WorldWideScience

Sample records for solar thermionic flight

  1. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  2. A50-kW(el) solar energy thermionic power generator for spacecraft

    International Nuclear Information System (INIS)

    Sahin, S.

    1978-01-01

    The technical limits of thermionic reactors in space craft and the potentials of solar energy thermionic converters are discussed. The technical design of a solar energy thermionic generator for 50 kW(el) as a secondary energy source in unmanned space craft is presented. (GG) [de

  3. Thermodynamics of photon-enhanced thermionic emission solar cells

    International Nuclear Information System (INIS)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures

  4. Thermodynamics of photon-enhanced thermionic emission solar cells

    DEFF Research Database (Denmark)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE...

  5. Negative space charge effects in photon-enhanced thermionic emission solar converters

    International Nuclear Information System (INIS)

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-01-01

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163

  6. Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector

    Science.gov (United States)

    Olawole, Olukunle C.; De, Dilip Kumar

    2018-01-01

    Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.

  7. Development of a high temperature solar receiver for high-efficient thermionic conversion systems; Fukugo netsuden henkan system yo chokoon taiyo junetsuki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Umeoka, T; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    For thermionic conversion systems (TIC) using concentrated sunlight as heat source, the newly developed solar receiver was tested. Concentrated sunlight aims at the inner surface of the cavity type solar receiver. The emitter of TIC installed in the rear of the solar receiver is uniformly heated over 1700K by thermal radiation from the rear of the solar receiver, emitting thermion. Electric power is generated by collecting the thermion by collector. Mo is used as emitter material, however, because of poor heat absorption of Mo, high-absorptive TiC is used for heat absorption surface to heat Mo by thermal conduction from high-temperature TiC. Functionally gradient material (FGM) with an intermediate layer of gradient TiC/Mo ratios between TiC and Mo is used as emitter material. The emitter is thus uniformly heated at high temperatures of 1723{plus_minus}12K. As a result, the developed solar receiver is applicable to heat the emitter of TIC. Heat flux measurement at the graphite cavity clarified that cavity temperature of as high as 1780K and heat flow of 50W/cm{sup 2} are obtained at 4.7kW in input. 6 figs.

  8. DOD's advanced thermionics program an overview

    International Nuclear Information System (INIS)

    Drake, T.R.

    1998-01-01

    The Defense Special Weapons Agency (DSWA) manages a congressionally mandated program in advanced thermionics research. Guided by congressional language to advance the state-of-the-art in the US and support the Integrated Solar Upper Stage (ISUS) program, DSWA efforts concentrate on four areas: an electrically testable design of a high-performance, in-core thermionic fuel element (TFE), the ISUS program, a microminiature thermionic converter and several modeling efforts. The DSWA domestic program is augmented by several small contracts with Russian institutes, awarded under the former TOPAZ International Program that the Ballistic Missile Defense Organization transferred to DSWA. The design effort at General Atomics will result in an electrically testable, multi-cell TFE for in-core conversion, involving system design and advanced collector and emitter technologies. For the ISUS program, DSWA funded a portion of the engine ground demonstration, including development of the power management system and the planar diodes. Current efforts supporting ISUS include continued diode testing and developing an advanced planar diode. The MTC program seeks to design a mass producable, close-spaced thermionic converter using integrated circuit technologies. Modeling and analysis at DSWA involves development of the Reactor System Mass with Thermionics estimation model (RSMASS-T), developing a new thermionic theory, and reviewing applications for the MTC technology. The Russian deliverables include several reports and associated hardware that describe many of its state-of-the-art thermionic technologies and processes

  9. Performance evaluation and parametric optimum design of a vacuum thermionic solar cell

    International Nuclear Information System (INIS)

    Liao, Tianjun; Chen, Xiaohang; Chen, Jincan; Lin, Bihong

    2016-01-01

    A model of the vacuum thermionic solar cell (VTSC) consisting of a solar concentrator, an emitter, and a collector is proposed, in which the various heat losses including the far- and near-field thermal radiation are taken into account. Formula for the overall efficiency of the system is analytically derived. For given values of the ratio of the front surface area of the absorber to that of the emitter and the vacuum gap between the emitter and the collector, the operating temperatures of the emitter and collector are determined by solving the energy balance equations. The maximum efficiency of the VTSC are calculated for given values of the work functions of the emitter and collector materials, and some key parameters such as the net current density of the VTSC, operating temperatures of the emitter and collector, vacuum gap between the emitter and the collector, and area ratio of the absorber to the emitter are optimally determined. Furthermore, the effects of the work functions and the concentration ratio of the solar irradiation on the performance of the VTSC are discussed and several parametric selection criteria are obtained

  10. Solar array flight dynamic experiment

    Science.gov (United States)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  11. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  12. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation

    Institute of Scientific and Technical Information of China (English)

    Wenjia Li; Hongsheng Wang; Yong Hao

    2017-01-01

    A new photovoltaic-thermochemical (PVTC) conceptual system integrating photon-enhanced thermionic emission (PETE) and methane steam reforming is proposed.Major novelty of the system lies in its potential adaptivity to primary fuels (e.g.methane) and high efficiencies of photovoltaic and thermochemical power generation,both of which result from its operation at much elevated temperatures (700-1000 ℃)compared with conventional photovoltaic-thermal (PVT) systems.Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 ℃,after considering major losses during solar energy capture and conversion processes.The system is also featured by high solar share (37%) in the total power output,as well as high energy storage capability and very low CO2 emissions,both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.

  13. The advanced thermionics initiative...program update

    International Nuclear Information System (INIS)

    Lamp, T.R.; Donovan, B.D.

    1993-01-01

    The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs

  14. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  15. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  16. Photophysics of fullerenes: Thermionic emission

    International Nuclear Information System (INIS)

    Compton, R.N.; Tuinman, A.A.; Huang, J.

    1996-01-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C 60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs + is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C 60 in the energy range from 8 to 12 eV results in C 60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  17. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  18. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  19. NUCLEAR THERMIONIC SPACE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R. C.; Rasor, N. S.

    1963-03-15

    The various concepts for utilizing thermionic conversion in space reactor power plants are described and evaluated. The problems (and progress toward their solution) of the in-core concept, particularly, are considered. Progress in thermionic conversion technology is then reviewed from both the hardware and research points of view. Anticipated progress in thermionic conversion and the possible consequences for the performance of electrical propulsion systems are summarized. 46 references. (D.C.W.)

  20. System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Lewis, B.R.; Klein, A.C.; Pawlowski, R.A.

    1993-01-01

    Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range

  1. Thermionic nuclear reactor systems

    International Nuclear Information System (INIS)

    Kennel, E.B.

    1986-01-01

    Thermionic nuclear reactors can be expected to be candidate space power supplies for power demands ranging from about ten kilowatts to several megawatts. The conventional ''ignited mode'' thermionic fuel element (TFE) is the basis for most reactor designs to date. Laboratory converters have been built and tested with efficiencies in the range of 7-12% for over 10,000 hours. Even longer lifetimes are projected. More advanced capabilities are potentially achievable in other modes of operation, such as the self-pulsed or unignited diode. Coupled with modest improvements in fuel and emitter material performance, the efficiency of an advanced thermionic conversion system can be extended to the 15-20% range. Advanced thermionic power systems are expected to be compatible with other advanced features such as: (1) Intrinsic subcritically under accident conditions, ensuring 100% safety upon launch abort; (2) Intrinsic low radiation levels during reactor shutdown, allowing manned servicing and/or rendezvous; (3) DC to DC power conditioning using lightweight power MOSFETS; and (4) AC output using pulsed converters

  2. Thermionic emission from monolayer graphene, sheath formation and its feasibility towards thermionic converters

    Science.gov (United States)

    Misra, Shikha; Upadhyay Kahaly, M.; Mishra, S. K.

    2017-02-01

    A formalism describing the thermionic emission from a single layer graphene sheet operating at a finite temperature and the consequent formation of the thermionic sheath in its proximity has been established. The formulation takes account of two dimensional densities of state configuration, Fermi-Dirac (f-d) statistics of the electron energy distribution, Fowler's treatment of electron emission, and Poisson's equation. The thermionic current estimates based on the present analysis is found to be in reasonably good agreement with experimental observations (Zhu et al., Nano Res. 07, 1 (2014)). The analysis has further been simplified for the case where f-d statistics of an electron energy distribution converges to Maxwellian distribution. By using this formulation, the steady state sheath features, viz., spatial dependence of the surface potential and electron density structure in the thermionic sheath are derived and illustrated graphically for graphene parameters; the electron density in the sheath is seen to diminish within ˜10 s of Debye lengths. By utilizing the graphene based cathode in configuring a thermionic converter (TC), an appropriate operating regime in achieving the efficient energy conversion has been identified. A TC configured with the graphene based cathode (operating at ˜1200 K/work function 4.74 V) along with the metallic anode (operating at ˜400 K/ work function 2.0 V) is predicted to display ˜56% of the input thermal flux into the electrical energy, which infers approximately ˜84% of the Carnot efficiency.

  3. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  4. MATERIALS REQUIREMENTS FOR THERMIONIC ENERGY CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R. C.; Skeen, C. H.

    1963-03-15

    The fundamentals of the thermionic energy conversion and its potential applications are reviewed. Materials problems associated with thermionic emitters are considered in relation to the following: work function; emissivity; vaporization; thermal, mechanical, and electrical properties; chemical stability; permeation; and stability under nuclear radiation. Cesium purity and materials suitable for collectors, electrical leads, support structures, insulators, and seals are also discussed. Experimental work on problems involved is reviewed. It is concluded that significant developments have occurred recently in all areas of thermionic energy conversion. (40 references) (A.G.W.)

  5. A summary of results from solar monitoring rocket flights

    Science.gov (United States)

    Duncan, C. H.

    1981-01-01

    Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.

  6. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  7. Thermionics basic principles of electronics

    CERN Document Server

    Jenkins, J; Ashhurst, W

    2013-01-01

    Basic Principles of Electronics, Volume I : Thermionics serves as a textbook for students in physics. It focuses on thermionic devices. The book covers topics on electron dynamics, electron emission, and the themionic vacuum diode and triode. Power amplifiers, oscillators, and electronic measuring equipment are studied as well. The text will be of great use to physics and electronics students, and inventors.

  8. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  9. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  10. Photon-Enhanced Thermionic Emission in Cesiated p-Type and n-Type Silicon

    DEFF Research Database (Denmark)

    Reck, Kasper; Dionigi, Fabio; Hansen, Ole

    2014-01-01

    electrons. Efficiencies above 60% have been predicted theoretically for high solar concentration systems. Silicon is an interesting absorber material for high efficiency PETE solar cells, partly due to its mechanical and thermal properties and partly due to its electrical properties, including a close......Photon-enhanced thermionic emission (PETE) is a relatively new concept for high efficiency solar cells that utilize not only the energy of electrons excited across the band gap by photons, as in conventional photovoltaic solar cells, but also the energy usual lost to thermalization of the excited...... to ideal band gap. The work function of silicon is, however, too high for practical PETE implementations. A well-known method for lowering the work function of silicon (and other materials) is to apply approximately a monolayer of cesium to the silicon surface. We present the first measurements of PETE...

  11. Thermionic detector with multiple layered ionization source

    International Nuclear Information System (INIS)

    Patterson, P. L.

    1985-01-01

    Method and apparatus for analyzing specific chemical substances in a gaseous environment comprises a thermionic source formed of multiple layers of ceramic material composition, an electrical current instrumentality for heating the thermionic source to operating temperatures in the range of 100 0 C. to 1000 0 C., an instrumentality for exposing the surface of the thermionic source to contact with the specific chemical substances for the purpose of forming gas phase ionization of the substances by a process of electrical charge emission from the surface, a collector electrode disposed adjacent to the thermiomic source, an instrumentality for biasing the thermionic source at an electrical potential which causes the gas phase ions to move toward the collector, and an instrumentality for measuring the ion current arriving at the collector. The thermionic source is constructed of a metallic heater element molded inside a sub-layer of hardened ceramic cement material impregnated with a metallic compound additive which is non-corrosive to the heater element during operation. The sub-layer is further covered by a surface-layer formed of hardened ceramic cement material impregnated with an alkali metal compound in a manner that eliminates corrosive contact of the alkali compounds with the heater element. The sub-layer further protects the heater element from contact with gas environments which may be corrosive. The specific ionization of different chemical substances is varied over a wide range by changing the composition and temperature of the thermionic source, and by changing the composition of the gas environment

  12. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    Science.gov (United States)

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  13. Thermionic and Photo-excited Electron Emission for Energy Conversion Processes

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2014-12-01

    Full Text Available This article describes advances in thermionic and photoemission materials and applications dating back to the work on thermionic emission by Guthrie in 1873 and the photoelectric effect by Hertz in 1887. Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photoemission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk and surface structure.

  14. Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Patrick T. [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States); Reifenberger, Ronald G. [Birck Nanotechnology Center, School of Physics, Purdue University, West Lafayette, IN (United States); Fisher, Timothy S., E-mail: tsfisher@purdue.edu [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States)

    2014-12-09

    This article describes advances in thermionic and photo-emission materials and applications dating back to the work on thermionic emission by Guthrie (1873) and the photoelectric effect by Hertz (1893). Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron-emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photo-emission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk, and surface structure.

  15. Thermionic cogeneration burner design

    Science.gov (United States)

    Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.

    Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.

  16. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  17. A new concept of thermionic converter

    International Nuclear Information System (INIS)

    Musa, G.

    1978-10-01

    The parameters of a new type of thermionic converter which has a number of concentric electrodes, is computed. The obtained theoretical efficiency of this new type of converter is nearly the efficiency of the ideal thermionic converter. The obtained results are explained by the reduction of the radiation loss from the emitter due to the electrode configuration. Efficiencies as high as 20% are expected from this type of converter now in construction. (author)

  18. Development of a thermionic-reactor space-power system. Final summary report

    International Nuclear Information System (INIS)

    1973-01-01

    Initial experimental work led to the award of the first AEC thermionic contract on May 1, 1962, for the development of fission heated thermionic cells with an operating life of 10,000 hours or more. Two types of converters were fabricated: (1) electrically heated, and (2) fission heated where the fuel was either uranium carbide or uranium oxide. Competition between GGA and GE was climaxed on July 1, 1970 by the award to GGA of a contract to develop an in-core thermionic reactor. This report is divided into the following: thermionic research, materials technology, thermionic fuel element development, reactor technology, and systems technology

  19. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  20. Thermionic phenomena the collected works of Irving Langmuir

    CERN Document Server

    Suits, C Guy

    1961-01-01

    Thermionic Phenomena is the third volume of the series entitled The Collected Works of Irving Langmuir. This volume compiles articles written during the 1920's and early 1930's, the period when the science of thermionics is beginning to be of importance. This text is divided into two parts. The first part discusses vacuum pumps, specifically examining the effect of space charge and residual gases on thermionic currents in high vacuum. This part also explains fundamental phenomena in electron tubes having tungsten cathodes and the use of high-power vacuum tubes. The second part of this text loo

  1. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  2. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  3. Results of the 1990 NASA/JPL balloon flight solar cell calibration program

    Science.gov (United States)

    Anspaugh, Bruce E.; Weiss, Robert S.

    1990-01-01

    The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  4. Mechanism of explosive emission excitation in thermionic energy conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Bulyga, A.V.

    1983-01-01

    A study has been made of the mechanism of explosive electron emission in vacuum thermionic converters induced by thermionic currents in the case of the anomalous Richardson effect. The latter is associated with a spotted emitting surface and temperature fluctuations. In order to account for one of the components of the electrode potential difference, it is proposed that allowance be made for the difference between the polarization signal velocity in a dense metal electron gas and that in the electron-ion gas of the electrode gap. Ways to achieve explosive emission in real thermionic converters are discussed.

  5. Thermionic system evaluated test (TSET) facility description

    Science.gov (United States)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  6. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  7. Beta Radiation Enhanced Thermionic Emission from Diamond Thin Films

    Directory of Open Access Journals (Sweden)

    Alex Croot

    2017-11-01

    Full Text Available Diamond-based thermionic emission devices could provide a means to produce clean and renewable energy through direct heat-to-electrical energy conversion. Hindering progress of the technology are the thermionic output current and threshold temperature of the emitter cathode. In this report, we study the effects on thermionic emission caused by in situ exposure of the diamond cathode to beta radiation. Nitrogen-doped diamond thin films were grown by microwave plasma chemical vapor deposition on molybdenum substrates. The hydrogen-terminated nanocrystalline diamond was studied using a vacuum diode setup with a 63Ni beta radiation source-embedded anode, which produced a 2.7-fold increase in emission current compared to a 59Ni-embedded control. The emission threshold temperature was also examined to further assess the enhancement of thermionic emission, with 63Ni lowering the threshold temperature by an average of 58 ± 11 °C compared to the 59Ni control. Various mechanisms for the enhancement are discussed, with a satisfactory explanation remaining elusive. Nevertheless, one possibility is discussed involving excitation of preexisting conduction band electrons that may skew their energy distribution toward higher energies.

  8. High-efficiency AlxGa1-xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters

    Science.gov (United States)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng

    2018-04-01

    A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.

  9. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  10. The mechanism of explosive emission excitation in thermionic energy conversion processes

    Science.gov (United States)

    Bulyga, A. V.

    A study has been made of the mechanism of explosive electron emission in vacuum thermionic converters induced by thermionic currents in the case of the anomalous Richardson effect. The latter is associated with a spotted emitting surface and temperature fluctuations. In order to account for one of the components of the electrode potential difference, it is proposed that allowance be made for the difference between the polarization signal velocity in a dense metal electron gas and that in the electron-ion gas of the electrode gap. Ways to achieve explosive emission in real thermionic converters are discussed.

  11. Thermionic conversion reactor technology assessment. Final report

    International Nuclear Information System (INIS)

    1984-02-01

    The in-core thermionic space nuclear power supply may be the only identified reactor-power concept that can meet the SP-100 size functional requirements with demonstrated state-of-the-art reactor system and space-qualified power system component temperatures. The SP-100 configuration limits provide a net 40 m 2 of primary non-deployed radiator area. If a reasonable 7-year degradation allowance of 15% to 20% is provided then the beginning of life (BOL) net power output requirement is about 120 kWe. Consequently, the SP-100 power system must produce a P/A of 2.7 kWe/m 2 . This non-deployed radiator area power density performance can only be reasonably achieved by the thermionic in-core convertr system, the potassium Rankine turbine system and the Stirling engine system. The purpose of this study is to examine past and current tests and data, and to assess the potential for successful development of suitable fueled-thermionic converters that will meet SP-100 and growth requirements. The basis for the assessment will be provided and the recommended key developments plan set forth

  12. Materials for thermionic energy converters

    NARCIS (Netherlands)

    Wolff, L.R.; Hermans, J.M.; Adriaansen, J.K.M.; Gubbels, G.H.M.; Vincenzini, P.

    1987-01-01

    This paper deals with the design and construction of a combustion heated Thermionic Energy Converter (TEC). Main components of this TEC are: 1. A ''Hot Shell'' protecting the TEC from the combustion environment 2. A ''Ceramic Seal'' electrically insulating the emitter from the collector 3. A

  13. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  14. Thermionics. A bibliography with abstracts. Search period covered: 1970--Apr 1975. [190 references

    Energy Technology Data Exchange (ETDEWEB)

    Grooms, D.W.

    1975-04-01

    Research on thermionic power generation, power plant design, converter design, and basic research on thermionic materials are cited in the bibliography. Spacecraft applications are included. (Contains 190 abstracts).

  15. Hybrid thermionic-photovoltaic converter

    Energy Technology Data Exchange (ETDEWEB)

    Datas, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-04-04

    A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligible electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.

  16. Photocathode operation of a thermionic RF gun

    International Nuclear Information System (INIS)

    Thorin, S.; Cutic, N.; Lindau, F.; Werin, S.; Curbis, F.

    2009-01-01

    The thermionic RF gun using a BaO cathode at the MAX-lab linac injector has been successfully commissioned for additional operation as a photocathode gun. By retaining the BaO cathode, lowering the temperature below thermal emission and illuminating it with a UV (263 nm) 9 ps laser pulse a reduced emittance and enhanced emission control has been achieved. Measurements show a normalised emittance of 5.5 mm mrad at 200 pC charge and a maximum quantum efficiency of 1.1x10 -4 . The gun is now routinely switched between storage ring injections in thermionic mode and providing a beam for the MAX-lab test FEL in photocathode mode.

  17. Isotopic Thermionic Generator

    International Nuclear Information System (INIS)

    Clemot, M.; Devin, B.; Durand, J.P.

    1967-01-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [fr

  18. Thermionic integrated circuits: electronics for hostile environments

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.; MacRoberts, M.D.J.; Wilde, D.K.; Dooley, G.R.; Brown, D.R.

    1985-01-01

    Thermionic integrated circuits combine vacuum tube technology with integrated circuit techniques to form integrated vacuum triode circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments

  19. Role of Meteorology in Flights of a Solar-Powered Airplane

    Science.gov (United States)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  20. NASA thermionic-conversion program

    International Nuclear Information System (INIS)

    Morris, J.F.

    1977-01-01

    NASA's program for applied research and technology (ART) in thermionic energy conversion (TEC) has made worthwhile contributions in a relatively short time: Many of these accomplishments are incremental, yet important. And their integration has yielded gains in performance as well as in the knowledge necessary to point productive directions for future work. Both promise and problems derive from the degrees of freedom allowed by the current programmatic emphasis on out-of-core thermionics. Materials and designs previously prohibited by in-core nucleonics and geometries now offer new potentialities. But as a result a major TEC-ART responsibility is the efficient reduction of the glitter of diverse possibilities to the hard glint of reality. As always high-temperature material effects are crucial to the level and duration of TEC performance: New electrodes must increase and maintain power output regardless of emitter-vapor deposition on collectors. They must also serve compatibly with hot-shell alloys. And while space TEC must face high-temperature vaporization problems externally as well as internally, terrestrial TEC must tolerate hot corrosive atmospheres outside and near-vacuum inside. Furthermore, some modes for decreasing interelectrode losses appear to require rather demanding converter geometries to produce practical power densities. In these areas and others significant progress is being made in the NASA TEC-ART Program

  1. Flights of a spacecraft with a solar sail out of ecliptic plane

    Science.gov (United States)

    Polyakhova, Elena; Starkov, Vladimir; Stepenko, Nikolai

    2018-05-01

    Solar sailing is an unique form of spacecraft (SC) propulsion that uses the free and limitless supply of photons from the Sun. The investigation of near-the-Sun space properties is of the great scientific interest. It can be realized by help of solar sailing. We present the numerical simulation of several closed modelled trajectories of a spacecraft with a controlled solar sail to reach out of ecliptic plane, to flight over the Sun north and south poles and return to the Earth.

  2. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1981-10-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  3. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1982-01-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  4. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  5. New features of the MAX IV thermionic pre-injector

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, J., E-mail: joel.andersson@maxiv.lu.se; Olsson, D., E-mail: david.olsson@maxiv.lu.se; Curbis, F.; Malmgren, L.; Werin, S.

    2017-05-21

    The MAX IV facility in Lund, Sweden consists of two storage rings for production of synchrotron radiation. The smaller 1.5 GeV ring is presently under construction, while the larger 3 GeV ring is being commissioned. Both rings will be operating with top-up injections from a full-energy injector. During injection, the electron beam is first delivered to the main injector from a thermionic pre-injector which consists of a thermionic RF gun, a chopper system, and an energy filter. In order to reduce losses of high-energy electrons along the injector and in the rings, the electron beam provided by the thermionic pre-injector should have the correct time structure and energy distribution. In this paper, the design of the MAX IV thermionic pre-injector with all its sub components is presented. The electron beam delivered by the pre-injector and its dependence on parameters such as optics, cathode temperature, and RF power are studied. Measurements are here compared with simulation results obtained by particle tracking and electromagnetic codes. The chopper system is described in detail, and different driving schemes that optimize the injection efficiency for the two storage rings are investigated. During operation, it was discovered that the structure of the beam delivered by the gun is affected by mode beating between the accelerating and a low-order mode. This mode beating is also studied in detail. Finally, initial measurements of the electron beam delivered to the 3 GeV ring during commissioning are presented.

  6. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  7. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  8. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    Science.gov (United States)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  9. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  10. Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.

    Science.gov (United States)

    Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P

    2007-11-28

    Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.

  11. Results of the 1973 NASA/JPL balloon flight solar cell calibration program

    Science.gov (United States)

    Yasui, R. K.; Greenwood, R. F.

    1975-01-01

    High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.

  12. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  13. Solar Hot Air Balloons: A Low Cost, Multi-hour Flight System for Lightweight Scientific Instrumentation Packages

    Science.gov (United States)

    Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.

    2017-12-01

    Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.

  14. On thermionic emission from plasma-facing components in tokamak-relevant conditions.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Ratynskaia, S.; Tolias, P.; Cavalier, Jordan; Dejarnac, Renaud; Gunn, J. P.; Podolník, Aleš

    2017-01-01

    Roč. 59, č. 9 (2017), č. článku 094002. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : thermionic * PIC * tungsten * tokamak * thermionic emission * plasma facing components * particle-in-cell Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6587/aa78c4/pdf

  15. Thermionic energy conversion heat - electric power; Termojonisk energiomvandling vaerme-elektrisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, L; Svensson, R [Gothenburg Univ. and Chalmers Univ. of Technology (Sweden)

    1993-09-15

    Research and development related to Thermionic Energy Converters (TEC) in Holland and Sweden is directed towards terrestrial applications, while the development work in Russia and the US primarily is directed towards thermionic nuclear reactor for use in space. We have during the project continued our work on the utilization of the so called Rydberg matter in converters. Our patented construction has very good (low) values of the barrier index (figure of merit for the converter), probably the lowest ones ever measured. International patents have been applied for as well. We can summarize the achievements of the project such that solutions to practically all the problems related to the inner function of thermionic converters have been found. During this year a large number of studies have been carried out concerning the properties of the Rydberg matter in the TEC, and related to the highly excited states of Cs which exist in the TEC, partially in cooperation with an American research company. An international conference within the TEC field has been arranged in Gothenburg. Two Ph.D. theses are also under completion within the project

  16. Thermionic combustor application to combined gas and steam turbine power plants

    Science.gov (United States)

    Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.

  17. Thermionic combustor application to combined gas and steam turbine power plants

    International Nuclear Information System (INIS)

    Miskolczy, G.; Wang, C.C.; Lieb, D.P.

    1981-01-01

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air, the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh

  18. SP-100 thermionic technology program annual integrated technical progress report for the period ending September 30, 1984

    International Nuclear Information System (INIS)

    Holland, J.W.

    1984-11-01

    The thermionic technology program addresses the feasibility issues of a seven-year-life thermionic fuel element (TFE) for the SP-100 Thermionic Reactor Space Power System. These issues relate to the extension of TFE lifetime from three to seven years, one of the SP-100 requirements. The technology to support three-year lifetimes was demonstrated in the earlier TFE development program conducted in the late-1960s and 1970s. Primary life-limiting factors were recognized to be thermionic emitter dimensional increases due to swelling of the nuclear fuel and electrical structural damage from fast neutrons. The 1984-85 technology program is investigating the fueled emitter and insulator lifetime issues, both experimentally and analytically. The goal is to analytically project the lifetime of the fueled emitter and insulator and to experimentally verify these projection methods. In 1984, the efforts were largely devoted to the design and building of fueled emitters for irradiation in 1985, validation of fuel-emitter models, development of irradiation-resistant metal-ceramic seal and sheath insulator, modeling of insulator lifetime, and development of wide-spread, high-performance thermionic converters

  19. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    International Nuclear Information System (INIS)

    Manikopoulos, C.N.

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures

  20. Thermionic emission of cermets made of refractory carbides

    International Nuclear Information System (INIS)

    Samsonow, G.W.; Bogomol, I.W.; Ochremtschuk, L.N.; Podtschernjajewa, I.A.; Fomenko, W.S.

    1975-01-01

    In order to improve the resistance to thermal variations of refractory carbides having good behavior for thermionic emission, they have been combined with transition metals d. Thermionic emission was studied with cermets in compact samples. Following systems were examined: TiC-Nb, TiC-Mo, TiC-W, ZrC-Nb, ZrC-Mo, ZrC-W, WC-Mo with compositions of: 75% M 1 C-25% M 2 , 50%M 1 C-50%M 2 , 25%M 1 C-75%M 2 . When following the variation of electron emission energy phi versus the composition, it appears that in the range of mixed crystals (M 1 M 2 )C, phi decreases and the resistance to thermal variations of these phases is higher than that of individual carbides. The study of obtained cermets shows that their resistance to thermal variations is largely superior to the one of starting carbides; TiC and ZrC carbides, combined with molybdenum and tungsten support the highest number of thermic cycles

  1. Advances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond

    Directory of Open Access Journals (Sweden)

    Franz A. M. Koeck

    2017-12-01

    Full Text Available Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e., electron emitter or cathode and collector or anode, are optimized for operation in the desired temperature range. These parameters can be defined through the law of Richardson–Dushman that quantifies the ability of a material to release an electron current at a certain temperature as a function of the emission barrier or work function and the emission or Richardson constant. Engineering materials to defined parameter values presents the key challenge in constructing practical thermionic converters. The elevated temperature regime of operation presents a constraint that eliminates most semiconductors and identifies diamond, a wide band-gap semiconductor, as a suitable thermionic material through its unique material properties. For its surface, a configuration can be established, the negative electron affinity, that shifts the vacuum level below the conduction band minimum eliminating the surface barrier for electron emission. In addition, its ability to accept impurities as donor states allows materials engineering to control the work function and the emission constant. Single-crystal diamond electrodes with nitrogen levels at 1.7 eV and phosphorus levels at 0.6 eV were prepared by plasma-enhanced chemical vapor deposition where the work function was controlled from 2.88 to 0.67 eV, one of the lowest thermionic work functions reported. This work function range was achieved through control of the doping concentration where a relation to the amount of band bending emerged. Upward band bending that contributed to the work function was attributed to

  2. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, Thomas [Advanced Energy Systems, Inc., Medford, NY (United States)

    2015-11-16

    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systems at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The

  3. Flight times to the heliopause using a combination of solar and radioisotope electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ohndorf, Andreas [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany); Dachwald, Bernd [FH Univ. of Applied Sciences, Aachen (Germany); Seboldt, Wolfgang [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany); Loeb, Horst W.; Schartner, Karl-Heinz [Giessen Univ. (Germany)

    2011-07-01

    We investigate the interplanetary flight of a low-thrust space probe to the heliopause, located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of ballistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol, using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km{sup 2}/s{sup 2}. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years, which is below the set transfer-time limit. However, compared to the 27.5-year transfer

  4. Photon enhanced thermionic emission

    Science.gov (United States)

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  5. X-Band Thermionic Cathode RF Gun at UTNL

    CERN Document Server

    Fukasawa, Atsushi; Dobashi, Katsuhiro; Ebina, Futaro; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Matsuo, Kennichi; Ogino, Haruyuki; Sakae, Hisaharu; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji

    2005-01-01

    The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.

  6. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  7. Solar Cell to Support Perpetual Flight of High Altitude Long Endurance UAV ITB

    Science.gov (United States)

    Luqmanul Hakim, Muhammad; Silitonga, Faber Y.; Rosid, Nurhayyan H.; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology to reach the flight duration needed and to get the solution of today’s challenges, minimizing pollution. Besides the good aerodynamic efficiency needed, energy resource is now becoming important. The energy resource must have a good endurance, easy to get, and of course, less pollution. Discussion in this paper is about the analysis of power needed by HALE UAV while takeoff and cruise flight conditions, and then determine the amount of solar cell and battery needed by the UAV.

  8. Processes of preparation, deposition and analysis of thermionic emissive substances

    International Nuclear Information System (INIS)

    Romao, B.M. Verdelli; Muraro Junior, A.; Tessaroto, L.A.B.; Takahashi, J.

    1992-09-01

    This paper shows the results of the optimization of the process of preparation and deposition of thermionic emissive substances that are used in the oxide-cathodes which are utilized in the gun of the IEAv linear electron accelerator. (author). 5 refs., 5 figs

  9. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  10. Thermionic reactor power conditioner design for nuclear electric propulsion.

    Science.gov (United States)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  11. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  12. The Thermionic System Evaluation Test (TSET): Descriptions, limitations, and the involvement of the space nuclear power community

    International Nuclear Information System (INIS)

    Morris, D.B.

    1993-01-01

    Project and test planning for the Thermionic System Evaluation Test (TSET) Project began in August 1990. Since the formalization of the contract agreement two years ago, the TOPAZ-II testing hardware was delivered in May 1992. In the months since the delivery of the test hardware, Russians and Americans working side-by-side installed the equipment and are preparing to begin testing in early 1993. The procurement of the Russian TOPAZ-II unfueled thermionic space nuclear power system (SNP) provides a unique opportunity to understand a complete thermionic system and enhances the possibility for further study of this type of power conversion for space applications. This paper will describe the program and test article, facility and test article limitations, and how the government and industry are encouraged to be involved in the program

  13. The International Telecommunications Satellite (INTELSAT) Solar Array Coupon (ISAC) atomic oxgyen flight experiment: Techniques, results and summary

    Science.gov (United States)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1993-01-01

    Techniques and results of the ISAC flight experiment are presented, and comparisons between flight tests results and ground based testing are made. The ISAC flight experiment, one component of a larger INTELSAT 6 rescue program, tested solar array configurations and individual silver connects in ground based facilities and during STS-41 (Space Shuttle Discovery). In addition to the INTELSAT specimens, several materials, for which little or no flight data exist, were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, polymeric materials, and inorganic materials were exposed to an oxygen atom fluence of 1.2 x 10(exp 20) atoms. Many of the samples were selected to support Space Station Freedom design and decision-making.

  14. 3-D simulation study for a thermionic RF gun using an FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. E-mail: hama@lns.tohoku.ac.jp; Hinode, F.; Shinto, K.; Miyamoto, A.; Tanaka, T

    2004-08-01

    Beam dynamics in a thermionic RF gun for a new pre-injector in a future synchrotron radiation facility at Tohoku university has been studied by developing a 3-D Maxwell's equation solver. Backbombardment (BB) effect on a cathode, which is a crucial problem for performance of the thermionic RF gun, has been investigated. It is found that an external dipole magnetic field applying around the cathode is effective to reduce high-energy backstreaming electrons from the accelerating cell. However, the low-energy electrons coming back from the first cell inevitably hit the cathode, so that characteristics of the cathode material seems to be crucial for reduction of the BB effect.

  15. A thermionic energy converter with a molybdenum-alumina cermet emitter

    NARCIS (Netherlands)

    Gubbels, G.H.M.; Wolff, L.R.; Metselaar, R.

    1990-01-01

    A study is made of the properties of cermets as electrode materials for thermionic energy converters. For thermodynamic reasons it is expected that all cermets composed of pure Mo and refractory oxides have the same bare work function. From data on the work function of Mo in an oxygen atmosphere

  16. Radioactive waste disposal via electric propulsion

    Science.gov (United States)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  17. Control for nuclear thermionic power source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Sawyer, C.D.

    1978-01-01

    A control for a power source is described which includes nuclear fuel interspersed with thermionic converters, including a power regulator that maintains a substantially constant output voltage to a variable load, and a control circuit that drives a neutron flux regulator in accordance with the current supplied to the power regulator and the neutron flux density in the region of the converters. The control circuit generates a control signal which is the difference between the neutron flux density and a linear fucntion of the current, and which drives the neutron regulator in a direction to decrease or increase the neutron flux according to the polarity of the control signal

  18. Development of integrated thermionic circuits for high-temperature applications

    International Nuclear Information System (INIS)

    McCormick, J.B.; Wilde, D.; Depp, S.; Hamilton, D.J.; Kerwin, W.; Derouin, C.; Roybal, L.; Dooley, R.

    1981-01-01

    A class of devices known as integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 0 C is described. The evolution of the ITC concept is discussed. A set of practical design and performance equations is demonstrated. Recent experimental results are discussed in which both devices and simple circuits have successfully operated in 500 0 C environments for extended periods of time

  19. Design study on an independently-tunable-cells thermionic RF gun

    International Nuclear Information System (INIS)

    Hama, H.; Tanaka, T.; Hinode, F.; Kawai, M.

    2006-01-01

    Characteristics of a thermionic RF gun have been studied by a 3-D simulation code developed using an FDTD (Finite Difference Time Domain) method as a Maxwell's equations solver. The gun is consists of two independent power feeding cavities, so that we call it independently-tunable-cells (ITC)'-RF gun. The first cell is the cathode cell and the second one is an accelerating cell. The ITC gun can be operated at various modes of different RF-power ratio and phase between two cavities. Simulation study shows a velocity-bunching like effect may be occurred in the gun, so that the short pulse beam from the thermionic RF gun is a better candidate to produce the coherent THz synchrotron radiation. Expected bunch length with a total charge of ∼20 pC (1% energy width from the top energy) is around 200 fs (fwhm). Even the beam energy extracted from the gun is varied by which the input powers are changed, almost same shape of the longitudinal phase space can be produced by tuning the phase. (author)

  20. Work function and surface stability of tungsten-based thermionic electron emission cathodes

    Science.gov (United States)

    Jacobs, Ryan; Morgan, Dane; Booske, John

    2017-11-01

    Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.

  1. A thermionic energy converter with A molybdenum alumina cermet emitter

    NARCIS (Netherlands)

    Gubbels, G.H.M.; Wolff, L.R.; Metselaar, R.; Yogi Goswami, D.

    1988-01-01

    The I-V characteristics of a thermionic converter equipped with a Mo-1w/o AI203 emitter and a Mo collector were measured. The conditions were varied over a limited range without, as well as with Cs. Work functions of Mo as well as Mo-1w/o AI203 were determined. Measurements were carried out in a

  2. System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Abdul-Hamid, S.; Klein, A.C.

    1996-01-01

    In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses ∼80 W(electric)

  3. Communication: IR spectroscopy of neutral transition metal clusters through thermionic emission

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Haertelt, M.; Meijer, G.; Fielicke, A.; Bakker, J. M.

    2013-01-01

    The resonant multiple photon excitation of neutral niobium clusters using tunable infrared (IR) radiation leads to thermionic emission. By measuring the mass-resolved ionization yield as a function of IR wavenumber species selective IR spectra are obtained for Nb-n (n = 5-20) over the 200-350 cm(-1)

  4. Neutron spectrum and dose-equivalent in shuttle flights during solar maximum

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J E; Badhwar, G D; Lindstrom, D J [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1992-01-01

    This paper presents unambiguous measurements of the spectrum of neutrons found in spacecraft during spaceflight. The neutron spectrum was measured from thermal energies to about 10 MeV using a completely passive system of metal foils as neutron detectors. These foils were exposed to the neutron flux bare, covered by thermal neutron absorbers (Gd) and inside moderators (Bonner spheres). This set of detectors was flown on three U.S. Space Shuttle flights, STS-28, STS-36 and STS-31, during the solar maximum. We show that the measurements of the radioactivity of these foils lead to a differential neutron energy spectrum in all three flights that can be represented by a power law, J(E){approx equal}E{sup -0.765} neutrons cm{sup -2} day {sup -1} MeV{sup -1}. We also show that the measurements are even better represented by a linear combination of the terrestrial neutron albedo and a spectrum of neutrons locally produced in a aluminium by protons, computed by a previous author. We use both approximations to the neutron spectrum to produce a worst case and most probable case for the neutron spectra and the resulting dose-equivalents, computed using ICRP-51 neutron fluence-dose conversion tables. We compare these to the skin dose-equivalents due to charged particles during the same flights. (author).

  5. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  6. Beam emittance measurement from CERN thermionic guns

    International Nuclear Information System (INIS)

    Kester, O.; Rao, R.; Rinolfi, L.

    1992-01-01

    In the LEP Injector Linacs (LIL) a thermionic gun provides electron beams with different peak intensities at an energy of 80 keV. The beam emittances were estimated from the EGUN programme. Since the gun is of triode type, the main contribution to the emittance comes from the grid. The simulation programme does not model the real geometry by assuming a cylindrical symmetry, while the grid does not have such symmetry. A Gun Test Facility (GTF), allowing emittance measurements, based on the 3-gradients-method was installed. The experimental results are presented. (author) 6 refs.; 6 figs

  7. Small ex-core heat pipe thermionic reactor concept (SEHPTR)

    International Nuclear Information System (INIS)

    Jacox, M.G.; Bennett, R.G.; Lundberg, L.B.; Miller, B.G.; Drexler, R.L.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has developed an innovative space nuclear power concept with unique features and significant advantages for both Defense and Civilian space missions. The Small Ex-core Heat Pipe Thermionic Reactor (SEHPTR) concept was developed in response to Air Force needs for space nuclear power in the range of 10 to 40 kilowatts. This paper describes the SEHPTR concept and discusses the key technical issues and advantages of such a system

  8. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960’s, and of renewed interest due to modern...

  9. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  10. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Science.gov (United States)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  11. THERMIONIC EMISSION ENHANCEMENT FROM CESIUM COATED RHENIUM IN ELECTRIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    de Steese, J. G.; Zollweg, R. J.

    1963-04-15

    The plasma-anode technique was used to observe anomalously high thermionic emission from a rhenium surface with small cesium coverage, where the work function of the composite surface is greater than the ionization potential of cesium. Data suggest that emission enhancement is caused by increased cesium coverage because of cesiumion trapping near the emitter surface under the influence of an ion-rich sheath. (auth)

  12. Advantages and implications of U233 fueled thermionic space power energy conversion

    International Nuclear Information System (INIS)

    Terrell, C.W.

    1992-01-01

    In this paper two recent analyses are reported which demonstrate advantages of a U233 fueled thermionic fuel element (TFE) compared to 93 w/o U235, and that application (mission) has broad latitude in how space power reactor systems could or should be optimized. A reference thermionic reactor system was selected to provide the basis for the fuel comparisons. Both oxide and metal fuel forms were compared. Of special interest was to estimate the efficiencies of the four fuel forms to produce electrical power. A figure of merit (FOM) was defined which is directly proportional to the electrical average electrical power produced is proportional to the electrical power produced per unit uranium mass. In a TFE the average electrical power produced is proportional to the emitter surface area (Esa), hence the ratio Esa/Mu was selected as the FOM. Results indicate that the choice of fuel type and form leads to wide variations in critical and system masses FOM values, and system total power

  13. Nano-textured W shows improvement of thermionic emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Barmina, E.V.; Serkov, A.A.; Shafeev, G.A. [General Physics Institute of the Russian Academy of Sciences, Wave Research Center of A.M. Prokhorov, Moscow (Russian Federation); Stratakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, (IESL-FORTH), Heraklion (Greece); University of Crete, Materials Science and Technology Department, Heraklion (Greece); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, (IESL-FORTH), Heraklion (Greece); University of Crete, Physics Department, Heraklion (Greece); Stolyarov, V.N.; Stolyarov, I.N. [Roentgenprom, Protvino, Moscow (Russian Federation)

    2012-01-15

    Laser-assisted nano-texturing of W substrates cathodes via ablation in liquid environment is experimentally realized. Two laser sources are used, either a Ti:sapphire femtosecond laser or a Nd:YAG laser with pulse duration of 350 ps. Laser exposure of W results in the formation of hemi-spherical nanostructures situated on top of periodic ripples. Nano-textured thermionic W cathode demonstrates the decrease of the efficient work function by 0.3 eV compared to pristine surface. (orig.)

  14. High Efficiency Thermionics (HET-IV) and Converter Advancement (CAP) programs. Final reports

    Energy Technology Data Exchange (ETDEWEB)

    Geller, C.B.; Murray, C.S.; Riley, D.R. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Desplat, J.L.; Hansen, L.K.; Hatch, G.L.; McVey, J.B.; Rasor, N.S. [Rasor Associates, Inc., Sunnyvale, CA (United States)

    1996-04-01

    This report contains the final report of the High Efficiency Thermionics (HET-IV) Program, Attachment A, performed at Rasor Associates, Inc. (RAI); and the final report of the Converter Advancement Program (CAP), performed at the Bettis Atomic Power Laboratory, Attachment B. The phenomenology of cesium-oxygen thermionic converters was elucidated in these programs, and the factors that had prevented the achievement of stable, enhanced cesium-oxygen converter performance for the previous thirty years were identified. Based on these discoveries, cesium-oxygen vapor sources were developed that achieved stable performance with factor-of-two improvements in power density and thermal efficiency, relative to conventional, cesium-only ignited mode thermionic converters. Key achievements of the HET-IV/CAP programs are as follows: a new technique for measuring minute traces of oxygen in cesium atmospheres; the determination of the proper range of oxygen partial pressures for optimum converter performance--10{sup {minus}7} to 10{sup {minus}9} torr; the discovery, and analysis of the cesium-oxygen liquid migration and compositional segregation phenomena; the successful use of capillary forces to contain the migration phenomenon; the use of differential heating to control compositional segregation, and induce vapor circulation; the development of mechanically and chemically stable, porous reservoir structures; the development of precise, in situ oxygen charging methods; stable improvements in emitter performance, up to effective emitter bare work functions of 5.4 eV; stable improvements in barrier index, to value below 1.8 Volts; the development of detailed microscopic models for cesium-oxygen reservoir dynamics and collector work function behavior; and the discovery of new relationships between electrode geometry and Schock Instability.

  15. Thermionic system evaluation test (TSET) facility construction: A United States and Russian effort

    International Nuclear Information System (INIS)

    Wold, S.K.

    1993-01-01

    The Thermionic System Evaluation Test (TSET) is a ground test of an unfueled Russian TOPAZ-II in-core thermionic space reactor powered by electric heaters. The facility that will be used for testing of the TOPAZ-II systems is located at the New Mexico Engineering Research Institute (NMERI) complex in Albuquerque, NM. The reassembly of the Russian test equipment is the responsibility of International Scientific Products (ISP), a San Jose, CA, company and Inertek, a Russian corporation, with support provided by engineers and technicians from Phillips Laboratory (PL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the University of New Mexico (UNM). This test is the first test to be performed under the New Mexico Strategic Alliance agreement. This alliance consists of the PL, SNL, LANL, and UNM. The testing is being funded by the Strategic Defense Initiative Organization (SDIO) with the PL responsible for project execution

  16. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  17. A high-brightness thermionic microwave electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Michael [Stanford Univ., CA (United States)

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun`s performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ``State-of-the-art`` microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 π • mec • μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 109e- per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 π • me • μm.

  18. A high-brightness thermionic microwave electron gun

    International Nuclear Information System (INIS)

    Borland, M.

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun's performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ''State-of-the-art'' microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of e c · μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 10 9 e - per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically e · μm

  19. Fermi level splitting and thermionic current improvement in low-dimensional multi-quantum-well (MQW) p-i-n structures

    International Nuclear Information System (INIS)

    Varonides, Argyrios C.

    2006-01-01

    Photo-excitation and subsequent thermionic currents are essential components of photo-excited carrier transport in multi-quantum-well photovoltaic (hetero-PV) structures. p-i-n multi-quantum structures are useful probes for a better understanding of PV device properties. Illumination of the intrinsic region of p-i-n multi-structures causes carrier trapping in any of the quantum wells, and subsequent carrier recombination or thermal escape is possible. At the vicinity of a quantum well, we find that the (quasi) Fermi levels undergo an upward split by a small, but non-negligible, energy amount ΔE F in the order of 12 meV. We conclude this fact by comparing the photo-excited carriers trapped in a quantum well, under illumination, to the carrier concentrations under dark. Based on such a prediction, we subsequently relate thermionic current density dependence on Fermi level splitting, concluding that excess thermal currents may increase by a factor of the order of 2. We conclude that illumination causes (a) Fermi level separation and (b) an apparent increase in thermionic currents

  20. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    Science.gov (United States)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  1. Cosmic radiation exposure of future hypersonic flight missions

    International Nuclear Information System (INIS)

    Koops, L.

    2017-01-01

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, air crews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. (author)

  2. Numerical simulations of the thermionic electron gun for electron-beam welding and micromachining

    Czech Academy of Sciences Publication Activity Database

    Jánský, Pavel; Zlámal, J.; Lencová, Bohumila; Zobač, Martin; Vlček, Ivan; Radlička, Tomáš

    2009-01-01

    Roč. 84, č. 2 (2009), s. 357-362 ISSN 0042-207X R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Numerical simulation * Thermionic emission * Electron gun Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.975, year: 2009

  3. Study of the capability for rapid warnings of solar flare radiation hazards to aircraft. Part I. Forecasts and warnings of solar flare radiation hazards. Part II. An FAA polar flight solar cosmic radiation forecast/warning communication system study. Technical memo

    International Nuclear Information System (INIS)

    Sauer, H.H.; Stonehocker, G.H.

    1977-04-01

    The first part of the report provides background information on the occurrence of solar activity and the consequent sporadic production of electromagnetic and particle emissions from the sun. A summary is given of the current procedures for the forecasting of solar activity together with procedures used to verify these forecasts as currently available. A summary of current forecasting of radiation hazards as provided in support of the Concorde SST program is also given. The second part of the report describes a forecast message distribution system developed in conjunction with solar cosmic radiation forecasts and warnings of the Space Environment Laboratory of NOAA for the Federal Aviation Administration's (FAA) Office of Aviation Medicine. The study analyzes the currently available and future aeronautical telecommunication system facilities to determine an optimum system to distribute forecasts to the preflight planning centers in the international flight service stations for polar-flying subsonic and supersonic transport (SST) type aircraft. Also recommended for the system are timely and reliable distribution of warnings to individual in-flight aircraft in polar areas by the responsible air traffic control authority

  4. Highly-Efficient Thermoelectronic Conversion of Heat and Solar Radiation to Electric Power

    OpenAIRE

    Meir, Stefan

    2013-01-01

    Thermionic energy conversion has long been a candidate to convert solar radiation and the combustion heat of fossil fuels into electricity at high efficiencies. However, the formation of electron space charges has prevented the widespread use of the principle since its was first suggested in 1915. In this work, a novel mechanism to suppress the effects of the space charge was investigated: the acceleration of electrons in a special configuration of electric and magnetic fields. This work d...

  5. Simple model for the description of a thermionic Cs diode in operation

    International Nuclear Information System (INIS)

    Tschersich, K.G.

    1975-01-01

    Because of the small voltage loss in the space between the electrodes, Cs is the most common work medium in thermionic diodes. With the model calculations of the processes in the space between the electrodes, the author aims to explain the formation of Cs ions and the current transport through the electrode gap at these low voltages. (RW/AK) [de

  6. Measures to alleviate the back bombardment effect of thermionic rf electron gun

    International Nuclear Information System (INIS)

    Huang, Y.; Xie, J.

    1991-01-01

    Thermionic rf electron gun finds application as a high brightness electron source for rf linacs. However, cathode heating from back-bombardment effect causes a ramp in the macro-pulse beam current and limit the usable pulse width. Three methods: ring cathode, magnetic deflection and laser assisted heating are studied in theory and in experiment. The results of these studies are reported

  7. Fracture-resistant ultralloys for space-power systems: nuclear-thermionic-conversion implications of W,27Re

    International Nuclear Information System (INIS)

    Moraga, N.O.; Jacobsen, D.L.; Morris, J.F.

    1989-01-01

    Rhenium (Re) added to tungsten (W) improves the creep strength, recrystallization resistance and ductility. W,27Re is a good workable ultra alloy for use in space nuclear reactor (SNR) systems and perhaps its most practical processing procedure is sintering. A promising SNR application for such ultralloys is very-high-temperature thermionic energy conversion. Therefore determinations of thermionic and thermal emissive characteristics for sintered W,27Re at temperatures near and above 2000 K in hard vacuum enable both scientific and pragmatic progress. Such research results comprise the data and interpretive presentations in this paper. These findings emphasize the fallacy of characterizing ultralloys similar to W,27Re with single-valued thermophysicochemical properties - such as the work function. They further stress the necessity for investigations of this type to determine and demonstrate effective prototypic ultralloy compositions and processing methods. (author)

  8. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    Science.gov (United States)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  9. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  10. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    Science.gov (United States)

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Nuclear thermionic power plant integration problems

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1967-02-01

    The numerous boundary conditions to be met in preparing a well proportioned, properly integrated design for a thermionic cell reactor are discussed with the emphasis on materials and fabrication problems. Pertinent experience with fuel elements, tube header sheets, electric heaters, and pressure vessels is cited to highlight key limitations that have been encountered in structurally similar equipment. A reference design is presented to indicate how one might attempt to satisfy all of the many boundary conditions. The study indicates that it will be difficult to get a reactor core power density greater than about 35 w/cm 3 and that, while it is possible to minimize the ill effects of failures within individual cells by employing series-parallel connections, the study further indicates that there is inherently a high probability of leaks and electrical shorts and arcs within the reactor so that it is doubtful that good reliability can be obtained

  12. Study of the Most Harmful Solar Energetic Particle for Shielding next Human Space Flights

    Science.gov (United States)

    Komei Yamashiro, Bryan

    2015-04-01

    Solar energetic particles (SEPs) accelerated by solar events such as flares and coronal mass ejections are radiation risks for humans in space on board the International Space Station (ISS), and will be significant obstacles for future long-duration manned space flight missions. This research supported efforts to improve predictions of large solar storms and aimed for a better understanding of Heliophysics. The main objective was to generate a dated catalog of the highest energy range SEPs measured by the Alpha Magnetic Spectrometer (AMS-02). Using online graphical user interfaces from the satellites, Solar and Heliospeheric Observatory (SOHO) and Geostationary Operational Environmental Satellite (GOES-13, 15), the generated data files from the mounted particle detectors were plotted along a specified energy range. The resulting histograms illustrated the low energy range data from SOHO (4 MeV to 53 MeV) and the low-mid energy range from GOES (0.8 MeV to 500 MeV), which collectively provided a low- to mid-energy range spectrum of the specific event energy ranges versus the SEP proton flux. The high energy range results of the AMS-02 (125 MeV to a few TeV) will eventually be incorporated with the two alternative space satellites of lower energy ranges for a complete analysis across a full SEP energy range. X-ray flux from GOES-15 were then obtained and plotted with the corresponding time to portray initial phenomena of the solar events. This procedure was reproduced for 5 different events determined energetic enough to be measured by AMS-02. The generated plots showed correlation between the different satellite detectors.

  13. Prospects for the use of thermionic nuclear power plants for interorbital transfers of space vehicles in near space

    International Nuclear Information System (INIS)

    Andreev, P.V.; Zhabotinskii, E.E.; Nikonov, A.M.

    1993-01-01

    In a previous study the authors considered the use of thermionic nuclear power plants with a thermal reactor for interorbital transfers of space vehicles by electrojet propulsion systems (EJPSs), opening up broad prospects for putting payloads into a high orbit with relatively inexpensive means for a launch into a reference orbit, e.g., the Proton launch vehicle. This is of major importance for the commercial use of space technology, in particular, for erecting technological platforms for the production of various materials. In the work reported here the authors continue the study of interorbital transfers and explore the potentialities of thermionic NPPs with a thermal reactor and with a fast reactor. In boosted operation the electrical power of the latter may reach several hundred kilowatts. What type of NPP is desirable for testing an electrojet propulsion system in interorbital transfers from a reference orbit to a high orbit, providing that the time is limited, depends on the class of the launch vehicle characterized by the mass M o that the vehicle can carry into the reference orbit, where radiation safety conditions allow the NPP to be started up. Results of studies are presented that give an idea of the rational choice of type of thermionic NPP for the organization in interorbital transfers

  14. Isotopic Thermionic Generator; Generateur thermoionique isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Clemot, M; Devin, B; Durand, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [French] Ce rapport decrit la structure d'un generateur spatial d'electricite a conversion directe du type thermoionique. La source d'energie est un radioisotope. Deux isotopes sont envisages: le Pu 238 et le Cm 244. Le systeme comporte pour l'emetteur un caloduc concentreur de flux thermique et pour le collecteur, un caloduc evacuateur vers l'enveloppe du generateur utilise, en panneau rayonnant. Les calculs ont ete conduits dans le cas particulier d'une puissance convertie de 100 watts electriques. (auteurs)

  15. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    Science.gov (United States)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  16. Thermionic detection of the ionic fragments of continiuum-state pair absorption systems

    International Nuclear Information System (INIS)

    Hotop, R.; Niemax, K.; Richter, J.; Weber, K.H.

    1981-01-01

    Using a thermionic diode we have detected the ionic fragments formed by associative ionization and dissociation after continuum-state pair absorption processes in Cs-Cs and Cs-K systems. Assuming an ionization probability of unity of the excited species and calibrating the pair absorption bands by taking into account the known photoionization cross section of the atoms we found excellent agreement with data from classical absorption measurements. (orig.)

  17. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  18. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    International Nuclear Information System (INIS)

    Simmons, D.F.; Fortgang, C.M.; Holtkamp, D.B.

    2001-01-01

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm 2 at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes

  19. Simulations of thermionic suppression during tungsten transient melting experiments.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Tolias, P.; Ratynskaia, S.; Dejarnac, Renaud; Gunn, J. P.; Krieger, K.; Podolník, Aleš; Pitts, R.A.; Pánek, Radomír

    T170, December (2017), č. článku 014069. ISSN 0031-8949. [PFMC 2017: 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications. Düsseldorf, 16.05.2017-19.05.2017] R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tokamak * thermionic emission * tungsten * melt * plasma-facing component Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 1.3 Physical sciences Impact factor: 1.280, year: 2016 http://iopscience.iop.org/article/10.1088/1402-4896/aa9209

  20. Design and operation of a thermionic converter in air

    International Nuclear Information System (INIS)

    Horner, M.H.; Begg, L.L.; Smith, J.N. Jr.; Geller, C.B.; Kallnowski, J.E.

    1995-01-01

    An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance

  1. Multi-channel pulser for the SLC thermionic electron source

    International Nuclear Information System (INIS)

    Browne, M.J.; Clendenin, J.E.; Corredoura, P.L.; Jobe, R.K.; Koontz, R.F.; Sodja, J.

    1985-01-01

    A new pulser developed for the SLC thermionic gun has been operational since September 1984. It consists of two planar triode amplifiers with a common output triode driving the gun cathode to produce two independent pulses of up to 9A with a 3 nsec FWHM pulse width. Three long-pulse amplifiers are also connected to the cathode to produce pulses with widths controllable between 100 nsec and 1.6 μsec. Each amplifier has independent timing and amplitude control through a fiber optic link to the high voltage plane of the gun cathode-grid structure. The pulser and its operating characteristics are described. 15 refs., 3 figs

  2. Synthesis, thermionic emission and magnetic properties of (NdxGd1–x)B6

    International Nuclear Information System (INIS)

    Bao Li-Hong; Zhang Jiu-Xing; Zhou Shen-Lin; Tegus

    2011-01-01

    Polycrystalline rare-earth hexaborides (Nd x Gd 1–x )B 6 (x = 0, 0.2, 0.6, 0.8, 1) were prepared by the reactive spark plasma sintering (SPS) method using mixed powder of GdH 2 , NdH 2 and B. The effects of Nd doping on the crystal structure, the grain orientation, the thermionic emission and the magnetic properties of the hexaboride were investigated by X-ray diffraction, electron backscattered diffraction and magnetic measurements. It is found that all the samples sintered by the SPS method exhibit high densities (> 95%) and high values of Vickers hardness (2319 kg/mm 2 ). The values are much higher than those obtained in the traditional method. With the increase of Nd content, the thermionic emission current density increases from 11 to 16.30 A/cm 2 and the magnetic phase transition temperature increases from 5.85 to 7.95 K. Thus, the SPS technique is a suitable method to synthesize the dense rare-earth hexaborides with excellent properties. (interdisciplinary physics and related areas of science and technology)

  3. High Flight. Aerospace Activities, K-12.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  4. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  5. Pathfinder-Plus on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days

  6. Pathfinder-Plus on flight over Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50

  7. Forward Technology Solar Cell Experiment (FTSCE) for MISSE-5 Verified and Readied for Flight on STS-114

    Science.gov (United States)

    Jenkins, Phillip P.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.

    2005-01-01

    The Forward Technology Solar Cell Experiment (FTSCE) is a space solar cell experiment built as part of the Fifth Materials on the International Space Station Experiment (MISSE-5): Data Acquisition and Control Hardware and Software. It represents a collaborative effort between the NASA Glenn Research Center, the Naval Research Laboratory, and the U.S. Naval Academy. The purpose of this experiment is to place current and future solar cell technologies on orbit where they will be characterized and validated. This is in response to recent on-orbit and ground test results that raised concerns about the in-space survivability of new solar cell technologies and about current ground test methodology. The various components of the FTSCE are assembled into a passive experiment container--a 2- by 2- by 4-in. folding metal container that will be attached by an astronaut to the outer structure of the International Space Station. Data collected by the FTSCE will be relayed to the ground through a transmitter assembled by the U.S. Naval Academy. Data-acquisition electronics and software were designed to be tolerant of the thermal and radiation effects expected on orbit. The experiment has been verified and readied for flight on STS-114.

  8. The effect of samarium doping on structure and enhanced thermionic emission properties of lanthanum hexaboride fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenlin; Hu, Qianglin [College of Mathematics and Physics, Jinggangshan University, Jian (China); Zhang, Jiuxing; Liu, Danmin [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing (China); Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, MD (United States)

    2014-03-15

    Single-phase polycrystalline solid solutions (La{sub 1-x}Sm{sub x})B{sub 6} (x = 0, 0.2, 0.4, 0.8, 1) are fabricated by spark plasma sintering (SPS). This study demonstrates a systematic investigation of structure-property relationships in Sm-doped LaB{sub 6} ternary rare-earth hexaborides. The microstructure, crystallographic orientation, electrical resistivity, and thermionic emission performance of these compounds are investigated. Analysis of the results indicates that samarium (Sm) doping has a noticeable effect on the structure and performance of lanthanum hexaboride (LaB{sub 6}). The analytical investigation of the electron backscatter diffraction confirms that (La{sub 0.6}Sm{sub 0.4})B{sub 6} exhibits a clear (001) texture that results in a low work function. Work functions are determined by pulsed thermionic diode measurements at 1500-1873 K. The (La{sub 0.6}Sm{sub 0.4})B{sub 6} possesses improved thermionic emission properties compared to LaB{sub 6}. The current density of (La{sub 0.6}Sm{sub 0.4})B{sub 6} is 42.4 A cm{sup -2} at 1873 K, which is 17.5% larger than that of LaB{sub 6}. The values of Φ{sub R} for (La{sub 0.6}Sm{sub 0.4})B{sub 6} and LaB{sub 6} are 1.98 ± 0.03 and 1.67 ± 0.03 eV, respectively. Furthermore, the Sm substitution of lanthanum (La) effectively increases the electrical resistivity. These results reveal that Sm doping lead to significantly enhanced thermionic emission properties of LaB{sub 6}. The compound (La{sub 0.6}Sm{sub 0.4})B{sub 6} appears most promising as a future emitter material. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A verified technique for calibrating space solar cells

    Science.gov (United States)

    Anspaugh, Bruce

    1987-01-01

    Solar cells have been flown on high-altitude balloons for over 24 years, to produce solar cell standards that can be used to set the intensity of solar simulators. The events of a typical balloon calibration flight are reported. These are: the preflight events, including the preflight cell measurements and the assembly of the flight cells onto the solar tracker; the activities at the National Scientific Balloon Facility in Palestine, Texas, including the preflight calibrations, the mating of the tracker and cells onto the balloon, preparations for launch, and the launch; the payload recovery, which includes tracking the balloon by aircraft, terminating the flight, and retrieving the payload. In 1985, the cells flow on the balloon were also flown on a shuttle flight and measured independently. The two measurement methods are compared and shown to agree within 1 percent.

  10. Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE

    Science.gov (United States)

    Stern, Theodore G.; Lyons, John

    2000-01-01

    A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.

  11. Design, construction and measurements of an alpha magnet as a solution for compact bunch compressor for the electron beam from Thermionic RF Gun

    Science.gov (United States)

    Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.

    2018-03-01

    The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.

  12. Injection of holes at indium tin oxide/dendrimer interface: An explanation with new theory of thermionic emission at metal/organic interfaces

    International Nuclear Information System (INIS)

    Peng Yingquan; Lu Feiping

    2006-01-01

    The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III)

  13. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  14. Evaluation of precision in measurements of uranium isotope ratio by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de; Rodrigues, C.

    1977-01-01

    The parameters which affect the precision and accuracy of uranium isotopic ratios measurements by thermionic mass spectrometry are discussed. A statistical designed program for the analysis of the internal and external variances are presented. It was done an application of this statistical methods, in order to get mass discrimination factor, and its standard mean deviation, by using some results already published for 235 U/ 238 U ratio in NBS uranium samples, and natural uranium [pt

  15. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    International Nuclear Information System (INIS)

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination

  16. Analysis of thermionic DC electron gun for 125 MeV linac

    International Nuclear Information System (INIS)

    Kanno, K.; Sato, Isamu; Sato, K.

    2000-01-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  17. Analysis of thermionic DC electron gun for 125 MeV linac

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, K. [Graduate School of Science and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, Isamu; Sato, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst] [and others

    2000-07-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  18. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    International Nuclear Information System (INIS)

    Krucker, S.; Bednarzik, M.; Grimm, O.; Hurford, G.J.; Limousin, O.; Meuris, A.; Orleański, P.; Seweryn, K.; Skup, K.R.

    2016-01-01

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  19. Pathfinder-Plus on a flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight in 1998 over Hawaiian waters. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least

  20. Pathfinder-Plus on flight over Hawaiian Islands

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4

  1. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  2. Particle Simulations of a Thermionic RF Gun with Gridded Triode Structure for Reduction of Back-Bombardment

    CERN Document Server

    Kusukame, K; Kii, T; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    Thermionic RF guns show advantageous features compared with photocathode ones such as easy operation and much higher repetition rate of micropulses, both of which are suitable for their application to high average power FELs. They however suffer from the back-bombardment effect [1], i.e., in conventional RF guns, electrons are extracted from cathode also in the latter half of accelerating phase and tend to back-stream to hit the cathode, and as a result the macropulse duration is limited down to severalμsec Against this adverse effect in thermionic RF guns, introduction of the triode structure has been proposed [2], where the accelerating phase and amplitude nearby the cathode can be controlled regardless of the phase of the first accelerating cell in the conventional RF gun. Our one-dimensional particle simulation results predict that the back-bombardment power can be reduced by 99 % only with 30-40 kW RF power fed to the grid in the present triode structure with an optimal phase difference from th...

  3. Performance review of thermionic electron gun developed for RF linear accelerators at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, Yashwant; Mulchandani, J.; Reddy, T.S.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam

    2015-01-01

    RRCAT is engaged in development of RF electron linear accelerator for irradiation of industrial and agricultural products. Thermionic electron gun is primary source for this accelerator as beam current in the RF accelerator is modest and thermionic emission is most prevalent option for electron gun development. An electron gun has to meet high cathode emission capability, low filament power, good accessibility for cathode replacement and should provide short time for maintenance. Electron linear accelerator up to beam energy of 10 MeV require electron source of 45-50 keV beam energy and emission current of 1 A. Electron optics of gun and electron beam profile simulations were carried out using CST's particle tracking code and EGUN code. Triode type electron gun of cathode voltage 50 kV pulsed has been designed, developed and integrated with 10 MeV electron linear accelerators at RRCAT. Beam current of more than 600 mA has been measured with faraday cup in the test stand developed for characterizing the electron gun. Two accelerators one is imported and another one developed indigenously has been energized using this electron gun. Beam energy of 5-10 MeV has been achieved with beam current of 250-400 mA by integrating this electron gun with the linear accelerator. This paper reviews the performance of indigenously developed electron gun for both linear accelerators. (author)

  4. SEP solar array Shuttle flight experiment

    Science.gov (United States)

    Elms, R. V., Jr.; Young, L. E.; Hill, H. C.

    1981-01-01

    An experiment to verify the operational performance of a full-scale Solar Electric Propulsion (SEP) solar array is described. Scheduled to fly on the Shuttle in 1983, the array will be deployed from the bay for ten orbits, with dynamic excitation to test the structural integrity being furnished by the Orbiter verniers; thermal, electrical, and sun orientation characteristics will be monitored, in addition to safety, reliability, and cost effective performance. The blanket, with aluminum and glass as solar cell mass simulators, is 4 by 32 m, with panels (each 0.38 by 4 m) hinged together; two live Si cell panels will be included. The panels are bonded to stiffened graphite-epoxy ribs and are storable in a box in the bay. The wing support structure is detailed, noting the option of releasing the wing into space by use of the Remote Manipulator System if the wing cannot be refolded. Procedures and equipment for monitoring the array behavior are outlined, and comprise both analog data and TV recording for later playback and analysis. The array wing experiment will also aid in developing measurement techniques for large structure dynamics in space.

  5. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, L., E-mail: luca.piazza@epfl.ch [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 455 Bolero Drive, Danville, CA 94526 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Barwick, B. [Department of Physics, Trinity College, 300 Summit St., Hartford, CT 06106 (United States); Carbone, Fabrizio [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2013-09-23

    Highlights: • We present the implementation of a femtosecond-resolved ultrafast TEM. • This is the first ultrafast TEM based on a thermionic gun geometry. • An additional condenser lens has been used to maximize the electron count. • We achieved a time resolution of about 300 fs and an energy resolution of 1 eV. - Abstract: In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved.

  6. Development of a thermionic magnicon amplifier at 11.4 GHz. Technical progress report, 16 May 1994--31 December 1995

    International Nuclear Information System (INIS)

    Gold, S.H.; Fliflet, A.W.; Manheimer, W.M.

    1995-01-01

    This is a progress report on a four-year research program entitled 'Development of a Thermionic Magnicon Amplifier at 11.4 GHz', which is under way in the Plasma Physics Division of the Naval Research Laboratory (NRL) under Interagency Agreement DE-AI02-94ER40681. This report covers the period 16 May 1994 through 31 December 1995. The magnicon is an advanced microwave tube with potential application to future high gradient linear accelerators such as TeV colliders. Under this program, NRL plans to build and test a thermionic magnicon amplifier tube powered by a 500 kV, 200 A, 10 Hz modulator with a 1 μsec pulse. However, the experiments that were carried out during the period covered by this report were driven by a single-shot Marx generator, and the electron beam was produced from a graphite plasma cathode

  7. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    Science.gov (United States)

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  8. Solar Probe ANalyzer for Ions - Laboratory Performance

    Science.gov (United States)

    Livi, R.; Larson, D. E.; Kasper, J. C.; Korreck, K. E.; Whittlesey, P. L.

    2017-12-01

    The Parker Solar Probe (PSP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 10 RS. PSP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. SPAN-Ai has completed flight calibration and spacecraft integration and is set to be launched in July of 2018. The main mode of operation consists of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. SPAN-Ai's main objective is to measure solar wind ions within an energy range of 5 eV - 20 keV, a mass/q between 1-60 [amu/q] and a field of view of 2400x1200. Here we will show flight calibration results and performance.

  9. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  10. Solution for Direct Solar Impingement Problem on Landsat-7 ETM+ Cooler Door During Cooler Outgas in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.

  11. Lessons Learned in the Flight Qualification of the S-NPP and NOAA-20 Solar Array Mechanisms

    Science.gov (United States)

    Helfrich, Daniel; Sexton, Adam

    2018-01-01

    Deployable solar arrays are the energy source used on almost all Earth orbiting spacecraft and their release and deployment are mission-critical; fully testing them on the ground is a challenging endeavor. The 8 meter long deployable arrays flown on two sequential NASA weather satellites were each comprised of three rigid panels almost 2 meters wide. These large panels were deployed by hinges comprised of stacked constant force springs, eddy current dampers, and were restrained through launch by a set of four releasable hold-downs using shape memory alloy release devices. The ground qualification testing of such unwieldy deployable solar arrays, whose design was optimized for orbital operations, proved to be quite challenging and provides numerous lessons learned. A paperwork review and follow-up inspection after hardware storage determined that there were negative torque margins and missing lubricant, this paper will explain how these unexpected issues were overcome. The paper will also provide details on how the hinge subassemblies, the fully-assembled array, and mechanical ground support equipment were subsequently improved and qualified for a follow-on flight with considerably less difficulty. The solar arrays built by Ball Aerospace Corp. for the Suomi National Polar Partnership (S-NPP) satellite and the Joint Polar Satellite System (JPSS-1) satellite (now NOAA-20) were both successfully deployed on-obit and are performing well.

  12. Design study of a low-emittance high-repetition rate thermionic rf gun

    Directory of Open Access Journals (Sweden)

    A. Opanasenko

    2017-05-01

    Full Text Available We propose a novel gridless continuous-wave radiofrequency (rf thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  13. High-Fidelity Solar Power Income Modeling for Solar-Electric UAVs: Development and Flight Test Based Verification

    OpenAIRE

    Oettershagen, Philipp

    2017-01-01

    Solar power models are a crucial element of solar-powered UAV design and performance analysis. During the conceptual design phase, their accuracy directly relates to the accuracy of the predicted performance metrics and thus the final design characteristics of the solar-powered UAV. Likewise, during the operations phase of a solar-powered UAV accurate solar power income models are required to predict and assess the solar power system performance. However, the existing literature on solar-powe...

  14. The design of a 3 GHz thermionic RF-gun and energy filter for MAX-lab

    CERN Document Server

    Anderberg, B; Demirkan, M; Eriksson, M; Malmgren, L; Werin, S

    2002-01-01

    A new pre-injector has been designed for the MAX-laboratory. It consists of an RF-gun and a magnetic energy filter. The newly designed RF-gun geometry will be operated at 3 GHz in the thermionic mode using a BaO cathode. The pre-injector will provide a 2.3 MeV electron beam in 3 ps micro pulses to a new injector system currently under construction.

  15. Pathfinder-Plus takes off on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days

  16. A solar infrared photometer for space flight application

    Science.gov (United States)

    Kostiuk, Theodor; Deming, Drake

    1991-01-01

    A photometer concept which is capable of nearly simultaneous measurements of solar radiation from 1.6 to 200 microns in seven wavelength bands is described. This range of wavelengths can probe the solar photosphere from below the level of unit optical depth in the visible to the temperature minimum, about 500 km above it. An instrument package including a 20-cm Gregorian telescope and a filter wheel photometer utilizing noncryogenic pyroelectric infrared detectors is described. Approaches to the rejection of the visible solar spectrum in the instrument, the availability of optical and mechanical components, and the expected instrumental sensitivity are discussed. For wavelengths below 35 microns, the projected instrumental sensitivity is found to be adequate to detect the intensity signature of solar p-mode oscillations during 5 min of integration. For longer wavelengths, clear detection is expected through Fourier analysis of modest data sets.

  17. Comparative assessment of out-of-core nuclear thermionic power systems

    International Nuclear Information System (INIS)

    Estabrook, W.C.; Koenig, D.R.; Prickett, W.Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds. (Author)

  18. Low work-function thermionic emission and orbital-motion-limited ion collection at bare-tether cathodic contact

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin, E-mail: xin.chen@upm.es; Sanmartín, J. R., E-mail: juanr.sanmartin@upm.es [Departamento de Física Aplicada, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, 28040 Madrid (Spain)

    2015-05-15

    With a thin coating of low-work-function material, thermionic emission in the cathodic segment of bare tethers might be much greater than orbital-motion-limited (OML) ion collection current. The space charge of the emitted electrons decreases the electric field that accelerates them outwards, and could even reverse it for high enough emission, producing a potential hollow. In this work, at the conditions of high bias and relatively low emission that make the potential monotonic, an asymptotic analysis is carried out, extending the OML ion-collection analysis to investigate the probe response due to electrons emitted by the negatively biased cylindrical probe. At given emission, the space charge effect from emitted electrons increases with decreasing magnitude of negative probe bias. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between sheath and the quasineutral region. The space-charge-limited condition is located. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers.

  19. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  20. Low-temperature thermionics in space nuclear power systems with the safe-type fast reactor

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Yarygin, V.I.; Lazarenko, G.E.; Zabudko, A.N.; Ovcharenko, M.K.; Pyshko, A.P.; Mironov, V.S.; Kuznetsov, R.V.

    2007-01-01

    The potentialities of the use of the low-temperature thermionic converters (TIC) with the emitter temperature ≤ 1500 K in the space nuclear power system (SNPS) with the SAFE-type (Safe Affordable Fission Engine) fast reactor proposed and developed by common efforts of American experts have been considered. The main directions of the 'SAFE-300-TEG' SNPS (300 kW(thermal)) design update by replacing the thermoelectric converters with the low-temperature high-performance thermionic converters (with the barrier index V B ≤ 1.9 eV and efficiency ≥ 10%) meant for a long-term operation (5 years at least) as the components of the SAFE-300-TIC SNPS for a Lunar base have been discussed. The concept of the SNPS with the SAFE-type fast reactor and low-temperature TICs with specific electric power of about 1.45 W/cm 2 as the components of the SAFE-300-TIC system meeting the Nasa's initial requirements to a Lunar base with the electric power demand of about 30 kW(electrical) for robotic mission has been considered. The results, involving optimization and mass-and-size estimation, show that the SAFE-300-TIC system meets the initial requirements by Nasa to the lunar base power supply. The main directions of the system update aimed at the output electric power increase up to 100 kW(electrical) have also been presented. (authors)

  1. Analysis of instability growth and collisionless relaxation in thermionic converters using 1-D PIC simulations

    International Nuclear Information System (INIS)

    Kreh, B.B.

    1994-12-01

    This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 x 10 -11 seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 x 10 -10 seconds. Since the electron-electron collision rate of 10 9 Hz and the electron atom collision rate of 10 7 Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism

  2. Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis

    Science.gov (United States)

    Perl, E. E.; Kuciauskas, D.; Simon, J.; Friedman, D. J.; Steiner, M. A.

    2017-12-01

    We analyze the temperature-dependent dark saturation current density and open-circuit voltage (VOC) for GaAs, GaInP, and AlGaInP solar cells from 25 to 400 °C. As expected, the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents. However, at 400 °C, we measure VOC that is ˜50 mV higher for the GaAs solar cell and ˜60-110 mV lower for the GaInP and AlGaInP solar cells compared to what would be expected from commonly used solar cell models that consider only the ni2 temperature dependence. To better understand these deviations, we measure the carrier lifetimes of p-type GaAs, GaInP, and AlGaInP double heterostructures (DHs) from 25 to 400 °C using time-resolved photoluminescence. Temperature-dependent minority carrier lifetimes are analyzed to determine the relative contributions of the radiative recombination, interface recombination, Shockley-Read-Hall recombination, and thermionic emission processes. We find that radiative recombination dominates for the GaAs DHs with the effective lifetime approximately doubling as the temperature is increased from 25 °C to 400 °C. In contrast, we find that thermionic emission dominates for the GaInP and AlGaInP DHs at elevated temperatures, leading to a 3-4× reduction in the effective lifetime and ˜40× increase in the surface recombination velocity as the temperature is increased from 25 °C to 400 °C. These observations suggest that optimization of the minority carrier confinement layers for the GaInP and AlGaInP solar cells could help to improve VOC and solar cell efficiency at elevated temperatures. We demonstrate VOC improvement at 200-400 °C in GaInP solar cells fabricated with modified AlGaInP window and back surface field layers.

  3. Conceptual engineering design study of thermionic topping of fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-15

    Primary objectives of this study are to investigate alternative design concepts of thermal coupling of thermionic energy converters (TECs) to the steam cycle and the mechanical and electrical aspects of integrating TEC design into the steam power station. The specific tasks include: (1) evaluate design concepts of TEC topping of solvent refined liquified coal-fired steam power plants, with main emphasis devoted to thermal, mechanical, and electrical design aspects. (2) Develop preliminary conceptual design of a modular TEC assembly. (3) Develop preliminary cost estimates of the design modification to a liquified coal-fired steam power plant with TEC topping. (4) Provide support to Thermo Electron Corporation in planning TEC hardware testing. Results are presented in detail.

  4. Progress in radiation immune thermionic integrated circuits

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs

  5. Progress in radiation immune thermionic integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, D.K.; McCormick, J.B. (comps.)

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs.

  6. Pathfinder-Plus on flight over Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non

  7. Pathfinder-Plus on flight near Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight with the Hawaiian island of N'ihau in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and

  8. The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, S. K.; Riethmüller, T. L.; Barthol, P.; Danilovic, S.; Deutsch, W.; Doerr, H.-P.; Feller, A.; Gandorfer, A.; Germerott, D.; Gizon, L.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Lagg, A.; Meller, R.; Tomasch, G.; Noort, M. van [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco; Blesa, J. L. Gasent, E-mail: solanki@mps.mpg.de [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); and others

    2017-03-01

    The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg ii k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.

  9. Science with the solar optical telescope

    Science.gov (United States)

    Jordan, S. D.; Hogan, G. D.

    1984-01-01

    The Solar Optical Telescope (SOT) is designed to provide the solar physics community with the data necessary for solving several fundamental problems in the energetics and dynamics of the solar atmosphere. Among these problems are questions on the origin and evolution of the sun's magnetic field, heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. The SOT will be built under the management of NASA's Goddard Space Flight Center, with science instruments provided by teams led by Principal Investigators. The telescope will be built by the Perkin-Elmer Corporation, and the science instruments selected for the first flight will be provided by the Lockheed Palo Alto Research Laboratory (LPARL) and the California Institute of Technology, with actual construction of a combined science instrument taking place at the LPARL. The SOT has a 1.3-meter-diameter primary mirror that will be capable of achieving diffraction-limited viewing in the visible of 0.1 arc-second. This dimension is less than a hydrodynamic scale-height or a mean-free-path of a continuum photon in the solar atmosphere. Image stability will be achieved by a control system in the telescope, which moves both the primary and tertiary mirrors in tandem, and will be further enhanced by a correlation tracker in the combined science instrument. The SOT Facility is currently scheduled for its first flight on Spacelab at the beginning of the 1990's.

  10. Energy balance measurements for the determination of physical and technical operation parameters of thermionic converters

    International Nuclear Information System (INIS)

    Ritz, K.

    1975-01-01

    An introduction into the fundamental theoretical principles of the thermionic Cs converter is followed by the set-up of a special measuring converter as proposed by J. Bohdansky which permits the defined setting of the electrode distance under service conditions. Measurements thus carried out present quantitative data on efficiency, on energy transfer between the electrodes by means of radiation and heat transfer, and on the actual collector potential, the latter which surprisingly shows a distance dependency. (orig./GG) [de

  11. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  12. Responses and mechanisms of positive electron affinity molecules in the N2 mode of the thermionic ionization detector and the electron-capture detector

    International Nuclear Information System (INIS)

    Jones, C.S.

    1989-01-01

    Very little knowledge has been acquired in the past on the mechanistic pathway by which molecules respond in the N 2 mode of the thermionic ionization detector. An attempt is made here to elucidate the response mechanism of the detector. The basic response mechanisms are known for the electron capture detector, and an attempt is made to identify the certain mechanism by which selected molecules respond. The resonance electron capture rate constant has been believed to be temperature independent, and investigations of the temperature dependence of electron capture responses are presented. Mechanisms for the N 2 mode of the thermionic ionization detector have been proposed by examining the detector response to positive electron affinity molecules and by measurement of the ions produced by the detector. Electron capture mechanisms for selected molecules have been proposed by examining their temperature dependent responses in the electron capture detector and negative ion mass spectra of the samples. In studies of the resonance electron capture rate constant, the relative responses of selected positive electron affinity molecules and their temperature dependent responses were investigated. Positive electron affinity did not guarantee large responses in the N 2 mode thermionic ionization detector. High mass ions were measured following ionization of samples in the detector. Responses in the electron capture detector varied with temperature and electron affinity

  13. UltraSail CubeSat Solar Sail Flight Experiment

    Science.gov (United States)

    Carroll, David; Burton, Rodney; Coverstone, Victoria; Swenson, Gary

    2013-01-01

    UltraSail is a next-generation, highrisk, high-payoff sail system for the launch, deployment, stabilization, and control of very large (km2 class) solar sails enabling high payload mass fractions for interplanetary and deep space spacecraft. UltraSail is a non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation- flying microsatellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 km2, sail subsystem area densities approaching 1 g/m2, and thrust levels many times those of ion thrusters used for comparable deep space missions. UltraSail can achieve outer planetary rendezvous, a deep-space capability now reserved for high-mass nuclear and chemical systems. There is a twofold rationale behind the UltraSail concept for advanced solar sail systems. The first is that sail-andboom systems are inherently size-limited. The boom mass must be kept small, and column buckling limits the boom length to a few hundred meters. By eliminating the boom, UltraSail not only offers larger sail area, but also lower areal density, allowing larger payloads and shorter mission transit times. The second rationale for UltraSail is that sail films present deployment handling difficulties as the film thickness approaches one micrometer. The square sail requires that the film be folded in two directions for launch, and similarly unfolded for deployment. The film is stressed at the intersection of two folds, and this stress varies inversely with the film thickness. This stress can cause the film to yield, forming a permanent crease, or worse, to perforate. By rolling the film as UltraSail does, creases are prevented. Because the film is so thin, the roll thickness is small. Dynamic structural analysis of UltraSail coupled with dynamic control analysis shows that the system can be designed to eliminate longitudinal torsional waves created while controlling the pitch of the blades

  14. Carrier extraction behaviour in type II GaSb/GaAs quantum ring solar cells

    International Nuclear Information System (INIS)

    Fujita, Hiromi; James, Juanita; Carrington, Peter J; Marshall, Andrew R J; Krier, Anthony; Wagener, Magnus C; Botha, Johannes R

    2014-01-01

    The introduction of quantum dot (QD) or quantum ring (QR) nanostructures into GaAs single-junction solar cells has shown enhanced photo-response above the GaAs absorption edge, because of sub-bandgap photon absorption. However, to further improve solar cell performance a better understanding of the mechanisms of photogenerated carrier extraction from QDs and QRs is needed. In this work we have used a direct excitation technique to study type II GaSb/GaAs quantum ring solar cells using a 1064 nm infrared laser, which enables us to excite electron–hole pairs directly within the GaSb QRs without exciting the GaAs host material. Temperature and laser intensity dependence of the current–voltage characteristics revealed that the thermionic emission process produced the dominant contribution to the photocurrent and accounts for 98.9% of total photocurrent at 0 V and 300 K. Although the tunnelling process gives only a low contribution to the photocurrent, an enhancement of the tunnelling current was clearly observed when an external electric field was applied. (paper)

  15. Galactic and solar radiation exposure to aircrew during a solar cycle

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; McCall, M.J.; Ellaschuk, B.; Butler, A.; Pierre, M.

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H*(10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events. (author)

  16. Crosstalk in solar polarization measurements

    Science.gov (United States)

    West, E. A.; Balasubramaniam, K. S.

    1992-01-01

    The instrumental crosstalk associated with the Marshall Space Flight Center Vector Magnetograph and the solar crosstalk created by the magnetic field are described and their impact on the reconstruction of the solar vector magnetic field is analyzed. It is pointed out that identifying and correcting the crosstalk is important in the development of realistic models describing the solar atmosphere. Solar crosstalk is spatially dependent on the structure of the magnetic field while instrumental crosstalk is dependent on the position of the analyzer.

  17. Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Xue, H.

    1992-01-01

    Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined

  18. Development and fabrication of insulator seals for thermionic diodes

    Science.gov (United States)

    Poirier, V. L.

    1972-01-01

    Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.

  19. A Solar Sailcraft Simulation Application

    Science.gov (United States)

    Celeda, Tomáš

    2013-01-01

    An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…

  20. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross.

    Science.gov (United States)

    Hassanalian, M; Throneberry, G; Ali, M; Ben Ayed, S; Abdelkefi, A

    2018-01-01

    Drag reduction of the wings of migrating birds is crucial to their flight efficiency. Wing color impacts absorption of solar irradiation which may affect drag but there is little known in this area. To this end, the drag reduction induced by the thermal effect of the wing color of migrating birds with unpowered flight modes is presented in this study. Considering this natural phenomenon in the albatross as an example of migrating birds, and applying an energy balance for this biological system, a thermal analysis is performed on the wings during the summer and winter to obtain different ranges of air density, viscosity, and wing surface temperature brought about from a range of ambient temperatures and climatic conditions seen in different seasons and to study their effects. The exact shape of the albatross wing is used and nine different wing colors are considered in order to gain a better understanding of the effect different colors' absorptivities make on the change in aerodynamic performances. The thermal effect is found to be more important during the summer than during the winter due to the higher values of solar irradiation and a maximum drag reduction of 7.8% is found in summer changing the wing color from light white to dark black. The obtained results show that albatrosses with darker colored wings are more efficient (constant lift to drag ratio and drag reduction) and have better endurance due to this drag reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pathfinder-Plus on a flight over Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non

  2. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  3. Communication: Effects of thermionic-gun parameters on operating modes in ultrafast electron microscopy

    Directory of Open Access Journals (Sweden)

    Erik Kieft

    2015-09-01

    Full Text Available Ultrafast electron microscopes with thermionic guns and LaB6 sources can be operated in both the nanosecond, single-shot and femtosecond, single-electron modes. This has been demonstrated with conventional Wehnelt electrodes and absent any applied bias. Here, by conducting simulations using the General Particle Tracer code, we define the electron-gun parameter space within which various modes may be optimized. The properties of interest include electron collection efficiency, temporal and energy spreads, and effects of laser-pulse duration incident on the LaB6 source. We find that collection efficiencies can reach 100% for all modes, despite there being no bias applied to the electrode.

  4. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    International Nuclear Information System (INIS)

    Wernsman, Bernard

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution

  5. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  6. Comparison between arc drops in ignited thermionic converters with and without ion reflections at the emitter

    International Nuclear Information System (INIS)

    Lundgren, L.

    1985-01-01

    The output performance of two thermionic energy converters is compared. One converter has a normal emitter, working with zero field at the emitter which is close to the optimum working point, and the other has a low work function emitter and ion reflection at the emitter. A simple model of the plasma and the sheaths shows that a converter working with a low work function emitter and ion reflections gives a worse performance than a similar converter with a normal emitter

  7. In-flight calibration and performance evaluation of the fixed head star trackers for the solar maximum mission

    Science.gov (United States)

    Thompson, R. H.; Gambardella, P. J.

    1980-01-01

    The Solar Maximum Mission (SMM) spacecraft provides an excellent opportunity for evaluating attitude determination accuracies achievable with tracking instruments such as fixed head star trackers (FHSTs). As a part of its payload, SMM carries a highly accurate fine pointing Sun sensor (FPSS). The EPSS provides an independent check of the pitch and yaw parameters computed from observations of stars in the FHST field of view. A method to determine the alignment of the FHSTs relative to the FPSS using spacecraft data is applied. Two methods that were used to determine distortions in the 8 degree by 8 degree field of view of the FHSTs using spacecraft data are also presented. The attitude determination accuracy performance of the in flight calibrated FHSTs is evaluated.

  8. Solar Airplanes and Regenerative Fuel Cells

    Science.gov (United States)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of

  9. Affordable High Performance Electromagnetically Clean Solar Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an Electromagnetically Clean Solar Array (ECSA) with enhanced performance, in Watts/kg and Watts/m2, using flight proven, high efficiency solar cells. For...

  10. UltraSail Solar Sail Flight Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A team of CU Aerospace, the University of Illinois, and ManTech SRS Technologies proposes Phase II development of a 3 kg CubeSat spacecraft for initial flight test...

  11. Investigation of Energy Release in Microflares Observed by the Second Sounding Rocket Flight of the Focusing Optics X-ray Solar Imager (FOXSI-2)

    Science.gov (United States)

    Vievering, J. T.; Glesener, L.; Panchapakesan, S. A.; Ryan, D.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Inglis, A. R.; Musset, S.

    2017-12-01

    Observations of the Sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. RHESSI is the only solar-dedicated imager currently operating in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the indirect imaging method of rotating collimating optics is fundamentally limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Here we present current imaging and spectral analyses of these microflares, exploring the nature of energy release and comparing to observations from other instruments. Additionally, we feature the first analysis of data from the FOXSI-2 CdTe strip detectors, which provide improved efficiency above 10 keV. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.

  12. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  13. High performance emitter for thermionic diode obtained by chemical vapor deposition

    International Nuclear Information System (INIS)

    Faron, R.; Bargues, M.; Durand, J.P.; Gillardeau, J.

    1973-01-01

    Vapor deposition process conditions presently known for tungsten and molybdenum (specifically the range of high temperatures and low pressures) permit the achievement of high performance thermionic emitters when used with an appropriate technology. One example of this uses the following series of successive vapor deposits, the five last vapor deposits constituting the fabrication of the emitting layer: Mo deposit for the formation of the nuclear fuel mechanical support; Mo deposit, which constitutes the sheath of the nuclear fuel; epitaxed Mo--W alloy deposit; epitaxed tungsten deposit; fine-grained tungsten deposit; and tungsten deposit with surface orientation according to plane (110)W. In accordance with vapor deposition techniques previously developed, such a sequence of deposits can easily be achieved with the same equipment, even without having to take out the part during the course of the process. (U.S.)

  14. Thermionic RF Gun and Linac Pre-Injector for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.

    2003-08-11

    Preparations are underway to upgrade the Spear2 to the third generation light source. Installation of all the subsystems will start in April 2003. Although the Spear3 RF system is entirely different from the present form, the pre-injector gun/linac and booster synchrotron will remain the same even after the upgrade. The thermionic rf gun reliability and stability are to be improved to inject 500 mA of stored current in shortest possible time. When a top-up mode is enforced, where the stored beam decay is replenished to maintain the constant current and thus constant light intensity, the Spear3 will take injection every few minutes. In that case the gun, linac, and booster must stay on at all times. In this report we will describe some improvements made on the gun and linac in the recent past, as well as their present performance and future upgrade to be made.

  15. Generation of multi-branch beam with thermionic gun for the Japan linear collider

    International Nuclear Information System (INIS)

    Naito, T.; Akemoto, M.; Matsumonto, H.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    We report on the development of a thermionic gun that is capable of producing multi-bunch beam to be used at the KEK Accelerator Test Facility for the Japan Linear Collider project. Two types of grid pulse generators have been developed. One is an avalanche pulse generator. A Y-646E cathode was successfully operated to generate double-bunch beam with a pulse width shorter than 700 ps, bunch spacing 1.4 ns, and a peak current 4.3 A. The other grid pulse generator is a fast ECL circuit with an RF power amplifier. Generation of 20-pulse trains with 2.1 ns time spacing has been demonstrated. (Author) 4 refs., 6 figs

  16. Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite

    Science.gov (United States)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  17. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P.; Sun, Y.; Harris, J.R.; Lewellen, J.W.

    2017-06-02

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current.

  18. The development of an Infrared Environmental System for TOPEX Solar Panel Testing

    Science.gov (United States)

    Noller, E.

    1994-01-01

    Environmental testing and flight qualification of the TOPEX/POSEIDON spacecraft solar panels were performed with infrared (IR) lamps and a control system that were newly designed and integrated. The basic goal was more rigorous testing of the costly panels' new composite-structure design without jeopardizing their safety. The technique greatly reduces the costs and high risks of testing flight solar panels.

  19. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    Science.gov (United States)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  20. The influences of noble gas on the volt-ampere characteristics of a thermionic Cs diode

    International Nuclear Information System (INIS)

    Tschersich, K.G.

    1975-10-01

    The influence of the distance between electrodes and of the partial pressure of added xenon on the voltage drop in the electrode gap is investigated by measuring current density-voltage curves on plane parallel thermionic test diodes. With unchanged diode parameters, an addition of xenon reduces the voltage drop when the product of Cs vapour pressure and electrode gap is smaller than an optimum value of about 5 x 10 -2 cm.Torr. The xenon influences the mobility and thus the duration of the Cs ions. These procedures are explained and discussed using a relatively simple mathematical model. (GG/LH) [de

  1. Solar Airplane Concept Developed for Venus Exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    An airplane is the ideal vehicle for gathering atmospheric data over a wide range of locations and altitudes, while having the freedom to maneuver to regions of scientific interest. Solar energy is available in abundance on Venus. Venus has an exoatmospheric solar flux of 2600 W/m2, compared with Earth's 1370 W/m2. The solar intensity is 20 to 50 percent of the exoatmospheric intensity at the bottom of the cloud layer, and it increases to nearly 95 percent of the exoatmospheric intensity at 65 km. At these altitudes, the temperature of the atmosphere is moderate, in the range of 0 to 100 degrees Celsius, depending on the altitude. A Venus exploration aircraft, sized to fit in a small aeroshell for a "Discovery" class scientific mission, has been designed and analyzed at the NASA Glenn Research Center. For an exploratory aircraft to remain continually illuminated by sunlight, it would have to be capable of sustained flight at or above the wind speed, about 95 m/sec at the cloud-top level. The analysis concluded that, at typical flight altitudes above the cloud layer (65 to 75 km above the surface), a small aircraft powered by solar energy could fly continuously in the atmosphere of Venus. At this altitude, the atmospheric pressure is similar to pressure at terrestrial flight altitudes.

  2. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Howell, J.; Carrington, C.; Day, G.

    2004-12-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.

  3. High altitude flights in equatorial regions

    Science.gov (United States)

    Redkar, R. T.

    A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28'N, Longitude 78°35'E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at -80°C., whereas the tropopause temperatures over equatorial latitudes vary between -80°C and -90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to -80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long

  4. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  5. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  6. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    Science.gov (United States)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  7. Siting Solar Photovoltaics at Airports: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  8. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    International Nuclear Information System (INIS)

    Onufriyev, Valery V.

    2001-01-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient--γ i with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure p cs ) and cathode temperature T k is constant too (U b =constant with T k =constant and p cs =constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-p cs and cathode temperature-T k and is independent on IEG length--Δ ieg . On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly--the region of excited atoms--''Aston glow.''

  9. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    Science.gov (United States)

    Onufriyev, Valery. V.

    2001-02-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient-γi with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure pcs) and cathode temperature Tk is constant too (Ub=constant with Tk=constant and pcs=constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-pcs and cathode temperature-Tk and is independent on IEG length-Δieg. On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly-the region of excited atoms-``Aston glow.'' .

  10. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    Science.gov (United States)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  11. Measuring current emission and work functions of large thermionic cathodes

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    2001-01-01

    As one component of the nations Stockpile Stewardship program, Los Alamos National Laboratory is constructing a 20 MeV, 2 kA (with a 4 kA upgrade capability), 3ps induction linac for doing x-ray radiography of explosive devices. The linac is one leg of a facility called the Dual-Axis Radiography Hydrodynamic Test Facility (DARHT). The electron gun is designed to operate at 3.2 MV. The gun is a Pierce type design and uses a 6.5' cathode for 2 kA operation and an 8' cathode for 4 kA operation. We have constructed a small facility called the Cathode Test Stand (CTS) to investigate engineering and physics issues regarding large thermionic dispenser-cathodes. In particular, we have looked at the issues of temperature uniformity on the cathode surface and cathode quality as measured by its work function. We have done thermal imaging of both 8' and 6.5' cathodes. Here we report on measurements of the cathode work function, both the average value and how it vanes across the face of the cathode.

  12. Multi-kW solar arrays for Earth orbit applications

    Science.gov (United States)

    1985-01-01

    The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.

  13. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  14. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D.

    1997-01-01

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  15. Early developments in solar cooling equipment

    Science.gov (United States)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  16. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    Science.gov (United States)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    1981-01-01

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  17. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  18. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    Science.gov (United States)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  19. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    Science.gov (United States)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  20. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    Science.gov (United States)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  1. Solar Modulation of Atmospheric Cosmic Radiation:. Comparison Between In-Flight and Ground-Level Measurements

    Science.gov (United States)

    Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.

    January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.

  2. Very high resolution UV and x-ray spectroscopy and imagery of solar active regions. Final report

    International Nuclear Information System (INIS)

    Bruner, M.; Brown, W.A.; Haisch, B.M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft x-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the x-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical x-ray observations using this new technique

  3. Life Testing and Diagnostics of a Planar Out-of-Core Thermionic Converter

    Science.gov (United States)

    Thayer, Kevin L.; Ramalingam, Mysore L.; Young, Timothy J.; Lamp, Thomas R.

    1994-07-01

    This paper details the design and performance of an automated computer data acquisition system for a planar, out-of-core thermionic converter with CVD rhenium electrodes. The output characteristics of this converter have been mapped for emitter temperatures ranging from approximately 1700K to 2000K, and life testing of the converter is presently being performed at the design point of operation. An automated data acquisition system has been constructed to facilitate the collection of current density versus output voltage (J-V) and temperature data from the converter throughout the life test. This system minimizes the amount of human interaction necessary during the lifetest to measure and archive the data and present it in a usable form. The task was accomplished using a Macintosh Ilcx computer, two multiple-purpose interface boards, a digital oscilloscope, a sweep generator, and National Instrument's LabVIEW application software package.

  4. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  5. Electric strength of metal-ceramic brazed units of thermionic energy converters in cesium vapours

    International Nuclear Information System (INIS)

    Belousenko, A.P.; Vasilchenko, A.V.; Nikolaev, Y.V.

    1989-01-01

    The investigation of electric strength characteristics of the hollow metal-ceramic brazed units of thermionic energy converters with the insulator 1 = 10-50 mm from polycrystal aluminum oxide at the temperature T = 450-750 degrees and the cesium vapour pressure P Cs = 10 - 1 -10 3 Pa has been carried out. The experimental dependencies of the break-down voltage of the brazed units on the temperature, parameter P Cs · 1 and the value of surface electric resistance of the insulators are given as well as the empiric equations obtained with the help of experimental data for calculating the break-down voltage. A mechanism of ceramic insulator influence on electric strength characteristics of the cesium gap is investigated. A breakdown model explaining this influence is proposed

  6. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  7. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  8. Power Management Strategy by Enhancing the Mission Profile Configuration of Solar-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Parvathy Rajendran

    2016-01-01

    Full Text Available Solar energy offers solar-powered unmanned aerial vehicle (UAV the possibility of unlimited endurance. Some researchers have developed techniques to achieve perpetual flight by maximizing the power from the sun and by flying in accordance with its azimuth angles. However, flying in a path that follows the sun consumes more energy to sustain level flight. This study optimizes the overall power ratio by adopting the mission profile configuration of optimal solar energy exploitation. Extensive simulation is conducted to optimize and restructure the mission profile phases of UAV and to determine the optimal phase definition of the start, ascent, and descent periods, thereby maximizing the energy from the sun. In addition, a vertical cylindrical flight trajectory instead of maximizing the solar inclination angle has been adopted. This approach improves the net power ratio by 30.84% compared with other techniques. As a result, the battery weight may be massively reduced by 75.23%. In conclusion, the proposed mission profile configuration with the optimal power ratio of the trajectory of the path planning effectively prolongs UAV operation.

  9. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  10. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  11. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    Science.gov (United States)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  12. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    Science.gov (United States)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  13. New design algorithm and reliability testing of solar powered near ...

    African Journals Online (AJOL)

    New design algorithm and reliability testing of solar powered near-space flight vehicle for defense and security. ... To overcome this problem, we propose a pseudo-satellite system where telecommunication devices are carried on a perpetually flying solar aircraft cruising at stratospheric altitude. Our aircraft will combine ...

  14. Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet

  15. Status of Solar Sail Technology Within NASA

    Science.gov (United States)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2010-01-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced and they successfully completed functional vacuum testing in NASA Glenn Research Center's (GRC's) Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and were scalable to much larger solar sails perhaps as large as 150 m on a side. Computation modeling and analytical simulations were also performed to assess the scalability of the technology to the large sizes required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials were also conducted. NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30M investment made in solar sail technology to that point, NASA Marshall Space Flight Center (MSFC) funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon-1 Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare will be flown in the Fall of 2010. This paper will summarize NASA's investment in solar sail technology to-date and discuss future opportunities

  16. Status of solar sail technology within NASA

    Science.gov (United States)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2011-12-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  17. EOSCOR: a light weight, microprocessor controlled solar neutron detector

    International Nuclear Information System (INIS)

    Koga, R.; Albats, P.; Frye, G.M. Jr.; Schindler, S.M.; Denehy, B.V.; Hopper, V.D.; Mace, O.B.

    1979-01-01

    A light weight high energy neutron detector with vertical detection efficiency of 0.005 at 40 MeV and 1.4 m 2 sensitive area has been developed for long duration super-pressure balloon flight observations of solar neutrons and gamma rays. It consists of two sets of four plastic scintillator hodoscopes separated by a 1 m time-of-flight path to observe n-p, C(n,p), and C(n,d) interactions. The neutron interactions are separated from gamma ray events through TOF measurements. For a large flare, the signal from solar neutrons is expected to be an order of magnitude greater than that of the atmospheric background. The microprocessor controls the data acquisition, accumulation of histograms, and the encoding of data for the telemetry systems. A test flight of the detector was made with a zero-pressure balloon. The expected many-week duration of a super-pressure balloon flight would significantly increase the probability of observing 20-150 MeV neutrons from a medium or large flare. (Auth.)

  18. Current transmission and nonlinear effects in un-gated thermionic cathode RF guns

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Harris, J. R. [Air Force Weapons Lab

    2017-05-03

    Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models that predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.

  19. Solar Probe Cup: Laboratory Performance

    Science.gov (United States)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Larson, D. E.; Wright, K. H., Jr.; Gallagher, D. L.; Whittlesey, P. L.

    2017-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup instrument that will fly on the Paker Solar Probe (PSP) spacecraft, orbiting the Sun at as close as 9.86 solar radii. The SPC instrument is designed to measure the thermal solar wind plasma (protons, alphas, and electrons) that will be encountered throughout its close encounter with the Sun. Due to the solar wind flow being primarily radial, the SPC instrument is pointed directly at the Sun, resulting in an extreme thermal environment that must be tolerated throughout the primary data collection phase. Laboratory testing has been performed over the past 6 months to demonstrate the instrument's performance relative to its requirements, and to characterize the measurements over the expected thermal range. This presentation will demonstrate the performance of the instrument as measured in the lab, describe the operational configurations planned for flight, and discuss the data products that will be created.

  20. Adherence of diamond films on refractory metal substrates for thermionic applications

    International Nuclear Information System (INIS)

    Tsao, B.H.; Ramalingam, M.L.; Adams, S.F.; Cloyd, J.S.

    1991-01-01

    Diamond films are currently being considered as electrical insulation material for application in the thermionic fuel element of a power producing nuclear reactor system. The function of the diamond insulator in this application is to electrically isolate the collector of each cell in the TFE from the coolant and outer sheath. Deposition of diamond films on plane surfaces of Si/SiO 2 have already been demonstrated to be quite effective. However, the diamond films on refractory metal surfaces tend to spall off in the process of deposition revealing an inefficient adherence characteristic between the film and the substrate. This paper is geared towards explaining this deficiency by way of selected experimentation and the use of analytical tools to predict uncertainties such as the mismatch in coefficient of expansion, micrographic study of the interface between the film and the substrate and X-ray diffraction spectra. The investigation of the adherence characteristics of several diamond films on Mo and Nb substrates revealed that there was an allowable stress that resulted in the formation of the critical thickness for the diamond film

  1. History and Flight Devleopment of the Electrodynamic Dust Shield

    Science.gov (United States)

    Johansen, Michael R.; Mackey, Paul J.; Hogue, Michael D.; Cox, Rachel E.; Phillips, James R., III; Calle, Carlos I.

    2015-01-01

    The surfaces of the moon, Mars, and that of some asteroids are covered with a layer of dust that may hinder robotic and human exploration missions. During the Apollo missions, for example, lunar dust caused a number of issues including vision obscuration, false instrument readings, contamination, and elevated temperatures. In fact, some equipment neared failure after only 75 hours on the lunar surface due to effects of lunar dust. NASA's Kennedy Space Center has developed an active technology to remove dust from surfaces during exploration missions. The Electrodynamic Dust Shield (EDS), which consists of a series of embedded electrodes in a high dielectric strength substrate, uses a low power, low frequency signal that produces an electric field wave that travels across the surface. This non-uniform electric field generates dielectrophoretic and electrostatic forces capable of moving dust out of these surfaces. Implementations of the EDS have been developed for solar radiators, optical systems, camera lenses, visors, windows, thermal radiators, and fabrics The EDS implementation for transparent applications (solar panels, optical systems, windows, etc.) uses transparent indium tin oxide electrodes on glass or transparent lm. Extensive testing was performed in a roughly simulated lunar environment (one-sixth gravity at 1 mPa atmospheric pressure) with lunar simulant dust. EDS panels over solar radiators showed dust removal that restored solar panel output reaching values very close to their initial output. EDS implementations for thermal radiator protection (metallic spacecraft surfaces with white thermal paint and reflective films) were also extensively tested at similar high vacuum conditions. Reflectance spectra for these types of implementations showed dust removal efficiencies in the 96% to 99% range. These tests indicate that the EDS technology is now at a Technology Readiness Level of 4 to 5. As part of EDS development, a flight version is being prepared for

  2. Rocket flight performance of a preprototype Apollo 17 UV spectrometer S-169

    Science.gov (United States)

    Fastie, W. G.

    1971-01-01

    The design, construction, testing, calibration, flight performance and flight data of an Ebert ultraviolet spectrometer are described which is an accurate representation of the conceptual design of the Apollo 17 UV spectrometer. The instrument was flown in an Aerobee 350 rocket from Wallops Island, Va., at 7:10 p.m. EDT on June 10, 1971 to an altitude of 328 km with a solar elevation angle of about 11 deg.

  3. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure

    Science.gov (United States)

    Bescond, M.; Logoteta, D.; Michelini, F.; Cavassilas, N.; Yan, T.; Yangui, A.; Lannoo, M.; Hirakawa, K.

    2018-02-01

    We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green’s function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.

  4. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  5. Effect of the work function and emission of the collector on the parameters of thermionic converters (TC)

    International Nuclear Information System (INIS)

    Kaibyshev, V.Z.

    1986-01-01

    In the optimal, relative to the temperature of the collector, state of modern thermionic converters (TC) the emission of the electrons from it has a substantial effect on the voltage drop in the gap. This paper preents an analysis of the boundary conditions at the collector of the TC. Calculations are presented which show that with a constant current the plasma parameters at the boundary with the collector are virtually independent of the emission from the collector right up to vanishing of the potential jump. The optimal regime with respect to temperatuer and work function of the collector is examined. The collector with a nonuniform work function is discussed

  6. Measurement and simulation of the in-flight radiation exposure on different air routes

    International Nuclear Information System (INIS)

    Hajek, M.; Berger, T.; Vana, N.

    2003-01-01

    The exposure of air-crew personnel to cosmic radiation is considered to be occupational exposure and requirements for dose assessment are given in the European Council Directive 96/29/EURATOM. The High-Temperature Ratio (HTR) Method for LiF: Mg, Ti TLDs utilizes the well-investigated relative intensity of the combined high-temperature glow peaks 6 and 7 compared with the dominant peak 5 (left-hand side of Figure 1) as an indication of the dose-average LET of a mixed radiation field of unknown composition. The difference in the peak-5 readings of the neutron-sensitive TLD-600 ( 6 LiF: Mg, Ti) and the neutron-insensitive TLD-700 ( 7 LiF: Mg, Ti) can be utilized to assess the neutron dose equivalent accumulated in-flight. For this purpose, the dosemeter crystals were calibrated individually in the CERN-EU High Energy Reference Field (CERF) [8] which simulates the cosmic-ray induced neutron spectrum in good detail. The experiments conducted onboard passenger aircraft on different north-bound and trans-equatorial flight routes were aimed at the following: to measure the total dose equivalent accumulated during the flight, to assess the contribution of neutrons, and to compare the results with calculations by means of the well-known CARI computer code. Measurements were performed on a series of eight north-bound flights between Cologne and Washington as well as on the routes Vienna-Atlanta, Vienna-Sydney and Vienna-Tokyo during different solar activity conditions. Precise altitude and route profiles were recorded by the pilots. The experimental results were compared with model calculations using the latest release 6M of the CARI code. Precise altitude and route data on a ten-minute to one-hour scale were taken as input. The calculated dose values indicate that the algorithms employed for the computational assessment of route doses have been significantly improved during the last decade. The CARI results generally tend to be in reasonable agreement with the measured

  7. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    Science.gov (United States)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  8. Testing of gallium arsenide solar cells on the CRRES vehicle

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage

  9. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  10. MgII Observations Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the scientific goals of our sounding rocket program, the Solar Ultraviolet Magnetograph Investigation (SUMI). This paper will present a brief description of the optics that were developed to meet SUMI's scientific goals, discuss the spectral, spatial and polarization characteristics of SUMI s optics, describe SUMI's flight which was launched 7/30/2010, and discuss what we have learned from that flight.

  11. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  12. Some properties of low-vapor-pressure braze alloys for thermionic converters

    Science.gov (United States)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  13. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  14. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells

    Directory of Open Access Journals (Sweden)

    B. L. Guo

    2014-09-01

    Full Text Available The fabrication of environmental-friendly Cu2ZnSnS4 (CZTS thin films with pure kesterite phase is always a challenge to researchers in the field of solar cells. We introduce a simple non-vacuum sol-gel method to fabricate kesterite CZTS films. Ethylenediamine is used as the chelating agent and stabilizer and plays an important role in preparing stable precursor. X-ray diffraction, Raman and scanning electron microscopy studies suggest that the microstructure and optical properties of CZTS films depend strongly on annealing temperatures. The temperature dependence of conductivity of 500 °C annealed CZTS film shows that the Mott law dominates in the low temperature region and thermionic emission is predominant at high temperatures.

  15. InP Solar Cells and their Flight Experiments

    OpenAIRE

    TAKAHASHI, Keiji; YAMAGUCHI, Masafumi; TAKAMOTO, Tatsuya; IKEGAMI, Shingo; OHNISHI, Akira; HAYASHI, Tomonao; USHIROKAWA, Akio; KOHBATA, Masahiko; ARAI, Hidetoshi; HASHIMOTO, Katsumasa; ORH, Takeshi; OKAZAKI, Hitoshi; TAKAMURA, Hideto; URA, Mitsuru; OHMORI, Masamichi

    1992-01-01

    We have developed high-efficiency homojunction 1 cm × 2 cm InP space solar cells by diffusing In_2S_3 into p type InP substrates and investigated their fundamental characteristics such as electrical and mechnical characteristics and thermal properties. On the radiation resistant mechanism of InP cells, we have studied InP cells fabricated at NTT Laboratories and found superior properties such as room temperture annealing and minority carrier injection enhanced annealing phenomena for radiatio...

  16. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. Mir Environmental Effects Payload and Returned Mir Solar Panel Cleanliness

    Science.gov (United States)

    Harvey, Gale A.; Humes, Donald H.; Kinard, William H.

    2000-01-01

    The MIR Environmental Effects Payload (MEEP) was attached to the Docking Module of the MIR space station for 18 months during calendar years 1996 and 1997 (March 1996, STS 76 to October 1997, STS 86). A solar panel array with more than 10 years space exposure was removed from the MIR core module in November 1997, and returned to Earth in January, 1998, STS 89. MEEP and the returned solar array are part of the International Space Station (ISS) Risk Mitigation Program. This space flight hardware has been inspected and studied by teams of space environmental effects (SEE) investigators for micrometeoroid and space debris effects, space exposure effects on materials, and electrical performance. This paper reports changes in cleanliness of parts of MEEP and the solar array due to the space exposures. Special attention is given to the extensive water soluble residues deposited on some of the flight hardware surfaces. Directionality of deposition and chemistry of these residues are discussed.

  19. Assessing public and crew exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    Rochedo, E.R.R.; Alves, V.A.; Silva, D.N.G.

    2015-01-01

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. The computer program CARI-6, developed by the U.S. Federal Aviation Administration, calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. The program takes into account changes in altitude and geographic location during the course of a flight. The aim of this project is to estimate the contribution of cosmic radiation exposure on commercial flights to the Brazilian population. A database, including about 4,000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights information for November 2011. Main fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, flight times (take-off, landing and cruse altitude times) and number of flights per year. This information was used to estimate individual and collective doses for crew and passengers. Doses for domestic flights in Brazil range from 1.8 to 8.8 μSv. Considering the occupational limit of 850 h of flight per year for crew members and numbers of flights for each route, average occupational dose would be about 0.76 mSv/y. Collective doses, for the total number of flights per year and airplane types were estimated to be 214 and 11 manSv/y for passengers and crew members, respectively. (authors)

  20. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  1. Design and Development of the Space Technology 5 (ST5) Solar Arrays

    Science.gov (United States)

    Lyons, John; Fatemi, Navid; Gamica, Robert; Sharma, Surya; Senft, Donna; Maybery, Clay

    2005-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Technology 5 (ST5) is designed to flight-test the concept of miniaturized 'small size" satellites and innovative technologies in Earth's magnetosphere. Three satellites will map the intensity and direction of the magnetic fields within the inner magnetosphere. Due to the small area available for the solar arrays, and to meet the mission power requirements, very high-efficiency multijunction solar cells were selected to power the spacecraft built by NASA Goddard Space Flight Center (GSFC). This was done in partnership with the Air Force Research Lab (AFRL) through the Dual-Use Science and Technology (DUS&T) program. Emcore's InGaP/lnGaAs/Ge Advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of 28.0% (one-sun, 28 C), were used to populate the arrays. Each spacecraft employs 8 identical solar panels (total area of about 0.3 square meters), with 15 large-area solar cells per panel. The requirement for power is to support on-orbit average load of 13.5 W at 8.4 V, with plus or minus 5% off pointing. The details of the solar array design, development and qualification considerations, as well as ground electrical performance & shadowing analysis results are presented.

  2. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Fan, Rong-Fei; Chen, Xiao-Qian

    2013-01-01

    Highlights: • The scope of this paper is to apply solar energy to achieve the high-altitude long-endurance flight. • The equivalence of gravitational potential and rechargeable battery is discussed. • Four kinds of factors have been discussed to compare the two method of energy storage. • This work can provide some governing principles for the application of solar-powered aircraft. - Abstract: Applying solar energy is one of the most promising methods to achieve the aim of High-altitude Long-endurance (HALE) flight, and solar-powered aircraft is usually taken by the research groups to develop HALE aircraft. However, the crucial factor which constrains the solar-powered aircraft to achieve the aim of HALE is the problem how to fulfill the power requirement under weight constraint of rechargeable batteries. Motivated by the birds store energy from thermal by gaining height, the method of energy stored by gravitational potential for solar-powered aircraft have attracted great attentions in recent years. In order to make the method of energy stored in gravitational potential more practical in solar-powered aircraft, the equivalence of gravitational potential and rechargeable battery for aircraft on energy storage has been analyzed, and four kinds of factors are discussed in this paper: the duration of solar irradiation, the charging rate, the energy density of rechargeable battery and the initial altitude of aircraft. This work can provide some governing principles for the solar-powered aircraft to achieve the unlimited endurance flight, and the endurance performance of solar-powered aircraft may be greatly improved by the application of energy storage using gravitational potential

  3. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    Science.gov (United States)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  4. AeroVironment technician checks a Helios solar cell panel

    Science.gov (United States)

    2000-01-01

    A technician at AeroVironment's Design Development Center in Simi Valley, California, checks a panel of silicon solar cells for conductivity and voltage. The bi-facial cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude with the aid of a regenerative fuel cell-based energy storage system now under development in 2003.

  5. Technical feasibility study for a solar energy system at Amsterdam Airport Schiphol (AAS)

    NARCIS (Netherlands)

    Janssen, P.N.J.W.; Myrzik, J.M.A.; Kling, W.L.; Reinders, L.

    2010-01-01

    This work arises within the framework of the introduction of renewable energies at Amsterdam Airport Schiphol (AAS) and the focus is on the technical feasibility of a solar energy system (SES) on ground level. The flight safety must always be guaranteed if solar panels are implemented on AAS. The

  6. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  7. Chromospheric manifestations in solar hydrodynamics

    International Nuclear Information System (INIS)

    Foing, B.

    1983-02-01

    Monochromatic pictures of the sun have been obtained during the second flight of the Transition Region Camera, in the ultra-violet continuum. 160 nm intensity distribution has been studied statistically. The trace of solar structures are underlined, at the temperature minimum, by the statistical distribution of the brightness quanta parameters. The ladder series and their spatial organization have been studied. Physical origin of the brightness quanta, in solar atmosphere seem to be explained, for the chromospheric network, as magnetic element flux tubes effects on the energy and radiation balance at small scale, but also by trace of energy propagation and non radiative heating in the quiet chrom 9 uosphere [fr

  8. Assessing public exposure in commercial flights in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Damasceno, Nadya M.P., E-mail: vanusa_abreu@ymail.com, E-mail: elainerochedo@gmail.com, E-mail: nadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Silva, Diogo N.G., E-mail: diogongs@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The exposure to cosmic radiation from air traveling is significantly higher than that at ground level, varying according to the route due to the effect of latitude and flight time, to the flight altitude, due to the type of airplane and to the year, due to the effect of solar cycle on the galactic cosmic rays flux. The computer code CARI-6, developed by the U.S. Federal Aviation Administration, is aimed to calculate the effective dose of galactic cosmic radiation received by an individual in an airplane, flying the shortest route between two airports in the world. The objective of this work is to estimate the contribution of the exposure to cosmic radiation on domestic commercial flights for the Brazilian customers. The work shall serve as a baseline for future comparisons of the growth of civil aviation in the country. It shall also open perspectives for discussions on the concept of risk and its public acceptance, relevant to the establishment of radiological protection guidelines. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). Doses for the most frequent flight routes in the country have been assessed. These include flights to and from Rio de Janeiro, Sao Paulo and Brasilia. Doses for frequent flyers and collective doses are discussed in perspective of other exposure sources. (author)

  9. Assessing public exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Damasceno, Nadya M.P.; Silva, Diogo N.G.

    2013-01-01

    The exposure to cosmic radiation from air traveling is significantly higher than that at ground level, varying according to the route due to the effect of latitude and flight time, to the flight altitude, due to the type of airplane and to the year, due to the effect of solar cycle on the galactic cosmic rays flux. The computer code CARI-6, developed by the U.S. Federal Aviation Administration, is aimed to calculate the effective dose of galactic cosmic radiation received by an individual in an airplane, flying the shortest route between two airports in the world. The objective of this work is to estimate the contribution of the exposure to cosmic radiation on domestic commercial flights for the Brazilian customers. The work shall serve as a baseline for future comparisons of the growth of civil aviation in the country. It shall also open perspectives for discussions on the concept of risk and its public acceptance, relevant to the establishment of radiological protection guidelines. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). Doses for the most frequent flight routes in the country have been assessed. These include flights to and from Rio de Janeiro, Sao Paulo and Brasilia. Doses for frequent flyers and collective doses are discussed in perspective of other exposure sources. (author)

  10. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Davis, P.R.; Bozack, M.J.; Swanson, L.W.

    1983-01-01

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO 2 or stabilized ZrO 2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr 2 O 3 -A1 2 O 3 ) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  11. Multiple NEO Rendezvous Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy

    2012-01-01

    The NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office performed an assessment of the feasibility of using a near-term solar sail propulsion system to enable a single spacecraft to perform serial rendezvous operations at multiple Near Earth Objects (NEOs) within six years of launch on a small-to-moderate launch vehicle. The study baselined the use of the sail technology demonstrated in the mid-2000 s by the NASA In-Space Propulsion Technology Project and is scheduled to be demonstrated in space by 2014 as part of the NASA Technology Demonstration Mission Program. The study ground rules required that the solar sail be the only new technology on the flight; all other spacecraft systems and instruments must have had previous space test and qualification. The resulting mission concept uses an 80-m X 80-m 3-axis stabilized solar sail launched by an Athena-II rocket in 2017 to rendezvous with 1999 AO10, Apophis and 2001 QJ142. In each rendezvous, the spacecraft will perform proximity operations for approximately 30 days. The spacecraft science payload is simple and lightweight; it will consist of only the multispectral imager flown on the Near Earth Asteroid Rendezvous (NEAR) mission to 433 Eros and 253 Mathilde. Most non-sail spacecraft systems are based on the Messenger mission spacecraft. This paper will describe the objectives of the proposed mission, the solar sail technology to be employed, the spacecraft system and subsystems, as well as the overall mission profile.

  12. Mission Specialist Scott Parazynski checks his flight suit

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  13. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  14. Radiation shielding estimates for manned Mars space flight

    International Nuclear Information System (INIS)

    Dudkin, V.E.; Kovalev, E.E.; Kolomensky, A.V.; Sakovich, V.A.; Semenov, V.F.; Demin, V.P.; Benton, E.V.

    1992-01-01

    In the analysis of the required radiation shielding for spacecraft during a Mars flight, the specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low-and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons. (author)

  15. Solar array experiments on the Sphinx satellite

    Science.gov (United States)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  16. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  17. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  18. Temperature dependence of photon-enhanced thermionic emission from GaAs surface with nonequilibrium Cs overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, A.G. [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation); Alperovich, V.L., E-mail: alper@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation)

    2017-02-15

    Highlights: • Electronic properties of Cs/GaAs surface are studied at elevated temperatures. • Heating to ∼100 °C strongly affects photoemission current and surface band bending. • For θ < 0.4 ML photoemission current relaxation is due to band bending. • A spectral proof of the PETE process is obtained at Cs/GaAs thermal cycling. - Abstract: The temperature influence on the Cs/GaAs surface electronic properties, which determine the photon-enhanced thermionic emission (PETE), is studied. It was found that heating to moderate temperatures of about 100 °C leads to substantial changes in the magnitude and shape of Cs coverage dependences of photoemission current and surface band bending, along with the changes of relaxation kinetics after Cs deposition. A spectral proof of the PETE process is obtained under thermal cycling of the Cs/GaAs surface with 0.45 monolayer (ML) of Cs.

  19. Rocket flight of a multilayer coated high-density EUV toroidal grating

    Science.gov (United States)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.

    1992-01-01

    A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.

  20. Optimal heliocentric trajectories for solar sail with minimum area

    Science.gov (United States)

    Petukhov, Vyacheslav G.

    2018-05-01

    The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.

  1. Contributions to the study of positive ion kinetics in gases

    International Nuclear Information System (INIS)

    Popescu, A.

    1978-01-01

    Extensive studies on cesium ion kinetics in cesium and cesium-noble gas mixtures were performed. The obtained data are correlated with the measured parameters of the thermionic diodes. The mobility of atomic and molecular cesium ions at low electric fields, including zero electric field, in cesium and cesium krypton mixtures were measured using the time of flight method and a special thermionic ion detector. The atomic ion conversion into molecular ions is theoretically considered in the diffusion equation of the charged particles and the obtained analytical relation is in good agreement with the experimental cesium measured data. The reaction rate of the ion conversion in cesium is considered from these measurements. Measurements on the diffused plasma through the anode (provided with holes) of the cesium thermionic diode supply data on the anode sheath, the ratio of electronic and ionic current, electron temperature and the nature of the cesium ions (atomic or molecular) for various modes of the low voltage arc discharge. The obtained data have been used for the optimization of the thermionic diode parameters, as well as for the development of a new type of device for the detection of impurities in the air. (author)

  2. Kinetic Properties of Solar Wind Silicon and Iron Ions

    Science.gov (United States)

    Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Heavy ions with atomic numbers Z>2 account for less than one percent of the solar wind ions. However, serving as test particles with differing mass and charge, they provide a unique experimental approach to major questions of solar and fundamental plasma physics such as coronal heating, the origin and acceleration of the solar wind and wave-particle interaction in magnetized plasma. Yet the low relative abundances of the heavy ions pose substantial challenges to the instrumentation measuring these species with reliable statistics and sufficient time resolution. As a consequence the numbers of independent measurements and studies are small. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is a linear time-of-flight mass spectrometer which was operated at Lagrangian point L1 in 1996 for a few months only, before it suffered an instrument failure. Despite its short operation time, the CTOF sensor measured solar wind heavy ions with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In contrast to earlier CTOF studies which were based on reduced onboard post-processed data, in our current studies we use raw Pulse Height Analysis (PHA) data providing a significantly increased mass, mass-per-charge and velocity resolution. Focussing on silicon and iron ion measurements, we present an overview of our findings on (1) short time behavior of heavy ion 1D radial velocity distribution functions, (2) differential streaming between heavy ions and solar wind bulk protons, (3) kinetic temperatures of heavy ions. Finally, we compare the CTOF results with measurements of the Solar Wind Ion Composition Spectrometer (SWICS) instrument onboard the Advanced Composition Explorer (ACE).

  3. Scaled model guidelines for solar coronagraphs' external occulters with an optimized shape.

    Science.gov (United States)

    Landini, Federico; Baccani, Cristian; Schweitzer, Hagen; Asoubar, Daniel; Romoli, Marco; Taccola, Matteo; Focardi, Mauro; Pancrazzi, Maurizio; Fineschi, Silvano

    2017-12-01

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs' geometry.

  4. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  5. Development of a thermionic magnicon amplifier at 11.4 GHz

    International Nuclear Information System (INIS)

    Gold, S.H.; Hafizi, B.; Fliflet, A.W.; Kinkead, A.K.; True, R.

    1997-01-01

    The magnicon is a scanning-beam microwave amplifier tube that is being developed as an rf source for the proposed TeV Next Linear Collider. In it, a solid electron beam is spun up to high transverse momentum in a series of deflection cavities containing synchronously rotating TM modes, and then spun down again in an output cavity whose mode is synchronous with that of the deflection cavities. A recent magnicon experiment at NRL, using a ∼ 650 kV, 225 A, 5.5-mm-diam. electron beam produced from a cold cathode driven by a single-shot Marx generator, demonstrated 14 MW (±3 dB) at 11.12 GHz with 105 efficiency in the synchronous magnicon mode, but was limited by plasma loading in the deflection cavities to a regime in which the last cavity of the deflection system (the penultimate cavity) was unstable. A new 11.4 GHz rep-rated thermionic magnicon experiment is being assembled, using an advanced ultra-high-convergence electron gun driven by a 10 Hz, 1.5 microsecond modulator top produce a 500 kV, 210 A, 2-mm diameter electron beam. The magnicon circuit has been optimized for minimum surface rf fields and maximum efficiency, and will be engineered for high temperature bakeout and high vacuum operation. This experiment should begin operation in the Summer of 1997. The predicted power is 60 MW at ∼ 60% efficiency

  6. A search for space energy alternatives

    Science.gov (United States)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  7. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    Science.gov (United States)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  8. A simple model to estimate radiation doses to aircrew during air flights in Brazil and abroad

    International Nuclear Information System (INIS)

    Lavalle Heilbron Filho, Paulo Fernando; Pérez Guerrero, Jesus Salvador; Lavalle Heilbron, Rafael Cabidolusso; Amaral, Mario Luth Gonçalves Henriques do

    2015-01-01

    The objective of this article is to present the results obtained from the development of a simple model used to estimate cosmic radiation doses from crew members taking into consideration the variation of the dose rates with the altitude and the latitude, airplane cruise velocity and other important parameters such as, cruise height, takeoff time, landing time, takeoff angle, landing angle. The model was incorporated into a Brazilian computer program developed using the “mathematica” symbolic software. The data used to calculate the dose rates with altitude and latitude by the authors takes into consideration the mean solar activity from January 1958 to December 2008 (51 years). Twenty two data including international and national American flights were used to test the program and the results between them compared, showing good agreement. The program also gives excellent results for the doses expected for the crew members of three Brazilian national flights (between capitals cities in Brazil) when compared with the doses values measured for these flights using a radiation detector. According to the results the doses expected for the Brazilian crews of domestic flights can, in some cases, depending on the number of annual flights, overcome the limit of 1 mSv/year established by the Brazilian competent authority in Brazil (Brazilian Nuclear Energy Commission- CNEN) for public annual exposure. In the case of the simulated international flights the results shows a good agreement with the results found in literature especially when considered the different database series used by the authors and by the other references for the solar activity. (authors)

  9. Development of the solar array deployment and drive system for the XTE spacecraft

    Science.gov (United States)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  10. Development of a coherent transition radiation-based bunch length monitor with application to the APS RF thermionic gun beam optimization

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Borland, M; Happek, U; Lewellen, J W; Sereno, N S

    2001-01-01

    We report further development of an EPICS-compatible bunch length monitor based on the autocorrelation of coherent transition radiation (CTR). In this case the monitor was used to optimize the beam from the S-band thermionic RF gun on the Advanced Photon Source (APS) linac. Bunch lengths of 400-500 fs (FWHM) were measured in the core of the beam, which corresponded to about 100-A peak current in each micropulse. The dependence of the CTR signal on the square of the beam charge for the beam core was demonstrated. We also report the first use of the beam accelerated to 217 MeV for successful visible wavelength SASE FEL experiments.

  11. Solar Constant (SOLCON) Experiment: Ground Support Equipment (GSE) software development

    Science.gov (United States)

    Gibson, M. Alan; Thomas, Susan; Wilson, Robert

    1991-01-01

    The Solar Constant (SOLCON) Experiment, the objective of which is to determine the solar constant value and its variability, is scheduled for launch as part of the Space Shuttle/Atmospheric Laboratory for Application and Science (ATLAS) spacelab mission. The Ground Support Equipment (GSE) software was developed to monitor and analyze the SOLCON telemetry data during flight and to test the instrument on the ground. The design and development of the GSE software are discussed. The SOLCON instrument was tested during Davos International Solar Intercomparison, 1989 and the SOLCON data collected during the tests are analyzed to study the behavior of the instrument.

  12. A second chance for Solar Max

    Science.gov (United States)

    Maran, S. P.; Woodgate, B. E.

    1984-01-01

    Using NASA's Tracking and Data Relay Satellite as a communications link, astronomers are able to receive scans from the Solar Maximum Mission (SMM) satellite immediately and regularly at the Goddard Space Flight Center. This major operational improvement permits the examination of SMM imagery and spectra as they arrive, as well as the formulation of future observational sequences on the basis of the solar activity in progress. Attention is given to aspects of the sun that change in the course of the 11-year sunspot cycle's movement from maximum to minimum. Proof has been obtained by means of SMM for the near-simultaneity of X-ray and UV bursts at flare onset.

  13. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  14. Technician Marshall MacCready installs solar cells on the Helios Prototype

    Science.gov (United States)

    2000-01-01

    Technician Marshall MacCready carefully lays a panel of solar cells into place on a wing section of the Helios Prototype flying wing at AeroVironment's Design Development Center in Simi Valley, California. The bi-facial cells, manufactured by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the solar-powered aircraft to provide electricity to its 14 motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude 2003 with the aid of a regenerative fuel cell-based energy storage system now being developed.

  15. Characterization of sputter deposited thin film scandate cathodes for miniaturized thermionic converter applications

    Science.gov (United States)

    Zavadil, Kevin R.; Ruffner, Judith H.; King, Donald B.

    1999-01-01

    We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc2O3 matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.

  16. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  17. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    Science.gov (United States)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  18. Plasma properties of hot coronal loops utilizing coordinated SMM and solar research rocket observations

    Science.gov (United States)

    Moses, J. Daniel

    1989-01-01

    Three improvements in photographic x-ray imaging techniques for solar astronomy are presented. The testing and calibration of a new film processor was conducted; the resulting product will allow photometric development of sounding rocket flight film immediately upon recovery at the missile range. Two fine grained photographic films were calibrated and flight tested to provide alternative detector choices when the need for high resolution is greater than the need for high sensitivity. An analysis technique used to obtain the characteristic curve directly from photographs of UV solar spectra were applied to the analysis of soft x-ray photographic images. The resulting procedure provides a more complete and straightforward determination of the parameters describing the x-ray characteristic curve than previous techniques. These improvements fall into the category of refinements instead of revolutions, indicating the fundamental suitability of the photographic process for x-ray imaging in solar astronomy.

  19. Solar Sails: Sneaking up on Interstellar Travel

    Science.gov (United States)

    Johnson, L.

    Throughout the world, government agencies, universities and private companies are developing solar sail propulsion systems to more efficiently explore the solar system and to enable science and exploration missions that are simply impossible to accomplish by any other means. Solar sail technology is rapidly advancing to support these demonstrations and missions, and in the process, is incrementally advancing one of the few approaches allowed by physics that may one day take humanity to the stars. Continuous solar pressure provides solar sails with propellantless thrust, potentially enabling them to propel a spacecraft to tremendous speeds ­ theoretically much faster than any present-day propulsion system. The next generation of sails will enable us to take our first real steps beyond the edge of the solar system, sending spacecraft out to distances of 1000 Astronomical Units, or more. In the farther term, the descendants of these first and second generation sails will augment their thrust by using high power lasers and enable travel to nearby stellar systems with flight times less than 500 years ­ a tremendous improvement over what is possible with conventional chemical rockets. By fielding these first solar sail systems, we are sneaking up on a capability to reach the stars.

  20. Exposure to the atmospheric ionizing radiation environment: a study on Italian civilian aviation flight personnel

    International Nuclear Information System (INIS)

    De Angelis, G.; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A.

    2003-01-01

    A study of the effects of high-LET, low-dose and low-dose-rate ionizing radiation and associated risk analysis is underway. This study involves analyzing the atmospheric ionizing radiation exposure (including high-energy neutrons) and associated effects for members of civilian aviation flight personnel, in an attempt to better understand low-dose long-term radiation effects on human subjects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crew members, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) are available. The dose calculations are performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. An update of the study of the physical atmospheric ionizing radiation exposure is given here, in terms of environmental modeling, flight routes, radiation dose evaluation along different flight paths, and exposure matrix construction. The exposure analysis is still in progress, and the first results are expected soon

  1. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  2. Pointing stability of Hinode and requirements for the next Solar mission Solar-C

    Science.gov (United States)

    Katsukawa, Y.; Masada, Y.; Shimizu, T.; Sakai, S.; Ichimoto, K.

    2017-11-01

    It is essential to achieve fine pointing stability in a space mission aiming for high resolutional observations. In a future Japanese solar mission SOLAR-C, which is a successor of the HINODE (SOLAR-B) mission, we set targets of angular resolution better than 0.1 arcsec in the visible light and better than 0.2 - 0.5 arcsec in EUV and X-rays. These resolutions are twice to five times better than those of corresponding instruments onboard HINODE. To identify critical items to achieve the requirements of the pointing stability in SOLAR-C, we assessed in-flight performance of the pointing stability of HINODE that achieved the highest pointing stability in Japanese space missions. We realized that one of the critical items that have to be improved in SOLAR-C is performance of the attitude stability near the upper limit of the frequency range of the attitude control system. The stability of 0.1 arcsec (3σ) is required in the EUV and X-ray telescopes of SOLAR-C while the HINODE performance is slightly worse than the requirement. The visible light telescope of HINODE is equipped with an image stabilization system inside the telescope, which achieved the stability of 0.03 arcsec (3σ) by suppressing the attitude jitter in the frequency range lower than 10 Hz. For further improvement, it is expected to suppress disturbances induced by resonance between the telescope structures and disturbances of momentum wheels and mechanical gyros in the frequency range higher than 100 Hz.

  3. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  4. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    and two different solar cell strings, to qualify advanced solar cell types for future Mars missions. The MATE instrument, designed for the Mars-2001 Surveyor Lander mission, contains a capable suite of sensors that will provide both scientific information as well as important engineering data on the operation of solar power systems on Mars. MATE will characterize the intensity and spectrum of the solar radiation on Mars and measure the performance of solar arrays in the Mars environment. MATE flight hardware was built and tested at the NASA Glenn Research Center and is ready for flight.

  5. From Research to Flight: Thinking About Implementation While Performing Fundamental Research

    Science.gov (United States)

    Johnson, Les

    2010-01-01

    This slide presentation calls for a strategy to implement new technologies. Such a strategy would allow advanced space transportation technologies to mature for exploration beyond Earth orbit. It discusses the difference between technology push versus technology pull. It also reviews the three basic technology readiness levels (TRL). The presentation traces examples of technology development to flight application: the Space Shuttle Main Engine Advanced Health Management System, the Friction Stir Welding technology the (auto-adjustable pin tool). A couple of technologies currently not in flight, but are being reviewed for potential use are: cryogenic fluid management (CFM), and solar sail propulsion. There is also an attempt to explain why new technologies are so difficult to field.

  6. Space-based solar power conversion and delivery systems study. Volume 2: Engineering analysis of orbital systems

    Science.gov (United States)

    1976-01-01

    Program plans, schedules, and costs are determined for a synchronous orbit-based power generation and relay system. Requirements for the satellite solar power station (SSPS) and the power relay satellite (PRS) are explored. Engineering analysis of large solar arrays, flight mechanics and control, transportation, assembly and maintenance, and microwave transmission are included.

  7. Solar Probe Plus: Mission design challenges and trades

    Science.gov (United States)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept

  8. Flight Plasma Diagnostics for High-Power, Solar-Electric Deep-Space Spacecraft

    Science.gov (United States)

    Johnson, Lee; De Soria-Santacruz Pich, Maria; Conroy, David; Lobbia, Robert; Huang, Wensheng; Choi, Maria; Sekerak, Michael J.

    2018-01-01

    NASA's Asteroid Redirect Robotic Mission (ARRM) project plans included a set of plasma and space environment instruments, the Plasma Diagnostic Package (PDP), to fulfill ARRM requirements for technology extensibility to future missions. The PDP objectives were divided into the classes of 1) Plasma thruster dynamics, 2) Solar array-specific environmental effects, 3) Plasma environmental spacecraft effects, and 4) Energetic particle spacecraft environment. A reference design approach and interface requirements for ARRM's PDP was generated by the PDP team at JPL and GRC. The reference design consisted of redundant single-string avionics located on the ARRM spacecraft bus as well as solar array, driving and processing signals from multiple copies of several types of plasma, effects, and environments sensors distributed over the spacecraft and array. The reference design sensor types were derived in part from sensors previously developed for USAF Research Laboratory (AFRL) plasma effects campaigns such as those aboard TacSat-2 in 2007 and AEHF-2 in 2012.

  9. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  10. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    Science.gov (United States)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  11. Solar Sailing is not Science Fiction Anymore

    Science.gov (United States)

    Alhorn, Dean C.

    2010-01-01

    Over 400 years ago Johannes Kepler envisioned the use of sunlight to propel a spacecraft. Just this year, a solar sail was deployed in orbit for the first time and proved that a spacecraft could effectively use a solar sail for propulsion. NASA's first nano-class solar sail satellite, NanoSail-D was designed and developed in only four months. Although the first unit was lost during the Falcon 1 rocket failure in 2008, the second flight unit has been refurbished and is waiting to be launched later this year. NanoSail-D will further the research into solar sail enabled spacecraft. It will be the first of several more sail enabled spacecraft to be launch in the next few years. FeatherSail is the next generation nano-class sail spacecraft being designed with the goal to prove low earth orbit operational capabilities. Future solar sail spacecraft will require novel ideas and innovative research for the continued development of space systems. One such pioneering idea is the Small Multipurpose Advanced Reconfigurable Technology (SMART) project. The SMART technology has the potential to revolutionize spacecraft avionics. Even though solar sailing is currently in its infancy, the next decade will provide great opportunities for research into sailing in outer space.

  12. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  13. Public exposure in commercial national flights to and from Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Ferreira, Nadya M.P.D.

    2013-01-01

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. A database, including about 4000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights for November 2011. The fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, airline and total time of flight. In this work, doses from flights to and from the town of Rio de Janeiro within Brazil have been assessed using the computer program CARI-6, developed by the U.S. Federal Aviation Administration, that calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). A frequent flyer with weekly flights on the most usual route, Rio-São Paulo, would receive about 0.18 mSv/y, which means about 7,5 % increase to its usual exposure to natural radiation sources. Collective dose to passengers due to all national flights to and from Rio de Janeiro was estimated to be about 100 manSv per year. (author)

  14. Public exposure in commercial national flights to and from Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Ferreira, Nadya M.P.D., E-mail: vanusa_abreu@ymail.com, E-mail: elainerochedo@gmail.com, E-mail: nadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. A database, including about 4000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights for November 2011. The fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, airline and total time of flight. In this work, doses from flights to and from the town of Rio de Janeiro within Brazil have been assessed using the computer program CARI-6, developed by the U.S. Federal Aviation Administration, that calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). A frequent flyer with weekly flights on the most usual route, Rio-São Paulo, would receive about 0.18 mSv/y, which means about 7,5 % increase to its usual exposure to natural radiation sources. Collective dose to passengers due to all national flights to and from Rio de Janeiro was estimated to be about 100 manSv per year. (author)

  15. Super-Kamiokande Solar Neutrino Results and NSI Analysis

    Science.gov (United States)

    Weatherly, Pierce; Super-Kamiokande Collaboration

    2017-09-01

    Super-Kamiokande (SK) detects the Cerenkov light from elastic scattering of solar 8B neutrinos with electrons in its ultra-pure water. The directionality, energy, and timing of the recoil electrons determines the interaction rate, the flight path, as well as the energy dependence of the 8B neutrinos’ electron-flavor survival probability P ee . While the P ee below 1 MeV is equivalent to averaged vacuum neutrino flavor oscillations, the P ee above 7 MeV is suppressed by the Mikheyev-Smirnov-Wolfenstein (MSW) resonance resulting from the interaction of the solar neutrinos with solar matter. In the same way, Earth matter effects influence Pee, leading to an apparent Day/Night effect. Non-standard interactions (NSI) extend the MSW model to include interactions between the quarks in matter and neutrinos, thereby modifying P ee . We present the signatures of matter effects on solar neutrinos in Super-Kamiokande and present limits on NSI parameters, in particular couplings to the down quark.

  16. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft

    Science.gov (United States)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.

    2012-01-01

    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  17. Characterization of polymer solar cells by TOF-SIMS depth profiling

    NARCIS (Netherlands)

    Bulle-Lieuwma, C.W.T.; Gennip, van W.J.H.; Duren, van J.K.J.; Jonkheijm, P.; Janssen, R.A.J.; Niemantsverdriet, J.W.

    2003-01-01

    Solar cells consisting of polymer layers sandwiched between a transparent electrode on glass and a metal top electrode are studied using dynamic time-of-flight secondary ion mass spectrometry (TOF-SIMS) in dual-beam mode. Because depth profiling of polymers and polymer-metal stacks is a relatively

  18. Advances in solar cell welding technology

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, L.G.; Lott, D.R.

    1982-09-01

    In addition to developing the rigid substrate welded conventional cell panels for an earlier U.S. flight program, LMSC recently demonstrated a welded lightweight array system using both 2 x 4 and 5.9 x 5.9 cm wraparound solar cells. This weld system uses infrared sensing of weld joint temperature at the cell contact metalization interface to precisely control weld energy on each joint. Modules fabricated using this weld control system survived lowearth-orbit simulated 5-year tests (over 30,000 cycles) without joint failure. The data from these specifically configured modules, printed circuit substrate with copper interconnect and dielectric wraparound solar cells, can be used as a basis for developing weld schedules for additional cell array panel types.

  19. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  20. Cosmic radiation dosimetry in international flights argentine airlines

    International Nuclear Information System (INIS)

    Ciancio, Vicente R.; Oliveri, Pedro V.; Di Giovan B, Gustavo; Ciancio, Vanina L.; Lewis, Brent J.; Green, Anna R.; Bennet, L.

    2008-01-01

    Full text: Introduction: In commercial aviation the most important determinants of radiation exposure in humans are the altitude, latitude, flight duration and the solar cycle's period. This study was conducted to address this type of exposure trough radiation dosimetry. Method: The study was performed in the business-class cabin of an Airbus 340-200 aircraft, provided by Argentine Airlines, during 2 flights routes: New York-Miami-Buenos Aires (trans equatorial) and Buenos Aires-Auckland (circumpolar). Measurements addressed the electromagnetic spectrum or low Linear Energy Transfer (LET) and corpuscular radiation (High LET). The instruments used were an Ion Chamber (IC), to measure the ionizing component of radiation (i.e., gamma radiation), the SWENDI, to measure only the neutron component, and the Tissue Equivalent Proportional Counter (TEPC) for measuring all radiation types. Results: The routes' dose rates are presented in the table. TEPC rates agreed with the LET findings. The total dose rates of high latitude flights were higher than those of low latitude flights. The SWENDI (High LET) results for the flights over the equator, at low latitude, represented only 1/3 of the total radiation. The New York-Miami and Buenos Aires-Auckland flights, at high latitude, represented just under 1/2 of the Total radiation (-45%). Conclusion: Based on the results of this study, the annual dose rates of radiation exposure of air crew personnel serving on international flights offered by Argentine Airlines is between 3 and 7 mSv. This rate is higher than the maximum recommended for the general population by the International Commission on Radiological Protection (ICRP), which is 1 milli Sv./y. Therefore, these personnel must be officially considered 'Occupationally Exposed to Radiation' in way to provide the appropriate measures that must be implemented for their protection in accordance to ICRP guidelines. Dose(uSv): Route N Y-Miami, IC 6.07, SWENDI 5.07, TEPC 11.04; Route

  1. Development of a thermionic magnicon amplifier at 11.4 GHz. Final report for period May 16, 1995 - May 15, 2001

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.

    2001-01-01

    This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, a small operational frequency bandwidth and a spectrally pure, single-mode output

  2. Advances in solar sailing

    CERN Document Server

    Third International Symposium on Solar Sailing

    2014-01-01

    Hosted by the Advanced Space Concepts Laboratory within the department of Mechanical and Aerospace Engineering of the University of Strathclyde, the third International Symposium on Solar Sailing was held in McCance Building at 16 Richmond Street, Glasgow, between 11 and 13 June 2013. The symposium attracted over 90 delegates from19 different counties, bringing together international experts from across the globe to discuss funded solar sail flight programs alongside on-going technology development and testing programs. The symposium also provided a forum for the discussion of enabling technologies, new application concepts, materials and structural concepts, space environmental effects, dynamics, navigation, control, and much more. This volume contains the unabridged symposium proceedings, in the gathered experts own words. As symposium chair, I thank our partners at Scottish Enterprise and L’Garde, Inc., the symposium’s gold sponsor, for their support in realising this symposium.

  3. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  4. Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion

    Science.gov (United States)

    Smet, Stijn De; Parker, Jeffrey S.; Herman, Jonathan F. C.; Aziz, Jonathan; Barbee, Brent W.; Englander, Jacob A.

    2015-01-01

    This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project.

  5. Solar Magnetism eXplorer (Solme X)

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  6. On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells

    Science.gov (United States)

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru

    2014-08-01

    This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.

  7. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  8. Validation of Solar Sail Simulations for the NASA Solar Sail Demonstration Project

    Science.gov (United States)

    Braafladt, Alexander C.; Artusio-Glimpse, Alexandra B.; Heaton, Andrew F.

    2014-01-01

    NASA's Solar Sail Demonstration project partner L'Garde is currently assembling a flight-like sail assembly for a series of ground demonstration tests beginning in 2015. For future missions of this sail that might validate solar sail technology, it is necessary to have an accurate sail thrust model. One of the primary requirements of a proposed potential technology validation mission will be to demonstrate solar sail thrust over a set time period, which for this project is nominally 30 days. This requirement would be met by comparing a L'Garde-developed trajectory simulation to the as-flown trajectory. The current sail simulation baseline for L'Garde is a Systems Tool Kit (STK) plug-in that includes a custom-designed model of the L'Garde sail. The STK simulation has been verified for a flat plate model by comparing it to the NASA-developed Solar Sail Spaceflight Simulation Software (S5). S5 matched STK with a high degree of accuracy and the results of the validation indicate that the L'Garde STK model is accurate enough to meet the potential future mission requirements. Additionally, since the L'Garde sail deviates considerably from a flat plate, a force model for a non-flat sail provided by L'Garde sail was also tested and compared to a flat plate model in S5. This result will be used in the future as a basis of comparison to the non-flat sail model being developed for STK.

  9. Transition to chaos in periodically driven thermionic diodes at low pressure

    International Nuclear Information System (INIS)

    Klinger, T.; Timm, R.; Piel, A.

    1992-01-01

    The static I(U) characteristic of thermionic diodes at mbar pressures shows a large hysteresis, which describes the transition from the 'anode-glow-mode' (AGM), with essentially negative plasma potential, to the 'temperature-limited-mode' (TLM), with positive plasma potential. Many features of these modes are also found in magnetic-box discharges with filament cathodes at pressures of 10 -2 -10 -1 Pa. Although these two pressure regimes are basically different concerning the transport properties (diffusion vs. free streaming), the elementary processes that establish the AGM in the low pressure regime are very similar to the high pressure regime. Ions are produced in that part of the anode sheath where the potential exceeds the ionization energy. The production rate is enhanced by multiple reflections of electrons between the magnetic fields of the permanent magnet array at the anode and the repulsive potential of the cathode plasma. Although the mean free path for charge exchange or elastic collisions substantially exceeds the anode-cathode distance, some few ions are stopped and trapped within the potential well of the virtual cathode. This accumulation of ions forms a cathodic plasma, which is essentially at cathode potential. Plasma formation in the anode sheath is suppressed as long as the ion production time is larger than the ion transit time through the sheath. These model ideas are supported by 1d-Particle-in-cell simulations using a modified PDP1-code. The AGM is attractive for studies of nonlinear dynamics because of its feedback processes and oscillations, which occur close to the hysteresis point. (author) 7 refs., 3 figs

  10. Displacement Damage Effects in Solar Cells: Mining Damage From the Microelectronics and Photonics Test Bed Space Experiment

    Science.gov (United States)

    Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.

    2004-01-01

    The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

  11. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  12. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    Energy Technology Data Exchange (ETDEWEB)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan [Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2002 Neuchâtel (Switzerland); Menda, Deneb; Özdemir, Orhan [Department of Physics, Yıldız Technical University, Davutpasa Campus, TR-34210 Esenler, Istanbul (Turkey); Descoeudres, Antoine; Barraud, Loris [CSEM, PV-Center, Jaquet-Droz 1, CH-2002 Neuchâtel (Switzerland)

    2016-08-07

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.

  13. An IBM PC-based math model for space station solar array simulation

    Science.gov (United States)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  14. Forward Technology Solar Cell Experiment First On-Orbit Data

    Science.gov (United States)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.; hide

    2007-01-01

    This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits

  15. Command and Data Handling Flight Software test framework: A Radiation Belt Storm Probes practice

    Science.gov (United States)

    Hill, T. A.; Reid, W. M.; Wortman, K. A.

    During the Radiation Belt Storm Probes (RBSP) mission, a test framework was developed by the Embedded Applications Group in the Space Department at the Johns Hopkins Applied Physics Laboratory (APL). The test framework is implemented for verification of the Command and Data Handling (C& DH) Flight Software. The RBSP C& DH Flight Software consists of applications developed for use with Goddard Space Flight Center's core Flight Executive (cFE) architecture. The test framework's initial concept originated with tests developed for verification of the Autonomy rules that execute with the Autonomy Engine application of the RBSP C& DH Flight Software. The test framework was adopted and expanded for system and requirements verification of the RBSP C& DH Flight Software. During the evolution of the RBSP C& DH Flight Software test framework design, a set of script conventions and a script library were developed. The script conventions and library eased integration of system and requirements verification tests into a comprehensive automated test suite. The comprehensive test suite is currently being used to verify releases of the RBSP C& DH Flight Software. In addition to providing the details and benefits of the test framework, the discussion will include several lessons learned throughout the verification process of RBSP C& DH Flight Software. Our next mission, Solar Probe Plus (SPP), will use the cFE architecture for the C& DH Flight Software. SPP also plans to use the same ground system as RBSP. Many of the RBSP C& DH Flight Software applications are reusable on the SPP mission, therefore there is potential for test design and test framework reuse for system and requirements verification.

  16. Implications of longitude and latitude on the size of solar-powered UAV

    International Nuclear Information System (INIS)

    Rajendran, Parvathy; Smith, Howard

    2015-01-01

    Highlights: • We studied solar irradiance and daylight implication on solar-powered UAV design. • We explored for perpetual UAV flight for 12 cities around the world. • All year round solar-powered UAV operation possible for cities near equatorial line. • Cities in latitudes of ±35° are the optimal for solar-powered UAV. • Longitudinal coordinates and elevation have a minor effect on UAV design. - Abstract: The implication of solar irradiance and daylight duration on the design of a small solar-powered unmanned aerial vehicle (UAV) that is capable of operating perpetually in various cities around the world was investigated. Solar data in 2013 on 12 cities distributed around the world was collected. The effects of the available solar irradiance and daylight of the city on the maximum take-off weight and wing span of a small solar-powered UAV were studied. The analysis indicates that daylight duration is as important as the available solar irradiance to the performance of the solar-powered UAV. Longitudinal coordinates and elevation have a minor effect on the estimation of daylight duration. Areas considerably high in solar irradiance and daylight duration are more conducive to the effective performance of solar-powered UAVs than other areas. Therefore, cities closer to the equator have an advantage in utilizing solar-powered UAVs; where smaller and lighter solar-powered UAV can be designed

  17. SPARTAN high resolution solar studies

    Science.gov (United States)

    Bruner, Marilyn E.

    1993-01-01

    This report summarizes the work performed on Contract NAS5-29739, a sub-orbital research program directed toward the study of the geometry of and physical conditions in matter found in the upper layers of the solar atmosphere. The report describes a new sounding rocket payload developed under the contract, presents a guide to the contents of semiannual reports submitted during the contract, discusses the results of the first flight of the payload and the progress on scientific analysis. A bibliography of papers and publications is included.

  18. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  19. Energy management strategy for solar-powered high-altitude long-endurance aircraft

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Liu, Jian-Xia; Chen, Xiao-Qian

    2013-01-01

    Highlights: ► A new Energy Management Strategy (EMS) for high-altitude solar-powered aircraft is purposed. ► The simulations show that the aircraft can always keep the altitude above 16 km with the proposed EMS. ► The proposed EMS is capable to alleviate the power consumed for aircraft during night. ► The main technologies to improve the flight performance of aircraft are analyzed. - Abstract: Development of solar-powered High-Altitude Long-Endurance (HALE) aircraft has a great impact on both military and civil aviation industries since its features in high-altitude and energy source can be considered inexhaustible. Owing to the development constraints of rechargeable batteries, the solar-powered HALE aircraft must take amount of rechargeable batteries to fulfill the energy requirement in night, which greatly limits the operation altitude of aircraft. In order to solve this problem, a new Energy Management Strategy (EMS) is proposed based on the idea that the solar energy can be partly stored in gravitational potential in daytime. The flight path of HALE aircraft is divided into three stages. During the stage 1, the solar energy is stored in both lithium–sulfur battery and gravitational potential. The gravitational potential is released in stage 2 by gravitational gliding and the required power in stage 3 is supplied by lithium–sulfur battery. Correspondingly, the EMS is designed for each stage. The simulation results show that the aircraft can always keep the altitude above 16 km with the proposed EMS, and the power consumed during night can be also alleviated. Comparing with the current EMS, about 23.5% energy is remained in batteries with the proposed EMS during one day–night cycle. The sensitivities of the improvement of crucial technologies to the performance of aircraft are also analyzed. The results show that the enhancement of control and structural system, lithium–sulfur battery, and solar cell are ranked in descending order for the

  20. The solar sail: Current state of the problem

    Science.gov (United States)

    Polyakhova, Elena; Korolev, Vladimir

    2018-05-01

    Mathematical models of dynamics of the spacecraft with a solar sail to control orbital motion and rotation of the entire structureare considered. The movement of a spacecraftby a solar sail is based on the effect of light pressure. The magnitude and direction of the light pressure force vector is determined by the size and properties of the sail surface and the orientation angle relative to the sunlight flux. It is possible to vary the properties, sizes or locations of the sails to control the motion. Turning the elements of the sail, we get the opportunity to control the direction of the vector of the acting force and the moment with respect to the center of mass. Specificity of solar sail control is the interaction of orbital motion and rotational movements of the entire structure, which could provide the desired orientation and stability at small perturbations. The solar sail can be used for flights to the major planets, to meet with asteroids and comet, to realize a special desired motion in the neighborhood of the Sun or near the Earth.

  1. In-Flight Calibration of GF-1/WFV Visible Channels Using Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xingfeng Chen

    2017-05-01

    Full Text Available China is planning to launch more and more optical remote-sensing satellites with high spatial resolution and multistep gains. Field calibration, the current operational method of satellite in-flight radiometric calibration, still does not have enough capacity to meet these demands. Gaofen-1 (GF-1, as the first satellite of the Chinese High-resolution Earth Observation System, has been specially arranged to obtain 22 images over clean ocean areas using the Wide Field Viewing camera. Following this, Rayleigh scattering calibration was carried out for the visible channels with these images after the appropriate data processing steps. To guarantee a high calibration precision, uncertainty was analyzed in advance taking into account ozone, aerosol optical depth (AOD, seawater salinity, chlorophyll concentration, wind speed and solar zenith angle. AOD and wind speed were found to be the biggest error sources, which were also closely coupled to the solar zenith angle. Therefore, the best sample data for Rayleigh scattering calibration were selected at the following solar zenith angle of 19–22° and wind speed of 5–13 m/s to reduce the reflection contributed by the water surface. The total Rayleigh scattering calibration uncertainties of visible bands are 2.44% (blue, 3.86% (green, and 4.63% (red respectively. Compared with the recent field calibration results, the errors are −1.69% (blue, 1.83% (green, and −0.79% (red. Therefore, the Rayleigh scattering calibration can become an operational in-flight calibration method for the high spatial resolution satellites.

  2. Soft x-ray spectrographs for solar observations

    International Nuclear Information System (INIS)

    Bruner, M.E.

    1988-01-01

    This paper surveys some of the recent advances in the state of the art of soft X-ray spectrometers, particularly as they might be applied to Solar Observations. The discussions center on the windowless region from roughly 1 to 100 A, and covers both grating and crystal instruments. The author begins with a short discussion of the solar soft X-ray spectrum and its interpretation, followed by a few general comments on problems peculiar to soft X-ray instruments. The paper reviews of recent developments in spectrometer optical design, which has been a lively field during the last dozen years. This is particularly true in the case of grating spectrometers. The paper concludes with a short section on telescope considerations, and some remarks on future flight opportunities

  3. Orbital and angular motion construction for low thrust interplanetary flight

    Science.gov (United States)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  4. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both

  5. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  6. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  7. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  8. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  9. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  10. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  11. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  12. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    Science.gov (United States)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  13. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  14. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  15. SPDE: Solar Plasma Diagnostic Experiment

    Science.gov (United States)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  16. Irradiation behaviour of UO2/Mo porous cermets for thermionic converters

    International Nuclear Information System (INIS)

    Stora, J.P.; Kauffmann, Y.

    1975-01-01

    Two types of UO 2 Mo porous cernets have been fabricated and irradiated in a Cythere irradiation device. The first cermet is constituted by little bits of dense fuel in which the two constituants are finely dispersed. The whole open porosity is located between the granules. This type of cermet is called breche (33.4vol%UO 2 , 51vol%Mo, 14.8vol%porosity). At the end of the irradiation the burn up was 19000MWd/t(U) and neither swelling of the cermet nor deformation of the can were noted. On the contrary, a shrinkage of the emitter was observed attributed to a fuel densification under irradiation. The second type of cermet is called macrogranule (36vol%UO 2 , 49vol%Mo 15vol%porosity). UO 2 granules of 0.07cm mean diameter are dispersed in the molybdenum matrix. The porosity is regularly distributed all around the UO 2 kernels. The post irradiation metrology shows that the emitter is fairly stable. Only a slight ovalisation of about 0.5% was noted, but the granules of UO 2 were redistributed inside the molybdenum matrix, overlapping the metallic cavity by a condensation-evaporation process. The matrix has crept into the central void and consequently the volume has grown and the whole porosity has increased from about 15% to about 23%. This creeping is due to the fission gas pressure in the molybdenum cavities after 3000 hours of irradiation. In conclusion two types of cermets have shown good behaviour under irradiation and should allow lifetimes of several thousand hours of operation for thermionic fuel elements [fr

  17. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  18. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  19. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  20. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  1. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  2. Scaled-model guidelines for formation-flying solar coronagraph missions.

    Science.gov (United States)

    Landini, Federico; Romoli, Marco; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio; Galano, Damien; Kirschner, Volker

    2016-02-15

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a scaled model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

  3. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  4. Investigation of barium-calcium aluminate process to manufacture and characterize impregnated thermionic cathode for power microwave devices

    International Nuclear Information System (INIS)

    Higashi, Cristiane

    2006-01-01

    In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)

  5. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  6. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  7. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Christe, Steven [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Ishikawa, Shin-nosuke [National Astronomical Observatory, Mitaka (Japan); Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee [NASA Marshall Space Flight Center, Huntsville, AL (United States); Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya [Institute of Space and Astronautical Science (ISAS)/JAXA, Sagamihara (Japan); Tajima, Hiroyasu [Solar-Terrestial Environment Laboratory, Nagoya University, Nagoya (Japan); Tanaka, Takaaki [Department of Physics, Kyoto University, Kyoto (Japan); White, Stephen [Air Force Research Laboratory, Albuquerque, NM (United States)

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  8. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  9. Cleaning Genesis Mission Payload for Flight with Ultra-Pure Water and Assembly in ISO Class 4 Environment

    Science.gov (United States)

    Allton, Judith H.

    2012-01-01

    Genesis mission to capture and return to Earth solar wind samples had very stringent contamination control requirements in order to distinguish the solar atoms from terrestrial ones. Genesis mission goals were to measure solar composition for most of the periodic table, so great care was taken to avoid particulate contamination. Since the number 1 and 2 science goals were to determine the oxygen and nitrogen isotopic composition, organic contamination was minimized by tightly controlling offgassing. The total amount of solar material captured in two years is about 400 micrograms spread across one sq m. The contamination limit requirement for each of C, N, and O was <1015 atoms/sq cm. For carbon, this is equivalent to 10 ng/cm2. Extreme vigilance was used in pre-paring Genesis collectors and cleaning hardware for flight. Surface contamination on polished silicon wafers, measured in Genesis laboratory is approximately 10 ng/sq cm.

  10. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  11. Quantitative model of the effects of contamination and space environment on in-flight aging of thermal coatings

    Science.gov (United States)

    Vanhove, Emilie; Roussel, Jean-François; Remaury, Stéphanie; Faye, Delphine; Guigue, Pascale

    2014-09-01

    The in-orbit aging of thermo-optical properties of thermal coatings critically impacts both spacecraft thermal balance and heating power consumption. Nevertheless, in-flight thermal coating aging is generally larger than the one measured on ground and the current knowledge does not allow making reliable predictions1. As a result, a large oversizing of thermal control systems is required. To address this issue, the Centre National d'Etudes Spatiales has developed a low-cost experiment, called THERME, which enables to monitor the in-flight time-evolution of the solar absorptivity of a large variety of coatings, including commonly used coatings and new materials by measuring their temperature. This experiment has been carried out on sunsynchronous spacecrafts for more than 27 years, allowing thus the generation of a very large set of telemetry measurements. The aim of this work was to develop a model able to semi-quantitatively reproduce these data with a restraint number of parameters. The underlying objectives were to better understand the contribution of the different involved phenomena and, later on, to predict the thermal coating aging at end of life. The physical processes modeled include contamination deposition, UV aging of both contamination layers and intrinsic material and atomic oxygen erosion. Efforts were particularly focused on the satellite leading wall as this face is exposed to the highest variations in environmental conditions during the solar cycle. The non-monotonous time-evolution of the solar absorptivity of thermal coatings is shown to be due to a succession of contamination and contaminant erosion by atomic oxygen phased with the solar cycle.

  12. FLightR : An R package for reconstructing animal paths from solar geolocation loggers

    NARCIS (Netherlands)

    Rakhimberdiev, Eldar; Saveliev, Anatoly; Piersma, Theunis; Karagicheva, Julia

    Solar geolocators are relatively cheap and simple tools which are widely used to study the migration of animals, especially birds. The methods to estimate the geographic positions from the light-intensity patterns collected by these loggers, however, are still under development. The accurate

  13. FLightR : An R package for reconstructing animal paths from solar geolocation loggers

    NARCIS (Netherlands)

    Rakhimberdiev, Eldar; Saveliev, Anatoly; Piersma, Theunis; Karagicheva, Julia

    2017-01-01

    Solar geolocators are relatively cheap and simple tools which are widely used to study the migration of animals, especially birds. The methods to estimate the geographic positions from the light-intensity patterns collected by these loggers, however, are still under development. The accurate

  14. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    Science.gov (United States)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  15. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  16. Retrieval of Mir Solar Array

    Science.gov (United States)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  17. Evaluation of exposure to cosmic radiation of flight crews of Lithuanian Airlines

    International Nuclear Information System (INIS)

    Morkunas, G.; Pilkyte, L.; Ereminas, D.

    2003-01-01

    In Lithuania the average annual effective dose due to cosmic radiation at the sea level is 0.38 mSv. The dose rate caused by cosmic radiation increases with altitude due to the decrease in attenuation of cosmic radiation by atmosphere. Dose rates altitudes of commercial flights are tens times higher than those at the sea level. For this reason people who frequently fly receive higher doses which might even be subject to legal regulations. The European Council Directive (96/29 EURATOM) on basic radiation safety standards requires that doses of air crews members be assessed and appropriate measures taken, depending on the assessment results. The aim of this study was to evaluate potential doses, which can be received by members of air crews of Lithuania Airlines. The assessment was done by performing measurements and calculations. Measurements were performed in flying aircraft by thermoluminescent detectors, Geiger Muller counters and neutron rem counter. Such an approach lead to evaluation of doses due to directly ionizing particles and neutrons. Calculations were done with the help of the code CARI-6M. Such parameters as flight route, solar activity, duration and altitudes of flight were taken into account. Doses received during different flights and in different air crafts were assessed. The results of measurements and calculations were compared and differences discussed. The results were also compared with the data obtained in other similar studies. It was found that the highest doses are received in flights to Paris, London, Amsterdam, and Frankfurt by aircraft B737. A number of flights causing annual doses higher than 1 mSv was estimated. Despite the fact that only European flights are operated by Lithuanian Airlines the dose of 1 mSv may be exceeded under some circumstances. If it happens some radiation protection measures shall be taken. These measures are also discussed. (author)

  18. Near Earth Asteroid Solar Sail Engineering Development Unit Test Program

    Science.gov (United States)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  19. FLightR: an r package for reconstructing animal paths from solar geolocation loggers

    NARCIS (Netherlands)

    Rakhimberdiev, E.; Saveliev, A.; Piersma, T.; Karagicheva, J.

    2017-01-01

    1. Solar geolocators are relatively cheap and simple tools which are widely used to study the migration of animals,especially birds. The methods to estimate the geographic positions from the light-intensity patterns collectedby these loggers, however, are still under development.2. The accurate

  20. Pre-Flight Dark Forward Electrical Testing of the Mir Cooperative Solar Array

    Science.gov (United States)

    Kerslake, Thomas W.; Scheiman, David A.; Hoffman, David J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States (US) and Russia to provide approximately 6 kW of photovoltaic power to the Russian space station Mir. After final assembly in Russia, the MCSA was shipped to the NASA Kennedy Space Center (KSC) in the summer of 1995 and launched to Mir in November 1995. Program managers were concerned of the potential for MCSA damage during the transatlantic shipment and the associated handling operations. To address this concern, NASA Lewis Research Center (LERC) developed an innovative dark-forward electrical test program to assess the gross electrical condition of each generator following shipment from Russia. The use of dark test techniques, which allow the array to remain in the stowed configuration, greatly simplifies the checkout of large area solar arrays. MCSA dark electrical testing was successfully performed at KSC in July 1995 following transatlantic shipment. Data from this testing enabled engineers to quantify the effects of potential MCSA physical damage that would degrade on-orbit electrical performance. In this paper, an overview of the principles and heritage of photovoltaic array dark testing is given. The specific MCSA dark test program is also described including the hardware, software, testing procedures and test results. The current-voltage (4) response of both solar cell circuitry and by-pass diode circuitry was obtained. To guide the development of dark test hardware, software and procedures, a dedicated FORTRAN computer code was developed to predict the dark 4 responses of generators with a variety of feasible damage modes. By comparing the actual test data with the predictions, the physical condition of the generator could be inferred. Based on this data analysis, no electrical short-circuits or open-circuits were detected. This suggested the MCSA did not sustain physical damage that affected electrical performance during handling and shipment from Russia to the US. Good

  1. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    Science.gov (United States)

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  2. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  3. New high-resolution rocket-ultraviolet filtergrams of the solar disc

    Science.gov (United States)

    Foing, B.; Bonnet, R.-M.; Bruner, M.

    1986-01-01

    A rocket-borne solar ultraviolet telescope named Transition Region Camera was launched successfully for the third on July 13, 1982. High quality calibrated photographic images of the sun were obtained at Lyman alpha and in the continuum at 160 nm and 220 nm. The angular resolution achieved is better than one arcsec. A flare, active regions, sunspots, the 8 Mm mesostructure, the chromospheric network, bright UV grains and coronal loops were observed during the flight. The results are presented and the evolution with height in the solar atmosphere of the various structures observed is followed from one wavelength to the other, showing distinct differences. The value of the field's intensity of magnetic flux tubes is deduced from the observations.

  4. Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition

    Science.gov (United States)

    Ewing, Anthony; Adams, Charles

    2004-01-01

    Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.

  5. Nanoscale Materials and Architectures for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric A. [Univ. of Kentucky, Lexington, KY (United States); Sunkara, Mahendra K. [University of Louisville, KY (United States)

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  6. Testing an attachment method for solar-powered tracking devices on a long-distance migrating shorebird

    NARCIS (Netherlands)

    Chan, Y.-C; Brugge, M.; Tibbitts, T.L.; Dekinga, A.; Porter, R.; Klaassen, R.H.G.; Piersma, T.

    2016-01-01

    Small solar-powered satellite transmitters andGPS data loggers enable continuous, multi-year, and globaltracking of birds. What is lacking, however, are reliablemethods to attach these tracking devices to small migratorybirds so that (1) flight performance is not impacted and (2)tags are retained

  7. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    Science.gov (United States)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  8. 29th Intersociety energy conversion engineering conference: Technical papers. Part 1

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Part 1 of these proceedings contains 96 papers covering the following topics: Aircraft power; Aerospace power systems--Automation; Batteries for aerospace power; Computer modeling of spacecraft systems; Fuel cells for aerospace; Power electronics; Power management and distribution; Space solar power; Space power systems; Solar dynamic ground test demonstrator; Space nuclear systems--Applications; Space nuclear systems--Reactor technology thermionics; Space nuclear systems reactor technology--Thermoelectrics; Space nuclear systems--Bimodal propulsion; Space nuclear systems--Isotopic power; and Space nuclear systems--thermoelectric materials. Most of the papers have been processed separately for inclusion on the data base

  9. Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays

    Science.gov (United States)

    Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.

    2004-01-01

    Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.

  10. NEW OBSERVATIONS OF THE SOLAR 0.5–5 KEV SOFT X-RAY SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, Amir; Woods, Thomas N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-03-20

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ∼0.2 and ∼4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially integrated solar spectral irradiance from ∼0.5 to ∼5 keV, with ∼0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5–10 MK) emission and are well fit by simple power-law temperature distributions with indices of ∼6, close to the predictions of nanoflare models of coronal heating. Observations during the more active 2013 flight indicate an enrichment of low first-ionization potential elements of only ∼1.6, below the usually observed value of ∼4, suggesting that abundance variations may be related to coronal heating processes. The XUV Photometer System Level 4 data product, a spectral irradiance model derived from integrated broadband measurements, significantly overestimates the spectra from both flights, suggesting a need for revision of its non-flare reference spectra, with important implications for studies of Earth ionospheric dynamics driven by solar SXRs.

  11. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Nicolaou, G., E-mail: helliott@swri.edu [Swedish Institute of Space Physics, Box 812, SE-98128, Kiruna (Sweden)

    2016-04-15

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.

  12. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    International Nuclear Information System (INIS)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G.; Nicolaou, G.

    2016-01-01

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun

  13. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  14. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  15. Drift-free solar sail formations in elliptical Sun-synchronous orbits

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter

    2017-10-01

    To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dynamics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements, and uncertainty in a sail's characteristic acceleration.

  16. Design and flight performance evaluation of the Mariners 6, 7, and 9 short-circuit current, open-circuit voltage transducers

    Science.gov (United States)

    Patterson, R. E.

    1973-01-01

    The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.

  17. The Bepicolombo Mercury Planetary Orbiter (MPO Solar Array Design, Major Developments and Qualification

    Directory of Open Access Journals (Sweden)

    Loehberg A.

    2017-01-01

    The MPO solar generator is composed of one wing consisting of three panels and provides an average power output up to 1800W during the nominal 1 Earth year mission around Mercury. The wing design is characterised by temperature reduction measures. The flight wing has already passed the majority of the environmental test program.

  18. Mars Sample Return Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  19. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

  20. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    Science.gov (United States)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  1. Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes

    International Nuclear Information System (INIS)

    Beck, P.; Bartlett, D. T.; Bilski, P.; Dyer, C.; Flueckiger, E.; Fuller, N.; Lantos, P.; Reitz, G.; Ruehm, W.; Spurny, F.; Taylor, G.; Trompier, F.; Wissmann, F.

    2008-01-01

    Dose assessment procedures for cosmic radiation exposure of aircraft crew have been introduced in most European countries in accordance with the corresponding European directive and national regulations. However, the radiation exposure due to solar particle events is still a matter of scientific research. Here we describe the European research project CONRAD, WP6, Subgroup-B, about the current status of available solar storm measurements and existing models for dose estimation at flight altitudes during solar particle events leading to ground level enhancement (GLE). Three models for the numerical dose estimation during GLEs are discussed. Some of the models agree with limited experimental data reasonably well. Analysis of GLEs during geomagnetically disturbed conditions is still complex and time consuming. Currently available solar particle event models can disagree with each other by an order of magnitude. Further research and verification by on-board measurements is still needed. (authors)

  2. Radiation damage and annealing of lithium-doped silicon solar cells

    Science.gov (United States)

    Statler, R. L.

    1971-01-01

    Evidence has been presented that a lithium-diffused crucible-grown silicon solar cell can be made with better efficiency than the flight-quality n p 10 ohms-cm solar cell. When this lithium cell is exposed to a continuous radiation evironment at 60 C (electron spectrum from gamma rays) it has a higher power output than the N/P cell after a fluence equivalent to 1 MeV. A comparison of annealing of proton- and electron-damage in this lithium cell reveals a decidedly faster rate of recovery and higher level of recoverable power from the proton effects. Therefore, the lithium cell shows a good potential for many space missions where the proton flux is a significant fraction of the radiation field to be encountered.

  3. Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results.

    Science.gov (United States)

    Collier, Michael R; Porter, F Scott; Sibeck, David G; Carter, Jenny A; Chiao, Meng P; Chornay, Dennis J; Cravens, Thomas E; Galeazzi, Massimiliano; Keller, John W; Koutroumpa, Dimitra; Kujawski, Joseph; Kuntz, Kip; Read, Andy M; Robertson, Ina P; Sembay, Steve; Snowden, Steven L; Thomas, Nicholas; Uprety, Youaraj; Walsh, Brian M

    2015-07-01

    We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].

  4. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    , which are all tightly linked to the UAV flight controller hardware and software. The lack of standardization of flight controller architectures and the use of proprietary closed-source flight controllers on many UAV platforms, however, complicates this work: solutions developed for one flight controller...... may be difficult to port to another without substantial extra development and testing. Using open-source flight controllers mitigates some of these challenges and enables other researchers to validate and build upon existing research. This paper presents a survey of the publicly available open...

  5. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  6. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  7. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  8. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  9. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  10. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  11. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  12. Nuclear Electric Propulsion mission engineering study covering the period April 1971 to January 1973. Volume I. Executive summary. Final report

    International Nuclear Information System (INIS)

    1973-03-01

    The results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are presented. Critical technologies assessed are associated with the development of Nuclear Electric Propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP Stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP Stage development. A multimission NEP Stage can be developed to perform both multiple geocentric and interplanetary missions. Development program costs for a 1983 launch would be of the order of $275 M, including hardware and reactor development, flight system hardware, and mission support. Recurring unit costs for flight NEP systems would be of the order of $25 M for a 120 kWe NEP Stage. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrusters and thermionic reactor, and the development of related power conditioning. The resulting NEP Stage design provides both inherent reliability and high payload mass capability. High payload mass capability can be translated into both low payload cost and high payload reliability. NEP Stage and payload integration is compatible with the Space Shuttle

  13. Nuclear Electric Propulsion mission engineering study covering the period April 1971 to January 1973. Volume II. Final report

    International Nuclear Information System (INIS)

    1973-03-01

    The results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies assessed are associated with the development of Nuclear Electric Propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP Stage design for geocentric and interplanetary missions NEP system development cost and unit costs, and technology requirements for NEP Stage development. A multi-mission NEP Stage can be developed to perform both multiple geocentric and interplanetary missions. Development program costs for a 1983 launch would be of the order of $275 M, including hardware and reactor development, flight system hardware, and mission support. Recurring unit costs for flight NEP systems would be of the order of $25 M for a 120kWe NEP Stage. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrusters and thermionic reactor, and the development of related power conditioning. The resulting NEP Stage design provides both inherent reliability and high payload mass capability. High payload mass capability can be translated into both low payload cost and high payload reliability. NEP Stage and payload integration is compatible with the Space Shuttle

  14. Flight results from the gravity-gradient-controlled RAE-1 satellite

    Science.gov (United States)

    Blanchard, D. L.

    1986-01-01

    The in-orbit dynamics of a large, flexible spacecraft has been modeled with a computer simulation, which was used for designing the control system, developing a deployment and gravity-gradient capture procedure, predicting the steady-state behavior, and designing a series of dynamics experiments for the Radio Astronomy Explorer (RAE) satellite. This flexible body dynamics simulator permits three-dimensional, large-angle rotation of the total spacecraft and includes effects of orbit eccentricity, thermal bending, solar pressure, gravitational accelerations, and the damper system. Flight results are consistent with the simulator predictions and are presented for the deployment and capture phases, the steady-state mission, and the dynamics experiments.

  15. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  16. THz and Sub-THz Capabilities of a Table-Top Radiation Source Driven by an RF Thermionic Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexei V.; Agustsson, R.; Boucher, S.; Campese, Tara; Chen, Y.C.; Hartzell, Josiah J.; Jocobson, B.T.; Murokh, A.; O' Shea, F.H.; Spranza, E.; Berg, W.; Borland, M.; Dooling, J. C.; Erwin, L.; Lindberg, R. R.; Pasky, S.J.; Sereno, N.; Sun, Y.; Zholents, A.

    2017-06-01

    Design features and experimental results are presented for a sub-mm wave source [1] based on APS RF thermionic electron gun. The setup includes compact alpha-magnet, quadrupoles, sub-mm-wave radiators, and THz optics. The sub-THz radiator is a planar, oversized structure with gratings. Source upgrade for generation frequencies above 1 THz is discussed. The THz radiator will use a short-period undulator having 1 T field amplitude, ~20 cm length, and integrated with a low-loss oversized waveguide. Both radiators are integrated with a miniature horn antenna and a small ~90°-degree in-vacuum bending magnet. The electron beamline is designed to operate different modes including conversion to a flat beam interacting efficiently with the radiator. The source can be used for cancer diagnostics, surface defectoscopy, and non-destructive testing. Sub-THz experiment demonstrated a good potential of a robust, table-top system for generation of a narrow bandwidth THz radiation. This setup can be considered as a prototype of a compact, laser-free, flexible source capable of generation of long trains of Sub-THz and THz pulses with repetition rates not available with laser-driven sources.

  17. Solar panels for the International Space Station are uncrated and moved in the SSPF

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, a worker (left) guides the lifting of solar panels for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed.

  18. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  19. Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions

    Science.gov (United States)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; hide

    2016-01-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  20. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    International Nuclear Information System (INIS)

    Meyer, Fred W.; Harris, Peter R.; Taylor, C.N.; Meyer, Harry M. III; Barghouty, N.; Adams, J. Jr.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  1. Solar research with stratospheric balloons

    Science.gov (United States)

    Vázquez, Manuel; Wittmann, Axel D.

    Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.

  2. Indium phosphide space solar cell research: Where we are and where we are going

    Science.gov (United States)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  3. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  4. Future mission studies: Forecasting solar flux directly from its chaotic time series

    Science.gov (United States)

    Ashrafi, S.

    1991-01-01

    The mathematical structure of the programs written to construct a nonlinear predictive model to forecast solar flux directly from its time series without reference to any underlying solar physics is presented. This method and the programs are written so that one could apply the same technique to forecast other chaotic time series, such as geomagnetic data, attitude and orbit data, and even financial indexes and stock market data. Perhaps the most important application of this technique to flight dynamics is to model Goddard Trajectory Determination System (GTDS) output of residues between observed position of spacecraft and calculated position with no drag (drag flag = off). This would result in a new model of drag working directly from observed data.

  5. Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel

    Science.gov (United States)

    Johnson, Les

    2015-01-01

    NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.

  6. World Ships: The Solar-Photon Sail Option

    Science.gov (United States)

    Matloff, G. L.

    The World Ship, a spacecraft large enough to simulate a small-scale terrestrial internal environment, may be the best feasible option to transfer members of a technological civilization between neighboring stars. Because of the projected size of these spacecraft, journey durations of ~1,000 years seem likely. One of the propulsion options for World Ships is the hyper-thin, likely space-manufactured solar-photon sail, unfurled as close to the migrating civilization's home star as possible. Because the sail and associated structure can be wound around the habitat while not in use, it represents the only known ultimately feasible interstellar propulsion system that can be applied for en route galactic-cosmic ray shielding as well as acceleration/ deceleration. This paper reviews the three suggested sail configurations that can be applied to world ship propulsion: parachute, hollow-body and hoop sails. Possible existing and advanced sail and structure materials and the predicted effects on the sail of the near-Sun space environment are reviewed. Consideration of solar-photon-sail World Ships also affects SETI (the Search for Extraterrestrial Intelligence). Can we detect such craft in flight? When in a star's lifetime is migration using such craft likely? What classes of stars are good candidates for solar-sail World-Ship searches?

  7. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)

    2017-03-21

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  8. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Science.gov (United States)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  9. The Properties of Binary and Ternary Ti Based Coatings Produced by Thermionic Vacuum Arc (TVA Technology

    Directory of Open Access Journals (Sweden)

    Aurelia Mandes

    2018-03-01

    Full Text Available A series of the multicomponent thin films (binary: Ti-C; Ti-Ag and ternary: Ti-C-Ag; Ti-C-Al were fabricated by Thermionic Vacuum Arc (TVA technology in order to study the wear resistance and the anticorrosion properties. The effects of Ti amount on the microstructure, tribological and morphological properties were subsequently investigated. TVA is an original deposition method using a combination of anodic arc and electron gun systems for the growth of films. The samples were characterized using scanning electron microscope (SEM and a transmission electron microscope (TEM accompanied by selected area electron diffraction (SAED. Tribological properties were studied by a ball-on-disc tribometer in the dry regime and the wettability was assessed by measuring the contact angle with the See System apparatus. Wear Rate results indicate an improved sliding wear behavior for Ti-C-Ag: 1.31 × 10−7 mm3/N m (F = 2 N compared to Ti-C-Al coating wear rate: 4.24 × 10−7 mm3/N m. On the other hand, by increasing the normal load to 3 N an increase to the wear rate was observed for Ti-C-Ag: 2.58 × 10−5 mm3 compared to 2.33 × 10−6 mm3 for Ti-C-Al coating.

  10. Development of high-current-density LAB6 thermionic emitters for a space-charge-limited electron gun

    International Nuclear Information System (INIS)

    Herniter, M.E.; Getty, W.D.

    1987-01-01

    An electron gun has been developed for investigation of high current density, space charge limited operation of a lenthanum hexaboride (LaB 6 ) thermionic cathode. The 2.8 cm 2 cathode disk is heated by electron bombardment from a tungsten filament. For LaB 6 cathode temperatures greater than 1600 0 C it has been found that evaporation from the LaB 6 causes an increase in the tungsten filament emission, leading to an instability in the bombardment heating system. This instability has been investigated and eliminated by using a graphite disk in place of the LaB 6 cathode or by shielding the filament from the LaB 6 cathode by placing the LaB 6 in a graphite cup and bombarding the cup. The graphite disk has been heated to 1755 0 C with 755 W of heating power, and the shielded LaB 6 cathode has been heated to 1695 0 C. This temperature range is required for emission current densities in the 30 Acm 2 range. It is believed that the evaporation of lanthanum lowers the tungsten work function. In electron-gun use, the LaB 6 cathode has been operated up to 6.7 Acm 2 at 36 kV. A 120 kV Marx generator has been built to allow operation up to 40 Acm 2

  11. Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method

    Directory of Open Access Journals (Sweden)

    Rodica Vladoiu

    2018-01-01

    Full Text Available Nanostructured C-Ag thin films of 200 nm thickness were successfully synthesized by the Thermionic Vacuum Arc (TVA method. The influence of different substrates (glass, silicon wafers, and stainless steel on the microstructure, morphology, and mechanical properties of nanostructured C-Ag thin films was characterized by High-Resolution Transmission Electron Microscopy (HRTEM, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, and TI 950 (Hysitron nanoindenter equipped with Berkovich indenter, respectively. The film’s hardness deposited on glass (HC-Ag/Gl = 1.8 GPa was slightly lower than in the case of the C-Ag film deposited on a silicon substrate (HC-Ag/Si = 2.2 GPa. Also the apparent elastic modulus Eeff was lower for C-Ag/Gl sample (Eeff = 100 GPa than for C-Ag/Si (Eeff = 170 GPa, while the values for average roughness are Ra=2.9 nm (C-Ag/Si and Ra=10.6 (C-Ag/Gl. Using the modulus mapping mode, spontaneous and indentation-induced aggregation of the silver nanoparticles was observed for both C-Ag/Gl and C-Ag/Si samples. The nanocomposite C-Ag film exhibited not only higher hardness and effective elastic modulus, but also a higher fracture resistance toughness to the silicon substrate compared to the glass substrate.

  12. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov (United States)

    Power | NREL 20 This page provides information on Planta Solar 20, a concentrating solar power Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower and increasing incident solar radiation capture will increase net electrical power output by 10

  13. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  14. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  15. Design and simulation of solar powered aircraft for year-round operation at high altitude; Auslegung und Simulation von hochfliegenden, dauerhaft stationierbaren Solardrohnen

    Energy Technology Data Exchange (ETDEWEB)

    Keidel, B.

    2000-05-18

    An unmanned solar powered aircraft configuration called SOLITAIR has been designed. This aircraft is intended to be used as an high altitude long endurance (HALE) sensor platform for year-round operation at intermediate latitudes up to about {+-}55 . For the design studies leading to this aircraft configuration, a software package has been developed which enables an effective design and a proper simulation of the entire solar aircraft system for various flight missions. The performance analysis and the mission simulation showed, that a configuration with large additional solar panels, that can be tilted in order to follow the sun angle during daytime operation appears to be superior to aircraft configurations with wing-mounted solar cells for the desired operational area. In order to examine the basic flight characteristics of the SOLITAIR configuration a remote controlled demonstration model has been built and test flown. [German] In der vorliegenden Arbeit wurden Moeglichkeiten geschaffen, um Gesamtsystemkonfigura-tionen unbemannter hochfliegender Solarflugzeuge fuer unterschiedliche Anwendungsfaelle auszulegen und die Flugleistungen sowie die Missionsfaehigkeit dieser Konfigurationen aufzuzeigen. Mit den geschaffenen und verifizierten Entwicklungswerkzeugen wurde eine Solarflugzeugkonfiguration entworfen und mittels eines Demonstrationsmodells erprobt. Mit dieser Konfiguration kann eine dauerhafte Stationierbarkeit von ca. 55 suedlicher bis 55 noerdlicher Breite erreicht werden. Dies stellt eine bedeutende Erweiterung des bisher fuer moeglich gehaltenen Nutzungsbereiches solcher Flugzeuge dar.

  16. Reflector drums as control mechanism for craft thermionic reactors with constant emitter heating containing U-233 as fuel and beryllium as moderator

    International Nuclear Information System (INIS)

    Sahin, S.; Selvi, S.

    1980-01-01

    The suitability of borated reflector drums has been investigated and shown as a control mechanism for space craft thermionic reactors with constant emitter heating using U-233 as fuel and beryllium to be moderator, mainly due to their extremce compactness and their very soft neutron sepctrum. The achievable change in ksub(eff) allows long-term control operation with success. The use of reflector drums keeps the cone diameter and the mass of the radiation shield on minimum. The distortion of the emitter heating field remains under acceptable tolerances, mainly due to the enhanced neutron production at the outer core region and the remaining reflector part between the boron layer and the core. All neutron physics calculations have been carried out using the multigroup Ssub(N) methods. Three data groups for r-theta-calculations in S 4 -P 1 approximation (16 space angles) have been evaluated from a 123-energy-groups data library using transport theoretical methods. (orig.) [de

  17. AZ-2000-IECW and StaMet Black Kapton Options for Solar Probe Plus MAG Sensor MLI Kevlar/Polyimide Shells

    Science.gov (United States)

    Choi, Michael K.

    2017-01-01

    AZ-2000-IECW white paint and StaMet black Kapton have been evaluated for the Kevlar/polyimide shells that enclose the Solar Probe Plus Magnetometer (MAG) sensors and multilayer insulation. Flight qualification testing on AZ-2000-IECW painted Kevlar/polyimide laminate was completed at Goddard Space Flight Center. This paint potentially meets all the requirements. However, it has no flight heritage. StaMet is hotter in the sun, and is specular. The results of the MAG thermal balance test show StaMet meets the thermal requirement and heater power budget. The mission prefers to fly StaMet after evaluating the risks of AZ-2000-IECW flaking and glint from StaMet to the Star Trackers.

  18. Temperature-Driven Shape Changes of the Near Earth Asteroid Scout Solar Sail

    Science.gov (United States)

    Stohlman, Olive R.; Loper, Erik R.; Lockett, Tiffany E.

    2017-01-01

    Near Earth Asteroid Scout (NEA Scout) is a NASA deep space Cubesat, scheduled to launch on the Exploration Mission 1 flight of the Space Launch System. NEA Scout will use a deployable solar sail as its primary propulsion system. The sail is a square membrane supported by rigid metallic tapespring booms, and analysis predicts that these booms will experience substantial thermal warping if they are exposed to direct sunlight in the space environment. NASA has conducted sunspot chamber experiments to confirm the thermal distortion of this class of booms, demonstrating tip displacement of between 20 and 50 centimeters in a 4-meter boom. The distortion behavior of the boom is complex and demonstrates an application for advanced thermal-structural analysis. The needs of the NEA Scout project were supported by changing the solar sail design to keep the booms shaded during use of the solar sail, and an additional experiment in the sunspot chamber is presented in support of this solution.

  19. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  20. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  1. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  2. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    International Nuclear Information System (INIS)

    Hu, Tongning; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji; Li, Ji

    2014-01-01

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented

  3. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  4. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  5. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  6. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  7. Concentrating Solar Power Projects - Khi Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Khi Solar One This page provides information on Khi Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: February 8, 2016 Project Overview Project Name: Khi Solar One Country: South Africa Location

  8. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  9. Using Microporous Polytetrafluoroethylene Thin Sheets as a Flexible Solar Diffuser to Minimize Sunlight Glint to Cameras in Space

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  10. Using microporous polytetrafluoroethylene thin sheets as a flexible solar diffuser to minimize sunlight glint to cameras in space

    Science.gov (United States)

    Choi, Michael K.

    2016-09-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  11. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    Science.gov (United States)

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  12. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant

  13. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in...

  14. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  15. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    Science.gov (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  16. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    International Nuclear Information System (INIS)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.; Bonnet, R.M.; NASA, Marshall Space Flight Center, Huntsville, AL; ESA, Paris, France)

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references

  17. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  18. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  19. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  20. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    Science.gov (United States)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake

  1. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  2. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  3. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    Science.gov (United States)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  4. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  5. The ground testing of a 2 kWe solar dynamic space power system

    International Nuclear Information System (INIS)

    Calogeras, J.E.

    1992-01-01

    Over the past 25 years Space Solar Dynamic component development has advanced to the point where it is considered a leading candidate power source technology for the evolutionary phases of the Space Station Freedom (SSF) program. Selection of SD power was based on studies and analyses which indicated significant savings in life cycle costs, launch mass and EVA requirements were possible when the system is compared to more conventional photovoltaic/battery power systems. Issues associated with micro-gravity operation such as the behavior of the thermal energy storage materials are being addressed in other programs. This paper reports that a ground test of a 2 kWe solar dynamic system is being planned by the NASA Office of Aeronautics and Space Technology to address the integration issues. The test will be scalable up to 25 kWe, will be flight configured and will incorporate relevant features of the SSF Solar Dynamic Power Module design

  6. Flapping wing flight can save aerodynamic power compared to steady flight.

    Science.gov (United States)

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  7. Flight code validation simulator

    Science.gov (United States)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  8. Heat and electricity generating methods

    International Nuclear Information System (INIS)

    Buter, J.

    1977-01-01

    A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de

  9. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  10. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  11. Sizing and preliminary hardware testing of solar powered UAV

    Directory of Open Access Journals (Sweden)

    S. Jashnani

    2013-12-01

    Full Text Available Integrating solar energy into modern aircraft technology has been a topic of interest and has received a lot of attention from researchers over the last two decades. A few among the many potential applications of this technology are the possibility of continuous self sustained flight for purposes such as information relay, surveillance and monitoring. This paper discusses the altitude and payload mass, as independent parameters, and their influence on the size and design of the aircraft. To estimate available solar power, two different models have been presented; one for low altitudes and the other for high altitudes. An engineering ground model was built to simulate the power and propulsion system over 24 h of continuous operation. The paper presents data from tests performed till date and lessons learnt while dealing with the construction of the engineering ground model as well as changes that can be made to improve the design.

  12. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  13. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    Science.gov (United States)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  14. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  15. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  16. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  17. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    Science.gov (United States)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  18. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  19. A passive Bonner sphere spectrometer for in-flight neutron spectrometry

    International Nuclear Information System (INIS)

    Hajek, M.; Berger, T.; Vana, N.

    2003-01-01

    The neutron energy spectrum was measured onboard a series of four return flights between Cologne (Germany) and Washington, DC (USA) during the solar minimum conditions of June/July 1996. This experiment was world-wide the first determination of the neutron spectrum by passive spectrometry methods onboard an aircraft. The project was conducted with the support of the German Airforce which reserved two seat rows in the front of an Airbus A 310-304 for the passive BSS. The count rates were computed according to the Pair Method and unfolded with MAXED. Obtained spectrum shows two relative maxima around 1 and 100 MeV, the second of which cannot be completely assessed by the applied BSS. The agreement between measurement and calculation proved to be excellent

  20. Concentrating Solar Power Projects - KaXu Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location