WorldWideScience

Sample records for solar thermal dish-electric

  1. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  2. Fifth parabolic dish solar thermal power program annual review: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  3. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    Science.gov (United States)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  4. Test results on parabolic dish concentrators for solar thermal power systems

    Science.gov (United States)

    Jaffe, Leonard D.

    1989-01-01

    This paper presents results of development testing of various solar thermal parabolic dish concentrators. The concentrators were mostly designed for the production of electric power using dish-mounted Rankine, Brayton or Stirling cycle engines, intended to be produced at low cost. Measured performance for various dishes included optical efficiencies ranging from 0.32 to 0.86 at a geometric concentration ratio of 500, and from about 0.09 to 0.85 at a geometric concentration ratio of 3000. Some malfunctions were observed. The tests should provide operating information of value in developing concentrators with improved performance and reduced maintenance.

  5. On the evolution, over four generations of paraboloidal dish solar thermal electric power systems

    International Nuclear Information System (INIS)

    Kaneff, S.

    1993-01-01

    After a decade of supplying useful power, the White Cliffs Paraboloidal Dish Solar Thermal Power Station (1100 km west of Sydney) is still operational and has provided major lessons and experience for subsequent developments; particularly for the Molokai/Alburquerque unit built jointly with Power Kinetics Inc (of Troy, USA) for the US Department of Energy. This has, in turn, given valuable guidance for the third generation system now nearing completion in Canberra and employing new collector concepts refined for commercial production and viability. Unlike much dish-oriented R and D, we consider systems of dish arrays supplying central plant as a more attractive proposition than assemblies of dish/engine units, for all but very small systems (<2 MWe). Development has recently commerce on the fourth generation technology which result in a 2 MWe dish system within 2 years, expected to be followed closely by a system of 10 to 20 MWe, preparatory to still larger systems, as the technology evolves and experience is gained. The rationale in this progression in based on the achievement of commercial cost-effectiveness in competition with other energy sources. The direction of evolution is becoming clear and application of the technology to broader spheres than electricity generation is likely. Because of the nature of production methods employed and the ease of installation, system implementation can be rapid. (Author) 29 refs

  6. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  7. Manufacturing cost analysis of a parabolic dish concentrator (General Electric design) for solar thermal electric power systems in selected production volumes

    Science.gov (United States)

    1981-01-01

    The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.

  8. Parabolic dish collectors - A solar option

    Science.gov (United States)

    Truscello, V. C.

    1981-05-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  9. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  10. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  11. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  12. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  13. Dish concentrators for solar thermal energy - Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  14. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis

    International Nuclear Information System (INIS)

    Hafez, A.Z.; Soliman, Ahmed; El-Metwally, K.A.; Ismail, I.M.

    2016-01-01

    Highlights: • Modeling and simulation for different parabolic dish Stirling engine designs using Matlab®. • The effect of solar dish design features and factors had been taken. • Estimation of output power from the solar dish using Matlab®. • The present analysis provides a theoretical guidance for designing and operating solar parabolic dish system. - Abstract: Modeling and simulation for different parabolic dish Stirling engine designs have been carried out using Matlab®. The effect of solar dish design features and factors such as material of the reflector concentrators, the shape of the reflector concentrators and the receiver, solar radiation at the concentrator, diameter of the parabolic dish concentrator, sizing the aperture area of concentrator, focal Length of the parabolic dish, the focal point diameter, sizing the aperture area of receiver, geometric concentration ratio, and rim angle have been studied. The study provides a theoretical guidance for designing and operating solar parabolic dish Stirling engines system. At Zewail city of Science and Technology, Egypt, for a 10 kW Stirling engine; The maximum solar dish Stirling engine output power estimation is 9707 W at 12:00 PM where the maximum beam solar radiation applied in solar dish concentrator is 990 W/m"2 at 12:00 PM. The performance of engine can be improved by increasing the precision of the engine parts and the heat source efficiency. The engine performance could be further increased if a better receiver working fluid is used. We can conclude that where the best time for heating the fluid and fasting the processing, the time required to heat the receiver to reach the minimum temperature for operating the Solar-powered Stirling engine for different heat transfer fluids; this will lead to more economic solar dish systems. Power output of the solar dish system is one of the most important targets in the design that show effectiveness of the system, and this has achieved when we take

  15. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    Science.gov (United States)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  16. Solar parabolic dish technology evaluation report

    Science.gov (United States)

    Lucas, J. W.

    1984-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.

  17. Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available The efficient conversion of solar radiation into heat at high temperature levels requires the use of concentrating solar collectors. The goal of this paper is to present the optical and the thermal analysis of a parabolic dish concentrator with a spiral coil receiver. The parabolic dish reflector consists of 11 curvilinear trapezoidal reflective petals constructed by PMMA with silvered mirror layer and has a diameter of 3.8 m, while its focal distance is 2.26m. This collector is designed with commercial software SolidWorks and simulated, optically and thermally in its Flow Simulation Studio. The optical analysis proved that the ideal position of the absorber is at 2.1m from the reflector in order to maximize the optical efficiency and to create a relative uniform heat flux over the absorber. In thermal part of the analysis, the energetic efficiency was calculated approximately 65%, while the exergetic efficiency is varied from 4% to 15% according to the water inlet temperature. Moreover, other important parameters as the heat flux and temperature distribution over the absorber are presented. The pressure drop of the absorber coil is calculated at 0.07bar, an acceptable value.

  18. A parametric investigation on a solar dish-Stirling system

    Science.gov (United States)

    Gholamalizadeh, Ehsan; Chung, Jae Dong

    2018-06-01

    The aim of this study is to analyze the performance of a solar dish-Stirling system. A mathematical model for the overall thermal efficiency of the solar-powered high-temperature-differential dish-Stirling engine is described. This model takes into account pressure losses due to fluid friction which is internal to the engine, mechanical friction between the moving parts, actual heat transfer includes the effects of both internal and external irreversibilities of the cycle and finite regeneration processes time. Validation was done through comparison with the actual power output of the "EuroDish" system. Moreover, the effects of dish diameter and working fluid on the performance of the system were studied. An increase of about 7.2% was observed for the power output using hydrogen as the working fluid rather than helium. Also, the focal distance for any diameter of dish was calculated.

  19. Theoretical modelling of solar dish concentrator

    International Nuclear Information System (INIS)

    Yaaseen Rafeeu; Mohd Zainal Abidin Abdul Kadir; Senan Mohamed Abdulla; Nor Mariah Adam

    2009-01-01

    Full text: Concentrating solar power (CSP) technologies could be one of the major contributor to worlds future energy needs and which would be cheap and clean sources of energy. This would improve energy utilization, higher conversion efficiency with reliable and affordable supply of electricity to the public. The proposed approach is using different size and depth of solar dish concentrators to improve solar fraction using the aluminium foil as reflector. In this paper, different measurement of solar concentrators is investigated and aims to aims to introducing an improved methodology for solar fraction on incoming solar energy in wet climate. (author)

  20. Economic aspects of Solar Thermal Technologies for electricity generation

    International Nuclear Information System (INIS)

    Meinecke, W.

    1993-01-01

    Economic results of German studies are presented, which compare the four solar thermal technologies for electricity generation (parabolic trough collector system, central receiver system, parabolic dish/Stirling system, solar chimney plant). These studies were carried out by Interatom (today Siemens/KWU) in Bergisch Gladbach, Flachglas Solartechnik in Koln and Schlaich Bergermann and Partner in Stuggart under contract of DLR in Koln. Funds were made available by the German Ministry of Research and Development (BMFT). The results indicate that all of the investigated technologies have the potential to reduce the generating costs and that in the future costs of below 0.30 DM/kWh could be expected under excellent insolation conditions (e.G. 2850 kWh/m''2 a direct insolation as in California/USA). (Author) 25 refs

  1. Artificial neural networks approach on solar parabolic dish cooker

    International Nuclear Information System (INIS)

    Lokeswaran, S.; Eswaramoorthy, M.

    2011-01-01

    This paper presents heat transfer analysis of solar parabolic dish cooker using Artificial Neural Network (ANN). The objective of this study to envisage thermal performance parameters such as receiver plate and pot water temperatures of the solar parabolic dish cooker by using the ANN for experimental data. An experiment is conducted under two cases (1) cooker with plain receiver and (2) cooker with porous receiver. The Back Propagation (BP) algorithm is used to train and test networks and ANN predictions are compared with experimental results. Different network configurations are studied by the aid of searching a relatively better network for prediction. The results showed a good regression analysis with the correlation coefficients in the range of 0.9968-0.9992 and mean relative errors (MREs) in the range of 1.2586-4.0346% for the test data set. Thus ANN model can successfully be used for the prediction of the thermal performance parameters of parabolic dish cooker with reasonable degree of accuracy. (authors)

  2. Performance comparisons of dish type solar concentrator with mirror arrangements and receiver shapes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Joo Hyun; Kim, Yong; Ma, Dae Sung; Seo, Tae Beom [Graduate School, Dept. of Mechanical Engineering, Inha Univ., Inchon (Korea, Republic of); Kang, Yong Heack [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)

    2008-07-01

    The performance comparisons of dish type solar concentrators are numerically investigated. The dish type solar concentrator considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparisons of dish type solar concentrators, six different mirror arrangements and four different receivers are considered. A parabolic-shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrangements. The other mirror arrangements consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m. Their total collecting areas, which are 1.545 m{sup 2}, are the same. Four different solar receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. In order to investigate the thermal performance of the dish type solar concentrator, the radiative heat loss in the receiver should be calculated. For calculation, the net radiation method and the Monte-Carlo method are used. Also, because the thermal performance of the dish type solar concentrator can vary as the receiver surface temperature, the various surface temperatures are considered. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrangements except the perfect mirror. (orig.)

  3. Performance tests and efficiency analysis of Solar Invictus 53S - A parabolic dish solar collector for direct steam generation

    Science.gov (United States)

    Jamil, Umer; Ali, Wajahat

    2016-05-01

    This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.

  4. The Comparison of Photovoltaic with Small Solar Dish Stirling for Solar Home System 50 W{sub p} in Thailand, Medium Insolation Nature

    Energy Technology Data Exchange (ETDEWEB)

    Snidvongs, E. S.; Jindaruj, S.

    2006-07-01

    The Thai government initiated a project entitled Solar Home System which involved the provision of standalone Photovoltaic 50 Wp for houses without transmission lines in remote areas, 300,000 units. These units are provided at a low price with the government supporting half of the cost and the rest paid by the owners in installments. So far, more than 150,000 units have been installed and it is expected that the whole project would be completed by the end of the year 2005. A purpose of this research is to compare the original Thai government's Solar Home PV System with the new 50 Wp Small Solar Thermal Dish Stirling System in terms of their advantages and disadvantages for Thailand. The result of this would serve as a guide for the users to select the most suitable system in terms of price, maintenance, cost, economy, performance, reliability, and efficiency. Such comparison will be presented in the form of descriptive, photographs, statistics, and tables. As for the data involved, part of this is based on active fact such as construction cost, material cost, labor cost, rate of inflation, rate of interest. While some of these derives from the experience of researcher as well as facts and figures from Thai governments publications such as operation and maintenance cost. In addition to that some data are taken from basic experiments conducted either by the various universities and the researcher own laboratory. These include solar insolation, PV data and Stirling engine test with electric heater. And, of course, some data are based on simple estimation and prediction. Thailand is a country of 550 w/m2 with high humidity, soft-land and medium insolation. It locates near the equator at latitude 5 12 N, longitude 96 106 E. By using a parabolic shape satellite dish with solar tracker and a 60 W Four Cylinders gamma type Stirling engine with sinusoidal gear linear link, low offset space, and solid thermal storage to act as buffer between the solar energy and the

  5. The limits to solar thermal electricity

    International Nuclear Information System (INIS)

    Trainer, Ted

    2014-01-01

    The potential and limits of solar thermal power systems depend primarily on their capacity to meet electricity demand in mid-winter, and the associated cost, storage and other implications. Evidence on output and costs is analysed. Most attention is given to central receivers. Problems of low radiation levels, embodied energy costs, variability and storage are discussed and are found to set significant difficulties for large scale solar thermal supply in less than ideal latitudes and seasons. It is concluded that for solar thermal systems to meet a large fraction of anticipated global electricity demand in winter would involve prohibitive capital costs. - Highlights: • Output and capital cost data for various solar thermal technologies is examined. • Special attention is given to performance in winter. • Attention is also given to the effect of solar intermittency. • Implications for storage are considered. • It is concluded that there are significant limits to solar thermal power

  6. Fort Huachuca to Benefit from New Solar Technology: Dish-Stirling System Couples Solar Power with Engine to Generate Electricity

    National Research Council Canada - National Science Library

    1995-01-01

    ... in partnership with industry. A prototype dish-Stirling solar system, which consists of a large dish of solar concentrators and a Stirling heat engine, will be installed at Fort Huachuca in July and should be in operation about two weeks later...

  7. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Science.gov (United States)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  8. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    Science.gov (United States)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  9. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  10. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  11. High Efficiency, Low Cost Parabolic Dish System for Cogeneration of Electricity and Heat

    Science.gov (United States)

    Chayet, Haim; Lozovsky, Ilan; Kost, Ori; Loeckenhoff, Ruediger; Rasch, Klaus-Dieter

    2010-10-01

    Highly efficient combined heat and power generating system based on CPV technology using unique dish design consisting of multiple simple flat mirrors mounted on a plastic parabolic surface. The dish of total aperture area of 11 m2 focuses 10.3 kWp onto a heat and electricity generating receiver. The receiver comprises a water cooled, dense triple junction cell array of 176 cm2 aperture area. A unique arrangement of the cells compensates for the non-uniformity of the reflected flux. Depending on the flow rate, the temperature of the hot water can be adjusted to suit from temperatures for domestic use, to temperatures suited for process heat. The output of 2.3 kWp electrical and 5.5 kWp thermal power from one dish system represent 20 to 21% electrical and 50% thermal conversion efficiency adding to 70% overall system efficiency.

  12. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  13. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  14. Efficient, Low Cost Dish Concentrator for a CPV Based Cogeneration System

    Science.gov (United States)

    Chayet, Haim; Kost, Ori; Moran, Rani; Lozovsky, Ilan

    2011-12-01

    Zenith Solar Ltd has developed efficient electricity and heat co-generation system based on segmented-parabolic dish of total aperture area of 11 m2 and water cooled dense array module combined of triple junction cells. Conventional parabolic dishes are inherently inefficient in the sense that the radiant flux distribution is non uniform causing inefficient generation by the PV array. Secondary optics improves uniformity but introduces additional complexity and losses to the system. Zenith's dish is assembled of 1200 flat mirrors of approximately 100 cm2 each. Every mirror facet has a unique shape such that the geometrical projection from each mirror on the focal plane is essentially the same. When perfectly aligned, the projected radiation from all mirrors overlaps uniformly on the PV surface. The low cost construction of the dish utilizes plastic mount supported by a precise metal frame. The precision of the metal frame affects the overall optical efficiency of the mirror and hence the efficiency of the system. State of the art dish of 11 m2 active aperture results in output of 2.25 kWp (900 W/m2) electrical and 5 kWp thermal power from one dish system representing 21% electrical and 50% thermal conversion efficiency adding to 71% overall system efficiency.

  15. Design, Analysis and Optimization of a Solar Dish/Stirling System

    Directory of Open Access Journals (Sweden)

    Seyyed Danial Nazemi

    2016-02-01

    Full Text Available In this paper, a mathematical model by which the thermal and physical behavior of a solar dish/Stirling system was investigated, then the system was designed, analysed and optimized. In this regard, all of heat losses in a dish/Stirling system were calculated, then, the output net-work of the Stirling engine was computed, and accordingly, the system efficiency was worked out. These heat losses include convection and conduction heat losses, radiation heat losses by emission in the cavity receiver, reflection heat losses of solar energy in the parabolic dish, internal and external conduction heat losses, energy dissipation by pressure drops, and energy losses by shuttle effect in displacer piston in the Stirling engine. All of these heat losses in the parabolic dish, cavity receiver and Stirling engine were calculated using mathematical modeling in MatlabTM software. For validation of the proposed model, a 10 kW solar dish/Stirling system was designed and the simulation results were compared with the Eurodish system data with a reasonable degree of agreement. This model is used to investigate the effect of geometric and thermodynamic parameters including the aperture diameter of the parabolic dish and the cavity receiver, and the pressure of the compression space of the Stirling engine, on the system performance. By using the PSO method, which is an intelligent optimization technique, the total design was optimized and the optimal values of decision-making parameters were determined. The optimization has been done in two scenarios. In the first scenario, the optimal value of each designed parameter has been changed when the other parameters are equal to the designed case study parameters. In the second scenario, all of parameters were assumed in their optimal values. By optimization of the modeled dish/Stirling system, the total efficiency of the system improved to 0.60% in the first scenario and it increased from 21.69% to 22.62% in the second

  16. Mechanical design of a low cost parabolic solar dish concentrator

    Directory of Open Access Journals (Sweden)

    Hamza Hijazi

    2016-03-01

    Full Text Available The objective of this research was to design a low cost parabolic solar dish concentrator with small-to moderate size for direct electricity generation. Such model can be installed in rural areas which are not connected to governmental grid. Three diameters of the dish; 5, 10 and 20 m are investigated and the focal point to dish diameter ratio is set to be 0.3 in all studied cases. Special attention is given to the selection of the appropriate dimensions of the reflecting surfaces to be cut from the available sheets in the market aiming to reduce both cutting cost and sheets cost. The dimensions of the ribs and rings which support the reflecting surface are optimized in order to minimize the entire weight of the dish while providing the minimum possible total deflection and stresses in the beams. The study applies full stress analysis of the frame of the dish using Autodesk Inventor. The study recommends to use landscape orientation for the reflective facets and increase the ribs angle and the distance between the connecting rings. The methodology presented is robust and can be extended to larger dish diameters.

  17. Concentrating Solar Power Projects - Dish/Engine Projects | Concentrating

    Science.gov (United States)

    Solar Power | NREL Dish/Engine Projects Photo of several flat, octagonal panels arranged together to form a dish-shaped structure. The receiver is supported above the panels by an arm-like of the panels. These dish/Stirling units are being tested at Sandia National Laboratories in

  18. Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses

    Directory of Open Access Journals (Sweden)

    Sharma Arjun

    2011-01-01

    Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.

  19. Experimental studies on solar parabolic dish cooker with porous medium

    International Nuclear Information System (INIS)

    Lokeswaran, S.; Eswaramoorthy, M.

    2012-01-01

    The solar cooking is the alternate method of cooking to reduce consumptions of fossil fuels. An affordable, energy efficient solar cooking technology is much need due to the fossil fuels increasing cost and it is the hottest research topic in all over the world. This paper presents an experimental analysis of the heat transfer enhancement of solar parabolic dish cookers by a porous medium made of scrap material. Using the stagnation temperature test and water boiling test are conducted on the cooking vessel with and without porous medium. Experimental results are compared for both cases in terms of thermal performance, optical efficiency, heat loss factor and cooking power. (authors)

  20. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Qui, Songgang [Temple University; Galbraith, Ross [Infinia

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials

  1. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  2. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  3. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  4. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  5. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis

    International Nuclear Information System (INIS)

    Moghadam, Ramin Shabanpour; Sayyaadi, Hoseyn; Hosseinzade, Hadi

    2013-01-01

    Highlights: • 3E analysis was performed on solar CHP systems. • Significant primary energy saving and greenhouse gas reduction were obtained. • The engine was sized so that it had the best economic sound. • Various criteria at different weathers were used for sizing the engine. - Abstract: A solar dish Stirling cogeneration system is considered to provide energy demands of a residential building. As energy demands of the building and output power of the engine are functions of weather condition and solar irradiation flux, the benchmark building was considered to be located in five different cities in Iran with diverse climatic and solar irradiation conditions. The proposed solar dish Stirling micro-CHP system was analyzed based on 3E analysis. The 3E analysis evaluated primary energy saving analysis (energy analysis), carbon dioxide emission reduction (environmental analysis) and payback period for return of investment (economic analysis) and was compared to a reference building that utilized primary energy carriers for its demands. Three scenarios were considered for assessment and sizing the solar dish Stirling engine. In the first scenario, size of the solar dish Stirling engine was selected based on the lowest annual electric power demand while, in second, the highest annual electric power consumption was considered to specify size of the engine. In the third scenario, a solar dish Stirling engine with constant output capacity was considered for the five locations. It was shown that implementing the solar dish Stirling micro-CHP system had good potential in primary energy saving and carbon dioxide emission reduction in all scenarios and acceptable payback period for return of the investment in some scenarios. Finally, the best scenario for selecting size of the engine in each city was introduced using the TOPSIS decision making method. It was demonstrated that, for dry weather, the first scenario was the best while, for hot and humid cities and

  6. Combined Heat & Power Using the Infinia Concentrated Solar CHP PowerDish System

    Science.gov (United States)

    2013-08-01

    Executive Orders FOB - Forward Operating Base FPSE - Free Piston Stirling Engine GHG - Greenhouse Gas ICC - International Code Council IMA... Stirling Engine (FPSE) for military, commercial, and space applications for almost 30 years. These developments have included multiple fuel types...product for its Free Piston Stirling Engine operating on solar energy for electricity production, called the PowerDishTM, a reasonable extension for

  7. Application of a reversible chemical reaction system to solar thermal power plants

    Science.gov (United States)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  8. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  9. Design and implementation of a 38 kW dish-Stirling concentrated solar power system

    Science.gov (United States)

    Yan, J.; Peng, Y. D.; Cheng, Z. R.; Liu, F. M.; Tang, X. H.

    2017-11-01

    Dish-Stirling concentrated solar power system (DS-CSP) is an important pathway for converting solar energy into electricity at high efficiency. In this study, a rated power 38 kW DS-CSP system was developed (installed in Xiangtan Electric Manufacturing Group). The heat engine adopted the alpha-type four cylinders double-acting Stirling engine (Stirling Biopower Flexgen S260). The absorber flux distribution simulation was conducted using ray tracing method and then the 204 m2 parabolic dish concentrator system (diameter is 17.70 m and focal length is 9.49 m) with single concentrator plus single pillar supporting has been designed and built. A water-cooled disc target and an absorber imitation device were adopted to test the tracking performance of the dish concentrator system, homogeneity of the focal spot and flux distribution of the absorber. Finally, the S260 Stirling engine was installed on the focal position of the dish concentrator and then the net output power date of the 38 kW DS-CSP system was tested. The absorber overheating problem on the DS-CSP system performance was discussed when the DS-CSP system was installed in different locations. The testing result shows that this system achieved the net output power of 38 kW and solar-to-electricity efficiency (SEE) of 25.3% with the direct normal irradiation (DNI) at 750 W/m2. The net output power can further increase to 40.5 kW with the SEE of 26.6% when the DNI reaches up to the maximum of 761 W/m2. The net output power of the 38 kW DS-CSP system has a linear function relationship with the DNI. The fitting function is Net power output=0.1003×DNI-36.129, where DNI is at the range of 460∼761 W/m2. This function could be used to predict the amount of the 38 kW DS-CSP system annual generation power.

  10. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  11. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  12. Thermal Analysis of the Receiver of a Standalone Pilot Solar Dish–Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2018-06-01

    Full Text Available Recent developments in solar thermal systems have aroused considerable interest in several countries with high solar potential. One of the most promising solar driven technologies is the solar thermal dish-Stirling system. One of the main issues of the solar dish–Stirling system is thermal losses from its components. The majority of the thermal losses of the system occur through its receiver before the thermal energy is converted to electrical energy by the Stirling engine. The goal of this investigation is to analyze the thermal performance of the receiver of a standalone pilot solar dish–Stirling system installed in Kerman City, Iran, to be used in remote off-grid areas of the Kerman Province. An analytical model was developed to predict the input energy, thermal losses, and thermal efficiency of the receiver. The receiver thermal model was first validated by comparing simulation results to experimental measurements for the EuroDish project. Then, the incident flux intensity intercepted by the receiver aperture, the thermal losses through the receiver (including conduction, convection, and radiation losses, and the power output during daytime hours (average day of each month for a year were predicted. The results showed that the conduction loss was small, while the convection and radiation losses played major roles in the total thermal losses through the receiver. The convection loss is dominant during the early morning and later evening hours, while radiation loss reaches its highest value near midday. Finally, the thermal efficiency of the receiver and the power output for each working hour throughout the year were calculated. The maximum performance of the system occurred at midday in the middle of July, with a predicted power output of 850 W, and a receiver efficiency of about 60%. At this time, a conduction loss of about 266 W, a convection loss of 284 W, and a radiation loss of about 2000 W were estimated.

  13. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Sayyaadi, Hoseyn; Mohammadi, Amir H.; Barranco-Jimenez, Marco A.

    2013-01-01

    Highlights: • Thermo-economic multi-objective optimization of solar dish-Stirling engine is studied. • Application of the evolutionary algorithm is investigated. • Error analysis is done to find out the error through investigation. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great number of studies are conducted on Stirling engine and finite time thermo-economic is one of them. In the present study, the dimensionless thermo-economic objective function, thermal efficiency and dimensionless power output are optimized for a dish-Stirling system using finite time thermo-economic analysis and NSGA-II algorithm. Optimized answers are chosen from the results using three decision-making methods. Error analysis is done to find out the error through investigation

  14. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  15. Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification

    International Nuclear Information System (INIS)

    Kadri, Y.; Hadj Abdallah, H.

    2016-01-01

    Highlights: • Estimation of the output temperature reached by 2 m parabolic dish. • Output power estimation for uncontrollable load was done using Matlab®. • Validation of the proposed system under Tunisian conditions for rural electrification. - Abstract: The development of green power generation such as solar systems that have become a great interest for several countries especially for Tunisia as it presents a significant solar potential. For this purpose, this research has investigated the feasibility and the performance of standalone solar dish/Stirling micro generation plant for rural electrification. The considered hybrid system includes solar dish/Stirling engine, permanent magnet synchronous generator and a storage battery. To start with, thermal modeling and simulation have been carried out using Matlab® for the solar-driven Stirling heat engine system composed of an Alpha Stirling engine, a solar collector and a receiver, in which the radiation, convection, conduction and radiation heat loss have been taken into consideration for the selected design. For numerical validation of the receiver’s thermal model, simulation results were compared with experimental measurements reported for the EURODISH system with a reasonable degree of agreement. Second, the generated torque driving the generator has been estimated by the Adiabatic model of URIELI based on the classical fourth-order Runge-Kutta. In order for an autonomous control, the dish generator is connected to the load via power electronic converters where the bidirectional power flow is possible by the use of two voltage source converters in a back-to-back configuration. They are referred to as Stirling/generator side converter and load side inverter, both are oriented control by space vector pulse width modulation. In this context, the Stirling side converter is used to adjust the synchronous generator while the inverter controls the power flow between the direct current bus and the

  16. Low-cost distributed solar-thermal-electric power generation

    Science.gov (United States)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  17. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  18. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    Science.gov (United States)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  19. Systems comparison and potential of Solar Thermal installations in the mediterranean area

    International Nuclear Information System (INIS)

    Klaib, M.; Staib, F.; Winter, C.J.

    1993-01-01

    This study is an attempt to investigate, from a variety of starting points, the market potential for solar thermal power plants. The terms of reference chosen for the central systems parabolic trough and tower plants (30-200 MW e ) seem to be workable. For the decentral dish/Stirling systems (10 kW e -10 MW e ) a first estimation could be worked out. In addition to collecting data on a large number of parameters relevant to the energy economy, the study also concentrated on: evaluating Meteosat data in order to determine the insolation conditions for each 50 x 50 km square of land in the entire Mediterranean area; making a rough cartographic sketch showing the most significant surface-area related criteria for each country; deriving typical annual, weekly and daily load curves for central and decentral grids from a multitude of country-specific data, and comparing the electricity generating costs of solar thermal and conventional power plants. From this basic data, various potentials (theoretical, available, technical, economic and anticipated) were determined for solar thermal power plants

  20. Prospects for solar thermal electricity generation - an introduction

    International Nuclear Information System (INIS)

    DeLaquil, P.

    1991-01-01

    The future potential for solar thermal electric power plants is quite significant. The size of the renewable energy resource base for the United States of America alone is almost 500 times its current primary energy consumption. Unfortunately, the levels of current utilization are quite small. Why have these technologies not made a larger contribution to today's market? The answer is that significant barriers still exist. (orig.)

  1. Study into solar thermal electricity export opportunities for the UK

    International Nuclear Information System (INIS)

    1996-01-01

    The overall objectives of the project described in this report were: to provide an assessment of the world-wide opportunities currently available for the development of high temperature solar thermal (H-TSTh) technology; to identify United Kingdom companies and expertise which could benefit from the exploitation of export markets for H-TSTh; to estimate the potential benefits to the UK of such exploitation; and to review the current status of H-TSTh technology. Despite limited involvement at present, it is concluded that the UK would be well placed with respect to longer term market opportunities if current developments by UK companies in fixed bowl technology and Stirling engines for dish Stirling system are successful. Opportunities also exist for turbine supply, civil contractors, insurance, finance and operation, but discussions with relevant UK companies has revealed only limited interest. (Author)

  2. Optical analysis and performance evaluation of a solar parabolic dish concentrator

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available In this study, the optical design of a solar parabolic dish concentrator is presented. The parabolic dish concentrator consists from 11 curvilinear trapezoidal reflective petals made of polymethyl methacrylate with special reflective coating. The dish diameter is equal to 3.8 m and the theoretical focal point distance is 2.26 m. Numerical simulations are made with the commercial software TracePro from Lambda Research, USA, and the final optimum position between absorber and reflector was calculated to 2.075 m; lower than focus distance. This paper presents results for the optimum position and the optimum diameter of the receiver. The decision for selecting these parameters is based on the calculation of the total flux over the flat and corrugated pipe receiver surface; in its central region and in the peripheral region. The simulation results could be useful reference for designing and optimizing of solar parabolic dish concentrators as for as for CFD analysis, heat transfer and fluid flow analysis in corrugated spiral heat absorbers. [Projekat Ministarstva nauke Republike Srbije, br. III42006: Research and development of energy and environmentally highly effective polygeneration systems based on renewable energy resources i br. III45016: Fabrication and characterization of nanophotonic functional structures in biomedicine and informatics

  3. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  4. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    Science.gov (United States)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  5. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  6. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  7. Phase-Change Thermal Energy Storage

    Science.gov (United States)

    1989-11-01

    The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100 C in low-temperature troughs to over 1500 C in dish and central receiver systems.

  8. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  9. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  10. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  11. Dish concentrators for solar thermal energy: Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  12. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  13. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  14. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  15. Photovoltaic. Solar thermal. Solar thermal electricity;Le Photovoltaique. Le solaire thermique. L'heliothermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  16. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  17. Volumetric solar thermal receiver principles and technological approach

    International Nuclear Information System (INIS)

    Sagie, D.; Gruntman, S.; Taragan, E.; Danino, M.; Weiss, S.; Mimon, Y.

    1996-01-01

    Solar energy has received much interest in recent years, being a clean free of pollution or other environmental dotage), and inexhaustible energy source. It is also considered safer than some other non conventional energy sources (like nuclear energy). The interest in solar energy is motivated mainly by the growing awareness of the environmental problems associated with the use of . conventional keels. However, solar energy may become a serious alternative only if it can be used efficiently in major energy consuming industries (like the chemical industry), or be used for electricity generation. Those facilities are nowadays solely depend on fossil fuels as the prime source of energy . The solar energy, reaches file Earth as radiation, can be utilized either by direct quantum conversion using photo-voltaic solar cells, or by converting the radiation into thermal energy, to be used directly for heating, or to feed a thermal to electric converting cycle. Alter three decades of huge spending on the development of photo-voltaic systems those devices are commercially competitive only on very small energy scale, while solar thermal commercial applications are evident. The prominent examples are the domestic heating water receivers (direct thermal), and LUZ International electricity generation plants which are currently operated on a commercial basis, supplying 80 MWe per plant. Direct thermal exploitation of solar energy is naturally more efficient than converting to electricity but is limited to specific applications and locations especially since thermal storage at high temperature is not commercially viable. Efficient electricity production at competitive price is clearly the biggest opportunity for solar energy. (authors)

  18. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  19. Macroeconomic impact of the Solar Thermal Electricity Industry in Spain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-10-15

    In the last three years, Solar Thermal Electricity (STE) in Spain has grown significantly. Its weight within the renewables mix is becoming relevant, and even more so, its impact on economics, society, the environment, and reducing energy dependence. This report was carried out by Deloitte for Protermosolar to quantitatively and qualitatively evaluate the main macroeconomic variables derived from the development of this technology in Spain from 2008 to 2010, and forecast its possible future impact.

  20. The solarPACES strategy for the solar thermal breakthrough

    International Nuclear Information System (INIS)

    Burch, G.D.; Grasse, W.

    1997-01-01

    IEA(International Energy Agency)/SolarPACES(Solar Power and Chemical Energy systems)represents a world wide coalition for information sharing and collaboration on applications of concentrated solar energy. The current SolarPACES community has built up solar thermal system know-how over 15 years, is operating the three main solar test centres in the world. Its main activities are in the following four fields: solar thermal electric power systems, solar chemistry, solar technology and advanced applications and non-technical activities. The article presents the talk on the strategy of solarPACES given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. (A.A.D.)

  1. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  2. Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods

    Directory of Open Access Journals (Sweden)

    Kyoung-Ho Lee

    2015-08-01

    Full Text Available There is growing interest in zero-energy and low-energy buildings, which have a net energy consumption (on an annual basis of almost zero. Because they can generate both electricity and thermal energy through the use of solar photovoltaic (PV and solar thermal collectors, and with the help of reduced building thermal demand, low-energy buildings can not only make a significant contribution to energy conservation on an annual basis, but also reduce energy consumption and peak demand. This study focused on electricity consumption during the on-peak period in a low-energy residential solar building and considers the use of a building’s thermal mass and thermal storage to reduce electricity consumption in summer and winter by modulation of temperature setpoints for heat pump and indoor thermostats in summer and additional use of a solar heating loop in winter. Experiments were performed at a low-energy solar demonstration house that has solar collectors, hot water storage, a ground-coupled heat pump, and a thermal storage tank. It was assumed that the on-peak periods were from 2 pm to 5 pm on hot summer days and from 5 pm to 8 pm on cold winter days. To evaluate the potential for utilizing the building’s thermal storage capacity in space cooling and heating, the use of simple control strategies on three test days in summer and two test days in the early spring were compared in terms of net electricity consumption and peak demand, which also considered the electricity generation from solar PV modules on the roof of the house.

  3. The thermal solar energy - September 2010

    International Nuclear Information System (INIS)

    Acket, C.

    2010-01-01

    The author first notices that the use of solar heat to produce electricity is much lesser known than the production of electricity by photovoltaic effect. He also notices that few efforts have been made in France to develop this technology (thermal solar energy, also called helio-thermodynamics). He evokes the Themis project and also some initiatives in Spain and in California. He recalls some data about solar heat, presents the solar concentration technique which either uses a parabolic configuration (point focus concentration) or a cylindrical and parabolic configuration (line concentration system). He briefly presents the different techniques used to transform solar heat into electricity and to store the electricity. He briefly presents different solutions which have been tested over the past years in France, Germany, Spain, California and Israel (tower and air, gas and Stirling cycle, tower and direct vapour production, cylindrical-parabolic collector). He discusses the effect of intermittency and the French context, and questions and discusses the choice between thermal and photovoltaic solar energy (advantages and drawbacks)

  4. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  5. Effect of the phase change material in a solar receiver on thermal performance of parabolic dish collector

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2017-01-01

    Full Text Available In this work, the use of phase change material in the circular tank solar receiver is proposed for a 16 m2 Scheffler parabolic dish solar concentrator to improve the heat transfer in the receiver. Magnesium chloride hexahydrate with melting temperature of 117°C is selected as the phase change material in the annular space of the receiver with rectangular fins inside the phase change material. Experimental work is carried out to analyze heat transfer from the receiver to heat transfer fluid with and without phase change material in the inner periphery. Energy and exergy efficiency are determined from the measurements of solar radiation intensity, receiver temperature, surroundings temperature, heat transfer fluid inlet and outlet temperatures, storage tank temperature, and wind speed. The experiments were conducted in SRM University, Chennai, India (latitude: 13° 5′ N, longitude: 80°16′ E in April 2014. Use of phase change material in receiver periphery increased energy efficiency by 5.62%, exergy efficiency by 12.8% and decreased time to reach the boiling point of water by 20% when compared with the receiver without phase change material.

  6. Application of solar concentrators for combined production of hydrogen and electrical energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    New specific concept is application of solar dish concentrators in a process which allows solar energy to be used for splitting water in hydrogen and oxygen, with electrical energy as a byproduct. This is performed in two stages: The first stage uses highly concentrated solar energy to split CO 2 Into CO and O 2 . The second stage uses water-gas shifts reaction to cause the CO to react with water and produced hydrogen and CO 2 , Carbon dioxide is then recycled back into the system, and the waste heat is used to produce electricity in a steam turbine, Efficiency of the process is 45% , totaling 20% in chemical energy (H 2 ), and 25% electricity. This solar system is 80% more efficient than other solar technologies which make energy much cheaper. The environmentally friendly and low cost hydrogen can become a prime mover of fuel cell development especially in automotive application. (Author)

  7. Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility

    International Nuclear Information System (INIS)

    Li Zhigang; Tang Dawei; Du Jinglong; Li Tie

    2011-01-01

    Uniform heater temperature and high optical-thermal efficiency are crucial for the reliable and economical operation of a Solar Dish/Stirling engine facility. The Monte-Carlo ray-tracing method is utilized to predict the radiation flux distributions of the concentrator-receiver system. The ray-tracing method is first validated by experiment, then the radiation flux profiles on the solar receiver surface for faceted real concentrator and ideal paraboloidal concentrator, irradiated by Xe-arc lamps and real sun, for different aperture positions and receiver shapes are analyzed, respectively. The resulted radiation flux profiles are subsequently transferred to a CFD code as boundary conditions to numerically simulate the fluid flow and conjugate heat transfer in the receiver cavity by coupling the radiation, natural convection and heat conduction together, and the CFD method is also validated through experiment. The results indicate that a faceted concentrator in combination with a solar simulator composed of 12 Xe-arc lamps is advantageous to drive the solar Stirling engine for all-weather indoor tests. Based on the simulation results, a solar receiver-Stirling heater configuration is designed to achieve a considerably uniform temperature distribution on the heater head tubes while maintaining a high efficiency of 60.7%. - Highlights: → Radiation flux in Dish/Stirling system is analyzed by validated ray-tracing method. → Temperature field on the solar receiver is analyzed by a validated CFD method. → Effects of Xe-arc lamp solar simulator and faceted real concentrator are analyzed. → Effects of different receiver positions and receiver shapes are investigated. → A Stirling heater configuration is presented with uniform temperature field.

  8. Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

    1987-03-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

  9. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  10. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  11. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  12. Value of solar thermal and photovoltaic power plants to Arizona Public Service Company

    International Nuclear Information System (INIS)

    Smith, P.A.

    1994-01-01

    Arizona Public Service Company has performed a study using historical solar radiation and system load data to (1) estimate the effects of six types of solar generation on system reliability, (2) estimate the central station value of each to its system, (3) and to assess the potential of each of those technologies to provide bulk power to its system in the 2000 time frame. Technologies included three solar thermal (central receiver, dish Stirling, and parabolic trough) and three flat plate photovoltaic plants (fixed position, one axis, and two axis tracking)

  13. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  14. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  15. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  16. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  17. Economic impact of solar thermal electricity deployment in Spain

    International Nuclear Information System (INIS)

    Caldes, N.; Varela, M.; Santamaria, M.; Saez, R.

    2009-01-01

    The objective of the work is to estimate the socio-economic impacts of increasing the installed solar thermal energy power capacity in Spain. Using an input-output (I-O) analysis, this paper estimates the increase in the demand for goods and services as well as in employment derived from solar thermal plants in Spain under two different scenarios: (a) based on two solar thermal power plants currently in operation (with 50 and 17 MW of installed capacity); (b) the compliance to the Spanish Renewable Energy Plan (PER) 2005-2010 reaching 500 MW by 2010. Results show that the multiplier effect of the PER is 2.3 and the total employment generated would reach 108,992 equivalent full-time jobs of 1 year of duration. Despite this is an aggregated result, this figure represents 4.5% of current Spanish unemployment. It can be concluded that the socio-economic effect of the PER's solar thermal installed capacity goal would be remarkable.

  18. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  19. A standard description and costing methodology for the balance-of-plant items of a solar thermal electric power plant. Report of a multi-institutional working group

    Science.gov (United States)

    1983-01-01

    Standard descriptions for solar thermal power plants are established and uniform costing methodologies for nondevelopmental balance of plant (BOP) items are developed. The descriptions and methodologies developed are applicable to the major systems. These systems include the central receiver, parabolic dish, parabolic trough, hemispherical bowl, and solar pond. The standard plant is defined in terms of four categories comprising (1) solar energy collection, (2) power conversion, (3) energy storage, and (4) balance of plant. Each of these categories is described in terms of the type and function of components and/or subsystems within the category. A detailed description is given for the BOP category. BOP contains a number of nondevelopmental items that are common to all solar thermal systems. A standard methodology for determining the costs of these nondevelopmental BOP items is given. The methodology is presented in the form of cost equations involving cost factors such as unit costs. A set of baseline values for the normalized cost factors is also given.

  20. Effect of Tracking Error of Double-Axis Tracking Device on the Optical Performance of Solar Dish Concentrator

    Directory of Open Access Journals (Sweden)

    Jian Yan

    2018-01-01

    Full Text Available In this paper, a flux distribution model of the focal plane in dish concentrator system has been established based on ray tracking method. This model was adopted for researching the influence of the mirror slope error, solar direct normal irradiance, and tracking error of elevation-azimuth tracking device (EATD on the focal spot characteristics (i.e., flux distribution, geometrical shape, centroid position, and intercept factor. The tracking error transmission law of the EATD transferred to dish concentrator was also studied. The results show that the azimuth tracking error of the concentrator decreases with the increase of the concentrator elevation angle and it decreases to 0 mrad when the elevation angle is 90°. The centroid position of focal spot along x-axis and y-axis has linear relationship with azimuth and elevation tracking error of EATD, respectively, which could be used to evaluate and calibrate the tracking error of the dish concentrator. Finally, the transmission law of the EATD azimuth tracking error in solar heliostats is analyzed, and a dish concentrator using a spin-elevation tracking device is proposed, which can reduce the effect of spin tracking error on the dish concentrator. This work could provide fundamental for manufacturing precision allocation of tracking devices and developing a new type of tracking device.

  1. Concentrating solar thermal power as a viable alternative in China's electricity supply

    International Nuclear Information System (INIS)

    Chung-Ling Chien, John; Lior, Noam

    2011-01-01

    Study of low-carbon and pollution renewable alternatives for China revealed that concentrating solar thermal (CST) electric power generation was underemphasized in China's renewable energy plan. The analysis shows the competitive viability of CST: (1) China has the key prerequisites to make CST power generation economical including high-quality insolation and appropriate land, (2) CST's proven history, scale, and dispatchability makes it a good utility-scale power option, especially in the economically underdeveloped Western regions, (3) while CST power is currently more expensive than coal-fired electricity on a nominal basis, when costs of externalities are accounted for, CST, at 11.4 US cents/kWh, can become 57% cheaper than scrubbed coal and 29% cheaper than nuclear power, (4) CST power continues dropping in cost due to economies of scale and technological improvements and can potentially realize a levelized electricity cost of around 4 cents/kWh within ten years, (5) it would significantly rise in competitiveness if and when China completes the extensive smart grid for connecting its solar-abundant western regions with the high-demand eastern regions, (6) CST has the potential to positively impact Western China's economy, but proper policy and deal structure must be in place to ensure that the local community shares the benefit. - Highlights: ► We analyze inclusion of concentrating solar thermal (CST) power in China. ► We find that CST needs emphasis in China's renewable energy plan. ► The analysis shows that CST is competitive with coal if externalities are considered. ► We recommend a policy that would develop CST power generation in western regions. ► This would be of significant benefit to Western China's economy and to China.

  2. The development of a volumetric solar thermal receiver: an overview

    International Nuclear Information System (INIS)

    Sagie, D.

    1996-01-01

    Solar energy has received much interest in recent years, being a clean (free of pollution or other environmental damage) and inexhaustible energy source. It is also considered safer than some other non conventional energy sources (like nuclear energy). The interest in solar energy is motivated mainly by the growing awareness of the environmental problems associated with the use of conventional fuels. However, solar energy may become a serious alternative only if it can be used efficiently in major energy consuming industries (like the chemical industry), or be used for electricity generation. Those facilities are nowadays solely dependent on fossil fuels as the prime source of energy. The solar energy, reaching the earth in the form of radiation, can be utilized either by direct quantum conversion using photo-voltaic solar cells, or by converting the radiation into thermal energy, to be used directly for heating, or to feed a thermal to electric converting cycle. After three decades of huge spending on the development of photo-voltaic systems those devices are commercially competitive only on a very small energy scale, while solar thermal commercial applications are more attractive. Prominent examples are the domestic heating water receivers (direct thermal), and LUZ International electricity generation plants which are currently operated on a commercial basis, supplying 80 MWe per plant. Direct thermal exploitation of solar energy is naturally more efficient than converting to electricity, but is limited to specific applications and locations especially since thermal storage at high temperature is not commercially viable. Efficient electricity production at a competitive price is clearly the biggest opportunity for solar energy . (author)

  3. Design of the support structure, drive pedestal, and controls for a solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. (WG Associates, Dallas, TX (United States))

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  4. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  5. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Sayyaadi, Hoseyn; Dehghani, Saeed; Hosseinzade, Hadi

    2013-01-01

    Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

  6. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  7. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  8. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  9. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  10. Review and summary of Solar Thermal Conversion Program planning assistance

    Energy Technology Data Exchange (ETDEWEB)

    1975-06-01

    The Solar Thermal Conversion Program comprises a major part of the national solar energy program which must be continuously reviewed and modified where necessary. Modifications are typically required to reflect technical achievements and uncertainties which arise from within the program or from other technical programs, changes in budgets available for supporting the program as well as internal program funding priorities, changing goals such as through acceleration or stretch-out of the program schedule, significant organizational changes involving responsible governmental agencies, the introduction of new project management support contractors, and required budget or schedule changes occurring within individual projects that make up the Solar Thermal Conversion Program. The Aerospace Corporation has provided data to assist in planning, review, coordination, and documentation of the overall Solar Thermal Conversion Program. The Solar Thermal Conversion Program Plan is described in detail. Sections 2.0 through 5.0 cover the discussion and detail planning covering the objectives, justification, basic and alternative plans, budgets, and schedules for the Solar Thermal sub-unit portion of the Solar Electric Applications effort. Appendices B1, B2, and B3 include the March 21, March 28, and April 5, 1975, Program Plan submissions of the complete Solar Electric Applications effort. In Appendix B the Solar Thermal, Solar Photovoltaic, Wind Energy, and Ocean Thermal sub-unit texts have been condensed and formatted for integration in the overall ERDA budget package. (WHK)

  11. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  12. Solar engineering 1995: Proceedings. Volume 1

    International Nuclear Information System (INIS)

    Stine, W.B.; Tanaka, Tadayoshi; Claridge, D.E.

    1995-01-01

    This is Volume 1 of the papers presented at the 1995 ASME/JSME/JSES International Solar Energy Conference. The topics of the papers include wind energy, heat pump performance, ground source and solar chemical heat pumps, analysis of measured building energy data, thermal storage, system modeling of buildings, evaluation of the Federal Building energy Efficiency program, sustainable projects, bioconversion, solar chemistry, solar detoxification innovative concepts and industrial applications, solar thermal power systems, DISH/engine power systems, power towers, solar thermal power advanced development, and solar thermal process heating and cooling

  13. Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process

    International Nuclear Information System (INIS)

    Nixon, J.D.; Dey, P.K.; Davies, P.A.

    2010-01-01

    This study of concentrating solar thermal power generation sets out to evaluate the main existing collection technologies using the framework of the Analytical Hierarchy Process (AHP). It encompasses parabolic troughs, heliostat fields, linear Fresnel reflectors, parabolic dishes, compound parabolic concentrators and linear Fresnel lenses. These technologies are compared based on technical, economic and environmental criteria. Within these three categories, numerous sub-criteria are identified; similarly sub-alternatives are considered for each technology. A literature review, thermodynamic calculations and an expert workshop have been used to arrive at quantitative and qualitative assessments. The methodology is applied principally to a case study in Gujarat in north-west India, though case studies based on the Sahara Desert, Southern Spain and California are included for comparison. A sensitivity analysis is carried out for Gujarat. The study concludes that the linear Fresnel lens with a secondary compound parabolic collector, or the parabolic dish reflector, is the preferred technology for north-west India.

  14. Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D.; Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET (United Kingdom); Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET (United Kingdom)

    2010-12-15

    This study of concentrating solar thermal power generation sets out to evaluate the main existing collection technologies using the framework of the Analytical Hierarchy Process (AHP). It encompasses parabolic troughs, heliostat fields, linear Fresnel reflectors, parabolic dishes, compound parabolic concentrators and linear Fresnel lenses. These technologies are compared based on technical, economic and environmental criteria. Within these three categories, numerous sub-criteria are identified; similarly sub-alternatives are considered for each technology. A literature review, thermodynamic calculations and an expert workshop have been used to arrive at quantitative and qualitative assessments. The methodology is applied principally to a case study in Gujarat in north-west India, though case studies based on the Sahara Desert, Southern Spain and California are included for comparison. A sensitivity analysis is carried out for Gujarat. The study concludes that the linear Fresnel lens with a secondary compound parabolic collector, or the parabolic dish reflector, is the preferred technology for north-west India. (author)

  15. Dish-based CPV-T for rooftop generation

    Science.gov (United States)

    Davila-Peralta, Christian; Hyatt, Justin; Alfred, Dan; Struble, Morgan; Sodari, Frank; Angel, Roger

    2017-09-01

    Hybrid CPV-T with combined electrical and thermal output is well suited to solar generation from fixed limited areas, such as on the roof of an industrial or commercial facility with need for heat. This application will become especially attractive once overall electrical conversion efficiency of 40% is reached, as is projected for REhnu CPV systems using multijunction cells of 50% efficiency, anticipated in a few years. We outline here a configuration of dish- based CPV trackers optimized for close packing on a flat roof in a triangular grid, with a mirror area-to-ground area ratio of 50%. When the geometry of shadowing averaged over a year is taken into account, 80% of all the sunlight that would strike the rooftop is directed into the receivers. Such an array on a given area of flat roof will generate more electrical energy than would be possible with conventional PV panels, even if covering the entire rooftop, because of silicon's relative inefficiency. For example, in Tucson, the annual average global flux of 5.7 kWh/m2/day on a horizontal surface covered with 22% silicon modules will yield 1.25 kWh/m2/day. We show that a CPV system collecting 80% of all the direct sunlight of 7.0 kWh/m2 and converting it with 40% efficiency will yield 2.24 kWh/m2/day of rooftop area, nearly twice as much4. Thermal power will double again the total energy yield. A dual axis CPV-T tracker designed specifically very close spacing has been built to carry a single dish mirror of the standard type used in REhnu's M-8 generator, described by Stalcup et al in these proceedings1,2. Sunlight is collected and focused by a single square paraboloidal mirror, 1.65 × 1.65 m with focal length of 1.5 m. For closest possible packing without mechanical interference, and for broad distribution of load on a rooftop, the mirror and receiver are mounted to a C-ring structure, configured such that the elevation and azimuth axes intersect at a virtual pivot, at the center of the sphere that just

  16. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  17. Plataforma Solar de Almeria. Annual report 1997-1998. Final report; Plataforma Solar de Almeria. Haushaltsjahre 1997-1998. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The performance and yields of thes following units and components are described: (a) Tower focus power plants and their components (TSA; RAS; Large Heliostat technology Program; Volumetric Receivers; REFOS); (b) Solar trough power stations and their components (DISS - Direct solar evaporation; ARDISS/PAREX test facility; EUROTROUGH - development of a cost-optimized European parabolic trough collector); (c) Solar chemistry (photocatalytic detoxification; solar synthesis of fine chemicals); (d) Dish/Stirling systems (HYHPIRE); (e) AP solar thermal technology transfer in the Mediterranean (THESEUS 50 MW{sub el} THErmal Solar European Power Statio at Frangokastello, Crete; SolWin; World-wide market introduction of solar thermal power stations). [German] Der bisher erzielter Erfolg und seine Auswirkungen wird fuer die folgenden Anlagen und Komponenten beschrieben. Diese sind: (a) Turmkraftwerke und deren Komponenten (TSA; RAS; Large Heliostat Technology Program; Volumetrische Receiver; REFOS), (b) Rinnenkraftwerke und deren Komponenten (DISS - Solare Direktverdampfung; ARDISS/PAREX Versuchsanlage; EUROTROUGH - Entwicklung eines kostenoptimierten europaeischen Parabolrinnenkollektors), (c) Solare Chemie (Photokatalytische Detoxifikation; Solare Synthese von Feinchemikalien), (d) Dish/Stirling Systeme (HYHPIRE), (e) AP Solarthermischer Technologietransfer im Mittelmeerraum (THESEUS - 50 MW{sub el} THErmal Solar European Power Station in Frangokastello, Kreta; SolWin; Weltweite Markteinfuehrung solarthermischer Kraftwerkstechnologie). (orig./AKF)

  18. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  19. Exergy Analysis of a Pilot Parabolic Solar Dish-Stirling System

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2017-09-01

    Full Text Available Energy and exergy analyses were carried out for a pilot parabolic solar dish-Stirling System. The system was set up at a site at Kerman City, located in a sunny desert area of Iran. Variations in energy and exergy efficiency were considered during the daytime hours of the average day of each month in a year. A maximum collector energy efficiency and total energy efficiency of 54% and 12.2%, respectively, were predicted in July, while during the period between November and February the efficiency values were extremely low. The maximum collector exergy efficiency was 41.5% in July, while the maximum total exergy efficiency reached 13.2%. The values of energy losses as a percentage of the total losses of the main parts of the system were also reported. Results showed that the major energy and exergy losses occurred in the receiver. The second biggest portion of energy losses occurred in the Stirling engine, while the portion of exergy loss in the concentrator was higher compared to the Stirling engine. Finally, the performance of the Kerman pilot was compared to that of the EuroDish project.

  20. Cascade system using both trough system and dish system for power generation

    International Nuclear Information System (INIS)

    Zhang, Cheng; Zhang, Yanping; Arauzo, Inmaculada; Gao, Wei; Zou, Chongzhe

    2017-01-01

    Highlights: • A novel solar cascade system using both trough and dish collectors is proposed. • Heat rejected by the Stirling engines is collected by the condensed water. • The directions to increase the efficiency improvement has been pointed out • Influence of flow type of heating/cooling fluids of Stirling engines is considered. - Abstract: This paper represents a novel solar thermal cascade system using both trough and dish systems for power generation. An effective structure using the condensed fluid of Rankine cycle to cool the Stirling engines to use the heat released by Stirling engines was proposed. The cascade system model with different fluid circuits was developed. The models of some important components of the system, such as dish collector, trough collector and Stirling engine array, are presented with detail explanation in this paper. Corresponding stand-alone systems were also developed for comparison. Simulations were conducted with the models to find out efficiency difference between cascade system and corresponding stand-alone systems. The directions to increase the efficiency difference were also considered. Results show that the cascade system can achieve a higher efficiency with a high solar irradiance (>550 W/m"2). The flow type of fluids between heating and cooling Stirling engine array is also required to concern on designing a cascade system with Stirling engine array.

  1. Stirling engines for low-temperature solar-thermal-electric power generation

    Science.gov (United States)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves

  2. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  3. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  4. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  5. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  6. Development status of the PDC-1 Parabolic Dish Concentrator

    Science.gov (United States)

    Thostesen, T.; Soczak, I. F.; Pons, R. L.

    1982-01-01

    The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.

  7. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  8. Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, N. [University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER), Hessbruehlstr. 49a, 70565 Stuttgart (Germany); Glueck, C. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Schmidt, F.P. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-05-15

    We present a comparison of solar thermal and solar electric cooling for a typical small office building exposed to two different European climates (Freiburg and Madrid). The investigation is based on load series for heating and cooling obtained previously from annual building simulations in TRNSYS. A conventional compression chiller is used as the reference system against which the solar options are evaluated with respect to primary energy savings and additional cost. A parametric study on collector and storage size is carried out for the solar thermal system to reach achieve the minimal cost per unit of primary energy saved. The simulated solar electric system consists of the reference system, equipped with a grid connected photovoltaic module, which can be varied in size. For cost comparison of the two systems, the electric grid is assumed to function as a cost-free storage. A method to include macroeconomic effects in the comparison is presented and discussed. Within the system parameters and assumptions used here, the grid coupled PV system leads to lower costs of primary energy savings than the solar thermal system at both locations. The presumed macroeconomic advantages of the solar thermal system, due to the non-usage of energy during peak demand, can be confirmed for Madrid. (author)

  9. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  10. Progress commercializing solar-electric power systems

    International Nuclear Information System (INIS)

    Dracker, R.; De Laquil, P. III

    1996-01-01

    The commercial status of the principal solar electric technologies -- photovoltaic and solar thermal -- is reviewed. Current and near-term market niches are identified, and projected longer-term markets are explored along with the key strategies for achieving them, including technological breakthroughs, manufacturing developments, economies of scale and mass production, and market creation. Market barriers and public policy impacts on commercialization are discussed

  11. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  12. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  13. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  14. Mount for continuously orienting a collector dish in a system adapted to perform both diurnal and seasonal solar tracking

    Science.gov (United States)

    Brantley, L. W., Jr.; Lawson, B. D. (Inventor)

    1977-01-01

    A collector dish is continuously oriented toward the sun in a system adapted to perform both diurnal and seasonal solar tracking. The mount is characterized by a rigid, angulated axle having a linear midportion supporting a collector dish, and oppositely extended end portions normally related to the midportion of the axle and received in spaced journals. The longitudinal axis of symmetry for the midportion of the axle is coincident with a seasonal axis while the axes of the journals are coincident with a diurnal axis paralleling the earth's polar axis. Drive means are provided for periodically displacing the axle about the diurnal axis at a substantially constant rate, while other drive means are provided for periodically indexing the dish through 1 deg about the seasonal axis whereby the position of the dish relative to the axle is varied for accommodating seasonal tracking as changes in the angle of inclination of the polar axis occurs.

  15. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  16. Prediction of energy balance and utilization for solar electric cars

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  17. Operational data and thermodynamic modeling of a Stirling-dish demonstration installation in desert conditions

    Science.gov (United States)

    Nilsson, Martin; Jamot, Jakob; Malm, Tommy

    2017-06-01

    To field test its Stirling-dish unit, Cleanergy AB of Sweden in Q1 2015 built a ten unit demo park in Dubai. The first STE (Solar Thermal Energy) generation of its Stirling genset, the C11S, had at its core an 11 kWel Stirling engine/generator combination. The genset was mated with a parabolic concentrator developed for the genset by a supplier. Local weather conditions in Dubai provide opportunities to test performance in an environment with high insolation and high ambient temperature. In addition, the conditions in Dubai are windy, salty, humid and dusty, historically challenging for solar technologies [1]. In Q1 2016 one of the C11S Stirling-dish units was replaced by the first prototype of Cleanergy's second generation Stirling genset, the Sunbox, and an in-house developed parabolic concentrator. Operational data from field testing during the spring of 2016 are presented and discussed and show the large performance improvement achieved with the Sunbox unit.

  18. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  19. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis

    International Nuclear Information System (INIS)

    Calise, Francesco; Figaj, Rafal Damian; Vanoli, Laura

    2017-01-01

    Highlights: • Space heating/cooling, domestic hot water and electrical energy are provided by the system. • Two different users are investigated: fitness center and office. • The influence of the battery system on system economic performance is scarce. • Net metering contract is more profitable compared to simplified purchase/resale arrangement one. - Abstract: In this paper a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system are presented. The system includes photovoltaic/thermal collectors coupled with a solar-assisted heat pump, an adsorption chiller and an electrical energy storage. The modelled plant supplies electrical energy, space heating and cooling and domestic hot water. The produced solar thermal energy is used during the winter to supply the heat pump evaporator, providing the required space heating. In summer, solar thermal energy is used to drive an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess, with respect to the space heating and cooling demand, is used to produce domestic hot water. The produced electrical energy is self-consumed by both user and system auxiliary equipment and/or supplied to the grid. The system model includes a detailed electrical energy model for user storage and exchange with the grid along with a detailed building model. This study is a continuation of previous works recently presented by the authors. In particular, the present paper focuses on the real electrical demands of several types of users and on the analysis of the comfort of building users. Differently from the works previously published by the authors, the present work bases the calculations on measured electrical demands of real users (fitness center and offices). The system performance is analyzed with two different electricity supply contracts: net metering and simplified purchase/resale arrangement. Daily, weekly and yearly results are presented. Finally, a

  20. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Zhao Jiafei; Song Yongchen; Lam, Wei-Haur; Liu Weiguo; Liu Yu; Zhang Yi; Wang DaYong

    2011-01-01

    This paper presents the design optimization of a photovoltaic/thermal (PV/T) system using both non-concentrated and concentrated solar radiation. The system consists of a photovoltaic (PV) module using silicon solar cell and a thermal unit based on the direct absorption collector (DAC) concept. First, the working fluid of the thermal unit absorbs the solar infrared radiation. Then, the remaining visible light is transmitted and converted into electricity by the solar cell. This arrangement prevents excessive heating of the solar cell which would otherwise negatively affects its electrical efficiency. The optical properties of the working fluid were modeled based on the damped oscillator Lorentz-Drude model satisfying the Kramers-Kroenig relations. The coefficients of the model were retrieved by inverse method based on genetic algorithm, in order to (i) maximize transmission of solar radiation between 200 nm and 800 nm and (ii) maximize absorption in the infrared part of the spectrum from 800 nm to 2000 nm. The results indicate that the optimum system can effectively and separately use the visible and infrared part of solar radiation. The thermal unit absorbs 89% of the infrared radiation for photothermal conversion and transmits 84% of visible light to the solar cell for photoelectric conversion. When reducing the mass flow rate, the outflow temperature of the working fluid reaches 74 o C, the temperature of the PV module remains around 31 o C at a constant electrical efficiency about 9.6%. Furthermore, when the incident solar irradiance increases from 800 W/m 2 to 8000 W/m 2 , the system generates 196 o C working fluid with constant thermal efficiency around 40%, and the exergetic efficiency increases from 12% to 22%.

  1. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  2. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2018-06-01

    Full Text Available The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC along with the thermal photovoltaic module (PVT where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work. Keywords: Photovoltaic thermal collectors, Electrical performance, Thermal performance, Compound parabolic concentrator, Jet impingement

  3. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  4. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Ma, Xinglong

    2016-01-01

    Highlights: • A common design method of a cycloidal transmissive Fresnel solar concentrator was presented. • The gallium arsenide high concentrated solar was used as the receiver. • High efficiency of electric generating could be achieved at noon. • Fresnel solar concentrator was studied and compared in hazy weather and clear weather. - Abstract: A design method of a cycloidal transmissive Fresnel solar concentrator which can provide a certain width focal line was presented in this study. Based on the optical principle of refraction, the dimensions of each wedge-shaped element of Fresnel lens are calculated. An optical simulation has been done to obtain the optical efficiency of the concentrator for different tracking error and axial incidence angle. It has been found that about 80% of the incident sunlight can still be gathered by the absorber when the tracking error is within 0.7°. When the axial angle of incidence is within 10°, it almost has no influence to the receiving rate. The concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator has been designed in this paper. Take the gallium arsenide high concentrated battery as the receiver, experimental research about cylindrical Fresnel concentrating photovoltaic/thermal system is undertaken in the real sky. Main parameters are tested such as the temperature distribution on receiver, electric energy and thermal energy outputs of concentrating photovoltaic/thermal system, the efficiency of multipurpose utilization of electric and heat, and so on. The test results in clear weather show that maximum electric generating efficiency is about 18% at noon, the maximum heat receiving rate of cooling water is about 45%. At noon time (11:00–13:00), the total efficiency of thermal and electricity can reach more than 55%. Performance of this concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator is studied and compared in two types typical weather, hazy

  6. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  7. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  8. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  9. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  10. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  11. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  12. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: liming@ynnu.edu.c [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China); Li, G.L. [School of Physics and Electronic Information, Yunnan Normal University, Kunming 650092 (China); Ji, X.; Yin, F.; Xu, L. [Solar Energy Research Institute, Yunnan Normal University, 650092 Kunming (China)

    2011-06-15

    Research highlights: {yields} A 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. {yields} Another 10 m{sup 2} TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. {yields} The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m{sup 2} Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m{sup 2} TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating

  13. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, M.; Li, G.L.; Ji, X.; Yin, F.; Xu, L.

    2011-01-01

    Research highlights: → A 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m 2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m 2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m 2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  14. Solar-Thermal Engine Testing

    Science.gov (United States)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  15. Comparative ranking of 0. 1-10 MW/sub e/ solar thermal electric power systems. Volume II. Supporting data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kriz, T.A.

    1980-07-01

    This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1-10 MW/sub e/, operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW/sub e/, a range that is attractive to industrial and other nonutility applications. Volume I summarizes the results for the full range of capacities from 0.1 to 1.0 MW/sub e/. Volume II presents data on the performance and cost and ranking methodology.

  16. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  17. An Automatic High Efficient Method for Dish Concentrator Alignment

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our method.

  18. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  19. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  20. International off-grid market assessment for dish/Stirling systems

    International Nuclear Information System (INIS)

    Lilienthal, P.; Campbell, K.

    1998-01-01

    Several features of dish/Stirling technology offer potential advantages for off-grid power generation. Dish/Stirling technology's size, modularity, the ease with which it might be hybridized with a storable fuel, the elimination of batteries and inverters, and the production of pure sine-wave AC power without a diesel all indicate that a reliable dish/Stirling module could fit well into an off-grid electrification scheme. At the same time, a combination of factors makes success in off-grid applications difficult, regardless of the technology under consideration. Obstacles include consumer expectations (formed by a long history of subsidies) that electricity should be cheap, existing support infrastructure, and the economic resources of rural communities. Cost is always a factor, but reliability and access to parts and service have been more significant barriers so far in the establishment of renewables. This paper summarizes a much more extensive market assessment. Initial research indicates that a reliable 25 kW dish/Stirling system with reasonable servicing requirements could compete well with other off-grid power systems at a cost considered achievable at early production levels ($3,500 per kW). However, by itself the off-grid power market in regions with adequate solar insolation and inviting political regimes does not justify an adequate scale of production. It is estimated that the aggregate market in five of the largest and most promising countries for which adequate information was available could be 23,000 to 38,000 units of 25 kW dish/Stirling systems. Including the rest of the developing world could more than double this number. However, at a reasonable initial market penetration rate of 1% per year this market is not sufficient, by itself, for the mass production rates required to achieve the necessary economies of scale

  1. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  2. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  3. The generation of pollution-free electrical power from solar energy.

    Science.gov (United States)

    Cherry, W. R.

    1971-01-01

    Projections of the U.S. electrical power demands over the next 30 years indicate that the U.S. could be in grave danger from power shortages, undesirable effluence, and thermal pollution. An appraisal of nonconventional methods of producing electrical power is conducted, giving particular attention to the conversion of solar energy into commercial quantities of electrical power by solar cells. It is found that 1% of the land area of the 48 states could provide the total electrical power requirements of the U.S. in the year 1990. The ultimate method of generating vast quantities of electrical power would be from a series of synchronous satellites which beam microwave power back to earth to be used wherever needed. Present high manufacturing costs of solar cells could be substantially reduced by using massive automated techniques employing abundant low cost materials.

  4. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. 2: Modeling and analysis

    Science.gov (United States)

    Skocypec, Russell D.; Hogan, Roy E., Jr.; Muir, James F.

    1991-01-01

    The catalytically enhanced solar absorption receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as being essential in improving the confidence in the capability to predict large-scale reactor operation.

  5. Market: why is thermal solar power down?

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    After a 10 year period of steady growth the French market of the thermal solar power dropped by 15% in 2009. Only 265.000 m 2 were installed instead of 313.000 m 2 in 2008. The main reason of this decrease is the economic crisis: the European market for thermal solar energy dropped by 10%. The second reason is the unfair competition of the photovoltaic power that benefits from very favourable electricity purchase prices, from higher subsidies and from a better image in the public's eye. Another competitor on the market is the new equipment called 'thermodynamic water heater' that involves a heat pump, this equipment is cheaper but only on a short term basis. (A.C.)

  6. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  7. Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.

    2013-07-01

    In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.

  8. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  9. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  10. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft

    Science.gov (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.

    1975-01-01

    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  11. Economic aspects of grid connected solar electricity generation

    International Nuclear Information System (INIS)

    Pharabod, F.

    1993-01-01

    Experience gained with available solar thermal technologies enlighten on options for research and development on solar electricity generation. The proposed analysis of new solar technologies concerns market, costs and profit viewpoint: - Systems under development have to fit with consumers' needs and utilities' specifications, technology is not the only item to study. - Expense headings depend on technological options and operation procedures such as size of the plant, solar only or hybrid concept. - Anticipation of revenues highly depends on direct insolation quality and on local conditions for introducing the electric power generated into the network: daily direct insolation measurements and annual local load curve are prerequisite data. Strategic advantages regarding environment and sustainable development are to be pointed out, specially in industrialized countries or for projects including financing institutions. As far as generating electric power on the grid is a major challenge in the development of a number of countries in the sun belt, cooperation between industrialized and developing countries, under the auspices of international organization, has to be promoted. (Author) 12 refs

  12. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  13. Performance results of a solar greenhouse combining electrical and thermal energy production

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Campen, J.B.; Tuijl, van B.A.J.; Janssen, H.J.J.; Bot, G.P.A.

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  14. Thermal Analysis of Solar Panels

    Science.gov (United States)

    Barth, Nicolas; de Correia, João Pedro Magalhães; Ahzi, Saïd; Khaleel, Mohammad Ahmed

    In this work, we propose to analyze the thermal behavior of PV panels using finite element simulations (FEM). We applied this analysis to compute the temperature distribution in a PV panel BP 350 subjected to different atmospheric conditions. This analysis takes into account existing formulations in the literature and, based on NOCT conditions, meteorological data was used to validate our approach for different wind speed and solar irradiance. The electrical performance of the PV panel was also studied. The proposed 2D FEM analysis is applied to different region's climates and was also used to consider the role of thermal inertia on the optimization of the PV device efficiency.

  15. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    Science.gov (United States)

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  16. PV Thermal systems: PV panels supplying renewable electricity and heat

    NARCIS (Netherlands)

    Helden, van W.G.J.; Zolingen, van R.J.C.; Zondag, H.A.

    2004-01-01

    With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts

  17. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  18. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  19. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  20. Solar thermal utilization--an overview

    International Nuclear Information System (INIS)

    Chen Deming; Xu Gang

    2007-01-01

    Solar energy is an ideal renewable energy source and its thermal utilization is one of its most important applications. We review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on; (2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilizaiton of solar thermal energy. (authors)

  1. Experimental Study on Solar Cooling Tube Using Thermal/Vacuum Emptying Method

    Directory of Open Access Journals (Sweden)

    Huizhong Zhao

    2012-01-01

    Full Text Available A solar cooling tube using thermal/vacuum emptying method was experimentally studied in this paper. The coefficient of performance (COP of the solar cooling tube was mostly affected by the vacuum degree of the system. In past research, the thermal vacuum method, using an electric oven and iodine-tungsten lamp to heat up the adsorbent bed and H2O vapor to expel the air from the solar cooling tube, was used to manufacture solar cooling tubes. This paper presents a novel thermal vacuum combined with vacuum pump method allowing an increased vacuum state for producing solar cooling tubes. The following conclusions are reached: the adsorbent bed temperature of solar cooling tube could reaches up to 233°C, and this temperature is sufficient to meet desorption demand; the refrigerator power of a single solar cooling tube varies from 1 W to 12 W; the total supply refrigerating capacity is about 287 kJ; and the COP of this solar cooling tube is about 0.215.

  2. The place of solar power: an economic analysis of concentrated and distributed solar power.

    Science.gov (United States)

    Banoni, Vanessa Arellano; Arnone, Aldo; Fondeur, Maria; Hodge, Annabel; Offner, J Patrick; Phillips, Jordan K

    2012-04-23

    This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models' benefits and costs. The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm, outweigh any minor concerns or potential

  3. The place of solar power: an economic analysis of concentrated and distributed solar power

    Directory of Open Access Journals (Sweden)

    Banoni Vanessa

    2012-04-01

    Full Text Available Abstract Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated

  4. The place of solar power: an economic analysis of concentrated and distributed solar power

    Science.gov (United States)

    2012-01-01

    Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm

  5. Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

    OpenAIRE

    K. Touafek; A. Khelifa; E. H. Khettaf; A. Embarek

    2013-01-01

    Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a h...

  6. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  7. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Science.gov (United States)

    Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer

    2018-06-01

    The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.

  8. Low cost thermal solar collector

    International Nuclear Information System (INIS)

    Abugderah, M. M.; Schneider, E. L.; Tontini, M. V.

    2006-01-01

    Solar energy is a good alternative in the economy of the electric energy mainly for the water heating. However, the solar heaters used demand a high initial investment, becoming the warm water from solar energy inaccessible to a large part of the society. Thus, a low cost solar heater was developed, constructed and tested in the chemical engineering department of West Parana State University-Unioeste. This equipment consists of 300 cans, divided in 30 columns of 10 cans each, all painted in black to enhance the obsorption of the solar radiation. The columns are connected to a pipe of pvc of 8 liters with 0.085m of external diameter. The equipment is capable to heat 120 liters of water in temperatures around 60 degree centigrade. The heater is insolated in its inferior part with cardboard and aluminum, covered with a transparent plastic in its superior. The system still counts with a insulated thermal reservoir, which can conserve the water in temperatures adjusted for the night non-solar days domestic use. The advantage of the constructed is it low cost material. The results are given an graphical tabular from showing acceptable efficiencies.(Autho

  9. Enhancing economic competiveness of dish Stirling technology through production volume and localization: Case study for Morocco

    Science.gov (United States)

    Larchet, Kevin; Guédez, Rafael; Topel, Monika; Gustavsson, Lars; Machirant, Andrew; Hedlund, Maria-Lina; Laumert, Björn

    2017-06-01

    The present study quantifies the reduction in the levelized cost of electricity (LCoE) and capital expenditure (CAPEX) of a dish Stirling power plant (DSPP) through an increase in localization and unit production volume. Furthermore, the localization value of the plant is examined to determine how much investment is brought into the local economy. Ouarzazate, Morocco, was chosen as the location of the study due to the country's favorable regulatory framework with regards to solar power technologies and its established industry in the concentrating solar power (CSP) field. A detailed techno-economic model of a DSPP was developed using KTH's in-house modelling tool DYESOPT, which allows power plant evaluation by means of technical and economic performance indicators. Results on the basis of LCoE and CAPEX were compared between two different cases of production volume, examining both a minimum and maximum level of localization. Thereafter, the DSPP LCoE and localization value were compared against competing solar technologies to evaluate its competitiveness. In addition, a sensitivity analysis was conducted around key design parameters. The study confirms that the LCoE of a DSPP can be reduced to values similar to solar photovoltaic (PV) and lower than other CSP technologies. Furthermore, the investment in the local economy is far greater when compared to PV and of the same magnitude to other CSP technologies. The competiveness of a DSPP has the potential to increase further when coupled with thermal energy storage (TES), which is currently under development.

  10. Lessons learned from solar energy projects in Saudi Arabia

    International Nuclear Information System (INIS)

    Huraib, F.S.; Hasnain, S.M.; Alawaji, S.H.

    1996-01-01

    This paper describes the lessons learned from the major RD and D activities at Energy Research Institute (ERI), King Abdulaziz City for Science and Technology (KACST) in the field of solar energy. Photovoltaic, solar thermal dishes, solar water heating, solar water pumping and desalination, solar hydrogen production and utilization are some of the areas studied for solar energy applications. Recommendations and guidelines for future solar energy research, development, demonstration and dissemination in Saudi Arabia are also given. (Author)

  11. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  12. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  13. Solar thermal energy utilization in Brazil: a perspective; Utilizacao da energia solar termica no Brasil: uma perspectiva

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Francisco Mateus [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Although Brazil has a large insolation potential, utilization of solar thermal energy is still limited to few applications, like residential and commercial water heating and drying of grains. However, there are in other countries more intensive applications, like electricity generation, industrial heat and fresh water production. The present work describes which are the other ways of using solar thermal energy that have been developed in the world, approaches the main technical aspects that affect its utilization, the perspective of increasing it in Brazil and its possible barriers and, finally, PETROBRAS' studies in this area, positioning itself as an Energy Company. The main solar thermal technologies currently used in the world are evacuated collectors, that work efficiently at temperatures up to 130 deg C, and concentrating solar technologies, that can reach the temperature of 1200 deg C. Among the latter, solar trough is the technology that is already considered mature, and near to become economically viable. Brazil, at the moment, has two technological challenges: development of national technology to manufacture high performance solar collectors, like evacuated collectors and solar troughs, and the development of thermal equipment to operate at temperatures under 120 deg C, like adsorption and absorption chillers and desalination towers, that can be economically competitive. (author)

  14. Performance analysis of dish solar stirling power system; Stirling engine wo mochiita taiyonetsu hatsuden system no seino yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K; Yamaguchi, I [Meiji University, Tokyo (Japan); Naito, Y; Momose, Y [Aisin Seiki Co. Ltd., Aichi (Japan)

    1996-10-27

    In order to estimate the performance of the dish solar Stirling power system, matching and control of each component system were studied, and the performance of the 25kWe class power system was estimated on the basis of direct solar radiation measured in Miyako island, Okinawa. Application of a Stirling engine to solar heat power generation is highly effective in spite of its small scale. The total system is composed of a converging system, heat receiver, engine/generator system and control system. As the simulation result, the generator output is nearly proportional to direct solar radiation, and the system efficiency approaches to a certain constant value with an increase in direct solar radiation. As accumulated solar radiation is large, the influence of slope error of the converging mirror is comparatively small. The optimum aperture opening ratio of the heat receiver determined on the basis of mean direct solar radiation (accumulated solar radiation/{Delta}t (simulated operation time of the system)), corresponds to the primary approximation of the opening ratio for a maximum total generated output under variable direct solar radiation. 6 refs., 6 figs., 1 tab.

  15. Directory of the French thermal solar sector

    International Nuclear Information System (INIS)

    Demangeon, Elsa; Simmonet, Raphael; Canals, Jonathan

    2011-01-01

    After an overview of what is at stake for the thermal solar sector in terms of employment and industrial development, a discussion of the huge energy and industrial potential of this sector, and the proposition of a road map for the development of this sector in France, this publication proposes a directory of actors of the different activity sectors: research and development, engineering, electric and electronic hardware manufacturing, thermal equipment manufacturing, fluid manufacturing, reflector manufacturing, thermodynamic machine manufacturer, structure component manufacturer, control-command system, energy storage, developers, and so on

  16. Performance evaluation and simulation of a Compound Parabolic Concentrator (CPC) trough Solar Thermal Power Plant in Puerto Rico under solar transient conditions

    Science.gov (United States)

    Feliciano-Cruz, Luisa I.

    The increasing fossil fuel costs as well as the need to move in a somewhat sustainable future has led the world in a quest for exploiting the free and naturally available energy from the Sun to produce electric power, and Puerto Rico is no exception. This thesis proposes the design of a simulation model for the analysis and performance evaluation of a Solar Thermal Power Plant in Puerto Rico and suggests the use of the Compound Parabolic Concentrator as the solar collector of choice. Optical and thermal analysis of such collectors will be made using local solar radiation data for determining the viability of this proposed project in terms of the electric power produced and its cost.

  17. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  18. Thermal and electrical performance of a hybrid design of a solar-thermoelectric system

    International Nuclear Information System (INIS)

    Ong, K.S.; Naghavi, M.S.; Lim, Christopher

    2017-01-01

    Highlights: • Hybrid solar-thermoelectric system studied under outdoor conditions. • Electrical output voltage and hot water temperatures peaked around 15.30. • Total electrical efficiency was very low, about 0.16% at around 15.30 h. - Abstract: An evacuated tube heat pipe solar collector was fitted with four thermoelectric modules and four water cooling jackets on the condenser side to produce electricity and hot water simultaneously. Each cooling jacket had six mini water-flow channels inside it. Solar heat was absorbed and collected by the evaporator section. Experiments were conducted under outdoor environment with various water coolant flow rates. Once-through coolant water flow was adopted as a first step. Further investigations would be conducted to incorporate an insulated hot water storage tank to evaluate the system economic viability as a power producer and hot water generator. Temperatures were recorded along the evaporator and condenser sections of the heat pipe, thermoelectric junction temperatures and inlet/outlet water channels. This paper presents the experimental results obtained. Typical daily experimental results showed that electrical output voltage and hot water temperatures peaked around 15.30 before decreasing towards the evening. Total electrical efficiency was very low, about 0.16% at around 15.30 h.

  19. Solar thermal - the new dynamics

    International Nuclear Information System (INIS)

    2017-01-01

    This booklet is intended to engineering consultants and construction professionals and aims at showing them the real interest of solar thermal energy. It notably highlights the very high efficiency which can be reached, the high performance value compared to gas, the high rank of solar thermal energy in terms of profitability over a 20-year period, the fact that solar thermal energy is almost always the most economic solution for buildings and the less expensive in comparison with non renewable energies. It outlines that, as far as purchase is concerned, solar thermal energy is more than competitive, is also a leader as far as financing issues are concerned. It finally briefly describes how the SOCOL initiative can be a support at any step of a solar thermal project

  20. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  1. Solar thermal power plants for heat and electricity generation; Presentacion de plantas termosolares para generacion de calor y energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Cajigal, V [Solartronic S. A. de C. V., Cuernavaca (Mexico); Manzini, F; Sanchez, A [Laboratorio de Energia Solar (IIM-UNAM), Temixco (Mexico)

    1993-12-31

    Solar thermal technology is presented for concentration into a point for the production of heat and energy in small and large scale, emphasis is made on the capacity for the combination with current technologies using fossil fuels for electricity generation and process steam, increasing the global efficiency of the power plants and notably reducing the pollutants emission to the air during the insolation hours. It is successfully compared with other solar-thermal technologies. [Espanol] Se presenta la tecnologia termosolar de concentracion puntual para produccion de calor y de energia en pequena y gran escala, se enfatiza su capacidad de combinacion con las tecnologias actuales que utilizan combustibles fosiles para produccion de electricidad y vapor de proceso, aumentando la eficiencia global de las plantas y reduciendo notablemente sus emisiones contaminantes a la atmosfera durante las horas de insolacion. Se le compara exitosamente con otras tecnologias termosolares.

  2. Solar thermal power plants for heat and electricity generation; Presentacion de plantas termosolares para generacion de calor y energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Cajigal, V. [Solartronic S. A. de C. V., Cuernavaca (Mexico); Manzini, F.; Sanchez, A. [Laboratorio de Energia Solar (IIM-UNAM), Temixco (Mexico)

    1992-12-31

    Solar thermal technology is presented for concentration into a point for the production of heat and energy in small and large scale, emphasis is made on the capacity for the combination with current technologies using fossil fuels for electricity generation and process steam, increasing the global efficiency of the power plants and notably reducing the pollutants emission to the air during the insolation hours. It is successfully compared with other solar-thermal technologies. [Espanol] Se presenta la tecnologia termosolar de concentracion puntual para produccion de calor y de energia en pequena y gran escala, se enfatiza su capacidad de combinacion con las tecnologias actuales que utilizan combustibles fosiles para produccion de electricidad y vapor de proceso, aumentando la eficiencia global de las plantas y reduciendo notablemente sus emisiones contaminantes a la atmosfera durante las horas de insolacion. Se le compara exitosamente con otras tecnologias termosolares.

  3. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India

    Directory of Open Access Journals (Sweden)

    Deepak Bishoyi

    2017-09-01

    Full Text Available Solar energy is a key renewable energy source and the most abundant energy source on the globe. Solar energy can be converted into electric energy by using two different processes: by means of photovoltaic (PV conversion and the thermodynamic cycles. Concentrated solar power (CSP is viewed as one of the most promising alternatives in the field of solar energy utilization. Lifetime and efficiency of PV system are very less compared to the CSP technology. A 100 MW parabolic trough solar thermal power plant with 6 h of thermal energy storage has been evaluated in terms of design and thermal performance, based on the System Advisor Model (SAM. A location receiving an annual DNI of 2248.17 kW h/m2 in Rajasthan is chosen for the technical feasibility of hypothetical CSP plant. The plant design consists of 194 solar collector loops with each loop comprising of 8 parabolic trough collectors. HITEC solar salt is chosen as an HTF due to its excellent thermodynamic properties. The designed plant can generate annual electricity of 285,288,352 kW h with the plant efficiency of 21%. The proposed design of PTC based solar thermal power plant and its performance analysis encourages further innovation and development of solar thermal power plants in India.

  4. GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Directory of Open Access Journals (Sweden)

    Loïc Quiquerez

    2015-06-01

    Full Text Available This paper presents a GIS-based methodology for assessing solar photovoltaic (PV and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH require a much larger surface and, therefore, have a more important influence on the PV potential.

  5. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  6. Solar Thermal | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    building can still be designed and constructed to be solar ready with roof exposures and slopes that accept Solar Thermal Solar Thermal Solar thermal applications can be simple, cost effective, and diverse for research campuses. The following links go to sections that describe when and where solar thermal

  7. Temperature Performance Evaluation of Parabolic Dishes Covered ...

    African Journals Online (AJOL)

    Solar radiation reaching the earth is considered to be affected by some parameters like diffusion. This radiation is reflected or scattered by air molecules, cloud and aerosols (dust). Parabolic dishes made of different materials (glass, foil and painted surface) were used to concentrate energy on a copper calorimeter filled with ...

  8. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, the European solar thermal market put on a strong spurt only to mark time in 2009 with about 4.2 million m 2 installed, which is 450000 m 2 less year-on-year. The main reasons of the decrease is the financial crisis and the low oil price, other reasons more specific to the country exist, for instance the property crisis has dragged the Spanish market down. In 2009, the solar thermal collector surface area in service in the European Union is of the magnitude of 32.6 million m 2 , equivalent to a capacity of 22.8 GWTh. The solar thermal sector is one of the renewable sectors that creates the highest number of jobs and wealth, partly because the vast majority of the system components sold in Europe are produced in Europe and partly because the sale, installation fitting and maintenance are labour-intensive. In 2009, there were 50000 direct or indirect jobs in the European solar thermal sector. The main European actors in this sector are GREENoneTEC, Bosch-Thermotechnik, Viessmann, Vaillant and Solvis. No clear recovery is expected before 2011. (A.C.)

  9. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  10. Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas

    International Nuclear Information System (INIS)

    Jing, Li; Gang, Pei; Jie, Ji

    2010-01-01

    The presented low temperature solar thermal electric generation system mainly consists of compound parabolic concentrators (CPC) and the Organic Rankine Cycle (ORC) working with HCFC-123. A novel design is proposed to reduce heat transfer irreversibility between conduction oil and HCFC-123 in the heat exchangers while maintaining the stability of electricity output. Mathematical formulations are developed to study the heat transfer and energy conversion processes and the numerical simulation is carried out based on distributed parameters. Annual performances of the proposed system in different areas of Canberra, Singapore, Bombay, Lhasa, Sacramento and Berlin are simulated. The influences of the collector tilt angle adjustment, the connection between the heat exchangers and the CPC collectors, and the ORC evaporation temperature on the system performance are investigated. The results indicate that the three factors have a major impact on the annual electricity output and should be the key points of optimization. And the optimized system shows that: (1) The annual received direct irradiance can be significantly increased by two or three times optimal adjustments even when the CPC concentration ratio is smaller than 3.0. (2) Compared with the traditional single-stage collectors, two-stage collectors connected with the heat exchangers by two thermal oil cycles can improve the collector efficiency by 8.1-20.9% in the simultaneous processes of heat collection and power generation. (3) On the use of the market available collectors the optimal ORC evaporation temperatures in most of the simulated areas are around 120 C. (author)

  11. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  12. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  13. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  14. Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors

    International Nuclear Information System (INIS)

    Daghigh, Ronak; Ibrahim, Adnan; Jin, Goh Li; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman

    2011-01-01

    BIPVT is an application where solar PV/T modules are integrated into the building structure. System design parameters such as thermal conductivity and fin efficiency, type of cells, type of coolant and operating conditions are factors which influence the performance of BIPVT. Attempts have been made to improve the efficiency of building-integrated photovoltaic thermal (BIPVT). A new design concept of water-based PVT collector for building-integrated applications has been designed and evaluated. The results of simulation study of amorphous silicon (a-Si) PV/T and crystalline silicon (c-Si) module types are based on the metrological condition of Malaysia for a typical day in March. At a flow rate of 0.02 kg/s, solar radiation level between 700 and 900 W/m 2 and ambient temperature between 22 and 32 o C, the electrical, thermal and combined photovoltaic thermal efficiencies for the PV/T (a-Si) were 4.9%, 72% and 77%, respectively. Moreover, the electrical, thermal and combined photovoltaic thermal efficiencies of the PV/T (c-Si) were 11.6%, 51% and 63%.

  15. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  16. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  17. The SolarPACES strategy for the solar thermal breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Burch, G.D. [U.S. Department of Energy, Washington, DC (United States)

    1997-12-31

    Our national solar thermal research programs and our combined efforts conducted through IEA/SolarPACES have brought about many breakthroughs in the development of solar thermal technology. We have components and systems that are much more efficient, much more reliable, and can be built much more cost-efficiently than just a few years ago. As our technology development proceeds, we undoubtedly will continue to make significant progress, breakthroughs in fact, in all these areas - progress that will bring us even closer to economic parity with more conventional forms of energy. And while this progress is absolutely necessary, the question is whether it will be enough to allow solar thermal to break into the mainstream of global energy supply. Our new IEA/SolarPACES strategy, crafted and approved over the course of the past year, has recognized the changes we must face and given us license to begin to make those changes. We must begin addressing financial hurdles, work to create a more favorable regulatory and tax environment, support development of international partnerships, and expand the visibility and excitement of solar thermal technology to achieve the final breakthroughs we need to allow solar thermal energy to live up to its vast potential. (orig./AKF)

  18. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  19. Perspectives for solar thermal applications in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Leu, Tzong-Shyng; Chung, Kung-Ming

    2016-01-01

    Taiwan has long depended on imported fossil energy. The government is thus actively promoting the use of renewable energy. Since 2000, domestic installations of solar water heaters have increased substantially because of the long-term subsidies provided for such systems. However, data on the annual installation area of solar collectors in recent years indicated that the solar thermal industry in Taiwan has reached a bottleneck. The long-term policy providing subsidies must thus be revised. It is proposed that future thermal applications in Taiwan should focus on building-integrated solar thermal, photovoltaic/thermal, and industrial heating processes. Regarding building-integrated solar thermal systems, the current subsidy model can be continued (according to area of solar collectors); nevertheless, the application of photovoltaic/thermal and industrial heating systems must be determined according to the thermal output of such systems. - Highlights: •The long-term subsidization for solar water heaters has lost effectiveness. •Solar thermal applications include BIST, PV/T and industrial heating process. •A performance-based subsidy policy should be implemented.

  20. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2011

    International Nuclear Information System (INIS)

    2011-05-01

    638,4 MWe The CSP plant electrical generating capacity in the EU at the end of 2010 As could be expected, the recession cast long shadows over the European solar thermal market throughout 2010. For the second year running, new installations for hot water production and space heating (collectors) decreased. According to the EurObserv'ER survey the newly-assigned surface area was 3.8 million m2 in 2010, down from 4.2 million m2 in 2009 and 4.6 million m2 in 2008. At the same time, the European high-temperature solar sector related to electricity production has been taking shape alongside the heat-producing applications, with 638.4 MW already installed. Spain accounts for almost all of this capacity, and a further five EU countries, mostly Mediterranean, intend to develop the sector

  1. Study on radiation flux of the receiver with a parabolic solar concentrator system

    International Nuclear Information System (INIS)

    Mao, Qianjun; Shuai, Yong; Yuan, Yuan

    2014-01-01

    Highlights: • The idea of integral dish and multi-dishes in a parabolic solar collector has been proposed. • The impacts of three factors of the receiver have been investigated. • The radiation flux distribution can benefit from a large system error. - Abstract: The solar receiver plays a key role in the performance of a solar dish electric generator. Its radiation flux distribution can directly affect the efficiency of the parabolic solar concentrator system. In this paper, radiation flux distribution of the receiver is simulated successfully using MCRT method. The impacts of incident solar irradiation, aspect ratio (the ratio of the receiver height to the receiver diameter), and system error on the radiation flux of the receiver are investigated. The parameters are studied in the following ranges: incident solar irradiation from 100 to 1100 W/m 2 , receiver aspect ratio from 0.5 to 1.5, and the system error from 0 to 10 mrad. A non-dimensional parameter Θ is defined to represent the ratio of radiation flux to incident solar irradiation. The results show that the maximum of Θ is about 200 in simulation conditions. The aspect ratio and system error have a significant impact on the radiation flux. The optimal receiver aspect ratio is 1.5 at a constant incident solar irradiation, and the maximum of radiation flux increases with decreasing system error, however, the radiation flux distribution can benefit from a large system error. Meanwhile, effects of integral dish and multi-dishes on the radiation flux distribution have been investigated. The results show that the accuracy of two cases can be ignored within the same parameters

  2. Here comes the sun. Solar energy technology in the USA

    International Nuclear Information System (INIS)

    Van der Wees, G.

    1998-01-01

    An overview is given of the energy policy in the USA with respect to solar energy technology and the marketing of solar energy applications. In particular, attention is paid to the Million Solar Roofs programme, small-scale and medium-scale photovoltaic (PV) systems (Residential PV and Utility Scale PV), solar thermal systems (Parabolic Trough, Power tower, and Solar Dish/Engine). Also examples of passive solar systems are given. Finally, a number of aspects with regard to market implementation, e.g. net-metering. 9 refs

  3. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Science.gov (United States)

    White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.

    2017-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

  4. Feasibility study of dish/stirling power systems in Turkey

    Science.gov (United States)

    Zilanlı, Gülin Acarol; Eray, Aynur

    2017-06-01

    In this study, two different commercial dish/stirling systems, SES (Stirling Energy Systems) and WGA-ADDS (WGAssociates - Advanced Dish Development System), are modeled using the "System Advisor Model" (SAM) modeling software in designated settlement areas. Both systems are modeled for the US state of Albuquerque, where they were designed, and Turkish provinces of Ankara, Van, Muğla, Mersin, Urfa and Konya. At first, the dish/stirling system is optimized according to the power output values and the system loss parameters. Then, the layout of the solar field is designed with an installed capacity of 600kW both of SES and WGA-ADDS systems, Upon securing the most suitable layout, the system is modeled for the aforementioned settlements using the optimum output values gathered from the parametric analysis. As a result of the simulation studies, the applicability of this model is discussed according to the power output and the efficiency. Although Turkey is located in an area called "the sun belt" where solar energy technologies can be used, there is no advanced application of these systems. This study aims to discuss the application of these systems in detail and to pave the way for future studies in this field.

  5. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  6. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    Combined Photovoltaic and Solar-Thermal Systems (PV/T Systems) combine Photovoltaic (PV) and solar thermal technologies into one system with both electrical and thermal energy output. PV/T systems have several perceived advantages to stand-alone PV or solar-thermal systems. The increased efficiency and dual nature of the systems make suitable for situations where installation space is limited, and for homeowners who are forced to decide between meeting thermal or electrical needs. The financial benefit of the combined system is also significant, as the long payback of PV systems is joined with a relatively short payback of solar thermal systems. A background of PV/T was presented, with details of classifications and the International Energy Association's program to evaluate the technical status of PV/T systems and formulate a roadmap for future development. It was noted that input from the Solar Heating and Cooling Program (SHCP) is needed to help identify market barriers in PV/T systems. This paper reviewed existing and potential PV/T systems and their technical status, and reported on the methodology established by IEA group 35. The systems were grouped according to thermal collector types of unglazed water collectors, glazed water collectors, unglazed air collectors, glazed air collectors, air-flow windows, and concentrating collectors. It was noted that a number of new systems are currently being developed, including concentrating collectors with water and air heating, unglazed air heating systems, and unglazed water heating systems. It was noted that apart from technical barriers, efficient design and performance prediction are also problematic, as tools for predicting performance do not exist. The same tools will be used to optimize PV/T system designs. It was suggested that standardized reporting methods, simulation and sizing tools and demonstration products need to be created and that regional certification issues need to be identified. Environmental

  7. Independent Energy's Solar thermal products and services listing

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This article is a listing of companies offering products and services for the development of solar thermal electric power plants. The listing provides the company name under a heading describing the product or service the company provides. The products and services covered by the listing include developers and owner/operators, manufacturers of equipment, instruments and controls, consulting services, engineering and construction, and financial and legal services

  8. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  9. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions

    International Nuclear Information System (INIS)

    Hazami, Majdi; Riahi, Ali; Mehdaoui, Farah; Nouicer, Omeima; Farhat, Abdelhamid

    2016-01-01

    The endeavor of this paper is to study the potential offered by the expenditure of a PV/T (photovoltaic thermal) solar system in Tunisian households. This investigation is performed according to two-folded approaches. Firstly, outdoor experiments were carried out during July 2014 for both passive and active mode. An exhaustive energy and exergy analysis was then performed to evaluate the instantaneous thermal and the electrical exergy outputs of the PV/T solar system. The results showed that the maximum instantaneous thermal and electric energy efficiency in active mode are about 50 and 15%, respectively. It was found also that the maximum thermal and electric exergy efficiencies were about 50 and 14.8%, respectively. The second approach is the evaluation of the monthly/annual performances of the PV/T solar system under typical climate area of Tunisia by using TRNSYS program. The results showed that the active mode enhances the electric efficiency and the exergy of the PV/T system by 3 and 2.5% points, respectively. The results showed that the optimized PV/T solar system covert the major part of the hot water and the electric needs of Tunisian household's with an expected annual average gain of about 14.60 and 5.33%, respectively. An economic appraisal was performed. - Highlights: • The present work studies the potential of using PV/T solar collector in Tunisian. • The maximum thermal and electric efficiencies are 50 and 15%, respectively. • The maximum thermal and electric exergy efficiencies were 50 and 14.8%. • The results showed that the expected annual gain are 14.60 and 5.33%. • The PV/T is compared to a high quality commercial solar collectors and a PV panel.

  10. A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III–V triple-junction solar cell

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Stark, Cameron; O’Donovan, Tadhg S.

    2016-01-01

    Highlights: • An integrated spectral dependent electrical–thermal model has been developed. • The effect of atmospheric parameters on system’s performance is evaluated. • The HCPV cooling requirements under “hot & dry” conditions are quantified. • Case studies show the impact of heat transfer coefficient on annual energy yield. • The integrated modelling allows the system’s optimisation. - Abstract: The spectral sensitivity of a concentrating triple-junction (3J) solar cell has been investigated. The atmospheric parameters such as the air mass (AM), aerosol optical depth (AOD) and precipitable water (PW) change the distribution of the solar spectrum in a way that the spectral, electrical and thermal performance of a 3J solar cell is affected. In this paper, the influence of the spectral changes on the performance of each subcell and whole cell has been analysed. It has been shown that increasing the AM and AOD have a negative impact on the spectral and electrical performance of 3J solar cells while increasing the PW has a positive effect, although, to a lesser degree. A three-dimensional finite element analysis model is used to quantify the effect of each atmospheric parameter on the thermal performance for a range of heat transfer coefficients from the back-plate to the ambient air and also ambient temperature. It is shown that a heat transfer coefficient greater than 1300 W/(m"2 K) is required to keep the solar cell under 100 °C at all times. In order to get a more realistic assessment and also to investigate the effect of heat transfer coefficient on the annual energy yield, the methodology is applied for four US locations using data from a typical meteorological year (TMY3).

  11. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics

    Science.gov (United States)

    Jiang, Li; Mancuso, Matthew; Lu, Zhengda; Akar, Gunkut; Cesarman, Ethel; Erickson, David

    2014-02-01

    Nucleic acid-based diagnostic techniques such as polymerase chain reaction (PCR) are used extensively in medical diagnostics due to their high sensitivity, specificity and quantification capability. In settings with limited infrastructure and unreliable electricity, however, access to such devices is often limited due to the highly specialized and energy-intensive nature of the thermal cycling process required for nucleic acid amplification. Here we integrate solar heating with microfluidics to eliminate thermal cycling power requirements as well as create a simple device infrastructure for PCR. Tests are completed in less than 30 min, and power consumption is reduced to 80 mW, enabling a standard 5.5 Wh iPhone battery to provide 70 h of power to this system. Additionally, we demonstrate a complete sample-to-answer diagnostic strategy by analyzing human skin biopsies infected with Kaposi's Sarcoma herpesvirus (KSHV/HHV-8) through the combination of solar thermal PCR, HotSHOT DNA extraction and smartphone-based fluorescence detection. We believe that exploiting the ubiquity of solar thermal energy as demonstrated here could facilitate broad availability of nucleic acid-based diagnostics in resource-limited areas.

  12. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  13. Solar electric and thermal conversion system in close proximity to the consumer. [solar panels on house roofs

    Science.gov (United States)

    Boeer, K. W.

    1975-01-01

    Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.

  14. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  15. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  16. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  17. Solar Thermal Utilization: Past, Present and Future

    Science.gov (United States)

    2010-09-01

    SO•C NON-FOCUSSING FLAT PLATE / (FPC) 100- 150•C For low temperature 50- 200•C COMPOUND applications PARABOLIC EVACUATED CONCENTRATOR ~ (ETC...2030 Ø 200GW BY 2050 Ø 20 MILLION SQ.METER SOLAR THERMAL COLLECTORS (20GW power) Ø 20 MILLION SOLAR LIGHTS LAUNCHING OF SOLAR INDIA SOLAR THERMAL...Temperature (20oC- 80oC) NALSUN ApplicationsThermal Conversion range SOLAR ENERGY COLLECTORS 40- GO•C UNGLAZED COLLECTORS 60- 90•C SOLAR POND 60

  18. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  19. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  20. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  1. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  2. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  3. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    Science.gov (United States)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  4. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  5. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  6. Performance and cost benefits associated with nonimaging secondary concentrators used in point-focus dish solar thermal applications

    Science.gov (United States)

    Ogallagher, J.; Winston, R.

    1987-09-01

    Using nonimaging secondary concentrators in point-focus applications may permit the development of more cost-effective concentrator systems by either improving performance or reducing costs. Secondaries may also increase design flexibility. The major objective of this study was to develop as complete an understanding as possible of the quantitative performance and cost effects associated with deploying nonimaging secondary concentrators at the focal zone of point-focus solar thermal concentrators. A performance model was developed that uses a Monte Carlo ray-trace procedure to determine the focal plane distribution of a paraboloidal primary as a function of optical parameters. It then calculates the corresponding optimized concentration and thermal efficiency as a function of temperature with and without the secondary. To examine the potential cost benefits associated with secondaries, a preliminary model for the rational optimization of performance versus cost trade-offs was developed. This model suggests a possible 10 to 20 percent reduction in the cost of delivered energy when secondaries are used. This is a lower limit, and the benefits may even be greater if using a secondary permits the development of inexpensive primary technologies for which the performance would not otherwise be viable.

  7. Software used with the flux mapper at the solar parabolic dish test site

    Science.gov (United States)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  8. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  10. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  11. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  12. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  13. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  14. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  15. A new hybrid ocean thermal energy conversion–Offshore solar pond (OTEC–OSP) design: a cost optimization approach

    NARCIS (Netherlands)

    Straatman, P.J.T.; van Sark, W.G.J.H.M.

    2008-01-01

    Solar thermal electricity (STE) generation offers an excellent opportunity to supply electricity with a non-CO2 emitting technology. However, present costs hamper widespread deployment and therefore research and development efforts are concentrated on accelerated cost reductions and efficiency

  16. Solar island electricity supply at Flanitzhuette. Solare Inselstromversorgung Flanitzhuette

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, U. (Bayernwerk AG, Muenchen (Germany))

    1993-01-01

    The aim of this research project is the planning, erection and operation of a permanent electricity supply independent of the grid based on photo-electrics for an isolated hamlet in the Bavarian Forest. Criteria for the development and optimisation of solar electricity supply concepts are to be obtained from practical experience. The investigation and exploitation of energ saving potential and an harmonious integration of the solar plant in the landscape are also important aspects. (orig.)

  17. Optimum Dispatch of Hybrid Solar Thermal (HSTP Electric Power Plant Using Non-Smooth Cost Function and Emission Function for IEEE-30 Bus System

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Dash

    2016-07-01

    Full Text Available The basic objective of economic load dispatch (ELD is to optimize the total fuel cost of hybrid solar thermal electric power plant (HSTP. In ELD problems the cost function for each generator has been approximated by a single quadratic cost equation. As cost of coal increases, it becomes even more important have a good model for the production cost of each generator for the solar thermal hybrid system. A more accurate formulation is obtained for the ELD problem by expressing the generation cost function as a piece wise quadratic cost function. However, the solution methods for ELD problem with piece wise quadratic cost function requires much complicated algorithms such as the hierarchical structure approach along with evolutionary computations (ECs. A test system comprising of 10 units with 29 different fuel [7] cost equations is considered in this paper. The applied genetic algorithm method will provide optimal solution for the given load demand.

  18. A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization

    International Nuclear Information System (INIS)

    Calise, Francesco; Dentice d'Accadia, Massimo; Figaj, Rafal Damian; Vanoli, Laura

    2016-01-01

    This paper presents a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system based on a solar-assisted heat pump and an adsorption chiller, both driven by PVT (photovoltaic/thermal) collectors. The aim of this work is to design and dynamically simulate a novel ultra-high efficient solar heating and cooling system. The overall plant layout is designed to supply electricity, space heating and cooling and domestic hot water for a small residential building. The system combines solar cooling, solar-assisted heat pump and photovoltaic/thermal collector technologies in a novel solar polygeneration system. In fact, the polygeneration system is based on a PVT solar field, coupled with a water-to-water electric heat pump or to an adsorption chiller. PVT collectors simultaneously produce electricity and thermal energy. During the winter, hot water produced by PVT collectors primarily supplies the evaporator of the heat pump, whereas in summer, solar energy supplies an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess is converted into DHW (domestic hot water). The system model was developed in TRNSYS environment. 1-year dynamic simulations are performed for different case studies in various weather conditions. The results are analysed on different time bases presenting energetic, environmental and economic performance data. Finally, a sensitivity analysis and a thermoeconomic optimization were performed, in order to determine the set of system design/control parameters that minimize the simple pay-back period. The results showed a total energy efficiency of the PVT of 49%, a heat pump yearly coefficient of performance for heating mode above 4 and a coefficient of performance of the adsorption chiller of 0.55. Finally, it is also concluded that system performance is highly sensitive to the PVT field area. The system is profitable when a capital investment subsidy of 50% is considered

  19. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  20. Solar thermal electricity production. A building block for the energy turnaround?; Solarthermische Stromerzeugung. Ein Baustein fuer die Energiewende?

    Energy Technology Data Exchange (ETDEWEB)

    Pitz-Paal, Robert [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V., Koeln (Germany). Inst. fuer Solarforschung

    2012-12-15

    Whereas in Germany enthusiasm for solar thermal power plants has subsided following the inglorious insolvency of Solar Millennium AG, internationally the market is livening up again. This has to do with the fact that many countries have now understood that security of supply cannot be founded on photovoltaics and wind alone in the long term. Solar thermal power could thus yet become an important building block in Germany's energy supply system as it continues to pursue the energy turnaround.

  1. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  2. SOLTECH 92 proceedings: Solar Process Heat Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  3. Thermal solar energy, towards a sunny interval?

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    While its market results are continuously decreasing, the thermal solar sector regains confidence with the perspectives of a new thermal legislation in France, a higher carbon tax and the growing volume of installed equipment. This document contains 5 articles, which themes are: The renewal of the thermal solar energy sector in France, notably for the building market, due to a new regulation and a reduction in costs; Several companies are developing large capacity thermal solar plant for industrial facilities (one of them covers 10000 m 2 ) while another company is developing an all-in-one containerised system (less than 1 MW); Another example is given with a Caribbean chemical company which use thermal solar energy for its processes, with a reduction of the fuel consumption by a 2.5 factor; The return of experience show that hybrid solar panels present some limitations, especially in terms of performances and sizing; A collective building (35 apartments) in the West of France has 100 pc of its heating needs (hot water production and space heating) satisfied with solar energy

  4. Solar radiation for sea-water desalination and electric power generation via vacuum solar collectors

    International Nuclear Information System (INIS)

    Mottinelli, L.; Reali, M.; El-Nashar, A.M.; Giusiano, F.; Vigotti, R.

    1996-01-01

    The present report concerns the energetic potential of vacuum solar which are rather versatile and efficient devices for converting solar energy into thermal energy. Two main energetic applications have been analysed: the first one for a solar sea water desalination plant which has been operated in Abu Dhabi for the past ten years, the other for a conceptual solar thermoelectric-power plant having a fair thermodynamic efficiency (15-20%). A simple technology for the manufacture of vacuum solar collectors in a standard mechanical shop is being developed in collaboration between ENEL Sp A (DSR-CRIS, Milano) and WED (Abu Dhabi). Such technology should have an important economy-saving potential per se and would also make repair and substitution operations simple enough for the actual operators of the vacuum solar collector system without any need of external assistance. The technic-operative-economical features of the Abu Dhabi solar desalination plant suggest that the use novel simplified vacuum solar collectors could have a considerable technic economical potential. The analysis of the conceptual solar thermo-electric-power plant focuses on its general layout and singles out key technological issues which ought to be addressed in an overall feasibility study. 5 figs., 3 tabs

  5. Sustained orderly development of the solar electric technologies

    International Nuclear Information System (INIS)

    Aitken, D.W.

    1992-01-01

    This article examines the need of electric utilities to support the commercialization of solar electric technologies now in order to have the technology available for future energy resources. The topics of the article include deteriorating opportunities, sustained orderly development of solar electric technologies, historical aspects, and market forces in the solar electric industry

  6. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  7. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  8. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  9. Solar feed-in tariffs and the merit order effect: A study of the German electricity market

    International Nuclear Information System (INIS)

    Tveten, Åsa Grytli; Bolkesjø, Torjus Folsland; Martinsen, Thomas; Hvarnes, Håvard

    2013-01-01

    This study investigates the merit order effect (MOE) of the recent years' implementation of solar power in Germany. Market clearing electricity prices and production levels are compared for the years 2009–2011, and a model for the relationship between the electricity price and price sensitive electricity production is developed and applied to predict electricity prices in Germany from July 2010 to July 2011 with and without solar electricity generation (SEG). The results show that the SEG has caused a 7% reduction in average electricity prices for this period. The average daily maximum price and daily price variation are also found to decrease, by 13% and 23%, respectively. When taking the MOE into account the net consumer's cost of the solar feed-in tariff (FIT) system is found to be 23% less than the charge listed in the electricity bill. The German FIT policy for solar power has been subject to considerable public debate, and a common argument brought up in disfavor of the system is the high cost for the consumers. In this study we demonstrate the importance of including the MOE when evaluating the total costs and benefits of the FIT policy mechanism. - Highlights: • The merit order effect (MOE) of the German solar feed-in tariffs (FITs) is analyzed. • Solar power is found to substitute thermal power on the margin in peak hours. • In a 1 year period, solar power has reduced electricity prices by 7%, on average. • The solar power has also reduced the daily price variation by 23%, on average. • When including the MOE, the net consumer's cost of solar FITs are reduced by 23%

  10. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  11. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  12. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  13. Optimization of solar-powered Stirling heat engine with finite-time thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yaqi, Li [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xi' an Research Institute of Hi-Tech, Xi' an, Shaanxi 710025 (China); Yaling, He; Weiwei, Wang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2011-01-15

    A mathematical model for the overall thermal efficiency of the solar-powered high temperature differential dish-Stirling engine with finite-rate heat transfer, regenerative heat losses, conductive thermal bridging losses and finite regeneration processes time is developed. The model takes into consideration the effect of the absorber temperature and the concentrating ratio on the thermal efficiency; radiation and convection heat transfer between the absorber and the working fluid as well as convection heat transfer between the heat sink and the working fluid. The results show that the optimized absorber temperature and concentrating ratio are at about 1100 K and 1300, respectively. The thermal efficiency at optimized condition is about 34%, which is not far away from the corresponding Carnot efficiency at about 50%. Hence, the present analysis provides a new theoretical guidance for designing dish collectors and operating the Stirling heat engine system. (author)

  14. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  17. γ-ray irradiation of cooked dishes

    International Nuclear Information System (INIS)

    Lin Ruotai; Cheng Wei; Wen Shengli; Xiong Guangquan; Ye Lixiu; Chen Yuxia; Zhang Jinmu; He Jianjun; Lin Yong; Zhan Hanping

    2005-01-01

    Ready-to-eat cooked dishes, including stir-fried dishes, steamed dishes, roast meat, deep dried dishes, shrimps and seashells, and dishes of local flavor, etc were irradiated with 60 Co γ-rays, and the decontamination effects were studied. The results showed that most of the cooked dishes are suitable for irradiation. The effective dose is 4 kGy to 8 kGy. Index of microbe of the irradiated dishes was conformed to the National Food-Health standards, and no significant sensory changes was observed with the irradiated dishes. The quality guarantee period (0-5 degree C) is 60 days. (authors)

  18. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  19. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  20. Solar thermal production of zinc: Program strategy

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A; Weidenkaff, A; Moeller, S; Palumbo, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The solar thermal production of zinc is considered for the conversion of solar energy into storable and transportable chemical fuels. The ultimate objective is to develop a technically and economically viable technology that can produce solar zinc. The program strategy for achieving such a goal involves research on two paths: a direct path via the solar thermal splitting of ZnO in the absence of fossil fuels, and an indirect path via the solar carbothermal/CH{sub 4}-thermal reduction of Zn O, with fossil fuels (coke or natural gas) as chemical reducing agents. Both paths make use of concentrated solar energy for high-temperature process heat. The direct path brings us to the complete substitution of fossil fuels with solar fuels for a sustainable energy supply system. The indirect path creates a link between today`s fossil-fuel-based technology and tomorrow`s solar chemical technology and builds bridges between present and future energy economies. (author) 1 fig., 15 refs.

  1. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  2. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    International Nuclear Information System (INIS)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-01-01

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG and amp;E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  3. Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage

    International Nuclear Information System (INIS)

    Zhang Kun; Han Baoguo; Yu Xun

    2012-01-01

    Highlights: ► Carbon nanofiber (CNF)/paraffin wax composite is found to be a promising electric thermal storage material. ► The thermal storage capacity of CNF/paraffin wax composite is five times of traditional electric thermal storage material. ► CNF is shown to be an effective conductive filler for the composite. - Abstract: The research of electric thermal storage (ETS) has attracted a lot of attention recently, which converts off-peak electrical energy into thermal energy and release it later at peak hours. In this study, new electric thermal storage composites are developed by employing paraffin wax as thermal storage media and carbon nanofiber (CNF) as conductive fillers. Electric heating and thermal energy release performances of the CNF/paraffin wax composites are experimentally investigated. Experimental results show that, when the composites are heated to about 70 °C, the developed electrically conductive CNF/paraffin wax composites present a thermal storage capacity of about 280 kJ/kg, which is five times of that of traditional thermal storage medium such as ceramic bricks (54 kJ/kg). The CNF/paraffin wax composites can also effectively store the thermal energy and release the thermal energy in later hours.

  4. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  5. The THESEUS project -- 50 MWe solar thermal power for Crete

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, F.; Geyer, M.; Kistner, R.; Aringhoff, R.; Nava, P.; Brakmann, G.

    1998-07-01

    A consortium of European industry, utilities and research institutions from Greece, Germany, Spain and Italy attempts to implement a 52 MWe solar thermal power plant with parabolic trough technology on the Greek island of Crete sponsored by the EU' s THERMIE program. The increased demand for electricity on the island, a consequence of the growing allurement of the island as a tourist resort, makes it necessary to expand the installed capacity on Crete during the next years. According to the capacity expansion plans of Greek' s utility PPC a 160 MWe heavy fuel-fired power plant complex--two 30 MWe diesel units and two 50 MWe steam turbine units--is foreseen to be built by the year 2002. In this paper a description of the technical, economical and environmental aspects of the THESEUS project is provided. Moreover a market entry strategy for solar thermal power generation is discussed.

  6. Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions

    International Nuclear Information System (INIS)

    Noro, M.; Lazzarin, R.M.

    2014-01-01

    This paper considers different cooling systems and investigates the most promising alternatives when solar energy is to be used to supply the cooling demand. All the systems are evaluated during a summer cooling season by the energetic and economic point of view by dynamic simulation for two different climates. For Milan (Cfb climate) the highest OSE (overall system efficiency) is reached by LiBr (lithium-bromide) double effect absorption chiller driven by parabolic through collector (0.53). In terms of the collecting surface area, the best systems for Milan feature 0.08 m 2  MJ −1 per day both for electric system (mono-crystalline photovoltaic coupled to water cooled chiller) and thermal system (PTC (parabolic trough collectors) coupled to double effect water-LiBr absorption chiller). Southern latitudes like Trapani (Csa climate) allow a quite better performance for thermal solar cooling solutions. The NPV (net present worths) of electric solar cooling solutions are favorable with respect to the traditional solution and the DPV (discounted payback periods) are all lower than the period of economic analysis above all for water cooled chillers. Finally a sensitivity analysis of the specific investment cost (€ MJ −1 per day) is carried out regarding the investment cost of collectors, the solar ratio and the interest rate. - Highlights: • Solar cooling is obtained with solar thermal or PV (photovoltaic) with easy available equipment. • In the past PV driven systems for solar cooling were not considered as too expensive. • An energy/economic comparison is carried out for the various solar cooling systems. • Sensitivity analyses are carried out varying different parameters

  7. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  8. A review on factors for maximizing solar fraction under wet climate environment in Malaysia

    International Nuclear Information System (INIS)

    Kadir, Mohd Zainal Abidin Ab; Rafeeu, Yaaseen

    2010-01-01

    Solar energy is the most promising source of clean, renewable energy and it has the greatest potential of any power source to solve the world's energy problems. However, the problem, is how best to harness this vast amount of solar energy. Nevertheless, even if highly efficient Concentrating Solar Power (CSP) could be made cheaply, there would be considerable change in solar power. This technology is expected to be more efficient and to achieve a manufacturing cost of less than $1/W near future. This paper reviews and elaborates the methodology utilized to design and fabricate the solar dish concentrator and outlines the parameters that can be used to increase the efficiency of solar fraction in parabolic dish concentrator under wet climate environment in Malaysia. The study finally provides ideas to the continually increasing ability of these technologies to concentrate and harness solar energy for electricity production and thus eliminate the growing concern over climate change and how it will hurt the region's environment, human health and economy. (author)

  9. A review on factors for maximizing solar fraction under wet climate environment in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Kadir, Mohd Zainal Abidin Ab; Rafeeu, Yaaseen [Alternative and Renewable Energy Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2010-10-15

    Solar energy is the most promising source of clean, renewable energy and it has the greatest potential of any power source to solve the world's energy problems. However, the problem, is how best to harness this vast amount of solar energy. Nevertheless, even if highly efficient Concentrating Solar Power (CSP) could be made cheaply, there would be considerable change in solar power. This technology is expected to be more efficient and to achieve a manufacturing cost of less than $1/W near future. This paper reviews and elaborates the methodology utilized to design and fabricate the solar dish concentrator and outlines the parameters that can be used to increase the efficiency of solar fraction in parabolic dish concentrator under wet climate environment in Malaysia. The study finally provides ideas to the continually increasing ability of these technologies to concentrate and harness solar energy for electricity production and thus eliminate the growing concern over climate change and how it will hurt the region's environment, human health and economy. (author)

  10. Stress corrosion cracking prevention using solar electricity

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaaili, M.A; Mirani, M.

    2004-01-01

    Metallic structures exposed to soil and water naturally experience corrosion due to electrolytic action. These structures are also subjected to sustained tensile stresses. The combined effects of corrosion and stress results stress corrosion cracking (SCC). Removal of either of these i.e. stress or corrosion prevents SCC. The cathodic protection (CP) prevents corrosion, and hence prevents stress corrosion. Solar Photo voltaic (PV) generated electricity can be best external power source for CP systems especially in remote areas. This paper presents CP system using solar PV generated electricity as an external power source for prevention of SCC of metallic structures. The paper also compares CP systems using solar electricity with those of CP systems using conventional electricity. The paper concludes that a solar electricity power system provides a reliable solution for powering CP stations especially in remote areas, enables the placing of CP units in any location, and thus ensures optimal current distribution for the exact protection requirements. The paper also concludes that solar electricity CP systems are well suited for SCC protection of metallic structures especially in remote areas of an energy deficit country like Pakistan. (author)

  11. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  12. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  13. Charging electric cars from solar energy

    OpenAIRE

    Liang, Xusheng; Tanyi, Elvis; Zou, Xin

    2016-01-01

    Before vehicles were heavily relied on coal, fossil fuels and wind for power.  Now, they are rapidly being replaced by electric vehicles and or plug-in hybrid electric cars. But these electric cars are still faced with the problem of energy availability because they rely on energy from biomass, hydro power and wind turbines for power generation. The abundance of solar radiation and its use as solar energy as a power source in driving these rapidly increasing electric cars is not only an impor...

  14. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  15. Estimating the potential for solar thermal applications in the industrial process heat market 1990-2030

    International Nuclear Information System (INIS)

    Demeter, C.P.; Gray, E.E.; Carwile, C.

    1991-01-01

    This paper reports the results of a preliminary evaluation of the potential domestic market for solar thermal energy supply technologies matched to industrial process heat applications. The study estimates current and projects future industrial process heat demand to the year 2030 by two-digit standard industrial classification code for the manufacturing industrial sector and discusses the potential to displace conventional fossil fuel sources such as natural gas with alternative sources of supply. The PC Industrial Model, used by DOE's Energy Information Administration in support of the National Energy Strategy (NES) is used for forecast industrial energy demand. Demand is disaggregated by census region to account for geographic variations in solar insolation, and by heat medium and temperature to facilitate end-use matching with appropriate solar energy supply technologies. Levelized energy costs (LEC) are calculated for flat plate collectors for low- temperature preheat applications, parabolic troughs for intermediate temperature process steam and direct heat, and parabolic dish technologies for high-temperature, direct heat applications. LEC is also developed for a conventional natural gas-fueled Industrial Process Heat (IPH) supply source assuming natural gas price escalation consistent with NES forecasts to develop a relative figure of merit used in a market penetration model

  16. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2018-01-01

    Full Text Available Dye-sensitized solar cell technology is having an important role in renewable energy research due to its features and low-cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye-sensitized solar modules (DSM are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However, still few studies in the literature provide this information. The study presented here aims to contribute to fill this lack providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance (U-value and solar heat gain coefficient (SHGC of a DSM prototype. The device exhibits a U-value of 3.6 W/m2·K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization shows an increase of module power with respect to temperature resulting DSM being suitable for integration in building facades.

  17. SOLTECH 92 proceedings: Solar Process Heat Program. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy`s (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  18. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    Science.gov (United States)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  19. Thermal energy storage for solar power generation - State of the art

    Science.gov (United States)

    Shukla, K. N.

    1981-12-01

    High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.

  20. Validation of the efficacy of a solar-thermal powered autoclave system for off-grid medical instrument wet sterilization.

    Science.gov (United States)

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A

    2012-10-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization.

  1. SUPPRESSION OF PARALLEL TRANSPORT IN TURBULENT MAGNETIZED PLASMAS AND ITS IMPACT ON THE NON-THERMAL AND THERMAL ASPECTS OF SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2016-06-20

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  2. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    Science.gov (United States)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  3. Solar thermal in France

    International Nuclear Information System (INIS)

    Letz, T.

    2006-01-01

    This article gives details of Plan Soleil established in 2000 by the French Agency for Environment and Energy Management and its identification of solar hot water systems and combined domestic solar hot water and space heating as promising sectors for development. The setting up of a support scheme for investment by Plan Soleil is discussed along with subsidies and grants, manufacturers and importers, the guarantee of solar results, and the quality of plants, components, and installers. The costs of thermal solar equipment, and results of the French assessment programme are considered. The need for quality standards is stressed

  4. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1993-01-01

    In 1982 McDonnell Douglas Aerospace Space System (MDA-SS) and United Stirling AB of Sweden formed a joint venture to develop and market a solar Stirling dish unit. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing have been characterized and modeled in a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing and other maintenance outage time, operation and maintenance (O and M) costs and other cost models. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  5. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1995-01-01

    In 1982 McDonnell Douglas Aerospace (MDA) and United Stirling AB (USAB) of Sweden formed a joint venture to develop and market a solar Stirling dish system. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing were characterized and modeled into a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing, and other maintenance outage time, operation and maintenance (O and M) costs, and equipment purchase cost. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  6. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  7. Generation of Electric Energy and Desalinating Water from Solar Energy and the Oceans Hydropower

    Science.gov (United States)

    Elfikky, Niazi

    Brief.All warnings and fears about the environment in our Earth planet due to the serious effects of the industrial revolution were certainly predicted early. But the eager contest and the powerful desire for more profits beside the human interest for welfare and development closed all minds about the expected severe destuctive impacts on our earth planet. Also, we have to remember that the majority of the African, Asian and Latin American countries are still in the first stage of their development and if they will be left to generate all their demand of energy by the conventional machine e.g (Fossil Fuel, Biofuel and Nuclear Fuel), then our Earth planet will confront an endless and ceasless severe destructive impacts due to the encroach of the released hot Carbon Doxide and hot vapours of Acids which will never forgive any fruitful aspect in our Earth Planet from destruction. 1. Importance of the New Project. Building the Extra cheap, clean Power plants with safe and smooth Operation in addition to the long life time in service for generating enough and plentiful electric energy the sustainable renwable resources will invigorate the foresaking of all Nuclear, Fossil and Biofuel power plants to avoide the nuclear hazards and stop releasing the hot carbon doxide, hot acids for the recovery of our ill environment. Also, the main sustainable, renewable, and cheap resources for generating the bulky capacity of the electric energy in our project are the Sun and the Oceans in addition to all Seas Surrounding all Continents in our Earth planet. Therefore, our recourses are so much enormous plentiful, clean, and renewable. 2. .Generation of Electricity from Solar Energy by Photovoltiac Cells (PVCs) or Concentrated Solar Power (CSP). Characteristics of Photovoltiac Cells (PVCs). It is working only by Sun's Light (Light photons) and its efficiency will decrease as the Solar Thermal Radiation will increase, i.e. as the temerature of the Solar Voltiac will increase, its output

  8. An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system

    International Nuclear Information System (INIS)

    Erdil, Erzat; Ilkan, Mustafa; Egelioglu, Fuat

    2008-01-01

    A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m 2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m 2 (i.e., 1.3x0.47 m 2 ) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive

  9. Theseus, the 50 MW solar thermal power plant; Das solarthermische 50-MW-Kraftwerk Theseus

    Energy Technology Data Exchange (ETDEWEB)

    Brakmann, G. [Fichtner GmbH und Co. KG, Stuttgart (Germany). Solarenergieprojekte

    1998-04-01

    The Isle of Crete measures 8331 km{sup 2}, and this island renowned for its historical sites attracts millions of tourists every year. Like any other branch of industry, tourism, which is called a ``white`` industry, has an ever growing demand for electric power. Up to now, electricity generation on the island is based on fossil-fuelled thermal power plants. However, recent developments indicate that this technology might be overtaken soon by the novel Theseus power plant (Thermal Solar European Power Station) currently under construction. It is expected to usher in a new era of power generation on the Isle of Crete. (orig./CB) [Deutsch] Die 8 331 km{sup 2} grosse Insel Kreta wurde vor ueber 3 500 Jahren besiedelt. Der geschichtstraechtige Ort ist ein hochgeschaetztes Reiseziel von Millionen Griechenlandurlaubern. Wie jede Art von Industrie, so benoetigt auch die als `weisse Industrie` bezeichnete Touristikbranche immer mehr elektrische Energie. Diese wird derzeit auf Kreta ausschliesslich mit thermischen Kraftwerken, welche fossile Brennstoffe verbrennen, erzeugt. Aber die Vorherrschaft dieser Technologie kann schon bald mit dem neuen solarthermischen Kraftwerk Theseus (Thermal Solar European Power Station) gebrochen werden. Es soll in wenigen Jahren eine neue Aera der Energieerzeugung auf Kreta einlaeuten. (orig.)

  10. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  11. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  12. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  13. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  14. Solar-coupled electric vehicles

    International Nuclear Information System (INIS)

    Willer, B.

    1993-01-01

    An electrical drive is an alternative to the present internal combustion engines. The electric car produces no exhaust gas where it is used and drives practically noiselessly. The energy required for driving is usually taken from an electro-chemical battery. The necessary electricity generation generates emission and CO 2 , depending on the primary energy used. An alternative is provided by electricity generation with the aid of regenerative energy. Apart from hydroelectric and wind energy, solar energy can make a considerable contribution in the future. (orig.) [de

  15. Proceedings of the General Committee for solar thermal energy 2015

    International Nuclear Information System (INIS)

    Gibert, Francois; Loyen, Richard; Khebchache, Bouzid; Cholin, Xavier; Leicher, David; Mozas, Kevin; Leclercq, Martine; Laugier, Patrick; Dias, Pedro; Kuczer, Eric; Benabdelkarim, Mohamed; Brottier, Laetitia; Soussana, Max; Cheze, David; Mugnier, Daniel; Laplagne, Valerie; Mykieta, Frederic; Ducloux, Antoine; Egret, Dominique; Noisette, Nadege; Peneau, Yvan; Seguis, Anne-Sophie; Gerard, Roland

    2017-10-01

    After an introducing contribution which discussed the difficult evolution of the solar thermal energy sector in 2015, contributions addressed development plans for SOCOL (a plan for collective solar thermal and solar heat) which aims at reviving the market and at opening new markets. A next set of contributions discussed how solar thermal energy can be at the service of energy transition. Following sessions addressed issues like innovation at the service of solar thermal energy, energetic display of solar systems and application of the Ecodesign and Labelling directives, and the reduction of carbon footprint and the energy dependence of territories

  16. Estimate of thermal fatigue lifetime for the INCONEL 625lCF plate while exposed to concentrated solar radiation

    Directory of Open Access Journals (Sweden)

    Rojas-Morín, A.

    2011-04-01

    Full Text Available A system for testing the thermal cycling of materials and components has been developed and installed at the DISTAL-I parabolic dish facility located at the Plataforma Solar de Almería (PSA in Spain. This system allows us to perform abrupt heating/cooling tests by exposing central solar receiver materials to concentrated solar radiation. These tests are performed to simulate both the normal and critical operational conditions of the central solar receiver. The thermal fatigue life for the INCONEL 625LCF® plate when subjected to concentrated solar radiation has been estimated with this system. We have also developed a numerical model that evaluates the thermal behavior of the plate material; additionally, the model yields the tensile-compressive stresses on the plate, which allow the estimation of the Stress-Life (S-N fatigue curves. These curves show that the lifetime of the plate is within the High Cycle Fatigue (HCF region at the operational temperatures of both 650 °C and 900 °C.

    En el concentrador solar de disco parabólico DISTAL-I, situado en la Plataforma Solar de Almería (PSA, en España, se ha instalado un sistema para pruebas de ciclado térmico de materiales. Este sistema permite realizar pruebas abruptas de calentamiento y enfriamiento, en materiales para receptores solares de torre central, al exponerlos a radiación solar concentrada. Estas pruebas se realizan para simular las condiciones de operación de un receptor solar, las condiciones críticas y las condiciones normales. Con este sistema se ha estimado el tiempo de vida bajo fatiga térmica, en una placa de INCONEL 626LCF®, cuando es sometida a radiación solar concentrada. Asimismo, hemos desarrollado un modelo numérico que evalúa el desarrollo térmico en el material de la placa: adicionalmente, el modelo obtiene los esfuerzos de tensión-compresión en la placa, los cuales permiten la estimaciónde las curvas de fatiga vidaesfuerzo (S-N. Estas curvas

  17. Effects of the selection of heat transfer fluid and condenser type on the performance of a solar thermal power plant with technoeconomic approach

    International Nuclear Information System (INIS)

    Yilmazoglu, M. Zeki

    2016-01-01

    Highlights: • The effects of the selection of HTF and condenser type on STPs were examined. • Levelized cost of energy (LCOE) for STP was investigated. • LCOE for STP compared with gas turbine and combined cycle. • CSP with thermal storage can be competitive technology with carbon tax/credits. - Abstract: Renewable electricity generation systems have an increasing trend in terms of usage due to aiming to decrease greenhouse gas emissions and energy source diversification strategies of countries. Parabolic trough, Fresnel, and solar tower systems have been used to generate solar thermal electricity around the world. In this study, the effects of the selection of collector heat transfer fluid (HTF) and condenser type on a concentrated solar thermal power plant were analyzed. Net power, net electrical efficiency, and economic analysis were carried out for the selected HTFs for different collector outlet temperature cases. In the case of condenser type selection four different systems were considered; water cooled, air cooled (dry air) and air cooled with water spraying (spraying before fan and spraying before and after fan). Levelized cost of energy (LCOE) and specific investment cost were calculated. According to the results, specific investment cost and LCOE were found to be 4000 USD/kW_e_l and 0.207 USD/kW h, respectively. Carbon tax/credit was also included to the calculations of LCOE and a comparison study was carried out for gas turbine, combined cycle and solar thermal power plant with thermal storage. Including carbon tax/credit to the LCOE shows that solar thermal power plant with heat storage can be competitive when compared to gas turbines.

  18. Solar thermal barometer - EurObserv'ER - May 2016

    International Nuclear Information System (INIS)

    2016-05-01

    In 2015, the European Union saw its solar thermal market contract for the seventh year in a row. EurObserv'ER puts sales of solar thermal capacity installed for the heating market (hot water and space heating) at 1861 MWth, equivalent to a 2.7 million m"2 of collectors... a further 8.6% decrease on the previous year's poor performance. Combined solar thermal capacity installed to date in the EU stands at 34.3 GWth, or 49 million m"2 of collectors

  19. THESEUS - the first utility-scale 50 MWe. THErmal Solar EUropean power Station for the island of Crete, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Cobi, A. [PreussenElektra AG, Hannover (Germany); Tzatzanis, A.

    1997-12-31

    When the European Commission`s Directorate for Energy (DG XVII) opened the second application window for THERMIE proposals under the Fourth Framework Programme on September 15, 1995, Europe`s solar thermal power community discovered a remarkable modification to the previous call for proposals. For the first time since solar thermal electricity was introduced for THERMIE demonstration projects, it now became eligible for EU financial support. Right now, the European Commission committed funding for the design and engineering phase of the THESEUS project implementation. (orig.)

  20. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  1. Solar PV electricity and market characteristics: two Canadian case-studies

    International Nuclear Information System (INIS)

    Rowlands, I.H.

    2005-01-01

    To determine whether solar electricity (that is, electricity generated by photovoltaics) is, on an average, more valuable - in market terms - than the electricity generated in power systems as a whole, this article investigates the extent to which solar resource availability in two Canadian locations is associated with peak electricity market demand and peak electricity market price. More specifically, solar radiation and electricity market data for the period 1 May 2002 to 30 April 2004 are examined for Calgary, Alta. and Guelph, Ont. A variety of visual and statistical investigations reveal that solar radiation values coincide closely with peak electricity market demand and, though to a somewhat lesser extent, peak electricity market prices during the summertime in each location. While more detailed investigation is needed in order to determine the specific impact of different levels of PV penetration upon provincial electricity markets, the article provides ample encouragement for further research. The article also shows how different techniques can be used-in any location-to investigate the relationship among solar electricity potential, system-wide demand and market prices. With electricity industries being restructured around the world, it continues to be important for solar energy proponents to participate in discussions regarding economic costs and benefits. Techniques used in this article can help them advance the solar electricity case more effectively and thus catalyse the deployment of photovoltaics in markets around the world. (author)

  2. Solar Electricity for Homes

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  3. Recipes and nutritional value of dishes prepared from green-leafy vegetables in an urban district of Antananarivo (Madagascar).

    Science.gov (United States)

    Randrianatoandro, Verohanitra Annie; Avallone, Sylvie; Picq, Christian; Ralison, Charlotte; Trèche, Serge

    2010-06-01

    The recipes of 50 multi-ingredient dishes consumed by the population in an urban district were noted down. The nutritional value was determined as well as the cook value of the dishes in order to evaluate the severity of the thermal treatment. The recipes were simple and involved steps such as boiling, mixing, and cutting. Fibre contents were rather low except when the leaf stems were included. All the dishes had very high beta-carotene content (15.8-25.0 mg/100 g dry matter) and retinol activity equivalent (RAE) (1.3-2.3 mg RAE/100 g dry matter) because of the high proportion of fresh leafy vegetables (from 41.2% to 58.8% of the total dry matter of the ingredients). When meat was added to the preparation, the micronutrient content (iron, zinc, and retinol) was not increased significantly. In three dishes, a positive correlation was found between the thermal treatment severity and the 13-cis-beta-carotene amount.

  4. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  5. Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells

    International Nuclear Information System (INIS)

    Xu, Ning; Ji, Jie; Sun, Wei; Han, Lisheng; Chen, Haifei; Jin, Zhuling

    2015-01-01

    Graphical abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, respectively. Experimental results show that direct irradiation affects the electrical performance of the system dominantly. Fitting results of electrical performance offer simple and reliable methods to analyze the system performance. - Highlights: • A point-focus Fresnel lens photovoltaic/thermal system is proposed and studied. • The system presents an instantaneous electrical efficiency of 28%. • The system has a highest instantaneous thermal efficiency of 54%. • Direct irradiation has the dominant effect on the electrical performance. • Fitting results offer simple and reliable methods to analyze system performances. - Abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, which means the overall efficiency of the system can be more than 80%. A mathematical model for calculating cell temperature is proposed to solve difficult measurement of cell temperature in a system. Moreover, characteristics of electrical performance under various direct

  6. Development of Non-Tracking Solar Thermal Technology

    Science.gov (United States)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  7. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  8. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  9. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  10. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  11. New thermal energies in France. Solar, biomass, geothermal and aero-thermal: which perspectives by 2015?

    International Nuclear Information System (INIS)

    2012-01-01

    Whereas thermal renewable energies are to become inescapable, and notably 'green heat' which is acclaimed by real estate professionals as well as by industries, their market is foreseen to grow at a rate of 6 per cent a year until 2015. This high rate is notably due to the soaring price of conventional energies like electricity, gas or oil fuel, but also to environmental constraints related to the reduction of greenhouse gas emissions. A first part proposes an overview of the French market of new sources of thermal renewable energies for a domestic use in 2011, and discusses perspectives by 2015. A detailed analysis of the three main technologies (heat pumps, thermal solar devices, wood fuelled domestic heating devices) is proposed and challenges faced by involved enterprises and possible answers provided by professionals are also detailed. A second part gathers and comments data related to thermal energy production for industrial and collective use (in collective housing and office building): energy production level, legal and regulatory framework, evolution of demand, predictions for the different energy sources (wood energy, geothermal, waste energetic valorisation). It also proposes an analysis of stakes related to these applications. The third part proposes an assessment of the size of the different sectors by presenting key economic figures (turnover, staff, etc.). While the fourth part proposes an overview of leaders for each sector (thermal solar, biomass, and heat pump) and a more detailed presentation of 14 important actors, the fifth and last part proposes a large set of financial and economic indicators of 200 involved operators

  12. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions.

    Directory of Open Access Journals (Sweden)

    Fahmi F Muhammad

    Full Text Available In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp and ideality factor (n, while thermal parameters can be defined by the cells temperature (T. A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc, open circuit voltage (Voc, fill factor (FF and efficiency (η is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance.

  13. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  15. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  16. Possibilities of electricity generation from solar and other renewable resources in Turkey

    International Nuclear Information System (INIS)

    Tasdemiroglu, E.

    1993-01-01

    The paper begins by reviewing the conventional power generation in the country. Increasing power demand due to rapid industrialization as well as the environmental consequences of power generation will be discussed. The potential of renewable energy resources including solar, biomass, wind, and wave and their role in the power generation will be pointed out. Among the strong alternatives are thermal power plants, and rural electricity production by photovoltaic and by small wind machines. Finally, the technical economic difficulties in adapting renewable electricity generation systems for the conditions of the country will be discussed. (Author) 22 refs

  17. Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria

    International Nuclear Information System (INIS)

    Boudaoud, S.; Khellaf, A.; Mohammedi, K.; Behar, O.

    2015-01-01

    Highlights: • Performance of power plant with molten salt cavity receiver is assessed. • A method has been used to optimize the plant solar multiple, capacity factor and LEC. • Comparison of the simulated results to those of PS20 has shown good agreement. • Higher fossil fuel fraction reduces the LEC and increases the capacity factor. • Highland and Sahara regions are suitable for CRS plants deployment. - Abstract: Of all Concentrating Solar Power (CSP) technologies available today, the molten salt solar power plant appears to be the most important option for providing a major share of the clean and renewable electricity needed in the future. In the present paper, a technical and economic analysis for the implementation of a probable molten salt cavity receiver thermal power plant in Algeria has been carried out. In order to do so, we have investigated the effect of solar field size, storage capacity factor, solar radiation intensity, hybridization and power plant capacity on the thermal efficiency and electricity cost of the selected plant. The system advisor model has been used to perform the technical performance and the economic assessment for different locations (coastal, highland and Sahara regions) in Algeria. Taking into account various factors, a method has been applied to optimize the solar multiple and the capacity factor of the plant, to get a trade-off between the incremental investment costs of the heliostat field and the thermal energy storage. The analysis has shown that the use of higher fossil fuel fraction significantly reduces the levelized electricity cost (LEC) and sensibly increases the capacity factor (CF). The present study indicates that hybrid molten salt solar tower power technology is very promising. The CF and the LEC have been found to be respectively of the order of 71% and 0.35 $/kW e . For solar-only power plants, these parameters are respectively about 27% and 0.63 $/kW e . Therefore, hybrid central receiver systems are

  18. Comparison of selective transmitters for solar thermal applications.

    Science.gov (United States)

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar

  19. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    Science.gov (United States)

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  20. The dish on the Solar Decathlon

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Chris

    2011-07-01

    Within only one week, 19 collegiate teams had to build their technically-advanced, solar-powered, energy-efficient houses to wow judges and the public at this year's US Department of Energy's (DOE's) Solar Decathlon. The unassembled homes began arriving at the West Potomac Park of the National Mall in Washington, DC, at 11 p.m. on September 13. From then on it was a marathon to finish construction and compete in gauntlet of 10 events to test the designs. (orig.)

  1. Thermodynamic analysis of a solar coffee maker

    International Nuclear Information System (INIS)

    Sosa-Montemayor, F.; Jaramillo, O.A.; Rio, J.A. del

    2009-01-01

    In this paper we present a novel solar concentrating application, a coffee brewing system using a satellite TV mini-Dish concentrator coupled to a stovetop espresso coffee maker. We present a theoretical model for the thermal behavior of the water in the lower chamber of the coffee maker. We validate the model obtaining good agreement with the experimental results. Our findings indicate that the coffee brewing system works, it takes 30-50 min to complete its task. The model and our practical experience encourage us to improve the concentration device in order to obtain a useful solar coffee maker, using the theoretical model as a safe guide to achieve this.

  2. Thermodynamic analysis of a solar coffee maker

    Energy Technology Data Exchange (ETDEWEB)

    Sosa-Montemayor, F.; Jaramillo, O.A. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco S/N, Temixco, Morelos CP 62580 (Mexico); del Rio, J.A. [Centro Morelense de Innovacion y Tranferencia Tecnologica, CCyTEM, Camino Temixco a Emiliano Zapata, Km 0.3, Colonia Emiliano Zapata, Morelos CP 62760 (Mexico)

    2009-09-15

    In this paper we present a novel solar concentrating application, a coffee brewing system using a satellite TV mini-Dish concentrator coupled to a stovetop espresso coffee maker. We present a theoretical model for the thermal behavior of the water in the lower chamber of the coffee maker. We validate the model obtaining good agreement with the experimental results. Our findings indicate that the coffee brewing system works, it takes 30-50 min to complete its task. The model and our practical experience encourage us to improve the concentration device in order to obtain a useful solar coffee maker, using the theoretical model as a safe guide to achieve this. (author)

  3. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Singh, Parm Pal; Singh, Sukhmeet

    2010-01-01

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  4. Analysis of solar thermophotovoltaic test data from experiments performed at McDonnell Douglas

    Energy Technology Data Exchange (ETDEWEB)

    Stone, K.W.; Kusek, S.M.; Drubka, R.E. [McDonnell Douglas, 5301 Bolsa Avenue, Huntington Beach, California 92647 (United States); Fay, T.D. [21911 Bacalar, Mission Viejo, California 92692 (United States)

    1995-01-05

    Solar thermophotovoltaic power systems offer potentially high system efficiency for solar energy to electrical energy conversion and attractive system advantages. McDonnell Douglas Corporation (MDC) has been investigating this technology for both space and terrestrial applications for several years. A testbed prototype was designed, built, and tested on a 90 kW{sub t} dish concentrator at the MDA solar test facility. Twelve experiments were conducted with absorber temperatures in excess of 1300 {degree}C being achieved using only a fraction of the reflected power from the 90 kW{sub t} dish concentrator. This paper discusses the solar thermophotovoltaic testbed prototype unit, test data, and presents an analysis of the unit`s performance. A combination of analytical analysis and test data is used to obtain an understanding of the system and subsystem performance. The preliminary results of these tests and analysis indicate a solar thermophotovoltaic power system can achieve high system performance. Furthermore, system demonstrations are possible utilizing a combination of current off-the-shelf hardware components and components currently being tested in laboratories. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles

    Science.gov (United States)

    Motohiro, Tomoyoshi; Takeda, Yasuhiko; Ito, Hiroshi; Hasegawa, Kazuo; Ikesue, Akio; Ichikawa, Tadashi; Higuchi, Kazuo; Ichiki, Akihisa; Mizuno, Shintaro; Ito, Tadashi; Yamada, Noboru; Nath Luitel, Hom; Kajino, Tsutomu; Terazawa, Hidetaka; Takimoto, Satoshi; Watanabe, Kemmei

    2017-08-01

    We have developed a compact solar-pumped laser (µSPL) employing an off-axis parabolic mirror with an aperture of 76.2 mm diameter and an yttrium aluminum garnet (YAG) ceramic rod of φ1 mm × 10 mm doped with 1% Nd and 0.1% Cr as a laser medium. The laser oscillation wavelength of 1.06 µm, just below the optical absorption edge of Si cells, is suitable for photoelectric conversion with minimal thermal loss. The concept of laser beam power feeding to an electric vehicle equipped with a photovoltaic panel on the roof was proposed by Ueda in 2010, in which the electricity generated by solar panels over the road is utilized to drive a semiconductor laser located on each traffic signal along the road. By substituting this solar-electricity-driven semiconductor laser with a solar-pumped laser, the energy loss of over 50% in converting the solar electricity to a laser beam can be eliminated. The overall feasibility of this system in an urban area such as Tokyo was investigated.

  6. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  7. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  8. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  9. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  10. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  11. New materials for thermal energy storage in concentrated solar power plants

    Science.gov (United States)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  12. Electric Motor Thermal Management R&D. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.

  13. Grid-connected solar electricity going mainstream

    International Nuclear Information System (INIS)

    MacLellan, I.

    2004-01-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market, followed by Europe

  14. Grid-connected solar electricity going mainstream

    Energy Technology Data Exchange (ETDEWEB)

    MacLellan, I. [Arise Technologies Corp., Kitchener, ON (Canada)

    2004-06-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market

  15. Performance Characterisation of a Hybrid Flat-Plate Vacuum Insulated Photovoltaic/Thermal Solar Power Module in Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Andrew Y. A. Oyieke

    2016-01-01

    Full Text Available A flat-plate Vacuum Insulated Photovoltaic and Thermal (VIPV/T system has been thermodynamically simulated and experimentally evaluated to assess the thermal and electrical performance as well as energy conversion efficiencies under a subtropical climate. A simulation model made of specified components is developed in Transient Systems (TRNSYS environment into which numerical energy balance equations are implemented. The influence of vacuum insulation on the system’s electrical and thermal yields has been evaluated using temperatures, current, voltage, and power flows over daily and annual cycles under local meteorological conditions. The results from an experiment conducted under steady-state conditions in Durban, South Africa, are compared with the simulation based on the actual daily weather data. The VIPV/T has shown improved overall and thermal efficiencies of 9.5% and 16.8%, respectively, while electrical efficiency marginally reduced by 0.02% compared to the conventional PV/T. The simulated annual overall efficiency of 29% (i.e., 18% thermal and 11% electrical has been realised, in addition to the solar fraction, overall exergy, and primary energy saving efficiencies of 39%, 29%, and 27%, respectively.

  16. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  17. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2017-05-05

    High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly but important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.

  18. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  19. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    Science.gov (United States)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  20. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  1. STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  2. Energetic, exergetic and economic analysis of an innovative Solar CombiSystem (SCS) producing thermal and electric energies: Application in residential and tertiary households

    International Nuclear Information System (INIS)

    Hazami, Majdi; Mehdaoui, Farah; Naili, Nabiha; Noro, Marco; Lazzarin, Renato; Guizani, AmenAllah

    2017-01-01

    Highlights: • The present work studies the potential of using innovative SCS in Tunisia. • In cold months the SCS provide about 50–75% of the total exergy provides. • The SCS produces between 70–150% of electric energy needs. • The SCS payback period (Pb) based on electric water heater was 10.2 years. • The SCS payback period (Pb) based on gas/gas town was about and 8.7 years. - Abstract: The endeavor of this paper is to study of the potential offered by the expenditure of an innovative Solar CombiSystem, SCS, used for the space heating load, the domestic hot water supply and the electric energy production. The investigation achieved in this work was based on an experimental and a simulation studies. A TRNSYS simulation program was achieved in order to evaluate the SCS monthly/annual thermal and electric performances. It was found that the proposed SCS covered between 20 and 45% of the SH energy needs by considering only solar energy. The result shows also that the SCS provided from 40 to 70% of the total DHW needs. It was also found that the SCS electric production ranged between 32 and 225 MJ/m 2 with a gain factor varying between 49 and 125%. An economic appraisal was also achieved to appraise the SCS feasibility. The results of the economic analysis show that the annual energy saved (ARE) and the payback period (Pb) based on electric water heater were respectively equal to 7618.3 kW h/year and 10.2 years. It was found that ARE and Pb based on gas/gas town were about 5825 m 3 and 8.7 years, respectively. The results of the economic analysis shows that the adoption of the SCS saves about 48% of electric energy and about 46% of gas/gas town kept back by the conventional system.

  3. Lower electricity prices and greenhouse gas emissions due to rooftop solar: empirical results for Massachusetts

    International Nuclear Information System (INIS)

    Kaufmann, Robert K.; Vaid, Devina

    2016-01-01

    Monthly and hourly correlations among photovoltaic (PV) capacity utilization, electricity prices, electricity consumption, and the thermal efficiency of power plants in Massachusetts reduce electricity prices and carbon emissions beyond average calculations. PV utilization rates are highest when the thermal efficiencies of natural gas fired power plants are lowest, which reduces emissions of CO 2 and CH 4 by 0.3% relative to the annual average emission rate. There is a positive correlation between PV utilization rates and electricity prices, which raises the implied price of PV electricity by up to 10% relative to the annual average price, such that the average MWh reduces electricity prices by $0.26–$1.86 per MWh. These price reductions save Massachusetts rate-payers $184 million between 2010 and 2012. The current and net present values of these savings are greater than the cost of solar renewable energy credits which is the policy instrument that is used to accelerate the installation of PV capacity. Together, these results suggest that rooftop PV is an economically viable source of power in Massachusetts even though it has not reached socket parity. - Highlights: •Implied price of PV up to 10% greater than the annual average price. •PV saves Massachusetts rate-payers $184 million in 2010–2012. •Annual savings are greater than the cost of solar renewable energy credits. •Savings rise longer lifetime of PV systems and pay period for SREC's shortened. •PV reduces emissions of CO 2 and CH 4 by 0.3% relative to the annual average.

  4. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  5. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  6. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  7. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  8. Thermal management approaches of Cu(In x ,Ga1-x )Se2 micro-solar cells

    Science.gov (United States)

    Sancho-Martínez, Diego; Schmid, Martina

    2017-11-01

    Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga1-x )Se2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement.

  9. Facet development for a faceted stretched-membrane dish by Solar Kinetics, Inc

    Energy Technology Data Exchange (ETDEWEB)

    Schertz, P.T.; Brown, D.C.; Konnerth, A. III (Solar Kinetics, Inc., Dallas, TX (United States))

    1991-07-01

    A 3.6-meter diameter stretched-membrane optical facet for a parabolic dish has been successfully designed and demonstrated under contract with Sandia National Laboratories. Twelve facets identical to them will be used to make the lightweight reflector of the dish. The project goal of 2.5-mrad surface accuracy was met with each of the two full-sized prototypes, and accuracies of as low as 1.1 mrad were achieved. The facet weight is 11.7 kg/m{sup 2} (2.4lbs/ft{sup 2}). The facet is similar in construction to the successful stretched-membrane heliostat; it has two thin metal membranes attached to a ring. However, the front membrane for this facet is plastically formed at the factor in order to achieve a shorter facet f/D (approximately 3.0). A passive tether restrains the from membrane when not in operation, that is, when the stabilizing vacuum is off. The optical surface is achieved with a silvered-acrylic film laminated to the metal membrane. The facet is expected to cost $55.40/m{sup 2} at a production rate of 10,000 facets per year and $115, 000/m{sup 2}-at a production rate of 500 facets a year. Several key issues have been resolved. Stress concentrations due to seams in the reflective laminate did not cause membrane rupture during forming as they have for dishes with lower focal length-to-diameter ratios. The laminate survived the forming process and simulated operation without deterioration. The optical effect of the tether on the membrane was tested and found to be very small. Most important, highly accurate shapes were obtained using a simple forming procedure. Additional tests are needed to demonstrate process repeatablility and facet performance in typical operating conditions. 18 refs., 36 figs., 11 tabs.

  10. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region. A case study for the island of Cyprus

    International Nuclear Information System (INIS)

    Poullikkas, Andreas

    2009-01-01

    In this work a feasibility study is carried out in order to investigate whether the installation of a parabolic trough solar thermal technology for power generation in the Mediterranean region is economically feasible. The case study takes into account the available solar potential for Cyprus, as well as all available data concerning current renewable energy sources policy of the Cyprus Government, including the relevant feed-in tariff. In order to identify the least cost feasible option for the installation of the parabolic trough solar thermal plant a parametric cost-benefit analysis is carried out by varying parameters, such as, parabolic trough solar thermal plant capacity, parabolic trough solar thermal capital investment, operating hours, carbon dioxide emission trading system price, etc. For all above cases the electricity unit cost or benefit before tax, as well as after tax cash flow, net present value, internal rate of return and payback period are calculated. The results indicate that under certain conditions such projects can be profitable. (author)

  11. Thermal efficiency of low cost solar collectors - CSBC; Eficiencia termica de coletores solares de baixo custo - CSBC

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Renato C.; Shiota, Robson T.; Mello, Samuel F.; Assis Junior, Valdir; Bartoli, Julio R. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica. Dept. de Tecnologia de Polimeros

    2006-07-01

    The thermal performance of a low cost flat panel solar collector was measured. This Low Cost Solar Collector is a novel concept for water heating using only thermoplastics materials, used on building: ceiling and tubes made of unplasticized PVC, but without transparent cover. The top side of the UPVC panel was black painted to be the solar radiation absorber surface. Prototypes were installed on two charity houses around Campinas and at the FEQ campus, being used without any trouble for one year. The thermal efficiency analysis followed ABNT NBR 10184 standard at the Green-Solar Laboratory, Brazilian Centre for Development of Solar Thermal Energy, PUC-Minas. It was measured a thermal efficiency of 67%, compared to the 75% usually found on conventional solar collectors made of copper tubes and with glass cover. (author)

  12. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2011-01-01

    The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output. -- Highlights: → Optimum geometries exist such that the system produces maximum net power output. → Optimum operating conditions are shown. → Minimum irreversibility rates and minimum entropy generation rates are shown. → Net power output was described in terms of total entropy generation rate. → Effects such as wind, recuperator height and irradiance were investigated.

  13. Comparing the sustainability impacts of solar thermal and natural gas combined cycle for electricity production in Mexico: Accounting for decision makers' priorities

    Science.gov (United States)

    Rodríguez-Serrano, Irene; Caldés, Natalia; Oltra, Christian; Sala, Roser

    2017-06-01

    The aim of this paper is to conduct a comprehensive sustainability assessment of the electricity generation with two alternative electricity generation technologies by estimating its economic, environmental and social impacts through the "Framework for Integrated Sustainability Assessment" (FISA). Based on a Multiregional Input Output (MRIO) model linked to a social risk database (Social Hotspot Database), the framework accounts for up to fifteen impacts across the three sustainability pillars along the supply chain of the electricity production from Solar Thermal Electricity (STE) and Natural Gas Combined Cycle (NGCC) technologies in Mexico. Except for value creation, results show larger negative impacts for NGCC, particularly in the environmental pillar. Next, these impacts are transformed into "Aggregated Sustainability Endpoints" (ASE points) as a way to support the decision making in selecting the best sustainable project. ASE points obtained are later compared to the resulting points weighted by the reported priorities of Mexican decision makers in the energy sector obtained from a questionnaire survey. The comparison shows that NGCC achieves a 1.94 times worse negative score than STE, but after incorporating decision makerś priorities, the ratio increases to 2.06 due to the relevance given to environmental impacts such as photochemical oxidants formation and climate change potential, as well as social risks like human rights risks.

  14. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  15. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    Science.gov (United States)

    Seyf, Hamid Reza; Henry, Asegun

    2017-01-01

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  16. Standard Practice for Solar Simulation for Thermal Balance Testing of Spacecraft

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1973-01-01

    1.1 Purpose: 1.1.1 The primary purpose of this practice is to provide guidance for making adequate thermal balance tests of spacecraft and components where solar simulation has been determined to be the applicable method. Careful adherence to this practice should ensure the adequate simulation of the radiation environment of space for thermal tests of space vehicles. 1.1.2 A corollary purpose is to provide the proper test environment for systems-integration tests of space vehicles. An accurate space-simulation test for thermal balance generally will provide a good environment for operating all electrical and mechanical systems in their various mission modes to determine interferences within the complete system. Although adherence to this practice will provide the correct thermal environment for this type of test, there is no discussion of the extensive electronic equipment and procedures required to support systems-integration testing. 1.2 Nonapplicability—This practice does not apply to or provide inco...

  17. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...

  18. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  19. Recommendations for the market introduction of solar thermal power stations

    International Nuclear Information System (INIS)

    Trieb, F.; Nitsch, J.

    1998-01-01

    Until 2010, solar thermal power stations based on parabolic trough concentrating collectors can become a competitive option on the world's electricity market, if the market extension of this mature technology is supported by a concerted, long-term programme capable of bundling the forces of industry, finance, insurance and politics. Technical improvements based on the experience of over ten years of successful operation, series production and economies of scale will lead to a further cost reduction of 50% and to electricity costs of 0.06 - 0.04 US$/kWh for hybrid steam cycles and hybrid combined cycles, respectively. Until 2010, a capacity of 7 GW will be installed, avoiding 16 million tons of carbon dioxide per year. The programme comprises an investment of 16 billion US$ and requires external funding of 6%. (author)

  20. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    Science.gov (United States)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  1. Solar thermal heating and cooling. A bibliography with abstracts

    Science.gov (United States)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  2. Semi-transparent solar energy thermal storage device

    Science.gov (United States)

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  3. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Subasri, R., E-mail: subasri@arci.res.in; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO{sub 2} as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes.

  4. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    International Nuclear Information System (INIS)

    Subasri, R.; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO_2 as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coating • Thermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes

  5. AN APPLICATION FOR ELECTRICAL PRODUCTION WITH SOLAR TOWER SYSTEM

    Directory of Open Access Journals (Sweden)

    Reşat SELBAŞ

    2003-02-01

    Full Text Available The requirement of electric energy rises with increasing of the population and faster improvement demands. Energy necessity generally is provided by using fossil based fuel sources. In order to supply energy requirements, today, using alternative sources became necessary because of the problems such as decreasing of available fossil fuel sources and environment pollution from this fuel. The solar energy which has a wide range of application potential is the most hopeful and unlimited energy source without environment pollution in electric energy production. In this paper, the electric production methods from solar energy are studied and the most suitable method for solar energy plant is tried to find out. The selected method, known as Solar Tower in literature is an electric production method. In this study, technical and cost analysis of an application using this method are carried out.

  6. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  7. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  8. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2005-02-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system: (1) Performance specifications were developed for the tracking subsystem and collector optics, (2) Thermal management experiments for the fiber optic bundle entrance region, and (3) Bioreactor testing, cost-modeling, and redesign. Much of the planned work has been slowed due to significant procurement delays of the primary mirror. However, taken as a whole, they do confirm progress towards the technical feasibility and commercial viability of this technology. Due to this procurement delay, a no-cost extension of the project completion date has been requested and approved.

  9. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    Science.gov (United States)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  10. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  11. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  12. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  13. Cheap effective thermal solar-energy collectors

    Energy Technology Data Exchange (ETDEWEB)

    Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy

    1996-04-01

    A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)

  14. Location Study of Solar Thermal Power Plant in the State of Pernambuco Using Geoprocessing Technologies and Multiple-Criteria Analysis

    Directory of Open Access Journals (Sweden)

    Verônica Wilma B. Azevêdo

    2017-07-01

    Full Text Available Solar Thermal Technology for the generation of electricity in large scale has been a reality in the world since the 1980s, when the first large-sized solar plants in the United States were introduced. Brazil presents great potential for the development of large-scale projects, although it is noted that the main barriers for the insertion of this technology in Brazilian market are the lack of incentives and goals and associated costs. In a way to contribute to the insertion of solar thermal technology in Brazil, this paper presents a macro-spatial approach, based on the use of Multiple-Criteria Decision Analysis and Geoprocessing, for the location of solar thermal power plants. The applied methodology for Pernambuco, located in the Northeast Region of Brazil, considered the implantation of parabolic trough solar power plant of 80 MW, operating only in solar mode, without heat storage. Based on performed analysis, it was confirmed that Pernambuco presents great potential for the installation of solar power plants, especially in the backlands of Pernambuco. Performed validations in the model demonstrate that the methodology attended the objective once the consistence between the assigned weights to the thematic layers, individually, and the final Map of site suitability were evidenced.

  15. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  16. Evaluation of thermal and photovoltaic solar systems in agricultural production units, Northern Huetar Region, Costa Rica

    Directory of Open Access Journals (Sweden)

    Tomás de Jesús Guzmán Hernández

    2017-09-01

    Full Text Available The dependence on fossil fuels urges society to seek for clean energy alternatives, in order to mitigate the effects of climate change. The objective of this study was to determine the potential of solar energy used for water heating and electricity generation. The study was conducted at the dairy of the Technology Institute of Costa Rica, San Carlos Headquarter, from May 15 to April 2016. The data related to the amount of the electricity produced and the temperature reached by water was obtained from the installed photovoltaic and thermal systems, the data was recorded by a computerized register. The obtained information about electricity production allowed researchers to calculate the amount of carbon dioxide equivalent that was not emitted into the atmosphere, and also the acquired economic saving on consumption. The use of these systems allowed the production unit have a self- sufficient source of electrical energy percentage, actually around 30 to 40% of the total electrical consumption. According to the energy production, the solar thermal system was capable to increase water temperature between 20 to 37 °C, temperature that represents more than 70% of the energy needed in order to reach the required water temperature (70 °C for cleaning and sanitizing the milking equipment, and also an economical saving around $90 per month was achieved. The results showed that these systems allow to improve the economical and productive efficiency of agricultural production units in the Northern Huetar Region of Costa Rica.

  17. What’s Political about Solar Electric Technology? The User’s Perspective

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2015-11-01

    Full Text Available Scholars in science and technology studies have debated the various ways in which technologies are (or are not political. Here, I examine how users themselves understand and articulate the politics of a specific technology—residential solar electric technology—and how understandings of politics interact with motivations to adopt. Based on interviews with 48 individuals in 36 households across the state of Wisconsin who have adopted residential solar electric technology, I consider the user’s perspective on the question: “What’s political about residential solar electric technology use?” These users were asked about the politics of this technology and how their understanding of the technology’s politics shaped their own motivation for adoption. These solar electric technology adopters saw solar electric technology as both imbued with political character based on the current national political scene and as inherently, innately political. They described how solar electric technology interacts with the politics of environmentalism, challenges “politics-as-usual” and can bring about decentralization and redistribution of wealth. In short, to the users of solar electric technology, this technological artifact is, indeed, political; it both interacts with, and offers an alternative to, current American political structures. Further, their perspectives on the politics of solar technology shaped their understandings of motivations for and limitations to adoption of this alternative technology.

  18. Interreg IIIA SR - AT project SOLARSTRAT. Results of the interviews with experts on solar-thermal energy utilization. Possibilities of support to thermal-solar systems installation

    International Nuclear Information System (INIS)

    Ilias, I.

    2005-01-01

    In this presentation author presented the results of collecting of important data for solar-thermal market scenario modelling through interviews with Slovak stakeholders. Interviews with Slovak experts on thermal-solar energy utilisation represents important project activity in order to give a general review of current status of the market in target Bratislava region and to collect important data for next market analyses, which will be prepared by Austrian partner - IFAST. The results of face-to-face interviews and filled questionnaires can be generally presented as follows: - public attitude towards the renewable energy sources and solar energy utilisation is slowly getting better in Slovakia; - evaluating public awareness only 15% share of population is able to consider the possibilities of thermal-solar technologies; - expected increase of fossil fuels and energy prices will help to spread of thermal-solar systems through shorten the pay-back period of investment while prices of thermal-solar systems will increase only slightly; - also expected increase of political and economic public awareness about energy production and demand on thermal-solar systems will help to promote the further development of solar energy utilisation in Slovakia. Respondents were also evaluating the main barriers for better solar energy utilisation: (1) Weak public awareness, no systematic information campaign (examples from real life); (2) Missing support to installation for physical persons, no tax allowances; (3) High investment costs; (4) Unfriendly legislation. Other important barriers for better development of the sector were presented. E.g. assembling companies cannot afford effective promotion, only big producers are able to fund the marketing on their products, which are mainly expensive systems. Public is still considering solar systems as too expensive ('I can't afford it'). Renewable energy sources (RES) are often presented as the alternative to nuclear energy - this

  19. Interreg IIIA SR - AT project SOLARSTRAT. Results of the interviews with experts on solar-thermal energy utilization. Possibilities of support to thermal-solar systems installation

    International Nuclear Information System (INIS)

    Ilias, I.

    2005-01-01

    In this presentation author presented the results of collecting of important data for solar-thermal market scenario modelling through interviews with Slovak stakeholders. Interviews with Slovak experts on thermal-solar energy utilisation represents important project activity in order to give a general review of current status of the market in target Bratislava region and to collect important data for next market analyses, which will be prepared by Austrian partner - IFAST. The results of face-to-face interviews and filled questionnaires can be generally presented as follows: - public attitude towards the renewable energy sources and solar energy utilisation is slowly getting better in Slovakia; - evaluating public awareness only 15% share of population is able to consider the possibilities of thermal-solar technologies; - expected increase of fossil fuels and energy prices will help to spread of thermal-solar systems through shorten the pay-back period of investment while prices of thermal-solar systems will increase only slightly; - also expected increase of political and economic public awareness about energy production and demand on thermal-solar systems will help to promote the further development of solar energy utilisation in Slovakia. Respondent were also evaluating the main barriers for better solar energy utilisation: (1) Weak public awareness, no systematic information campaign (examples from real life); (2) Missing support to installation for physical persons, no tax allowances; (3) High investment costs; (4) Unfriendly legislation Other important barriers for better development of the sector were presented. E.g. assembling companies cannot afford effective promotion, only big producers are able to fund the marketing on their products, which are mainly expensive systems. Public is still considering solar systems as too expensive ('I can't afford it'). Renewable energy sources (RES) are often presented as the alternative to nuclear energy - this argument

  20. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  1. Market prices for solar electricity in Ontario

    International Nuclear Information System (INIS)

    Rowlands, I.H.

    2006-01-01

    The Ontario electricity supply is facing considerable challenges while demand is increasing due to a growing population and increased economic growth needs. In response to these challenges, the government of Ontario established the Ontario Power Authority (OPA) in 2004 to ensure adequate, reliable and secure electricity supply and resources in Ontario. The OPA has also engaged in activities to facilitate the diversification of sources of electricity supply by promoting the use of cleaner energy sources and technologies, including alternative energy sources and renewable energy. The purpose of this paper was to advance discussions regarding the contribution that solar PV can make to Ontario's supply mix. In particular, it determined the value of the electricity that would have been produced by a PV system located in Waterloo, Ontario under the following 4 pricing regimes: (1) the conventional small user tariff system currently in place in Ontario, (2) the time-of-use pricing system that is voluntarily available to those who have smart meters installed in their facilities, (3) the spot market, hourly prices, to which some of Ontario's largest electricity users are exposed, and (4) the recently-proposed rate for standard offer contracts for PV systems. The study showed that a solar PV system that produces 3,000 kWh of electricity over the course of a year would generate different revenue amounts, ranging from the smallest amount of approximately $174.00 to $1,260.00, depending on the pricing regime. The pricing regime that reflects real, time-of-day electricity prices appears to be most advantageous to solar PV systems. It was recommended that additional work is needed regarding the other benefits of solar PV, such as avoided capacity/generation needs, avoided transmission and distribution cost and losses, environmental benefits, and job creation. 3 refs., 4 tabs., 8 figs

  2. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  3. Robust optimization of a tandem grating solar thermal absorber

    Science.gov (United States)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  4. Solar electricity in Africa: a reality

    International Nuclear Information System (INIS)

    Plas van der, R.J.; Hankins, M.

    1998-01-01

    This work is based on a random sample survey of 410 solar electricity systems in eight districts in Kenya. Actual technical performance and the perception of the users were analyzed with a view to determine how real the option of solar electricity is, and what needs to be done to facilitate it further. The survey was carried out by Energy Alternatives Africa, a Kenyan NGO, and financed under the ESMAP 1 program of the World Bank. The article expresses the opinions of the authors and not of their institutions; The authors are solely responsible for the contents. (Author)

  5. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  6. Thermal management approaches of Cu(Inx, Ga1−x)Se2 micro-solar cells

    International Nuclear Information System (INIS)

    Sancho-Martínez, Diego; Schmid, Martina

    2017-01-01

    Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga 1−x )Se 2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (<10×) to medium (10  ×  to 100×) flux density distributions is the key point of high concentration studies for macro- and micro-sized solar cells (from 1 µ m 2 to 1 mm 2 ). To study this thermal process and to optimize it, critical parameters must be taken in account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement. (paper)

  7. Primary Beam and Dish Surface Characterization at the Allen Telescope Array by Radio Holography

    Science.gov (United States)

    Harp, G. R.; Ackermann, R. F.; Nadler, Z. J.; Blair, Samantha K.; Davis, M. M.; Wright, M. C. H.; Forster, J. R.; Deboer, D. R.; Welch, W. J.; Atkinson, Shannon; Backer, D. C.; Backus, P. R.; Barott, William; Bauermeister, Amber; Blitz, Leo; Bock, D. C.-J.; Bower, Geoffrey C.; Bradford, Tucker; Cheng, Calvin; Croft, Steve; Dexter, Matt; Dreher, John; Engargiola, Greg; Fields, E. D.; Heiles, Carl; Helfer, Tamara; Jordan, Jane; Jorgensen, Susan; Kilsdonk, Tom; Gutierrez-Kraybill, Colby; Keating, Garrett; Law, Casey; Lugten, John; MacMahon, D. H. E.; McMahon, Peter; Milgrome, Oren; Siemion, Andrew; Smolek, Ken; Thornton, Douglas; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Tarter, J. C.; Urry, Lynn; Werthimer, Dan; Williams, Peter K. G.; Whysong, David

    2011-06-01

    The Allen Telescope Array (ATA) is a cm-wave interferometer in California, comprising 42 antenna elements with 6-m diameter dishes. We characterize the antenna optical accuracy using two-antenna interferometry and radio holography. The distortion of each telescope relative to the average is small, with RMS differences of 1% of beam peak value. Holography provides images of dish illumination, characterizing as-built mirror surfaces. Maximal distortions across ~ 2 meter lengths appear to result from mounting stresses or solar radiation. Experimental RMS errors are 0.7 mm at night and 3 mm under worst-case solar illumination. For frequencies 4, 10, and 15 GHz, the nighttime values indicate sensitivity losses of 1, 10 and 20%, respectively. ATA's wide-bandwidth receiver permits observations over a continuous range 0.5-11.2 GHz. We probe the antenna optical gain and beam pattern stability as a function of focus position and observation frequency, concluding that ATA can produce high fidelity images over a decade of simultaneous observation frequencies. We quantify solar heating effects on antenna sensitivity and pointing accuracy. We find that during the day, observations >=5 GHz will suffer some sensitivity loss and it may be necessary to make antenna pointing corrections on a 1-2 hourly basis.

  8. Modeling the thermal absorption factor of photovoltaic/thermal combi-panels

    NARCIS (Netherlands)

    Santbergen, R.; Zolingen, van R.J.C.

    2006-01-01

    In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the

  9. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  10. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    Science.gov (United States)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  11. United States Department of Energy solar receiver technology development

    Science.gov (United States)

    Klimas, P. C.; Diver, R. B.; Chavez, J. M.

    The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.

  12. Solar thermal barometer. More than 2 million m2 installed in 2005

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    With 22,8% growth, the european union solar thermal market (glazed, vacuum and unglazed collectors) has passed the 2 million m 2 benchmark corresponding to installed capacity of approximately 1450 MWth. This growth can be explained by the very good performance of the three leading EU solar thermal markets: Germany, Austria and Greece and the increase in importance of the French and Spanish markets. Statistical data are provided for the european union on the annually installed surfaces, breakdown by technologies of the solar thermal market, the solar thermal capacity in operation, the representative companies of the thermal solar sector and a comparison of current trend with the white book objectives. (A.L.B.)

  13. Thermal burn and electrical injuries among electric utility workers, 1995-2004.

    Science.gov (United States)

    Fordyce, Tiffani A; Kelsh, Michael; Lu, Elizabeth T; Sahl, Jack D; Yager, Janice W

    2007-03-01

    This study describes the occurrence of work-related injuries from thermal-, electrical- and chemical-burns among electric utility workers. We describe injury trends by occupation, body part injured, age, sex, and circumstances surrounding the injury. This analysis includes all thermal, electric, and chemical injuries included in the Electric Power Research Institute (EPRI) Occupational Health and Safety Database (OHSD). There were a total of 872 thermal burn and electric shock injuries representing 3.7% of all injuries, but accounting for nearly 13% of all medical claim costs, second only to the medical costs associated with sprain- and strain-related injuries (38% of all injuries). The majority of burns involved less than 1 day off of work. The head, hands, and other upper extremities were the body parts most frequently injured by burns or electric shocks. For this industry, electric-related burns accounted for the largest percentage of burn injuries, 399 injuries (45.8%), followed by thermal/heat burns, 345 injuries (39.6%), and chemical burns, 51 injuries (5.8%). These injuries also represented a disproportionate number of fatalities; of the 24 deaths recorded in the database, contact with electric current or with temperature extremes was the source of seven of the fatalities. High-risk occupations included welders, line workers, electricians, meter readers, mechanics, maintenance workers, and plant and equipment operators.

  14. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2012

    International Nuclear Information System (INIS)

    2012-05-01

    27545 MWth: the EU's solar thermal base to date at the end of 2011. After two years of sharp decline, the European solar thermal market is bottoming out. The EurObserv'ER survey findings are that the installation figure fell just 1.9% in comparison with 2010, giving a newly-installed collector area of 3.7 million m 2 . The concentrated solar power sector has been forging ahead alongside the heat production applications, and at the end of 2011 installed capacity passed the one gigawatt mark in Spain for the first time with 1157.2 MWe

  15. Solar Energy in the Nineteen Eighties

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    Solar energy is abundant inexhaustible and nonpolluting. Its utilization does not affect the climate, and it does not lend itself to military applications. The solar-thermal, solar-electric and solar-chemical options are available. The production of low-temperature heat for warm water and for space heating, of enormous importance in the energy budget, is economic already now in many situations. Technical progress is still considerable. With the further rise in fuel prices the application will increase dramatically. Use of solar heat for large-scale generation of electricity, i.e. of power on the basis of the solar-thermal option, should be approached cautiously. Possibilities include the tower concept and ocean thermal-electric conversion (OTEC). Investment would be large, and the technology hard. Better long-term chances may be given, for decentralized application in developing countries, to the farm concept. In contrast, the chances for cheap small-scale, and later large-scale, use of solar semiconductor cells (solar-electric option) are most favourable. Technical progress is rapid, and prices drop precipitously. For the production of fuel, the solar-chemical option is in the foreground. Gaseous, liquid and convenient solid fuels can be obtained from biomass, especially by fermentation. At the moment, biogenic wastes are already available in relatively large amounts. Subsequently, energy farming is to be introduced. Biomass converted to hydrogen can be employed for production of electricity by means of fuel cells. In the more distant future, hydrogen is to be made abiotically by photolysis of water, and is to be introduced into a hydrogen economy. Probably the technology will be based on the application of synthetic membranes. It is possible that regenerative solar energy in all its forms can in the end replace all existing energy used by man. This substitution will s however, be a gradual process. (author)

  16. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  17. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  18. Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

  19. Dysphagia due to diffuseidiopathic skeletal hyperostosis (DISH ...

    African Journals Online (AJOL)

    Diffuse idiopathic skeletal hyperostosis (DISH) or Forestier's disease isa form of degenerative arthritiswith unique spinal and extra spinal manifestations. Dysphagia due to DISH is uncommon but when present DISH should be suspected. Surgical decompression can relieve some of the symptoms. We report a case of a 60 ...

  20. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-12-01

    system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

  1. PV solar electricity: status and future

    Science.gov (United States)

    Hoffmann, Winfried

    2006-04-01

    Within the four main market segments of PV solar electricity there are already three areas competitive today. These are off-grid industrial and rural as well as consumer applications. The overall growth within the past 8 years was almost 40 % p.a. with a "normal" growth of about 18 % p.a. for the first three market segments whereas the grid connected market increased with an astonishing 63 % p.a. The different growth rates catapulted the contribution of grid connected systems in relation to the total market from about one quarter 6 years ago towards more than three quarters today. The reason for this development is basically due to industry-politically induced market support programs in the aforementioned countries. It is quite important to outline under which boundary conditions grid connected systems will be competitive without support programs like the feed in tariff system in Germany, Spain and some more to come in Europe as well as investment subsidies in Japan, US and some other countries. It will be shown that in a more and more liberalized utility market worldwide electricity produced by PV solar electricity systems will be able to compete with their generating cost against peak power prices from utilities. The point of time for this competitiveness is mainly determined by the following facts: 1. Price decrease for PV solar electricity systems leading to an equivalent decrease in the generated cost for PV produced kWh. 2. Development of a truly liberalized electricity market. 3. Degree of irradiation between times of peak power demand and delivery of PV electricity. The first topic is discussed using price experience curves. Some explanations will be given to correlate the qualitative number of 20 % price decrease for doubling cumulative worldwide sales derived from the historic price experience curve with a more quantitative analysis based on our EPIA-Roadmap (productivity increase and ongoing improvements for existing technologies as well as development

  2. Solar thermal central receivers

    International Nuclear Information System (INIS)

    Vant-Hull, L.L.

    1993-01-01

    Market issues, environmental impact, and technology issues related to the Solar Central Receiver concept are addressed. The rationale for selection of the preferred configuration and working fluid are presented as the result of a joint utility-industry analysis. A $30 million conversion of Solar One to an external molten salt receiver would provide the intermediate step to a commercial demonstration plant. The first plant in this series could produce electricity at 11.2 cents/kWhr and the seventh at 8.2 cents/kWhr, completely competitive with projected costs of new utility plants in 1992

  3. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  4. Numerical and Experimental Study on Energy Performance of Photovoltaic-Heat Pipe Solar Collector in Northern China

    Directory of Open Access Journals (Sweden)

    Hongbing Chen

    2015-01-01

    Full Text Available Several studies have found that the decrease of photovoltaic (PV cell temperature would increase the solar-to-electricity conversion efficiency. Water type PV/thermal (PV/T system was a good choice but it could become freezing in cold areas of Northern China. This paper proposed a simple combination of common-used PV panel and heat pipe, called PV-heat pipe (PV-HP solar collector, for both electrical and thermal energy generation. A simplified one-dimensional steady state model was developed to study the electrical and thermal performance of the PV-HP solar collector under different solar radiations, water flow rates, and water temperatures at the inlet of manifold. A testing rig was conducted to verify the model and the testing data matched very well with the simulation values. The results indicated that the thermal efficiency could be minus in the afternoon. The thermal and electrical efficiencies decreased linearly as the inlet water temperature and water flow rate increased. The thermal efficiency increased while the electrical efficiency decreased linearly as the solar radiation increased.

  5. Solar Electric Propulsion Technology Development for Electric Propulsion

    Science.gov (United States)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  6. Myo-inositol based nano-PCM for solar thermal energy storage

    International Nuclear Information System (INIS)

    Singh, D.K.; Suresh, S.; Singh, H.; Rose, B.A.J.; Tassou, S.; Anantharaman, N.

    2017-01-01

    Highlights: • Properties of Myo-Inositol laden with Al_2O_3 and CuO nanoparticles was studied. • The melting point was found to increase for MI-A and decrease for MI-C. • MI interacted only physically on addition of NPs. • Mass changes were <3% after thermal cycling of MI-A and MI-C. • MI-A is more suited for thermal energy storage than MI-C. - Abstract: The thermo-physical behavior of Myo-Inositol (MI), (a sugar alcohol), was investigated as a potential material for developing more compact solar thermal energy storage systems than those currently available. This latent heat storage medium could be utilized for commercial and industrial applications using solar thermal energy storage in the temperature range of 160–260 °C, if its thermal performance was modified. The objective of this investigation was to determine via experimentation, if Al_2O_3 and CuO nanoparticles dispersed in pure MI for mixtures of 1, 2 and 3% (by weight) improved the thermal performance of MI for solar thermal energy systems. Nanoparticles only physically interacted with MI, and not chemically, even after 50 thermal cycles. The distribution of CuO nanoparticles in the nano-PCM was found to be more uniform than alumina nanoparticles. After cycling, nano-MIs studied here suffered a lower decrease in heat of fusion than pure MI, which makes nano-MIs more suitable for solar thermal storage applications at 160–260 °C. Between CuO and Al_2O_3 nanoparticles, latter was found to be more suitable for compact solar thermal energy storage owing to an increase in melting point observed.

  7. Solar thermal power stations for activities implemented jointly. The Theseus 50 MWe solar thermal power plant for the island of Crete, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Brakmann, Georg [Fichtner, Stuttgart (Germany); Aringhoff, Rainer [Pilkington Solar International (United Kingdom); Cobi, Arend [PreussenElektra (Germany)

    1998-09-01

    THESEUS, the proposed commercial 50 MWe (net) Thermal Solar European Power Station for the Island of Crete is a solar hybrid plant with parabolic trough collectors and an advanced high efficiency Rankine reheat steam cycle. At the end of 1996 the DG XVII (Energy) of the European Commission has accepted the THERMIE application of the THESEUS consortium for the design phase. THESEUS reduces the required oil imports by 28 000 t/a, thereby saving the Greek economy every year 4 million ECU in foreign currency. During its 25 years technical lifetime 2.2 million tons of CO{sub 2} emissions will be avoided. Supply, construction, erection and operation of THESEUS creates 2 000 qualified employments (man-years). Because of the high manpower intensity of solar plants and their larger capital income from interest payments in contrast to the high fuel import intensity of fossil plants, THESEUS will generate larger tax revenues for Greece and for the supplier`s countries. The investment cost of THESEUS is some 135 million ECU. Even without any subsidies this would result in electricity generation cost of some 0.085 ECY/kWh, which is lower than the current average cost from the existing power plants of Crete. (author)

  8. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  9. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  10. Economic policy and renewable energy

    International Nuclear Information System (INIS)

    Klaiss, H.

    1993-01-01

    The paper summarizes the economical conclusions of the 6th Symposium on Solar Thermal Concentrating Technologies which take place at Mojacar (Almeria). Parabolic throughs, Central Receiver Systems, dish stirling and Solar chimneys will commercial utilization by the year 2000. Levalized Energy Cost (Solar) is still higher than conventional (coal). Only the utilization of environmental parameters like ''CO2 avoided'' may contribute to market penetration. Concerning siting, it becomes clear that only those countries below 40 degree latitude, (Madrid, Nepal, Ankara) are acceptable. A desregulation of the electrical market is necessary for solar penetration, mainly in developing countries

  11. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Mustamin [Department of Architecture, Khairun University, Ternate (Indonesia); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Yoshino, Jun; Yasuda, Takashi [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan)

    2012-07-01

    This study was undertaken to analyze solar radiation abundance to ascertain the potential of solar energy as an electrical energy resource. Local weather forecasting for predicting solar radiation is performed using a meteorological model MM5. The prediction results are compared with observed results obtained from the Japan Meteorological Agency for verification of the data accuracy. Results show that local weather forecasting has high accuracy. Prediction of solar radiation is similar with observation results. Monthly average values of solar radiation are sufficiently good during March–September. Electrical energy generated by photovoltaic cells is almost proportional to the solar radiation amount. Effects of clouds on solar radiation can be removed by monthly averaging. The balance between supply and demand of electricity can be estimated using a standard curve obtained from the temporal average. When the amount of solar radiation every hour with average of more than 100 km radius area does not yield the standard curve, we can estimate the system of storage and auxiliary power necessary based on the evaluated results of imbalance between supply and demand.

  12. Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ney, E.J.

    1979-07-01

    A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

  13. Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires

    International Nuclear Information System (INIS)

    Wang, Zhangyuan; Qiu, Feng; Yang, Wansheng; Zhao, Xudong; Mei, Sheng

    2016-01-01

    Highlights: • Proposing a novel heat pipe BIPV/T system. • Conducting experiments to investigate the performance of the system. • Establishing the relation between the system performance and operating parameters. - Abstract: Heat pipe building integrated photovoltaic/thermal system (heat pipe BIPV/T system) can produce both the electrical and thermal energies at the same time, which have been paid enormous attentions since the energy crisis in the 1970s. In this paper, the heat pipe BIPV/T system with the metal wires filling into the space between the finned heat pipes and insulation has been proposed, which will be expected to enhance the heat transfer and improve the electrical generation of the system. To investigate the thermal performance of the system, the variations of the temperatures, e.g., flat-plate glass cover, PV panel, filling space, heat pipe, and tank water, as well as the ambient temperature, were measured, and the system’s thermal efficiency was calculated and studied for different simulated solar radiations and water flow rates. It was found that the temperatures of the flat-plate glass cover, PV panels, filling space, and heat pipe presented the similar variation pattern when the ambient temperature was stable. The tank water temperature could reach the maximum of 53.83 °C when the simulated solar radiation was at 900 W/m"2 and the water flow rate was at 200 l/h. The linear relation between the system efficiency and (T_m_e_a_n − T_a_m_b)/I had been setup. The maximum thermal efficiency was found at 44.04% with the simulated solar radiation of 300 W/m"2 and water flow rate of 200 l/h, and 7.9% for the maximum electrical efficiency. Compared with the traditional systems of the previous research, the proposed system performed well with additional features, e.g., low cost, waste materials recycling. This research will be helpful in indicating the potential research area of the low-carbon-emission and energy-saving technology for the

  14. Output performance analyses of solar array on stratospheric airship with thermal effect

    International Nuclear Information System (INIS)

    Li, Jun; Lv, Mingyun; Tan, Dongjie; Zhu, Weiyu; Sun, Kangwen; Zhang, Yuanyuan

    2016-01-01

    Highlights: • A model investigating the output power of solar array is proposed. • The output power in the cruise condition with thermal effect is researched. • The effect of some factors on output performance is discussed in detail. • A suitable transmissivity of external layer is crucial in preliminary design step. - Abstract: Output performance analyses of the solar array are very critical for solving the energy problem of a long endurance stratospheric airship, and the solar cell efficiency is very sensitive to temperature of the solar cell. But the research about output performance of solar array with thermal effect is rare. This paper outlines a numerical model including the thermal model of airship and solar cells, the incident solar radiation model on the solar array, and the power output model. Based on this numerical model, a MATLAB computer program is developed. In the course of the investigation, the comparisons of the simulation results with and without considering thermal effect are reported. Furthermore, effects of the transmissivity of external encapsulation layer of solar array and wind speed on the thermal performance and output power of solar array are discussed in detail. The results indicate that this method is helpful for planning energy management.

  15. Insulated Solar Electric Cooking – Tomorrow's healthy affordable stoves?

    Directory of Open Access Journals (Sweden)

    T. Watkins

    Full Text Available We present a cooking technology consisting of a solar panel directly connected to an electric heater inside of a well-insulated chamber. Assuming continued decrease in solar panel prices, we anticipate that in a few decades Solar Electric Cooking (SEC technologies will be the most common cooking technology for the poor. Appropriate use of insulation reduces the power demand making low-power Insulated Solar Electric Cooking (ISEC systems already cost competitive. We present a $100 prototype and preliminary results of two implementations in Uganda.

  16. Thermal and electrical conductivities of Cd-Zn alloys

    International Nuclear Information System (INIS)

    Saatci, B; Ari, M; Guenduez, M; Meydaneri, F; Bozoklu, M; Durmus, S

    2006-01-01

    The composition and temperature dependences of the thermal and electrical conductivities of three different Cd-Zn alloys have been investigated in the temperature range of 300-650 K. Thermal conductivities of the Cd-Zn alloys have been determined by using the radial heat flow method. It has been found that the thermal conductivity decreases slightly with increasing temperature and the data of thermal conductivity are shifting together to the higher values with increasing Cd composition. In addition, the electrical measurements were determined by using a standard DC four-point probe technique. The resistivity increases linearly and the electrical conductivity decreases exponentially with increasing temperature. The resistivity and electrical conductivity are independent of composition of Cd and Zn. Also, the temperature coefficient of Cd-Zn alloys has been determined, which is independent of composition of Cd and Zn. Finally, Lorenz number has been calculated using the thermal and electrical conductivity values at 373 and 533 K. The results satisfy the Wiedemann-Franz (WF) relation at T 373 K), the WF relation could not hold and the phonon component contribution of thermal conductivity dominates the thermal conduction

  17. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  18. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  19. Profits or preferences? Assessing the adoption of residential solar thermal technologies

    International Nuclear Information System (INIS)

    Mills, Bradford F.; Schleich, Joachim

    2009-01-01

    Solar thermal technologies offer the potential to meet a substantial share of residential water and space heating needs in the EU, but current levels of adoption are low. This paper uses data from a large sample of German households to assess the effects of geographic, residence, and household characteristics on the adoption of solar thermal water and space heating technologies. In addition, the impact of solar thermal technology adoption on household energy expenditures is estimated after controlling for observed household heterogeneity in geographic, residential, and household characteristics. While evidence is found of moderate household energy expenditure savings from combined solar water and space heating systems, the findings generally confirm that low in-home energy cost savings and fixed housing stocks limit the diffusion of residential solar thermal technologies. Little evidence is found of differential adoption by distinct socio-economic groups.

  20. Adaptive Full-Spectrum Solar Energy Systems Cross-Cutting R&D on adaptive full-spectrum solar energy systems for more efficient and affordable use of solar energy in buildings and hybrid photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Byard; Kim, Kwang

    2006-03-30

    This RD&D project is a multi-institutional effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae for CO{sub 2} sequestration or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the third generation (beta) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of 3 mm diameter fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the major achievements from this research that began in August 2001.

  1. Solar electricity: An effective asset to supply urban loads in hot climates

    Science.gov (United States)

    Robert, Fabien Chidanand; Gopalan, Sundararaman

    2018-04-01

    While human population has been multiplied by four in the last hundred years, the world energy consumption was multiplied by ten. The common method of using fossil fuels to provide energy and electricity has dangerously disturbed nature's and climate's balance. It has become urgent and crucial to find sustainable and eco-friendly alternatives to preserve a livable environment with unpolluted air and water. Renewable energy is the unique eco-friendly opportunity known today. The main challenge of using renewable energy is to ensure the constant balance of electricity demand and generation on the electrical grid. This paper investigates whether the solar electricity generation is correlated with the urban electricity consumption in hot climates. The solar generation and total consumption have been compared for three cities in Florida. The hourly solar generation has been found to be highly correlated with the consumption that occurs 6 h later, while the monthly solar generation is correlated with the monthly energy consumption. Producing 30% of the electricity using solar energy has been found to compensate partly for the monthly variation in the urban electricity demand. In addition, if 30% of the world electricity is produced using solar, global CO2 emissions would be reduced by 11.7% (14.6% for India). Thus, generating 30% solar electricity represents a valuable asset for urban areas situated in hot climates, reducing the need for electrical operating reserve, providing local supply with minimal transmission losses, but above all reducing the need for fossil fuel electricity and reducing global CO2 emission.

  2. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  3. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  4. Monitoring solar-thermal systems: An outline of methods and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  5. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  6. The solar thermal market in Greece - review and perspectives

    International Nuclear Information System (INIS)

    Argiriou, A.A.; Mirasgedis, S.

    2003-01-01

    The Hellenic solar thermal market is actually one of the most developed worldwide. This paper provides an overview of the evolution of this market since its start in the mid-1970s until today. The reasons for its success are discussed in detail: the role of the manufacturers, the quality assurance practices applied and the incentives on the demand and supply sides. The role of economic instruments towards the development of the Hellenic solar thermal market is investigated using a cost-benefit analysis (CBA). Although commercially successful, solar thermal applications today in Greece still cover a very limited percentage of their potential applications. The perspectives and potential barriers for their future development are presented, analysed by a CBA and discussed. This information is useful for all parties related to this market, manufacturers, potential users, policy makers, etc. Countries having a solar energy potential similar to that of Greece but a less developed solar market may also identify in this work parameters that will contribute to the development of their national market. (author)

  7. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  8. Study on Thermal Performance Assessment of Solar Hot Water Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2014-07-01

    Full Text Available Solar Hot Water Systems (SHWS are gaining popularity in Malaysia due to increasing cost of electricity and also awareness of environmental issues related to the use of fossil fuels. The introduction of solar hot water systems in Malaysia is an indication that it has potential market. However, there is a need for a proper methodology for rating the energy performance of these systems. The main objective of this study is to assess the thermal performance of several SHWS subject to four different locations in Malaysia using combined direct measurement and computer modelling using the TRNSYS simulation program. The results showed distinct differences in performance of the systems as a result of locations and manufacturers. The findings could be used further in developing an acceptable rating system for SHWS in Malaysia.

  9. Achievement report on the development of solar thermal electric power plant technologies. Annex; Taiyonetsu hatsuden plant gijutsu kaihatsu seika hokokusho. Fuzoku shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The two solar thermal electric power pilot plants are of the tower concentration type and the flat/curved surface concentration type. For the first time in the world, they succeeded in operating at a rated output of 1,000kW in August and September, 1981, respectively. Sunshine was inputted at an unstable rate, and the plants were operated under various load patterns. Studies were conducted and an optimum operating technique is established. Since designing, construction, and operation were carried for two types of pilot plants, quantities of useful data were collected through a variety of experiences. Valuable hints and design data were provided for use in the construction of full-scale power plants in the future. Element units developed for the plants were high-reflectance mirrors, high-precision tracking mechanisms, solar heat collectors of the cavity type and paraboloidal type, and molten salt heat accumulators. The tower concentration type plant exhibits a power generation efficiency of 16-17% and an overall plant efficiency of 3.1-4.4%. The maximum overall efficiency a month is 3.9% with the flat/curved surface concentration type plant. (NEDO)

  10. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  11. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  12. Thermal performance of Danish solar combi systems in practice and in theory

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2004-01-01

    An overview of measured thermal performances of Danish solar combi systems in practice is given. The thermal performance varies greatly from system to system. Measured and calculated thermal performances of different solar combi systems are compared and the main reasons for the different thermal ...... as theoretically expected....

  13. Proceedings of the General Committee for solar thermal energy 2017

    International Nuclear Information System (INIS)

    Loyen, Richard; Gibert, Francois; Porcheyre, Edwige; Laplagne, Valerie; Lambertucci, Stefano; Hauser, Eva; Delmas, Pierre; Mozas, Kevin; Servier, Gerard; Girard, Jean-Paul; Haim, Philippe; Gendron, Marc; Haas, Benjamin; Leclech, Rodrigue; Eberhardt, Mathieu; Bettwy, Fabrice; Berthomieu, Nadine; Barais, Claire; Mingant, Sylvie; Daniel, Charles; GODIN, Olivier; PELe, Charles; Benabdelkarim, Mohamed; Brottier, Laetitia; Cholin, Xavier; Mugnier, Daniel; Marchal, David; Khebchache, Bouzid

    2017-10-01

    The contributions of this conference first proposed an overview of the status and perspectives of the solar thermal energy sector with a presentation of the present situation and perspectives for the French market, and an overview of situations and initiatives in neighbouring European countries. A second session addressed the possible new economical and marketing models able to face challenges of solar thermal energy in 2018 with focuses on heat kWh purchase, on supply portage through a global operator contract (design-realisation-exploitation-maintenance contracts or CREM contracts, energy performance contracts or CPE), and on issues related to building renovation (solar-gas synergy) and to new buildings (regulatory evolution, E+C label). The third session proposed examples of local good practices: development of solar thermal networks in Auvergne-Rhone-Alpes with the development of these networks and a support to commissioners, ADEME's support with patrimony-rehabilitation contracts, and the solar policy implemented by the Brest metropole. A technological focus was then proposed. It addressed communications about the SOCOL approach, concentration-based solar technology (technology, applications, realisations), and solar heating (assets in new and renovated buildings). Before a synthesis, two interventions addressed the production of solar electron and calories, and works performed on the increase of the solar coverage rate

  14. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  15. 基于环境因素与模糊识别的太阳自动跟踪控制策略%Solar auto-tracking control strategy based on environmental factors and fuzzy identification

    Institute of Scientific and Technical Information of China (English)

    王林军; 门静; 许立晓; 张东; 邓煜; 吕耀平; 陈艳娟

    2015-01-01

    提高太阳自动跟踪控制系统的运行稳定性和跟踪精度,需要考虑外界环境因素对系统的影响及选择适当的跟踪方式。目前,太阳自动跟踪系统普遍采用光电跟踪和程序跟踪相结合的混合跟踪方式,将光强值与光强阈值的差值作为切换跟踪方式的依据。当光强值趋近光强阈值时,会造成跟踪方式频繁的切换,该文针对该问题,以外界光强大小、光强变化和风速大小为特征目标,利用MATLAB中的模糊识别方法归类总结了天气情况和系统运行情况,建立了一种基于环境因素判断的模糊识别系统,通过仿真验证,得到了天气类型和系统的运行情况,仿真结果完全符合推理条件,并与计算所得结果基本一致。该研究为太阳自动跟踪系统的启停和跟踪方式的切换提供了可靠的理论支持,且具有较高的实用性和可行性。%Exploring and making full use of new energy resources can solve the problem of the energy shortage and environmental pollution, so many people focus on the use of solar energy which has the advantages of cleanliness, reuse, and economy, etc. Solar power, as the ideal use of solar energy, is the generation of electricity from sunlight. Either PV generation system or solar thermal power generation system have great extensive use, the formal usually use solar cells as the device to convert solar energy directly into electricity by the photovoltaic effect, and photovoltaic technology can meet the demand of different uses which need power supply by solar cells in different sizes, The latter has large scale, it focuses the solar energy to boil water and the heat energy is used to provide power. The solar thermal power generation system can be divided into three types: dish solar thermal power generation, groove type thermal power generation, and tower solar thermal power generation. Dish solar thermal power generation has higher efficiency

  16. Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030

    International Nuclear Information System (INIS)

    1991-12-01

    This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE's Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets

  17. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  18. Study Of Solar Charging Facility For Electric Vehicles In Edinburgh

    Directory of Open Access Journals (Sweden)

    Walid Nassar

    2015-08-01

    Full Text Available The solar power system decreases carbon dioxide CO2 emissions which are the lead cause of global warming. This paper presented a novel way to design a commercial solar photovoltaic PV farm to provide electricity for 10 of the Edinburgh domestic car fleet. The design is used for sizing of the solar system based on an excel spreadsheets. The results show that the proposed solar system reduces the CO2 emissions with around 95 less than the conventional energy system. Around 0.5TWh of electrical energy is required to meet Edinburgh domestic car fleet whenever converted to electrical vehicles. The PV solar panels at the investigated site has a capacity factor of around 12. The dynamic tilt angle is estimated for the investigated site while the fixed tilt angle is determined to be 49. Depending on dynamic solar panels leads to harvesting more solar energy than depending on fixed tilt angle around 14 higher energy. The meter square of land in Edinburgh receive some 950KWh per year based on the dynamic tilt angle. Around 218000 of solar panels are required to meet 10 of Edinburgh domestic car fleet.

  19. Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT)

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Vanoli, Laura

    2012-01-01

    Highlights: ► Sheet and tube photovoltaic/thermal (PVT) solar collector are investigated. ► PVT is integrated in a novel solar trigeneration system. ► The trigeneration system is dynamically investigated for a mediterranean climate. ► PVT performance is excellent during the summer. ► During the winter PVT thermal energy significantly decreases. - Abstract: In this paper, a Solar Heating and Cooling (SHC) system including photovoltaic/thermal (PVT) collectors is considered, implementing a novel polygeneration system producing electricity, space heating and cooling and domestic hot water. In particular, PVT collectors operating up to 80 °C are considered. A case study for a university building located in Naples (Italy) is developed and discussed. The system is mainly composed by: PVT collectors, a single-stage LiBr–H 2 O absorption chiller, storage tanks and auxiliary heaters. The system also includes additional balance-of-plant devices: heat exchangers, pumps, controllers, cooling tower, etc. The PVT produces electricity which is utilized in part by the building lights and equipments and in part by the system parasitic loads; the rest is eventually sold to the grid. Simultaneously, the PVT system provides the heat required to drive the absorption chiller. The system performance is analyzed from both energetic and economic points of view by means of a zero-dimensional transient simulation model, developed with TRNSYS. The economic results show that the system under investigation can be profitable, provided that an appropriate funding policy is available. In addition, the overall energetic and economic results are comparable to those reported in literature for similar systems.

  20. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The european solar thermal system market grew spectacularly in 2008 with over 4,6 million m 2 installed as against less than 3,1 million in 2007. This was largely due to the doubling of the German market, bu strong growth in Southern Europe also played a vital part. While 2009 is looking uncertain, the medium and long term growth prospects are still very exciting. This barometer provides statistical data on the production, market, capacity and enterprises. (A.L.B.)

  1. Characteristics Study of Photovoltaic Thermal System with Emphasis on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Yong Chuah Yee

    2018-01-01

    Full Text Available Solar energy is typically collected through photovoltaic (PV to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project.

  2. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  3. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov (United States)

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  4. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  5. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  6. Electrical and thermal conductivities in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  7. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  8. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    Science.gov (United States)

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Medium level of direct solar radiation and energetic potential of solar concentrator in Minas Gerais State, Brazil; Niveis medios de radiacao solar direta e potencial energetico dos concentradores solares em Minas Gerais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    Basic concepts of solar energy, technical description of solar concentrators, its orientation and methodology of direct solar radiation measurement are discussed. An comparison of different solar radiation measurements methods, its methodology and its calculation steps are reported. Calculus and tables of the electric and thermal energy generation potential, through solar concentrators, on the state of Minas Gerais are also presented. 18 figs., 90 tabs., 12 refs.

  10. Electrical-thermal coupling of induction machine for improved ...

    African Journals Online (AJOL)

    Electrical-thermal coupling of induction machine for improved thermal performance. ... Nigerian Journal of Technology ... The interaction of its electrical and mechanical parts leads to an increase in temperature which if not properly monitored ...

  11. Possibilities for application of solar electricity in Macedonia

    International Nuclear Information System (INIS)

    Ristov, M.; Peshevski, V.; Kocev, K.

    1996-01-01

    In this paper solar global irradiation in R. Macedonia is estimated and some favorable fields for photovoltaic application are emphasized. By means of Angstrom's equation and using solar hour duration data for seven locations, mean daily horizontal surface solar energy is calculated. Obtained average value on whole territory is 4,2 kWh/m 2 day. On fixed tilt active surface (β=35 0 ) solar flux would be increased approximately 15%. Possible fields for photovoltaic systems applications are: rural electrification, water pumping in mountain areas and supplying of Tv and radio relay station. In case of small village standard electrification, due to inevitable distribution network over sizing, the price of electricity is around 2,5 $/kWh. If photovoltaic system is used for the same purpose, the electricity would amount 35 c/kWh. (author). 7 refs., 4 tabs., 1 ill

  12. Solar energy for electricity and fuels.

    Science.gov (United States)

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  13. 电热协同作用下太阳能热电联供系统输出特性分析%Output Characteristics Analysis of Solar Photovoltaic/Thermal System in Cooperation Between Thermal and Electric

    Institute of Scientific and Technical Information of China (English)

    史志国; 闫素英; 田瑞; 郭嘉; 李彦洁

    2015-01-01

    根据光伏/光热(PV/T)系统的能量平衡和能量转换原理,建立了 PV/T 系统的热电模型,针对 PV/T 系统的热电效率、电池板温度间的耦合问题,通过 MATLAB 迭代求解法,解决了 PV/T系统中热电参数耦合求解问题,得到了 PV/T 系统的效率曲线,分析计算了系统组件长度和工质流速等参数对性能曲线的影响;同时,针对 PV/T 系统与普通光伏组件进行了实验研究,试验测试了两系统的电压、电流、功率、板背温度等特性参数,并与仿真结果进行了对比。%Based on the energy balance and conversion principle,a thermal and electrical model for the solar photovoltaic/thermal (PV/T) system is developed to solve coupled thermal and electrical parameters by using the iteration method of MATLAB.The variation of thermal and electrical efficiency is given and the influence of the PV/T system assembly length and working medium velocity change on the performance curve of the PV/T system is analyzed.Experimental study is conducted to compare the simulated results with the experiment data of general photovoltaic assembly including voltage,current,power and temperature of the back panel.

  14. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging. EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2

  15. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  16. Estec2003: European solar thermal energy conference. Proceedings; Estec2003: Europaeische Solarthermie-Konferenz. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In December 2002 more than 40 solar thermal companies and associations joined forces in the European Solar Thermal Industry Federation (ESTIF), to strengthen support for this clean technology on the European level. ESTIF aims at building a close partnership between industry and public authorities in order to overcome the main barriers to growth. Over the last 6 months we have seen some positive developments, which we could build upon. Here are some examples: 1. Germany, the country with the largest demand for solar thermal technology, is back on track to repeat the growth rates we have witnessed in the 1990s. 2. The rules for the solar Keymark quality label were approved by CEN board in January 2003. 3. The city of Madrid became the first European capital to follow the example of Barcelona in requiring the use of solar thermal in new residential buildings. 4. The long awaited ''Sun in Action II - a solar thermal strategy for Europe was published last month. 5. Now, the first European Solar Thermal Energy Conference brings together decision makers from industry and politics to discuss the future of renewable heating and cooling in Europe. - Solar thermal has a great potential - 1.4 billion square meters in the 15 EU member states alone. 99% of this potential are still to be developed. ESTIF has made it its mission 'to achieve high priority and acceptance for solar thermal as a key element for sustainable heating and cooling in Europe and to work for the implementation, as soon as possible, of all steps necessary to realise the high potential of solar thermal'. With estec2003 we offer a platform to exchange information and opinions concerning how this goal can be achieved. The developments in different countries show that the use of solar thermal technologies does not depend on climatic conditions alone. (orig.)

  17. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    Science.gov (United States)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  18. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Hazami, Majdi; Naili, Nabiha; Attar, Issam; Farhat, Abdelhamid

    2013-01-01

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO 2 . - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m 3 and 410 m 3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800

  19. Analysis of electrical and thermal stress effects on PCBM:P3HT solar cells by photocurrent and impedance spectroscopy modeling

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Rizzo, Antonio; Cester, Andrea

    2017-01-01

    We investigated the effects of electrical stress and thermal storage by means of photocurrent, Impedance Spectroscopy and Open Circuit Voltage Decay models. The electrical stress damages only the active layer, by reducing the generation rate, the polaron separation probability and the carrier...... lifetime. The thermal stress also degrades the anode interface. This reflects on the appearance of an inflection in the I-V photocurrent shape close to the operative region....

  20. The energetic performance of a novel hybrid solar thermal and chemical looping combustion plant

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A hybrid solar chemical looping combustion power cycle is reported. • The cycle is studied for two configurations, with and without an after-burner. • The oxygen carrier particles are used as storage medium for solar thermal energy. • Total solar shares of 41.4% and 60% are achieved with and without the after-burner. • Efficiencies of 50% and 44.0% are achieved with and without the after-burner. - Abstract: The overall energetic performance of a gas turbine combined cycle powered by a hybrid cycle between a solar thermal and a chemical looping combustion (CLC) system firing methane is reported for two configurations. In one case, the outlet from the air reactor is fed directly to a gas turbine, while in the other an after-burner, also firing methane, is added to increase the gas turbine inlet temperature. The cycle is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The first law efficiency, total solar absorption efficiency, average and peak fractional power boosts, total solar share, net solar to electrical efficiency, fraction of pressurised CO 2 , incremental CO 2 avoidance and the exergy efficiency for both cycles are reported. The calculations predict a first law efficiency of 50.0% for the cycle employing an after-burner, compared with 44.0% for that without the after-burner. However, this is achieved at the cost of decreasing the solar share from 60.0%, without the after-burner, to 41.4% with it. Also reported is the sensitivity analysis of performance to variations in key operating parameters. The sensitivity analysis shows that further improvements to the performance of the cycle are possible

  1. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  2. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS Cross-Cutting R & D on adaptive full-spectrum solar energy systems for more efficient and affordable use of solar energy in buildings and hybrid photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; David L. Beshears

    2006-02-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the third generation (beta) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of 3 mm diameter fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations: Niche applications for HSL technology, Luminaire design characteristics for linear and point lighting fixtures, and Daylight affects on productivity.

  3. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  4. In the world of solar technology

    International Nuclear Information System (INIS)

    Tomson, T.

    1993-01-01

    The paper gives a short survey of the development of solar electrical and thermal technologies. The thermal solar technology is also applicable in Estonia with the view of using our local industrial potential. The theoretical solar resource in Estonia is 977 kWh/m 2 per year, which will make it possible to build (central) heating systems with partial solar fraction by using the method of seasonal storage. The technological solar resource can be improved by using an inter medial storage and heat pump between the solar collector and the main storage in the process of charging. (author). fig., 2 refs

  5. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    OpenAIRE

    Vanya Zhivkova

    2013-01-01

    Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  6. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  7. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)

    Institute of Scientific and Technical Information of China (English)

    Xing Ju; Chao Xu; Zhirong Liao; Xiaoze Du; Gaosheng Wei; Zhifeng Wang; Yongping Yang

    2017-01-01

    In conventional photovoltaic (PV) systems,a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%.As the dissipated heat can be recovered for various applications,the wasted heat recovery concentrator PV/thermal (WHR CPVT) hybrid systems have been developed.They can provide both electricity and usable heat by combining thermal systems with concentrator PV (CPV) module,which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development ofWHR CPVT systems.WHR CPVT systems with innovative design configurations,different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner.We aim to provide a global point of view on the research trends,market potential,technical obstacles,and the future work which is required in the development of WHR CPVT technology.Possibly,it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.

  8. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  9. NREL Achieves Solar-Electric Record

    Science.gov (United States)

    Solar-Electric Record New Technology Could Spur Growth in Photovoltaic Panels For more information thin-film panels made from cadmium telluride. Benner said these and other plants may adopt all or part panels. Of the several materials that can be used for thin-film panels, cadmium telluride yields higher

  10. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  11. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  12. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes

    Science.gov (United States)

    Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel

    2017-06-01

    Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.

  13. Hybrid energy harvesting using active thermal backplane

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  14. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  15. Electric Motor Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin

    2016-06-07

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  16. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  17. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  18. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  19. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  20. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.