out. A statistically significant (p = 0.01) increase in annual radiant exposure of 4.4% per year was observed from 1991-1995. Thereafter a small decrease in annual erythema effective radiant exposure of 0.8% (p = 0.002) per year was observed from 1995-2015 with a slightly faster rate of decrease from 2000-2015 of 1.0% (p = 0.007) per year. In terms of seasonal analyses, a statistically significant increase in erythema effective UV radiant exposure of 5.1% (p = 0.02) per year in the summer during 1991-1995 has been found along with small decreases in spring and summer during 1995-2015 (-1.0%; p = 0.01 and -0.7%; p = 0.01 respectively) and 2000-2015 (-1.1%; p = 0.03 and -1.2%; p = 0.003 respectively). The data suggest that the erythema effective UV dose available for impacting public health has been decreasing in recent years.

  3. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths

    International Nuclear Information System (INIS)

    Anav, A.; Rafanelli, C.; Di Menno, I.; Di Menno, M.

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Aalesund (Svalbard Islands (Norway)) and Ushuaia (Tierra del Fuego (Argentina)). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectro-radiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about ±2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than ∼20% for solar zenith angles <50 deg.. (authors)

  4. 77 FR 2734 - Proposed Collection; Comment Request: Solar Cell: A Mobile UV Manager for Smart Phones (NCI)

    Science.gov (United States)

    2012-01-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request: Solar Cell: A Mobile UV Manager for Smart Phones (NCI) SUMMARY: In compliance with the... Manager for Smart Phones (NCI). Type of Information Collection Request: New. Need and Use of Information...

  5. Solar UV-treatment of water samples for stripping-voltammetric determination of trace heavy metals in Awash river, Ethiopia

    Directory of Open Access Journals (Sweden)

    Gelaneh Woldemichael

    2016-03-01

    Full Text Available We report about testing a new mobile and sustainable water sample digestion method in a preliminary field trial in Ethiopia. In order to determine heavy metals at the ultra-trace level by stripping voltammetric techniques in water samples from Awash River, we applied our new method of solar UV-assisted sample pretreatment to destroy the relevant interfering dissolved organic matter. The field tests revealed that 24 h of solar UV irradiation were sufficient to achieve the same sample pretreatment results as with classic digestion method based on intense and hard UV. Analytical results of this study suggest that both a hydroelectric power station and agrichemical applications at Koka Lake have increased the levels of the investigated metals zinc, cadmium, lead, copper, cobalt, nickel, and uranium.

  6. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; Merino, S

    2018-03-15

    The aim of this work was to evaluate the performance of a novel self-autonomous reactor technology (capable of working with solar irradiation and artificial UV light) for water treatment using aniline as model compound. This new reactor design overcomes the problems of the external mass transfer effect and the accessibility to photons occurring in traditional reaction systems. The UV-light source is located inside the rotating quartz drums (where TiO 2 is immobilized), allowing light to easily reach the water and the TiO 2 surface. Several processes (UV, H 2 O 2 , Solar, TiO 2 , Solar/TiO 2 , Solar/TiO 2 /H 2 O 2 and UV/Solar/H 2 O 2 /TiO 2 ) were tested. The synergy between Solar/H 2 O 2 and Solar/TiO 2 processes was quantified to be 40.3% using the pseudo-first-order degradation rate. The apparent photonic efficiency, ζ, was also determined for evaluating light utilization. For the Solar/TiO 2 /H 2 O 2 process, the efficiency was found to be practically constant (0.638-0.681%) when the film thickness is in the range of 1.67-3.87 μm. However, the efficiency increases up to 2.67% when artificial UV light was used in combination, confirming the efficient design of this installation. Thus, if needed, lamps can be switched on during cloudy days to improve the degradation rate of aniline and its mineralization. Under the optimal conditions selected for the Solar/TiO 2 /H 2 O 2 process ([H 2 O 2 ] = 250 mg/L; pH = 4, [TiO 2 ] = 0.65-1.25 mg/cm 2 ), 89.6% of aniline is degraded in 120 min. If the lamps are switched on, aniline is completely degraded in 10 min, reaching 85% of mineralization in 120 min. TiO 2 was re-used during 5 reaction cycles without apparent loss in activity (Solar/TiO 2 /H 2 O 2 process was found to have lower operation costs than other systems described in literature (0.67 €/m 3 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings

    International Nuclear Information System (INIS)

    Mark, U.; Tevini, M.

    1997-01-01

    The effects of solar UV-B radiation, in combination with elevated temperature (4 °C) and CO 2 (680 μL L -1 ) concentration, on sunflower and maize seedlings were studied from May to August in 1991 at the research station Quinta de São Pedro in Portugal (38.7°N). The ambient solar radiation of Portugal was reduced to levels of Central European latitudes by using the ozone filter technique. This radiation served as control, while the ambient solar radiation of Portugal was to simulate intense UV-B treatment (+30%). All plants were grown up to 18 days in 4 climate controlled growth chambers simulating a daily course of temperature with T max = 28 °C or 32 °C, resp., and ambient CO 2 concentrations (340 μL L -1 ); in one chamber the CO 2 concentration was twice as high (680 μL L-1). Under intense UV-B and at 28 °C (T max ) all growth parameters (height, leaf area, fresh and dry weight, stem elongation rate, relative growth rate) of sunflower and maize seedlings were reduced down to 35% as compared to controls. An increase in growing temperature by 4 °C, alone or in combination with doubled CO 2 , compensated or even overcompensated the UV-B effect so that the treated plants were comparable to controls. Chlorophyll content, on a leaf area basis, increased under intense UV-B radiation. This increase was compensated by lower leaf areas, resulting in comparable chlorophyll contents. Similar to growth, also the net photosynthetic rates of sunflower and maize seedlings were reduced down to 29% by intense UV-B calculated on a chlorophyll basis. This reduction was compensated by an increased temperature. Doubling of CO 2 concentration had effects only on sunflower seedlings in which the photosynthetic rates were higher than in the controls. Dark respiration rates of the seedlings were not influenced by any experimental condition. Transpiration and water use efficiency (wue) were not influenced by intense UV-B. Higher temperatures led to higher transpiration rates and

  8. Characteristics of photocurrent generation in the near-ultraviolet region in Si quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    Uchida, Giichiro; Sato, Muneharu; Seo, Hyunwoong; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2013-01-01

    We have studied photocurrent generation in Si quantum-dot (QD) sensitized solar cells, where QD thin films composed of Si nanoparticles were deposited using the double multi-hollow discharge plasma chemical vapor deposition process in an SiH 4 /H 2 and CH 4 or N 2 gas mixture. The short-circuit current density of the Si QD sensitized solar cells increases by a factor of 2.5 by using Si nanoparticles prepared by irradiation of CH 4 or N 2 plasma onto the Si nanoparticle surface. We have measured incident photon-to-current conversion efficiency (IPCE) in the near-ultraviolet range using quartz-glass front panels of the QD sensitized solar cells. With decreasing the wavelength of irradiation light, IPCE gradually increases upon light irradiation in a wavelength range less than about 600 nm, and then steeply increases below 300 nm, corresponding to 2.2 times the optical band-gap energy of Si QD film. - Highlights: • We have developed on Si quantum-dot sensitized solar cells using Si particles. • Current of solar cells increases by surface-termination of Si particles. • Incident photo-to-current conversion efficiency increases below 300 nm

  9. Characteristics of photocurrent generation in the near-ultraviolet region in Si quantum-dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Giichiro, E-mail: uchida@ed.kyushu-u.ac.jp [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Sato, Muneharu; Seo, Hyunwoong [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Kamataki, Kunihiro [Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395 (Japan); Itagaki, Naho [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); PRESTO, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2013-10-01

    We have studied photocurrent generation in Si quantum-dot (QD) sensitized solar cells, where QD thin films composed of Si nanoparticles were deposited using the double multi-hollow discharge plasma chemical vapor deposition process in an SiH{sub 4}/H{sub 2} and CH{sub 4} or N{sub 2} gas mixture. The short-circuit current density of the Si QD sensitized solar cells increases by a factor of 2.5 by using Si nanoparticles prepared by irradiation of CH{sub 4} or N{sub 2} plasma onto the Si nanoparticle surface. We have measured incident photon-to-current conversion efficiency (IPCE) in the near-ultraviolet range using quartz-glass front panels of the QD sensitized solar cells. With decreasing the wavelength of irradiation light, IPCE gradually increases upon light irradiation in a wavelength range less than about 600 nm, and then steeply increases below 300 nm, corresponding to 2.2 times the optical band-gap energy of Si QD film. - Highlights: • We have developed on Si quantum-dot sensitized solar cells using Si particles. • Current of solar cells increases by surface-termination of Si particles. • Incident photo-to-current conversion efficiency increases below 300 nm.

  10. Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades

    Science.gov (United States)

    Schroder, Klaus-Peter; Mittag, Marco; Schmitt, J. H. M. M.

    2015-01-01

    Using spectra taken by the robotic telescope ``TIGRE'' (see Fig. 1 and the TIGRE-poster presented by Schmitt et al. at this conference) and its mid-resolution (R=20,000) HEROS double-channel echelle spectrograph, we present our measurements of the solar Ca II H&K chromospheric emission. Using moonlight, we applied the calibration and definition of the Mt. Wilson S-index , which allows a direct comparison with historic observations, reaching back to the early 1960's. At the same time, coming from the same EUV emitting plage regions, the Ca II H&K emission is a good proxy for the latter, which is of interest as a forcing factor in climate models. Our measurements probe the weak, asynchronous activity cycle 24 around its 2nd maximum during the past winter. Our S-values suggest that this maximum is the lowest in chromospheric emission since at least 60 years -- following the longest and deepest minimum since a century. Our observations suggest a similarly long-term (on a scale of decades) low of the far-UV radiation, which should be considered by the next generation of climate models. The current, very interesting activity behaviour calls for a concerted effort on long-term solar monitoring.

  11. Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes

    Science.gov (United States)

    Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki

    2018-05-01

    Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.

  12. Evaluation of an Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  13. Ultraviolet radiation and immunosuppression.

    LENUS (Irish Health Repository)

    Murphy, G M

    2009-11-01

    Ultraviolet (UV) radiation is a complete carcinogen. The effects of UV radiation are mediated via direct damage to cellular DNA in the skin and suppression of image surveillance mechanisms. In the context of organ transplantation, addiction of drugs which suppress the immune system add greatly to the carcinogenicity of UV radiation. This review considers the mechanisms of such effects.

  14. Exclusion of UV-B radiation from normal solar spectrum on the growth of mung bean and maize

    International Nuclear Information System (INIS)

    Pal, M.; Sharma, A.; Abrol, Y.P.; Sengupta, U.K.

    1997-01-01

    The increase in UV-B radiation due to depletion of the ozone layer has potentially harmful effects on plant growth and performance. The bulk of these studies conducted in growth chambers, greenhouses or in the field use different types of exposure systems which may be responsible for differences in the sensitivity of a crop to UV-B radiation. A field study using selective filters to remove the UV-B portion of the solar spectrum was conducted with mung bean (a dicotyledonous C 3 plant) and maize (a monocotyledonous C 4 plant) to determine the sensitivity of these crop plants to ambient UV-B levels without disturbing the microenvironment. Mung bean was found to be sensitive to ambient UV-B levels in terms of leaf area development, plant height attained and net photosynthesis, while maize was found to be unaffected by ambient UV-B levels (22.8 |GmW cm −2 nm −1 ) found in Delhi, India (28°38′N, 77°13′E). The level of ambient UV-B radiation thus appears to be inhibitory for optimal growth of plants, especially dicotyledonous mung bean. (author)

  15. The effect of solar UV radiation of four plant species occurring in a coastal grassland vegetation in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Tosserams, M.; Rozema, J. [Vrije Univ., Dept. of Ecology and Ecotoxicology, Amsterdam (Netherlands); Pais, A. de Sa [Univ. de Tras-os-Montes e Alto Douro, Vila Real (Portugal)

    1996-09-01

    During the summer of 1992, growth and some physiological parameters of four native plant species occurring in a coastal grassland in The Netherlands, were studied after reduction of solar UV irradiance using different cut-off filters. Biomass production, morphology and photosynthesis of all species tested were unaffected by the different treatments. Litter production of Plantago lanceolata was increased in the absence of the total UV waveband, indicating a possible role for this waveband in plant senescence. Depletion of the total UV waveband from sunlight resulted in alterations in biomass allocation in Calamagrostis epigeios and Urtica dioica while no changes were observed in P. lanceolatata and Verbascum thapsus. In C. epigeios and increase in the specific leaf area was observed, whereas in U. dioica root weight per total plant weight was decreased resulting in an increase in the shoot/root ratio. Both photosynthetic and UV-absorbing pigment concentrations were altered by the different filter applications. When compared to control plants receiving full sunlight, depletion of UV-B resulted in a significant increase in chlorophyll concentration in U. dioica leaves, this however did not affect photosynthetic rate. The presence of UV-B radiation enhanced the UV-absorbance of leaf extract of all species except P. lanceolata. Optical characteristics of the leaves were also changed. Both the quantity (P. lanceolata and U. dioica) and the quality (all species) of radiation transmitted by the leaves was affected by the different treatments. (au) 44 refs.

  16. Flare activity on UV Ceti: visible and IUE observations

    International Nuclear Information System (INIS)

    Phillips, K.J.H.; Bromage, G.E.; Dufton, P.L.; Keenan, F.P.; Kingston, A.E.

    1988-01-01

    Simultaneous far-ultraviolet (IUE) spectroscopy and optical photometry and spectrophotometry of a flare on UV Ceti are reported. The flare reached ΔU=2 mag but showed only modest enhancements in the IUE spectra. The optical spectrophotometry indicated broadened Balmer line profiles during the flare, with Hβ and Hγ clearly showing red wings (∼ 100 km s -1 ). The results are compared with other IUE and optical observations of UV Ceti, and their solar analogues. (author)

  17. Flare activity on UV CETI: visible and IUE observations

    International Nuclear Information System (INIS)

    Phillips, K.J.H.; Bromage, G.E.; Dufton, P.L.; Keenan, F.P.; Kingston, A.E.

    1988-06-01

    Simultaneous far-ultraviolet (IUE) spectroscopy and optical photometry and spectrophotometry of a flare on UV Ceti are reported. The flare reached ΔU = 2sup(m) but showed only modest enhancements in the IUE spectra. The optical spectrophotometry indicated broadened Balmer line profiles during the flare, with Hβ and Hγ clearly showing red wings. The results are compared with other IUE and optical observations of UV Ceti, and their solar analogues. (author)

  18. Glacial Influences on Solar Radiation in a Subarctic Sea.

    Science.gov (United States)

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  19. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    International Nuclear Information System (INIS)

    Landi, E.; Young, P. R.

    2009-01-01

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s 2 3p 5 4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

  20. The mechanisms of UV mutagenesis

    International Nuclear Information System (INIS)

    Ikehata, Hironobu; Ono, Tetsuya

    2011-01-01

    Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: ''error-free'' bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-prone bypass of CPDs and other UV-induced photolesions by combinations of TLS and replicative DNA polymerases-the latter model has also been known as the two-step model, in which the cooperation of two (or more) DNA polymerases as misinserters and (mis)extenders is assumed. Daylight UV induces a characteristic UV-specific mutation, a UV-signature mutation occurring preferentially at methyl-CpG sites, which is also observed frequently after exposure to either UVB or UVA, but not to UVC. The wavelengths relevant to the mutation are so consistent with the composition of daylight UV that the mutation is called solar-UV signature, highlighting the importance of this type of mutation for creatures with the cytosine-methylated genome that are exposed to the sun in the natural environment. UVA has also been suggested to induce oxidative types of mutation, which would be caused by oxidative DNA damage produced through the oxidative stress after the irradiation. Indeed, UVA produces oxidative DNA damage not only in cells but also in skin, which, however, does not seem sufficient to induce mutations in the normal skin genome. In contrast, it has been demonstrated that UVA exclusively induces the solar-UV signature mutations in vivo through CPD formation. (author)

  1. Ultraviolet radiation response of two heterotropy Antarctic marine bacterial; Respuesta a la radiacion ultravioleta de dos cepas bacterianas marinas heterotrofas antarticas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Edgardo A [Buenos Aires Univ. (Argentina). Facultad de Farmacia y Bioquimica; Ferreyra, Gustavo A; Mac Cormack, Walter P [Direccion Nacional del Antartico, Buenos Aires (Argentina). Instituto Antartico Argentino

    2004-07-01

    Two Antarctic marine bacterial strains, were exposed to different irradiance of ultraviolet (UV) solar radiation using several experimental protocols and interferential filters. Results showed that both, UV-A and UV-B radiation produce deleterious effects on two tested bacterial strains. The mortality values under UVB treatments were higher than those observed under UVA treatments. UVvi strain proved to be more resistant to UV radiation than the UVps strain. (author) [Spanish] Dos cepas marinas antarticas fueron expuestas a diferentes irradiancias de radiacion solar ultravioleta (UV) utilizando diferentes protocolos experimentales y filtros interferenciales. Los resultados mostraron que tanto la radiacion UV-A como UV-B produce efectos deletereos sobre las dos cepas bacterianas analizadas. Los valores de mortalidad bajo tratamiento UV-B fueron mayores que los observados bajo tratamiento UV-A. La cepa UVvi mostro mayor resistencia a la radiacion UV que la cepa UVps. (autor)

  2. Aplicação de radiação UV artificial e solar no tratamento fotocatalítico de efluentes de curtume Application of artificial and solar UV radiation in the photocatalytic treatment of a tannery effluent

    Directory of Open Access Journals (Sweden)

    Salomão de Andrade Pascoal

    2007-10-01

    Full Text Available Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI. This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI and organic matter, respectively.

  3. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  4. Photocatalytic Activity and Optical Properties of Blue Persistent Phosphors under UV and Solar Irradiation

    Directory of Open Access Journals (Sweden)

    C. R. García

    2016-01-01

    Full Text Available Blue phosphorescent strontium aluminosilicate powders were prepared by combustion synthesis route and a postannealing treatments at different temperatures. X-ray diffraction analysis showed that phosphors are composed of two main hexagonal phases: SrAl2O4 and Sr3Al32O51. The morphology of the phosphors changed from micrograins (1000°C to a mixture of bars and hexagons (1200°C and finally to only hexagons (1300°C as the annealing temperature is increased. Photoluminescence spectra showed a strong blue-green phosphorescent emission centered at λem=455 nm, which is associated with 4f65d1→4f6  (8S7/2 transition of the Eu2+. The sample annealed at 1200°C presents the highest luminance value (40 Cd/m2 with CIE coordinates (0.1589, 0.1972. Also, the photocatalytic degradation of methylene blue (MB under UV light (at 365 nm was monitored. Samples annealed at 1000°C and 1300°C presented the highest percentage of degradation (32% and 38.5%, resp. after 360 min. In the case of photocatalytic activity under solar irradiation, the samples annealed at 1000°C, 1150°C, and 1200°C produced total degradation of MB after only 300 min. Hence, the results obtained with solar photocatalysis suggest that our powders could be useful for water cleaning in water treatment plants.

  5. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase.

    Science.gov (United States)

    Dong, Xing; Fan, Yunchang; Yang, Peng; Kong, Jichuan; Li, Dandan; Miao, Juan; Hua, Shaofeng; Hu, Chaobing

    2016-11-01

    The inhibitory effects of nine ionic liquids (ILs) on the catalase activity were investigated using fluorescence, absorption ultraviolet-visible spectroscopy. The interactions of ILs and catalase on the molecular level were studied. The experimental results indicated that ILs could inhibit the catalase activity and their inhibitory abilities depended on their chemical structures. Fluorescence experiments showed that hydrogen bonding played an important role in the interaction process. The inhibitory abilities of ILs on catalase activity could be simply described by their hydrophobicity and hydrogen bonding abilities. Unexpected less inhibitory effects of trifluoromethanesulfonate (TfO - ) might be ascribed to its larger size, which makes it difficult to go through the substrate channel of catalase to the active site. © The Author(s) 2016.

  6. SIMULATED SOLAR ULTRAVIOLET RADIATION EFFECTS ON 5 SPECIES OF SCLERACTINIAN CORALS

    Science.gov (United States)

    The impact of global climate change factors such as increased temperature and ultraviolet radiation (UVR) on coral bleaching are of continued interest to the USEPA. Coral bleaching occurs when symbiotic zooxanthellae and/or their pigments are depleted in response to stressors suc...

  7. Solar ultraviolet radiation in Australia. Results from network measurements and their use in public education

    International Nuclear Information System (INIS)

    Roy, C.R.; Gies, H.P.; Lokan, K.H.

    1993-01-01

    Growing evidence of global depletion of stratospheric ozone has given additional support to the ultraviolet radiation (UVR) network established by ARL in Australia and Antarctica. The data produced is necessary to increase our knowledge of atmospheric change, human health studies and for public education. (4 figs., 1 tab.)

  8. Phototherapy appliances, their ultraviolet radiation and quality assurance of phototherapy; Terveydenhuollon laadunhallinta. Valohoitolaitteet, niiden UV- saeteily ja valohoitojen laadunvarmistus

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Leszczynski, K.; Visuri, R.; Ylianttila, L.; Jokela, K. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    1998-12-31

    Artificial UV radiation (UVR) is used in the treatment of psoriasis and other skin diseases. Long term phototherapy is associated to increased risk of squamous cell carcinoma. This report gives a short review of biological effects of UVR and technical aspects of phototherapy units. The phototherapy units used in Finnish Central hospitals are described and the measured UVR dose rates of these units are presented. In addition, the UVR meters used in hospitals are described and the calibration factors are given for UVR dose rate measurements: Finally, recommendations are given for the quality assurance of photo-therapy units as well as for assessing UVR doses of patients. (orig.) 88 refs.

  9. Phototherapy appliances, their ultraviolet radiation and quality assurance of phototherapy. Terveydenhuollon laadunhallinta. Valohoitolaitteet, niiden UV- saeteily ja valohoitojen laadunvarmistus

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Leszczynski, K.; Visuri, R.; Ylianttila, L.; Jokela, K. (Radiation and Nuclear Safety Authority, Helsinki (Finland))

    1998-01-01

    Artificial UV radiation (UVR) is used in the treatment of psoriasis and other skin diseases. Long term phototherapy is associated to increased risk of squamous cell carcinoma. This report gives a short review of biological effects of UVR and technical aspects of phototherapy units. The phototherapy units used in Finnish Central hospitals are described and the measured UVR dose rates of these units are presented. In addition, the UVR meters used in hospitals are described and the calibration factors are given for UVR dose rate measurements: Finally, recommendations are given for the quality assurance of photo-therapy units as well as for assessing UVR doses of patients. (orig.) 88 refs.

  10. Ultraviolet light imaging technology and applications

    Science.gov (United States)

    Yokoi, Takane; Suzuki, Kenji; Oba, Koichiro

    1991-06-01

    Demands on the high-quality imaging in ultraviolet (UV) light region have been increasing recently, especially in fields such as forensic investigations, laser experiments, spent fuel identification, and so on. Important requirements on the UV imaging devices in such applications are high sensitivity, excellent solar blindness, and small image distortion, since the imaging of very weak UV images are usually carried out under natural sunlight or room illuminations and the image data have to be processed to produce useful two-dimensional quantitative data. A new photocathode has been developed to meet these requirements. It is specially made of RbTe on a sapphire window and its quantum efficiency is as high as 20% with the solar blindness of 10,000. The tube is specially designed to meet UV light optics and to minimize image distortion. It has an invertor type image intensifier tube structure and intensifies the incident UV light up to approximately 10,000 times. The distortion of the output image is suppressed less than 1.8%, because of a specially designed electron optic lens system. The device has shown excellent results in the observation of such objects as fingerprints and footprints in forensic investigations, the Cherenkov light produced by the spent fuels stored in a cooling water pool in the nuclear power station, and UV laser beam path in excimer laser experiments. Furthermore, many other applications of the UV light imaging will be expected in various fields such as semiconductors, cosmetics, and electrical power.

  11. High performance CaS solar-blind ultraviolet photodiodes fabricated by seed-layer-assisted growth

    International Nuclear Information System (INIS)

    He, Qing Lin; Lai, Ying Hoi; Sou, Iam Keong; Liu, Yi; Beltjens, Emeline; Qi, Jie

    2015-01-01

    CaS, with a direct bandgap of 5.38 eV, is expected to be a strong candidate as the active-layer of high performance solar-blind UV photodiodes that have important applications in both civilian and military sectors. Here, we report that a seed-layer-assisted growth approach via molecular beam epitaxy can result in high crystalline quality rocksalt CaS thin films on zincblende GaAs substrates. The Au/CaS/GaAs solar-blind photodiodes demonstrated , more than five orders in its visible rejection power, a photoresponse of 36.8 mA/w at zero bias and a corresponding quantum efficiency as high as 19% at 235 nm

  12. Medición y predicción de la radiación solar global UV-B bajo cielos claros y sin nubes

    Directory of Open Access Journals (Sweden)

    Jaime Wright Gilmore

    2016-03-01

    Full Text Available Se presentan mediciones experimentales de la radiación solar ultravioleta en el rango B del espectro solar (UV-B y la radiación ultravioleta en el rango total RUV (UV-A+UV-B en días claros y sin nubes en Heredia, Costa Rica. Se utilizó una radiómetro UV-B, que mide la radiación solar en el rango espectral 280-315 nm, y un radiómetro RUV, que mide la radiación solar en el rango espectral 280-385 nm. La dependencia entre entre UV-B y RUV también fue investigada, y se encontró un excelente grado de asociación entre ambas. Además se detalló que UV-B representa solamente un 5,4% de RUV, a pesar de que UV-B es mil veces más potente que UV-A. Los valores de UV-B medidos in situ fueron comparados con los valores predichos por un modelo atmosférico espectral, el cual utiliza como datos de entrada: la hora del día, la latitud, la altitud, el albedo superficial, la distancia Tierra-Sol, la turbiedad atmosférica y el ozono atmosférico. La comparación entre los valores medidos y predichos dio resultados satisfactorios.

  13. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P.; Koskela, T.; Damski, J.; Supperi, A. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  14. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P; Koskela, T; Damski, J; Supperi, A [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1997-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  15. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  16. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    Science.gov (United States)

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.

  17. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation

    Science.gov (United States)

    Ryan, robert E.; Underwood, Lauren W.

    2007-01-01

    More than 75 percent of the U.S. population lives in urban communities where people are exposed to levels of smog or pollution that exceed the EPA (U.S. Environmental Protection Agency) safety standards. Urban air quality presents a unique problem because of a number of complex variables, including traffic congestion, energy production, and energy consumption activities, all of which can contribute to and affect air pollution and air quality in this environment. In environmental engineering, photocatalysis is an area of research whose potential for environmental clean-up is rapidly developing popularity and success. Photocatalysis, a natural chemical process, is the acceleration of a photoreaction in the presence of a catalyst. Photocatalytic agents are activated when exposed to near UV (ultraviolet) light (320-400 nm) and water. In recent years, surfaces coated with photocatalytic materials have been extensively studied because pollutants on these surfaces will degrade when the surfaces are exposed to near UV light. Building materials, such as tiles, cement, glass, and aluminum sidings, can be coated with a thin film of a photocatalyst. These coated materials can then break down organic molecules, like air pollutants and smog precursors, into environmentally friendly compounds. These surfaces also exhibit a high affinity for water when exposed to UV light. Therefore, not only are the pollutants decomposed, but this superhydrophilic nature makes the surface self-cleaning, which helps to further increase the degradation rate by allowing rain and/or water to wash byproducts away. According to the Clean Air Act, each individual state is responsible for implementing prevention and regulatory programs to control air pollution. To operate an air quality program, states must adopt and/or develop a plan and obtain approval from the EPA. Federal approval provides a means for the EPA to maintain consistency among different state programs and ensures that they comply with the

  18. The possibility of using plastic detectors CR-39 as UV dosimeters

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.; Sawaf, A.A.

    2004-01-01

    The effects of solar ultraviolet (SUV) and ultraviolet type A (UVA) produced by a solar UV simulator on CR-39 detectors were studied. This was done using three techniques: 1 - Alpha tracks diameters and tracks densities, 2 - UV-Vis spectrometry and 3 - FTIR spectrometry. The detectors were divided into two groups, the first was exposed to UV and then to alpha particles, the second group was exposed to alpha particles first and then to UV. The results showed that the effect of UVA on CR-39 was not clear using the three techniques. While, the effect of SUV was clear when using UV-Vis and FTIR spectrometric, and not clear when using track parameters. (author)

  19. The possibility of using plastic detectors CR-39 as UV dosimeters

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, G.; Sawaf, A.A.

    2002-01-01

    The effects of solar ultraviolet (SUV) and ultraviolet type A (UVA) produced by a solar UV simulator on CR-39 detectors were studied. This was done using three techniques: 1 - Alpha tracks diameters and tracks densities, 2 - UV-Vis spectrometry and 3 - FTIR spectrometry. The detectors were divided into two groups, the first was exposed to UV and then to alpha particles, the second group was exposed to alpha particles first and then to UV. The results showed that the effect of UVA on CR-39 was not clear using the three techniques. While, the effect of SUV was clear when using UV-Vis and FTIR spectrometric, and not clear when using track parameters

  20. Effect of UV irradiations on the structural and optical features of porous silicon: application in silicon solar cells

    International Nuclear Information System (INIS)

    Aouida, S.; Saadoun, M.; Boujmil, M.F.; Ben Rabha, M.; Bessaies, B.

    2004-01-01

    The aim of this paper is to investigate the structural and optical stability of porous silicon layers (PSLs) planned to be used in silicon solar cells technology. The PSLs were prepared by a HNO 3 /HF vapor etching (VE) based method. Fourier transform infrared (FT-IR) spectroscopy shows that fresh VE-based PSLs contain N-H and Si-F bonds related to a ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 minor phase, and conventional Si-H x and Si-O x bonds. Free air exposures of PSLs without and with UV irradiation lead to oxidation or photo-oxidation of the porous layer, respectively. FT-IR characterisation of the PSLs shows that UV irradiations modify the transformation kinetics replacing instable Si-H x by Si-O x or Si-O-H bonds. When fresh PSLs undergo free air oxidation within 7 days, the surface reflectivity decreases from 10 to about 8%, while it drops to about 4% when a 10 min free air UV irradiation is applied. Long periods of free air oxidation do not ensure the reflectivity to be stable, whereas it becomes stable after only 10 min of UV irradiation. This behaviour was explained taking into account the kinetic differences between oxidation with and without UV irradiation. Fresh VE-based PSLs were found to improve efficiently the photovoltaic (PV) characteristics of crystalline silicon solar cells. The passivating action of VE-based PSLs was discussed. An improvement of the PV performances was observed solely for stable oxidized porous silicon (PS) structures obtained from UV irradiations

  1. PMMA Wettability Caused by Ultraviolet Radiation

    OpenAIRE

    Dehtjars, J; Lancere, L; Poļaka, N; Soudnikovich, A; Tjuļkins, F; Valters, V

    2010-01-01

    The article is targeted to explore ultraviolet radiation (UV) influence on PMMAf or eye prostheses. UV beingt he Sun lightc omponenta nd could effect PMMA surface that in turn contributesi nteractionw ith tear. PMMA wettabilityw as poweredb y UV.

  2. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    Energy Technology Data Exchange (ETDEWEB)

    Feister, Uwe [German Meteorological Service, Meteorological Observatory Lindenberg - Richard-Assmann-Observatory, Am Observatorium 12, 15848 Lindenberg (Germany); Meyer, Gabriele; Kirst, Ulrich [German Social Accident Insurance Institution for Transport and Traffic, Ottenser Hauptstrasse 54, 22765 Hamburg (Germany)

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  3. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation

    OpenAIRE

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C.; Pourzand, Charareh

    2016-01-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320?400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect...

  4. Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1987-01-01

    Three homologous flares observed in the UV lines of Fe XXI and O V and in X-rays from the SMM were studied. It was found that: (1) the homology of the flares was most noticeable in Fe XXI and soft X-ray emissions; (2) the three flares shared many of the same loop footprints which were located in O V bright kernals associated with hard X-ray bursts; and (3) in spite of the strong spatial homology, the temporal evolution in UV and X-ray emissions varied from flare to flare. A comparison between the UV observations and photospheric magnetograms revealed that the basic flare configuration was a complex loop system consisting of many loops or bundles of loops.

  5. Skin Cancer and UV Protection

    Directory of Open Access Journals (Sweden)

    Tarbuk Anita

    2016-03-01

    Full Text Available The incidence of skin cancer is increasing by epidemic proportions. Basal cell cancer remains the most common skin neoplasm, and simple excision is generally curative. On the other hand, aggressive local growth and metastasis are common features of malignant melanoma, which accounts for 75% of all deaths associated with skin cancer. The primary cause of skin cancer is long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation and family genetics. It is believed that in childhood and adolescence, 80% of UV-R gets absorbed while in the remaining, 20 % gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Reducing the exposure time to sunlight, using sunscreens and protective textiles are the three ways of UV protection. Most people think that all the clothing will protect them, but it does not provide full sun screening properties. Literature sources claim that only 1/3 of the spring and summer collections tested give off proper UV protection. This is very important during the summer months, when UV index is the highest. Fabric UV protection ability highly depends on large number of factors such as type of fiber, fabric surface, construction, porosity, density, moisture content, type and concentration of dyestuff, fluorescent whitening agents, UV-B protective agents (UV absorbers, as well as nanoparticles, if applied. For all of these reasons, in the present paper, the results of UV protecting ability according to AS/NZS 4399:1996 will be discussed to show that standard clothing materials are not always adequate to prevent effect of UV-R to the human skin; and to suggest the possibilities for its improvement for this purpose enhancing light conversion and scattering. Additionally, the discrepancy in UV protection was investigated in distilled water as well as Adriatic Sea water.

  6. School students' knowledge and understanding of the Global Solar ...

    African Journals Online (AJOL)

    Background. The Global Solar Ultraviolet Index (UVI) is a health communication tool used to inform the public about the health risks of excess solar UV radiation and encourage appropriate sun-protection behaviour. Knowledge and understanding of the UVI has been evaluated among adult populations but not among ...

  7. An efficient fast response and high-gain solar-blind flexible ultraviolet photodetector employing hybrid geometry

    Science.gov (United States)

    Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.

    2014-05-01

    We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.

  8. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin.

    Science.gov (United States)

    Camouse, Melissa M; Domingo, Diana Santo; Swain, Freddie R; Conrad, Edward P; Matsui, Mary S; Maes, Daniel; Declercq, Lieve; Cooper, Kevin D; Stevens, Seth R; Baron, Elma D

    2009-06-01

    Tea polyphenols have been found to exert beneficial effects on the skin via their antioxidant properties. We sought to determine whether topical application of green tea or white tea extracts would prevent simulated solar radiation-induced oxidative damages to DNA and Langerhans cells that may lead to immune suppression and carcinogenesis. Skin samples were analysed from volunteers or skin explants treated with white tea or green tea after UV irradiation. In another group of patients, the in vivo immune protective effects of green and white tea were evaluated using contact hypersensitivity to dinitrochlorobenzene. Topical application of green and white tea offered protection against detrimental effects of UV on cutaneous immunity. Such protection is not because of direct UV absorption or sunscreen effects as both products showed a sun protection factor of 1. There was no significant difference in the levels of protection afforded by the two agents. Hence, both green tea and white tea are potential photoprotective agents that may be used in conjunction with established methods of sun protection.

  9. Quantification of nimesulide in human plasma by high-performance liquid chromatography with ultraviolet detector (HPLC-UV): application to pharmacokinetic studies in 28 healthy Korean subjects.

    Science.gov (United States)

    Kim, Mi-Sun; Park, Yoo-Sin; Kim, Shin-Hee; Kim, Sang-Yeon; Lee, Min-Ho; Kim, Youn-Hee; Kim, Do-Wan; Yang, Seok-Chul; Kang, Ju-Seop

    2012-05-01

    Nimesulide is a selective COX-2 inhibitor that is as effective as the classical non-acidic nonsteroidal anti-inflammatory drugs in the relief of various pain and inflammatory conditions, but is better tolerated with lower incidences of adverse effects than other drugs. After oral dose of 100 mg nimesulide to western subjects, a mean maximal concentration (C(max)) of 2.86 ∼ 6.5 µg/mL was reached at 1.22 ∼ 2.75 h and mean t(1/2β) of 1.8 ∼ 4.74 h. This study developed a robust method for quantification of nimesulide for the pharmacokinetics and suitability of its dosage in Korea and compared its suitability with other racial populations. Nimesulide and internal standard were extracted from acidified samples with methyl tert-butyl ether and analyzed by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The 28 healthy volunteers took 2 tablets of 100 mg nimesulide and blood concentrations were analyzed during the 24 h post dose. Several pharmacokinetic parameters were represented: AUC(0-infinity) = 113.0 mg-h/mL, C(max) = 12.06 mg/mL, time for maximal concentrations (T(max)) = 3.19 h and t(1/2β) = 4.51 h. These were different from those of western populations as follows: AUC was 14.5% and C(max) was 28% that of of Korean subjects and T(max) and t(1/2β) were also different. The validated HPLC-UV method was successfully applied for the pharmacokinetic studies of nimesulide in Korean subjects. Because the pharmacokinetics of nimesulide were different from western populations, its dosage regimen needs to be adjusted for Koreans. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  10. Ni-doped α-Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ying; Liu, Tao; Wang, Ning; Luo, Qiang; Lin, Hong; Li, Jianbao; Jiang, Qinglong; Wu, Lili; Guo, Zhanhu

    2017-08-01

    We report on high-efficiency planar heterojunction perovskite solar cells (PSCs) employing Ni-doped alpha-Fe2O3 as electron-transporting layer (ETL). The suitable addition of nickel (Ni) dopant could enhance the electron conductivity as well as induce downward shift of the conduction band minimum for alpha-Fe2O3, which facilitate electrons injection and transfer from the conduction band of the perovskite. As a consequence, a substantial reduction in the charge accumulation at the perovskite/ETL interface makes the device much less sensitive to scanning rate and direction, i.e., lower hysteresis. With a reverse scan for the optimized PSC under standard AM-1.5 sunlight illumination, it generates a competitive power conversion efficiency (PCE) of 14.2% with a large short circuit current (J(sc)) of 22.35 mA/cm(2), an open circuit photovoltage (V-oc) of 0.92 V and a fill factor (FF) of 69.1%. Due to the small J-V hysteresis behavior, a higher stabilized PCE up to 11.6% near the maximum power point can be reached for the device fabricated with 4 mol% Ni-doped alpha-Fe2O3 ETL compared with the undoped alpha-Fe2O3 based cell (9.2%). Furthermore, a good stability of devices with exposure to ambient air and high levels of ultraviolet (UV)-light can be achieved. Overall, our results demonstrate that the simple solution-processed Ni-doped alpha-Fe2O3 can be a good candidate of the n-type collection layer for commercialization of PSCs.

  11. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean.

    Science.gov (United States)

    Dillon, Francisco M; Tejedor, M Daniela; Ilina, Natalia; Chludil, Hugo D; Mithöfer, Axel; Pagano, Eduardo A; Zavala, Jorge A

    2018-02-01

    Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone. © 2017 John Wiley & Sons Ltd.

  12. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the scientific objectives of the MSFC SUMI project and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed, This paper will describe the optical measurements that have been made on the SUMI telescope mirrors and polarization optics.

  13. Effects of solar ultraviolet radiation (UVR) on molecular diversity of plankton from the Chubut rivers estuary

    International Nuclear Information System (INIS)

    Manrique, J.M.; Halac, S.; Calvo, A.Y.; Villafane, V.; Jones, L.R.; Helbling, W.E.

    2010-01-01

    Within the framework of a project designed to evaluate the impact of UVR upon estuarine plankton, we present here a molecular analysis of plankton diversity. Water samples were exposed to three radiation treatments (PAR, PAR + UV-A and PAR + UV-A + UV-B) in microcosms for ca 10 days during the Austral summer. At the beginning (t 0 ) and at the end of the experiment samples were filtered 0 through 20, 10, 5 and 0.22 μm pore sizes. The DNA amount retained in each filter indicated that most of the plankton biomass was in the 0.22-5 μm fraction at t0. In contrast, at the end of the experiment this proportion changed according to the radiation treatment and big cells (> 20 μm) dominated. An rDNA library was obtained from the DNA corresponding to the 0.22-5 μm fraction. There was no relationship between treatments and the number and frequency of restriction genotypes. Analyses of 27 clones fraction from t 0 indicated the presence of three genera of Rhodobacteraceae, one genus of Rhodospirillaceae, one SAR11 genus, one genus of Bacillaceae, an unclassified sequences of Alphaproteobacteria, Actinobacteria and Rhodospirillaceae. Also, there were six sequences similar to Ostreococcus tauri (Mamiellales). Even though the sequence analyses are still ongoing, our initial data suggest a big impact of UV-B radiation in the amount and composition of the plankton community towards big cells. (authors)

  14. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    OpenAIRE

    Laurence A. Marchat; Elena Aréchaga Ocampo; Mavil López Casamichana; Carlos Pérez-Plasencia; César López-Camarillo; Elizbeth Álvarez-Sánchez

    2011-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-?B, AP-1, and NRF2...

  15. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  16. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  17. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...... (mycorrhiza) or in the biomass of microbes in the soil of the root zone. However, the composition of the soil microbial community was different in the soils under ambient and reduced UV radiation after three treatment years. These results provide new insight into the negative impact of current UV-B fluxes...

  18. Impact of ultraviolet radiation on humans

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    2001-01-01

    Solar radiation, including its ultraviolet (UV) components is a key factor in life on Earth. While small quantities of UV are beneficial for people (for example, through the production of vitamin D), the considerable amount to which people sometimes expose themselves may have extremely noxious effects including actinic erythema, sunburn, photo-induced diseases, photo-worsened diseases, actinic ageing and skin cancers. Since the last century, human exposure to UV has increased either by social-behaviour modifications, or by anthropogenic disruption to the environment through, among other things, industrial development. The World Health Organisation's (WHO) INTERSUN programme has several components: action for reconstruction of the ozone layer through, for example, preventing dumping of chlorofluorocarbons; creation and popularisation of a global UV index; prevention campaigns underlining the risks from UV exposure including dissemination of information to daily newspapers. These are all aimed at reducing the amount of UV radiation that people receive. In addition the WHO advises against exposure to UV artificial sources to reduce overall the quantity of UV received. (author)

  19. Impact of ultraviolet radiation on humans

    Energy Technology Data Exchange (ETDEWEB)

    Cesarini, J.P. [Laboratoire de Recherche sur les Tumeurs de la Peau Humaine, INSERM, Paris (France)

    2001-07-01

    Solar radiation, including its ultraviolet (UV) components is a key factor in life on Earth. While small quantities of UV are beneficial for people (for example, through the production of vitamin D), the considerable amount to which people sometimes expose themselves may have extremely noxious effects including actinic erythema, sunburn, photo-induced diseases, photo-worsened diseases, actinic ageing and skin cancers. Since the last century, human exposure to UV has increased either by social-behaviour modifications, or by anthropogenic disruption to the environment through, among other things, industrial development. The World Health Organisation's (WHO) INTERSUN programme has several components: action for reconstruction of the ozone layer through, for example, preventing dumping of chlorofluorocarbons; creation and popularisation of a global UV index; prevention campaigns underlining the risks from UV exposure including dissemination of information to daily newspapers. These are all aimed at reducing the amount of UV radiation that people receive. In addition the WHO advises against exposure to UV artificial sources to reduce overall the quantity of UV received. (author)

  20. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  1. Ultraviolet-B radiation effects on leaf fluorescence characteristics in cultivars of soybean

    International Nuclear Information System (INIS)

    Miles, D.

    1993-01-01

    Ultraviolet-B (UV-B; 280–320 nm)–emitting lamps unavoidably emit ultraviolet-A (UV-A; 320–400 nm) and ultraviolet-C (UV-C; <280 nm) radiation. Short-wavelength–blocking filters are generally used to limit the wave bands of UV under investigation. The widespread use of such filters means that all exposures to UV-B radiation will have a significant UV-A component. Therefore, the physiological effects unique to UV-B exposure are difficult to clearly isolate. This study presents a method to remove the UV-A and UV-C “contamination” using a liquid potassium chromate (K 2 CrO 4 ) filter, thus allowing more direct assessment of the effects of UV-B exposure. Cultures of the green marine alga Dunaliella tertiolecta were grown in the absence of UV radiation. Sunlamps supplied the UV radiation for a 24 h exposure (solar radiation was not used in this study). The UV radiation was filtered either by the standard method (i.e. cellulose acetate (CA) with polyester = Mylar controls) or by a liquid filter of potassium chromate. Photosynthetic responses were compared. Major decreases in the ratio of variable to maximal fluorescence in dark-adapted cells and photosynthetic capacity were observed in CA-filtered cultures, whereas no change was observed in cells exposed to the same UV-B flux with the UV-A removed by K 2 CrO 4 . The use of a CA filter with a Mylar control does not link results unequivocally to UV-B radiation. Such results should be interpreted with caution. (author)

  2. Data on solar sunburning ultraviolet (UVB radiation at an urban Mediterranean climate

    Directory of Open Access Journals (Sweden)

    Katerina G. Pantavou

    2017-04-01

    Full Text Available This article describes data on the intensity of ultraviolet B (UVB radiation collected during field questionnaire-based surveys in Athens, Greece. The surveys were conducted over 11 days of July and October 2010 at three different urban, outdoor sites. A total of 1104 interviews were conducted. The participants were asked to report whether they felt they got a sunburn at the moment of the interview. Questions related to personal characteristics including skin type and exposure time (visit duration at the interview site were also included in the questionnaire.

  3. Mechanisms of plant resistance to increased solar ultraviolet-B radiation. Final report

    International Nuclear Information System (INIS)

    Teramura, A.H.; Sullivan, J.H.

    1988-05-01

    Since the major conclusions of the project are being disseminated via the scientific literature, the final report consists of a compilation of 11 articles and manuscripts on the effects of ultraviolet-B radiation (UVB) on soybean growth and yield, stress interactions with UVB, and effects of UVB on seedling growth in conifers (the Pinaceae). The effects of UVB on soybeans under field and greenhouse conditions, and under water stress, drought stress and phosphorus deficiency were studied. Soybean yields, seed quality, and physiology, including seed fatty acid and sterol composition, were determined

  4. Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review.

    Science.gov (United States)

    Seité, S; Fourtanier, A; Moyal, D; Young, A R

    2010-11-01

    The effects of acute or repeated suberythemal solar ultraviolet radiation (UVR) exposure on human skin have been insufficiently investigated. Such exposure almost certainly has important long-term consequences that include skin ageing and skin cancer. This review summarizes the published data on the biological effects of suberythemal exposure using a wide range of clinical, cellular and molecular endpoints, some of which may be considered as biomarkers for skin cancer and photoageing. We also include some recent unpublished results from our laboratories. The effects of UVA (320-400 nm), UVB (290-320 nm) and total solar UVR (290-400 nm) are compared. We demonstrate that avoiding sunburn does not prevent many indicators of cutaneous biological damage and that use of low sun protection factor (SPF) sunscreen can inhibit much of the damages induced by suberythemal exposure to UVR. However, even when applied correctly, sunscreen use will result in suberythemal exposure. The degree and spectral quality of such exposure will depend on the SPF and absorption spectrum of the sunscreen, but nonetheless it may contribute to cumulative photodamage. This review may help to determine the level of photoprotection required in sunscreens and daily use products, as well as the ideal ratio of UVB/UVA protection, to improve long-term photoprotection outcomes. © 2010 The Authors. BJD © 2010 British Association of Dermatologists.

  5. Maps of ultraviolet radiation in Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2009-01-01

    Ultraviolet radiation (UV) has contributed relatively little energy to the solar spectrum; but is important, because it is biologically active. The software Surfer 8 has created maps designed of the territory of Costa Rica to assess the maximum levels of solar UV radiation on a horizontal plane. The data were used in creating the maps, were predicted at local noon in eighty-three locations scattered across the country, with a spectral atmospheric model which is physically established. The model has used as input data: the date and time, the location identified by latitude, longitude and height of land above sea level, the value of the vertical column ozone, surface albedo and atmospheric turbidity parameters. The estimate differs by 3% of the measurements made in situ, which agrees with the experimental data. The model has used the data estimation of UV radiation, clear sky conditions, which is the condition where you get the maximum energy possible in each locality. This is of fundamental importance when assessing the adverse effects on human health, leads the maximum intensity in this important solar spectrum band. A larger increase of 23% has presented in the UV radiation with altitude obtaining the hills and mountains the highest rates and places located at sea level and the lowest cost, the indices. The annual variation analysis has revealed an increase greater than 27% from the month of lowest UV radiation (December) and the month of greatest UV radiation (April). The issue is of particular interest because of the increasing number of people moving at different times of the year, altitudes over 2000 m altitude, in activities relating to tourism and employment. These individuals are significant increases in levels of UV solar radiation under conditions of clear skies. (author) [es

  6. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  7. Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors

    International Nuclear Information System (INIS)

    Flint, S.D.; Caldwell, M.M.

    1996-01-01

    Biological spectral weighting functions (BSWF) play a key role in calculating the increase of biologically effective solar ultraviolet-B radiation (UV-BBE) due to ozone reduction, assessing current latitudinal gradients of UV-B BE . and comparing solar UV-B BE with that from lamps and filters in plant experiments. Plant UV action spectra (usually determined with monochromatic radiation in the laboratory with exposure periods on the order of hours) are often used as BSWF. The realism of such spectra for plants growing day after day in polychromatic solar radiation in the field is questionable. We tested the widely used generalized plant action spectrum since preliminary data from an action spectrum being developed with monochromatic radiation for a cultivated oat variety indicate reasonable agreement with the generalized spectrum. These tests involved exposing plants to polychromatic radiation either from a high-pressure xenon arc lamp in growth chambers or in the field under solar radiation with supplemental UV-B lamps. Different broad-spectrum combinations were achieved by truncating the spectrum at successively longer UV wavelengths with various filters. In the growth chamber experiments, the generalized plant spectrum appeared to predict plant growth responses at short (<310nm) wavelengths but not at longer wavelengths. The field experiment reinforced these conclusions, showing (in addition to the expected direct UV-B effects) both direct UV-A effects and UV-A mitigation of UV-B effects. (author)

  8. Spatial variability of ultraviolet-absorbing compounds in an aquatic liverwort and their usefulness as biomarkers of current and past UV radiation: A case study in the Atlantic–Mediterranean transition

    International Nuclear Information System (INIS)

    Monforte, Laura; Tomás-Las-Heras, Rafael; Del-Castillo-Alonso, María-Ángeles; Martínez-Abaigar, Javier; Núñez-Olivera, Encarnación

    2015-01-01

    The spatial variability of ultraviolet-absorbing compounds (UVACs) in the freshwater liverwort Jungermannia exsertifolia subsp. cordifolia was studied in mid-latitudes (the Atlantic–Mediterranean transition) across a wide lati-altitudinal gradient, with the aim of testing the usefulness of UVACs as biomarkers of current ambient levels of UV radiation. We analysed 17 samples from streams located in the main mountain ranges of the Iberian Peninsula, differentiating methanol-soluble (SUVACs, mainly located in the vacuoles) and methanol-insoluble (IUVACs, bound to cell walls) compounds, since they represent different manners to cope with UV radiation. In both fractions, the bulk level of UVACs and the concentrations of several individual compounds were measured. In addition, we measured F v /F m , DNA damage and sclerophylly index (SI) as possible additional UV biomarkers. UVACs showed a high variability, probably due not only to the gradients of macroenvironmental factors (UV radiation, PAR, and water temperature), but also to microenvironmental factors inherent to the dynamic nature of mountain streams. Two soluble coumarins were positively correlated with UV levels and could be used for ambient UV biomonitoring in the spatial scale. In contrast to the variability in UVACs, the relatively homogeneous values of F v /F m and the lack of any DNA damage made these variables useless for ambient UV biomonitoring, but suggested a strong acclimation capacity of this liverwort to changing environmental conditions (in particular, to UV levels). Finally, UVACs of fresh samples of the liverwort were compared to those of herbarium samples collected in the same lati-altitudinal gradient. SUVACs were significantly higher in fresh samples, whereas IUVACs generally showed the contrary. Thus, IUVACs were more stable than SUVACs and hence more adequate for retrospective UV biomonitoring. In conclusion, UVAC compartmentation should be taken into account for bryophyte-based UV

  9. Spatial variability of ultraviolet-absorbing compounds in an aquatic liverwort and their usefulness as biomarkers of current and past UV radiation: A case study in the Atlantic–Mediterranean transition

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, Laura; Tomás-Las-Heras, Rafael; Del-Castillo-Alonso, María-Ángeles; Martínez-Abaigar, Javier, E-mail: javier.martinez@unirioja.es; Núñez-Olivera, Encarnación

    2015-06-15

    The spatial variability of ultraviolet-absorbing compounds (UVACs) in the freshwater liverwort Jungermannia exsertifolia subsp. cordifolia was studied in mid-latitudes (the Atlantic–Mediterranean transition) across a wide lati-altitudinal gradient, with the aim of testing the usefulness of UVACs as biomarkers of current ambient levels of UV radiation. We analysed 17 samples from streams located in the main mountain ranges of the Iberian Peninsula, differentiating methanol-soluble (SUVACs, mainly located in the vacuoles) and methanol-insoluble (IUVACs, bound to cell walls) compounds, since they represent different manners to cope with UV radiation. In both fractions, the bulk level of UVACs and the concentrations of several individual compounds were measured. In addition, we measured F{sub v}/F{sub m}, DNA damage and sclerophylly index (SI) as possible additional UV biomarkers. UVACs showed a high variability, probably due not only to the gradients of macroenvironmental factors (UV radiation, PAR, and water temperature), but also to microenvironmental factors inherent to the dynamic nature of mountain streams. Two soluble coumarins were positively correlated with UV levels and could be used for ambient UV biomonitoring in the spatial scale. In contrast to the variability in UVACs, the relatively homogeneous values of F{sub v}/F{sub m} and the lack of any DNA damage made these variables useless for ambient UV biomonitoring, but suggested a strong acclimation capacity of this liverwort to changing environmental conditions (in particular, to UV levels). Finally, UVACs of fresh samples of the liverwort were compared to those of herbarium samples collected in the same lati-altitudinal gradient. SUVACs were significantly higher in fresh samples, whereas IUVACs generally showed the contrary. Thus, IUVACs were more stable than SUVACs and hence more adequate for retrospective UV biomonitoring. In conclusion, UVAC compartmentation should be taken into account for bryophyte

  10. Effect of UV irradiation on cutaneous cicatrices

    DEFF Research Database (Denmark)

    Due, Eva; Rossen, Kristian; Sorensen, Lars Tue

    2007-01-01

    The aim of this study was to examine the effect of ultraviolet (UV) irradiation on human cutaneous cicatrices. In this randomized, controlled study, dermal punch biopsy wounds served as a wound healing model. Wounds healed by primary or second intention and were randomized to postoperative solar UV...... postoperatively, UV-irradiated cicatrices healing by second intention: (i) were significantly pointed out as the most disfiguring; (ii) obtained significantly higher scores of colour, infiltration and cicatrix area; and (iii) showed significantly higher increase in skin-reflectance measurements of skin......-pigmentation vs. non-irradiated cicatrices. No histological, immunohistochemical or biochemical differences were found. In conclusion, postoperative UV exposure aggravates the clinical appearance of cicatrices in humans....

  11. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N Y [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N A [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I V; Bushnev, S V; Kondranin, T V [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V U [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1996-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  12. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  13. Near-ultraviolet radiation blocks SOS responses to DNA damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.A.; Eisenstark, A.

    1984-01-01

    Escherichia coli cells in which the recA promoter is fused to a lac structural gene, (Mu) Mud(Ap,lac)::rec, were irradiated with two far-ultraviolet light wavelengths (254 and 290 nm), selected monochromatic near-ultraviolet (NUV) wavelengths 313 nm, 334 nm, 365 nm, or broad band solar-UV (290-420 nm) from a solar simulator. Irradiation with the two far-ultraviolet wavelengths was followed by high yields of ..beta..-galactosidase, lambda prophage induction, and Weigle reactivation. These end points were not observed after irradiation with the selected NUV wavelengths or the broad spectrum solar-UV. Thus, neither broad spectrum solar-UV nor monochromatic NUV wavelengths resulted in the derepression of the recA promoter. Further, prior exposure of the cells either to the selected monochromatic NUV wavelengths or to solar-UV inhibited a) the induction of ..beta..-galactosidase by subsequent 254-nm radiation, b) subsequent 254-nm induction of lambda prophage, c) Weigle reactivation, and d) mutation frequency. These observations are consistent with the hypothesis that NUV blocks subsequent recA protease action.

  14. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.

    Science.gov (United States)

    Vidal, Lorena; Chisvert, Alberto; Canals, Antonio; Salvador, Amparo

    2010-04-15

    A user-friendly and inexpensive ionic liquid-based single-drop microextraction (IL-SDME) procedure has been developed to preconcentrate trace amounts of six typical UV filters extensively used in cosmetic products (i.e., 2-hydroxy-4-methoxybenzophenone, isoamyl 4-methoxycinnamate, 3-(4'-methylbenzylidene)camphor, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 4-dimethylaminobenzoate and 2-ethylhexyl 4-methoxycinnamate) from surface water samples prior to analysis by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the SDME procedure, which were later optimized by means of a circumscribed central composite design. The studied variables were drop volume, sample volume, agitation speed, ionic strength, extraction time and ethanol quantity. Owing to particularities, ionic liquid type and pH of the sample were optimized separately. Under optimized experimental conditions (i.e., 10 microL of 1-hexyl-3-methylimidazolium hexafluorophosphate, 20 mL of sample containing 1% (v/v) ethanol and NaCl free adjusted to pH 2, 37 min extraction time and 1300 rpm agitation speed) enrichment factors up to ca. 100-fold were obtained depending on the target analyte. The method gave good levels of repeatability with relative standard deviations varying between 2.8 and 8.8% (n=6). Limits of detection were found in the low microg L(-1) range, varying between 0.06 and 3.0 microg L(-1) depending on the target analyte. Recovery studies from different types of surface water samples collected during the winter period, which were analysed and confirmed free of all target analytes, ranged between 92 and 115%, showing that the matrix had a negligible effect upon extraction. Finally, the proposed method was applied to the analysis of different water samples (taken from two beaches, two swimming pools and a

  15. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    Science.gov (United States)

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  17. The Ultraviolet Index: a useful tool.

    Science.gov (United States)

    Kinney, J P; Long, C S

    2000-09-01

    The Ultraviolet Index was developed in the United States in 1994 following successful use of ultraviolet (UV) alerts in other countries. This daily National Weather Service prediction is a calculation which integrates five data elements to yield the amount of UV radiation impacting the surface (1m2) at solar noon in 58 of the largest US population centers. This simple numeric prediction is then categorized by the Environmental Protection Agency into five "exposure levels" with protective actions recommended for each level. This information is disseminated through the media. Daily reminders seem to affect awareness and behavior in Canada, but US surveys indicate the need for better understanding through educational graphics. Comparing the UV Index to a precipitation prediction has merit in that it links a familiar daily prediction with implied appropriate protective measures. Graphics link the ideas that "when it rains it pours and when it shines it radiates." Beginning in schools, camps, and dermatology meetings, using the rain/shine analogy, a wider exposure to the Ultraviolet Index is proposed.

  18. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. Copyright © Physiologia Plantarum 2011.

  19. The Use of Ultra-Violet (UV) Light Emitting Diodes (LEDS) in an Advanced Oxidation Process (AOP) with Brilliant Blue FCF as an Indicator

    Science.gov (United States)

    2015-03-26

    LEDs have the potential to replace mercury lamps in many UV processes, as well as open the door to new applications of UV light based on their unique...al. 2007, Autin, Romelot, et al. 2013). UV LEDs in AOPs While most data on AOP experimentation are based on experiments that use mercury lamps ...metaldehyde in solution. Their experiments found that similar UV light exposure levels from UV LEDs and traditional mercury lamps produced similar

  20. Effectiveness of eye drops protective against ultraviolet radiation.

    Science.gov (United States)

    Daxer, A; Blumthaler, M; Schreder, J; Ettl, A

    1998-01-01

    To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.

  1. Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass

    DEFF Research Database (Denmark)

    Rinnan, R.; Keinänen, M.M.; Kasurinen, A.

    2005-01-01

    We assessed the effects of ambient solar ultraviolet (UV) radiation on below-ground parameters in an arctic heath in north-eastern Greenland. We hypothesized that the current UV fluxes would reduce root biomass and mycorrhizal colonization and that these changes would lead to lower soil microbial...... biomass and altered microbial community composition. These hypotheses were tested on cored soil samples from a UV reduction experiment with three filter treatments (Mylar, 60% UV-B reduction; Lexan, up to 90% UV-B reduction+UV-A reduction; UV transparent Teflon, filter control) and an open control...... treatment in two study sites after 3 years' manipulation. Reduction of both UV-A and UV-B radiation caused over 30% increase in the root biomass of Vaccinium uliginosum, which was the dominant plant species. UV reduction had contrasting effects on ericoid mycorrhizal colonization of V. uliginosum roots...

  2. Establishing a ultraviolet radiation observational network and enhancing the study on ultraviolet radiation

    Science.gov (United States)

    Bai, Jianhui; Wang, Gengchen

    2003-09-01

    On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.

  3. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Leer en Español: El ... Aug. 28, 2014 Keep an Eye on Ultraviolet (UV) Safety Eye medical doctors (ophthalmologists) caution us that ...

  4. Accelerated degradation by UV radiation of adhesive materials used in solar equipment

    International Nuclear Information System (INIS)

    Tilca, F.; Acosta, D; Barcena, H.; Suarez, H.; Cadena, C.; Bolzi, Claudio

    2003-01-01

    Several materials which are used as common adhesives in photovoltaic cells, were tested in order to study their stability. Accelerated degradation effects were produced using high radiation doses of UV-C and UV-b in a previously described camera at different times. The exposed and unexposed films were studied by transmittance, X-ray diffraction and infrared. The results are in agreement with complex degradation process at long exposition times, while transmittance doesn't change significantly. (author)

  5. Knowledge, attitude and practice regarding solar ultraviolet exposure among medical university students in Northeast China.

    Science.gov (United States)

    Gao, Qian; Liu, Guangcong; Liu, Yang

    2014-11-01

    To assess the knowledge, attitudes and practices regarding the health effects of ultraviolet radiation (UVR) and sun exposure among medical university students in Northeast China, 385 subjects were investigated on October 2013 using a self-administered multiple-choice questionnaire. Most of the subjects knew the effects of UVR on skin cancer (95.6%) and sunburn (92.2%), but fewer knew of the eye damage that can result from UVR (27.8% cataract and 3.1% pterygium). Correspondingly, the main purpose of adopting sun protection was considered to be 'preventing sunburn' (55.4%), but 'preventing eye damage' was the least (1.8%). In actual behaviour, the eyes received the least protection as well. Although knowing the effects of UVR on vitamin D synthesis (87.3%), 66.8% of participants never or seldom increased sun exposure. Compared to men, women were more likely to reduce sun exposure (Pattractive. Considering the response variability to UVR in people with different skin colours, different sun protection programs should be provided. In China, especially in the North, the public should be educated to moderately increase sun exposure to maintain adequate vitamin D status while also protecting against eye damage from UVR. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation.

    Science.gov (United States)

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C; Pourzand, Charareh

    2016-08-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320-400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Effects of thermal treatment on the Mg{sub x}Zn{sub 1−x}O films and fabrication of visible-blind and solar-blind ultraviolet photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Chunguang [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Dayong, E-mail: dayongjiangcust@126.com [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Tan, Zhendong [The Metrology Technology Institute of Jilin, Changchun 132013 (China); Duan, Qian; Liu, Rusheng; Sun, Long; Qin, Jieming; Hou, Jianhua; Gao, Shang; Liang, Qingcheng; Zhao, Jianxun [School of Materials Science and Engineering, Changchun University