WorldWideScience

Sample records for solar storming effects

  1. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  2. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  3. Solar flare effects and storm sudden commencement even in ...

    African Journals Online (AJOL)

    1998-05-08

    Variations in the three components of geomagnetic field were observed at the twenty-two geomagnetic Euro-African Observatories during the solar flare that occurred on the 6 May, 1998 at 0080UT and storm sudden commencement that took place on May 8, 1998 at 15.00 UT. The geomagnetic field on 6 May, 1998 was ...

  4. COMPARATIVE EVALUATION OF THE INFLUENCING EFFECTS OF GEOMAGNETIC SOLAR STORMS ON EARTHQUAKES IN ANATOLIAN PENINSULA

    Directory of Open Access Journals (Sweden)

    Yesugey Sadik Cengiz

    2009-07-01

    Full Text Available Earthquakes are tectonic events that take place within the fractures of the earth's crust, namely faults. Above certain scale, earthquakes can result in widespread fatalities and substantial financial loss. In addition to the movement of tectonic plates relative to each other, it is widely discussed that there are other external influences originate outside earth that can trigger earthquakes. These influences are called "triggering effects". The purpose of this article is to present a statistical view to elaborate if the solar geomagnetic storms trigger earthquakes.As a model, the research focuses on the Anatolian peninsula, presenting 41 years of historical data on magnetic storms and earthquakes collated from national and international resources. As a result of the comparative assessment of the data, it is concluded that the geomagnetic storms do not trigger earthquakes.

  5. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  6. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    International Nuclear Information System (INIS)

    Rabinowitz, M.; Meliopoulous, A.P.S.; Glytsis, E.N.

    1992-01-01

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E approx-lt 10 - 1 V/m and lasts approx-lt 10 2 sec, whereas for solar storms E approx-gt 10 - 2 V/m and lasts approx-gt 10 3 sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects

  7. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  8. The solar activity, magnetic storms and their effects on biological systems

    International Nuclear Information System (INIS)

    Salakhitdinova, M.K.; Yusupov, A.A.

    2004-01-01

    In the present time much attention is spent on the electromagnetic waves, solar radiation and magnetic storms on biological systems, including on person. However, there are few publications describing the mechanism of these influences on human. First of all it is necessary to point out that electromagnetic waves, the flow of particles in space and magnetic storms, acting on person human-all is connected with biophysical processes. So approach to influence of these factors on organism follows the processes of influence of these waves on bio system. Magnetic storms are phenomena continuously connected with solar activity. Investigation of cosmic space has intensified the practical importance of the problem of interaction with natural factors of external ambience. Much attention deserves the cosmic radiation, geomagnetic field, elements of climate and weathers. However the mechanism of bio tropic action of these factors is not enough studied. Beginning XXI century was already signified the successes in investigation of Mars. The Space shuttles 'Spirit' and 'Opportunity' successfully have carried out some work on examining and finding of water on Mars. A flight of person to Mars is being considered. One of the important mechanisms of influence on human organism is, in our opinion, the rising of the resonance at coincidence of frequencies and their more important factor is a phenomena of electromagnetic induction and forming the radicals in the organism. (author)

  9. On the effects of solar storms to the decaying orbital space debris

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani; Rachman, Abdul

    2014-01-01

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force

  10. On the effects of solar storms to the decaying orbital space debris

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia); Rachman, Abdul [Space Science Center, National Institute of Aeronautics and Space, Junjunan 133, Bandung 40173 (Indonesia)

    2014-03-24

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force.

  11. The impact of solar flares and magnetic storms on humans

    International Nuclear Information System (INIS)

    Joselyn, J.A.

    1992-01-01

    Three classes of solar emanations, namely, photon radiation from solar flares, solar energetic particles, and inhomogeneities in the solar wind that drive magnetic storms, are examined, and their effects on humans and technological systems are discussed. Solar flares may disrupt radio communications in the HF and VLF ranges. Energetic particles pose a special hazard at low-earth orbit and above, where they can penetrate barriers such as spacesuits and aluminum and destroy cells and solid state electronics. Energetic solar particles also influence terrestrial radio waves propagating through polar regions. Magnetic storms may disturb the operation of navigation instruments, power lines and pipelines, and satellites; they give rise to ionospheric storms which affect radio communication at all latitudes. There is also a growing body of evidence that changes in the geomagnetic field affect biological systems. 3 refs

  12. The impact of solar flares and magnetic storms on humans

    Energy Technology Data Exchange (ETDEWEB)

    Joselyn, J.A. (NOAA, Space Environment Laboratory, Boulder, CO (United States))

    1992-03-01

    Three classes of solar emanations, namely, photon radiation from solar flares, solar energetic particles, and inhomogeneities in the solar wind that drive magnetic storms, are examined, and their effects on humans and technological systems are discussed. Solar flares may disrupt radio communications in the HF and VLF ranges. Energetic particles pose a special hazard at low-earth orbit and above, where they can penetrate barriers such as spacesuits and aluminum and destroy cells and solid state electronics. Energetic solar particles also influence terrestrial radio waves propagating through polar regions. Magnetic storms may disturb the operation of navigation instruments, power lines and pipelines, and satellites; they give rise to ionospheric storms which affect radio communication at all latitudes. There is also a growing body of evidence that changes in the geomagnetic field affect biological systems. 3 refs.

  13. The extreme solar storm of May 1921: observations and a complex topological model

    Directory of Open Access Journals (Sweden)

    H. Lundstedt

    2015-01-01

    Full Text Available A complex solid torus model was developed in order to be able to study an extreme solar storm, the so-called "Great Storm" or "New York Railroad Storm" of May 1921, when neither high spatial and time resolution magnetic field measurements, solar flare nor coronal mass ejection observations were available. We suggest that a topological change happened in connection with the occurrence of the extreme solar storm. The solar storm caused one of the most severe space weather effects ever.

  14. Storms

    International Nuclear Information System (INIS)

    Kai, Keizo; Melrose, D.B.; Suzuki, S.

    1985-01-01

    At metre and decametre wavelengths long-lasting solar radio emission, consisting of thousands of short-lived spikes superimposed on a slowly varying continuum, is observed. This type of storm emission may continue for periods ranging from a few hours to several days; the long duration is one of the characteristics which distinguish storms from other types of solar radio emission. These events are called storms or noise storms by analogy with geomagnetic storms. (author)

  15. Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects

    Science.gov (United States)

    Bocchialini, K.; Grison, B.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Régnier, S.; Zouganelis, I.

    2018-05-01

    Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l'Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km s-1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric-hectometric wavelengths is a very useful criterion for the CME-SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR

  16. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    Science.gov (United States)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  17. A synoptic study of geomagnetic storms and related solar phenomena during 1976 through 1978

    International Nuclear Information System (INIS)

    Marubashi, K.

    1979-01-01

    An attempt has been made to identify the causes of geomagnetic storms which occurred during the three year period from 1976 through 1978. Of the 114 storms with D sub(st) = 25 investigated in this paper, 52 storms are found to be caused by corotating streams, 16 storms by solar flares, and 19 storms by compound effects of both corotating streams and flares. The causes of the remaining 27 storms could not be identified. By examining the characteristics of those solar flares which were taken to be responsible for geomagnetic storms, a semiquantitative conclusion has been obtained about the criteria for the flares which can produce magnetic storms. In addition, clear semiannual variation has been found in geomagnetic activity caused by flare-free corotating streams. (author)

  18. Solar Wind Charge Exchange During Geomagnetic Storms

    Science.gov (United States)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  19. Geometric effects of ICMEs on geomagnetic storms

    Science.gov (United States)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  20. Morphology of geomagnetic storms, recorded at Hurbanovo, and its relation to solar activity

    International Nuclear Information System (INIS)

    Ochabova, P.; Psenakova, M.

    1977-01-01

    The morphological structure of geomagnetic storms was investigated using the data on 414 storms, recorded in the years 1949 to 1968 at the Geomagnetic Observatory of Hurbanovo (phi=47.9 deg N, lambda=18.2 deg E). These data also formed a suitable basis for investigating the effect of the solar activity on the characteristic features of storms. The storm-time variation of the geomagnetic field was considered after the Sq-variation had been eliminated. The sets of storms, i.e. 263 storms recorded at a time of high sunspot activity and 151 storms recorded at a time of low activity, were divided into 7 groups, depending on the duration of their initial phase. In 92% of the investigated storms the increase in the horizontal component lasted from 0 to 15 hrs. The effect of the solar activity was markedly reflected in the occurrence of very severe storms, as well as in the maximum decrease in the H-component in the main phase. This can also be seen in the rate at which the storms recover. (author)

  1. Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum during Cycle 23: Propagation and Effects from the Sun to the Earth.

    Science.gov (United States)

    Bocchialini, K.; Grison, B.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Régnier, S.; Zouganelis, I.

    2017-12-01

    From the list of 32 SSCs over the year 2002, we performed a multi-criteria analysis based on propagation time, velocity comparison, sense of the magnetic field rotation, radio waves to associate them with solar sources, identify their causes in the interplanetary medium and then look at the response of the terrestrial ionized and neutral environment to them. The complex interactions between two (or more) CMEs and the modification in their trajectory have been examined using joint white light and multiple-wavelength radio observations. The structures at L_1 after the 32 SSCs are regarded as Magnetic Clouds (MCs), ICMEs without a MC structure, Miscellaneous structures, CIRs/SIRs, and shock-only events. In terms of geoeffectivity, generally CMEs with velocities at the Sun larger than 1000 km.s-1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms. The geoeffective events trigger an increased and combined AKR and NTC wave activity in the magnetosphere, an enhanced convection in the ionosphere and a stronger response in the thermosphere.

  2. Solar storm effects during Saint Patrick's Days in 2013 and 2015 on the Schumann resonances measured by the ELF station at Sierra Nevada (Spain)

    Science.gov (United States)

    Salinas, A.; Toledo-Redondo, S.; Navarro, E. A.; Fornieles-Callejón, J.; Portí, J. A.

    2016-12-01

    The effects of solar storms occurring during the days 17 to 19 March 2013 and 2015, St. Patrick's Day intervals, on Schumann resonances (SRs) have been studied. To do this, the experimental data recorded by the Juan Antonio Morente extremely low frequency station located at Sierra Nevada, Spain, have been processed in order to obtain hourly averaged information on the first three resonance modes. Results are compared with monthly averages of the SR data for each hour to detect deviations from the regular behavior. Evidence of significant changes in the peak amplitudes and frequencies of the SRs have been identified in the station's measurements and related to the coronal mass ejection impact in the magnetosphere, detected by in situ plasma measurements onboard spacecraft in the solar wind. However, the complicated nature of the Schumann resonances, dependent on multiple variables and subject to multiple unavoidable interferences (e.g., lightning or human radio sources), in conjunction with the complex magnetosphere-ionosphere-atmosphere coupling processes, makes it difficult to conclude that the observed deviations are exclusively due to the solar events mentioned. Results extracted from only two solar events cannot be considered as conclusive, and therefore, independent comparison with results reported by other research would seem advisable in future works on this subject.

  3. Overview of on-board measurements during solar storm periods

    Czech Academy of Sciences Publication Activity Database

    Beck, P.; Dyer, C.; Fuller, N.; Hands, A.; Latocha, M.; Rollet, S.; Spurný, František

    2009-01-01

    Roč. 136, č. 4 (2009), s. 297-303 ISSN 0144-8420 R&D Projects: GA ČR GA205/09/0171 Institutional research plan: CEZ:AV0Z10480505 Keywords : solar storm * aircraft crew * cosmic radiation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.707, year: 2009

  4. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  5. Biological effects of geomagnetic storms

    International Nuclear Information System (INIS)

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  6. The Ring Current Response to Solar and Interplanetary Storm Drivers

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  7. NASA seeks to revive lost probe that traced solar storms

    Science.gov (United States)

    Voosen, Paul

    2018-02-01

    NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), a satellite that failed in 2005, was recently discovered to be reactivated by an amateur astronomer. Until its demise, IMAGE provided unparalleled views of solar storms crashing into Earth's magnetosphere, a capability that has not been replaced since. The amateur astronomer was on the search for Zuma, a classified U.S. satellite that's believed to have failed after launch. He instead discovered IMAGE, broadcasting again, likely thanks to a reboot that occurred after its batteries drained during a past solar eclipse. NASA scientists are now working to communicate with the satellite in the hopes of reviving its six scientific instruments.

  8. Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    Science.gov (United States)

    Ho, C. M.; Tsurutani, B. T.

    1997-01-01

    We have examined the ISEE 3 distant tail data during three intense magnetic storms and have identified the tail response to high-speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms.

  9. (abstract) The Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    Science.gov (United States)

    Ho, C. M.; Tsurutani, B. T.

    1996-01-01

    We have examined the ISEE-3 distant tail data during three intense magnetic storms and have identified the tail response to high speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms.

  10. Solar wind drivers of geomagnetic storms during more than four solar cycles

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available Using a classification of the near-Earth solar wind into three basic flow types: (1 High-speed streams associated with coronal holes at the Sun; (2 Slow, interstream solar wind; and (3 Transient flows originating with coronal mass ejections (CMEs at the Sun, including interplanetary CMEs and the associated upstream shocks and post-shock regions, we determine the drivers of geomagnetic storms of various size ranges based on the Kp index and the NOAA “G” criteria since 1964, close to the beginning of the space era, to 2011, encompassing more than four solar cycles (20–23. We also briefly discuss the occurrence of storms since the beginning of the Kp index in 1932, in the minimum before cycle 17. We note that the extended low level of storm activity during the minimum following cycle 23 is without precedent in this 80-year interval. Furthermore, the “typical” numbers of storm days/cycle quoted in the standard NOAA G storm table appear to be significantly higher than those obtained from our analysis, except for the strongest (G5 storms, suggesting that they should be revised downward.

  11. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  12. On the Reduced Geoeffectiveness of Solar Cycle 24: A Moderate Storm Perspective

    Science.gov (United States)

    Selvakumaran, R.; Veenadhari, B.; Akiyama, S.; Pandya, Megha; Gopalswamy, N,; Yashiro, S.; Kumar, Sandeep; Makela, P.; Xie, H.

    2016-01-01

    The moderate and intense geomagnetic storms are identified for the first 77 months of solar cycles 23 and 24. The solar sources responsible for the moderate geomagnetic storms are indentified during the same epoch for both the cycles. Solar cycle 24 has shown nearly 80% reduction in the occurrence of intense storms whereas it is only 40% in case of moderate storms when compared to previous cycle. The solar and interplanetary characteristics of the moderate storms driven by coronal mass ejection (CME) are compared for solar cycles 23 and 24 in order to see reduction in geoeffectiveness has anything to do with the occurrence of moderate storm. Though there is reduction in the occurrence of moderate storms, the Dst distribution does not show much difference. Similarly, the solar source parameters like CME speed, mass, and width did not show any significant variation in the average values as well as the distribution. The correlation between VBz and Dst is determined, and it is found to be moderate with value of 0.68 for cycle 23 and 0.61 for cycle 24. The magnetospheric energy flux parameter epsilon (epsilon) is estimated during the main phase of all moderate storms during solar cycles 23 and 24. The energy transfer decreased in solar cycle 24 when compared to cycle 23. These results are significantly different when all geomagnetic storms are taken into consideration for both the solar cycles.

  13. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  14. Variation of Magnetic Field (By , Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    OpenAIRE

    Ga-Hee Moon

    2011-01-01

    It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are ...

  15. The 2015 Summer Solstice Storm: One of the Major Geomagnetic Storms of Solar Cycle 24 Observed at Ground Level

    Science.gov (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Raulin, J. P.; Tueros, E.; de Mendonça, R. R. S.; Fauth, A. C.; Vieira de Souza, H.; Kopenkin, V.; Sinzi, T.

    2018-05-01

    We report on the 22 - 23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth's magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22 - 23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured {˜} 56° degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun-Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton

  16. Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    C.-R. Choi

    2008-06-01

    Full Text Available Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum (Dst_min is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ≥50% or ≥3nPa within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through Dst_min, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. (i ~81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is 4.5 pressure enhancement events per storm and 0.15 pressure enhancement events per hour. (ii The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF By and/or Bz: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either |∆Bz|>2nT or |∆By|>2nT. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

  17. Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies

    Science.gov (United States)

    Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira

    2018-03-01

    A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.

  18. SOLAR ENERGETIC PARTICLE EVENT ASSOCIATED WITH THE 2012 JULY 23 EXTREME SOLAR STORM

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bei; Liu, Ying D.; Hu, Huidong; Wang, Rui; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G., E-mail: liuxying@spaceweather.ac.cn [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2016-08-20

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A , was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory , suggesting a wide longitudinal spread of the particles at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.

  19. Polarization reversal during the solar noise storm activity of August 1971

    International Nuclear Information System (INIS)

    Kurihara, Masahiro

    1975-01-01

    Reversals of the sense of circular polarization of solar radio emission were observed for active type I storms in August 1971. Observations with a 160-MHz interferometer revealed that the reversals were caused by sudden growth and decay of a secondary storm source whose sense of polarization was opposite to that of the long-lasting main source. The time variations of both the associated S-component sources and sunspots are compared with that of the storm sources. The role of the magnetic field, which presumably connects the storm sources, the S-component sources, and the sunspots, is discussed in relation to the origin of the storm activity. (author)

  20. The Distant Tail Behavior During High Speed Solar Wind Streams and Magnetic Storms

    Science.gov (United States)

    Ho, C. M.; Tsurutani, B. T.

    1996-01-01

    We have examined the ISEE-3 distant tail data during three intense (Dststorms and have identified the tail response to high speed solar wind streams, interplanetary magnetic clouds, and near-Earth storms. The three storms have a peak Dst ranging from -150 to -220 nT, and occur on Jan. 9, Feb. 4, and Aug. 8, 1993.

  1. NARX neural network Prediction of SYMH and ASYH indices for geomagnetic storms of solar cycle 24 including recent St. Patrick's day, 2015 storm

    Science.gov (United States)

    Bhaskar, A. T.; Vichare, G.

    2017-12-01

    Here, an attempt is made to develop a prediction model for SYMH and ASYH geomagnetic indices using Artificial Neural Network (ANN). SYMH and ASYH indices represent longitudinal symmetric and asymmetric component of the ring current. The ring current state depends on its past conditions therefore, it is necessary to consider its history for prediction. To account this effect Nonlinear Autoregressive Network with eXogenous inputs (NARX) is implemented. This network considers input history of 30 minutes and output feedback of 120 minutes. Solar wind parameters mainly velocity, density and interplanetary magnetic field are used as inputs. SYMH and ASYH indices during geomagnetic storms of 1998-2013, having minimum SYMH training two independent networks. We present the prediction of SYMH and ASYH indices during 9 geomagnetic storms of solar cycle 24 including the recent largest storm occurred on St. Patrick's day, 2015. The present prediction model reproduces the entire time profile of SYMH and ASYH indices along with small variations of 10-30 minutes to good extent within noise level, indicating significant contribution of interplanetary sources and past state of the magnetosphere. However, during the main phase of major storms, residuals (observed-modeled) are found to be large, suggesting influence of internal factors such as magnetospheric processes.

  2. Solar Wind Features Responsible for Magnetic Storms and Substorms During the Declining Phase of the Solar Cycle: 197

    Science.gov (United States)

    Tsurutani, B.; Arballo, J.

    1994-01-01

    We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.

  3. NOAA Satellites Provide a Keen View of the Martin Luther King Solar Storm of January 2005

    Science.gov (United States)

    Wilkinson, D. C.; Allen, J. H.

    2005-05-01

    Solar active region 0720 rotated onto the east limb on January 10th and put on a pyrotechnic display uncharacteristic for this phase of the solar cycle before disappearing beyond the west limb on January 23rd. On January 15th this region released the first of five X-class solar flares. The last of those flares, January 20th, was associated with an extraordinary ion storm whose effect reached Earth's surface. This paper highlights the record of this event made by NOAA's GOES satellites via their Space Environment Monitor (SEM) subsystems that measures X-ray, energetic particles, and the magnetic field vector at the satellite. Displays of those data are supplemented by neutron monitor data to illustrate their relationship to the January 20th Ground Level Event. GOES-12 is also equipped with the Solar X-ray Imager (SXI) that produces an image of the Sun in X-ray wavelengths once per minute. Movies created from those data perfectly illustrate the cause-and-effect relationship between intense solar activity and satellite disruptions. The flares on January 17th and 20th are closely followed by noise in the SXI telescope resulting from energetic ions penetrating SXI. Ions with sufficient velocity and atomic number can penetrate satellite components and deposit charge along their path. Sufficient charge deposition can introduce erroneous information into solid-state devices. A survey of satellites that experienced problems of this type during this event will also be presented.

  4. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)

    Science.gov (United States)

    Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances

    1989-01-01

    The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.

  5. Possible mechanism of solar noise storm generation in meter wavelength

    International Nuclear Information System (INIS)

    Genkin, L.G.; Erukhimov, L.M.; Levin, B.N.

    1989-01-01

    Fluctuation plasma mechanism of noise storm generation is proposed. The sporadic formation of density irregularities in plasma (Langmuir) turbulence region is shown to be the result of thermal stratification of plasma. The noise storm type 1 bursts in their typical parameters are like radio emission due to plasma turbulence conversion on this structures

  6. The effect of magnetic storm on the bottomside profile parameters B0 and

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2001-01-01

    We have used data from an equatorial station for the investigation of magnetic storm effects on B0 and B1. Three storm events, which occurred in January, April and October of a low solar activity year (1995), were used for the study. B0 is the parameter that is mostly affected and the effect is concentrated on the daytime period (0700-1700LT). (author)

  7. Modeling the ocean effect of geomagnetic storms

    DEFF Research Database (Denmark)

    Olsen, Nils; Kuvshinov, A.

    2004-01-01

    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  8. 3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-05-01

    3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.

  9. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  10. Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector

    Directory of Open Access Journals (Sweden)

    Olushola Abel Oladipo

    2014-01-01

    Full Text Available Large-scale ionospheric irregularities usually measured by GPS TEC fluctuation indices are regular occurrence at the equatorial region shortly after sunset around solar maximum. Magnetic storm can trigger or inhibit the generation of these irregularities depending on the local time the main phase of a particular storm occurs. We studied the effect of nine (9 distinct storms on the occurrence of ionospheric irregularities at Fraceville in Gabon (Lat = −1.63˚, Long = 13.55˚, dip lat. = −15.94˚, an equatorial station in the African sector. These storms occurred between November 2001 and September 2002. We used TEC fluctuation indices (i.e. ROTI and ROTIAVE estimated from 30 s interval Rinex data and also we used the storm indices (i.e. Dst, dDst/dt, and IMF BZ to predict the likely effect of each storm on the irregularities occurrence at this station. The results obtained showed that most of the storms studied inhibited ionospheric irregularities. Only one out of all the storms studied (i.e. September 4, 2002 storms with the main phase on the night of September 7-8 triggered post-midnight ionospheric irregularities. There are two of the storms during which ionospheric irregularities were observed. However, these may not be solely attributed to the storms event because the level of irregularities observed during these two storms is comparable to that observed during previous days before the storms. For this station and for the storms investigated, it seems like a little modification to the use of Aarons categories in terms of the local time the maximum negative Dst occurs could lead to a better prediction. However, it would require investigating many storms during different level of solar activities and at different latitudes to generalize this modification.

  11. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    Science.gov (United States)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  12. Solar wind-magnetosphere coupling during intense magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Tsurutani, B.T.; Gonzalez, A.L.C.; Smith, E.J.; Tang, F.; Akasofu, S.

    1989-01-01

    The solar wind-magnetosphere coupling problem is investigated for the ten intense magnetic storms (Dst <-100 nT) that occurred during the 500 days (August 16, 1978 to December 28, 1979) studied by Gonzalez and Tsurutani [1987]. This investigation concentrates on the ring current energization in terms of solar wind parameters, in order to explain the | -Dst | growth observed during these storms. Thus several coupling functions are tested as energy input and several sets of the ring current decay time-constant τ are searched to find best correlations with the Dst response. From the fairly large correlation coefficients found in this study, there is strong evidence that large scale magnetopause reconnection operates during such intense storm events and that the solar wind ram pressure plays an important role in the ring current energization. Thus a ram pressure correction factor is suggested for expressions concerning the reconnection power during time intervals with large ram pressure variations

  13. A dynamic system to forecast ionospheric storm disturbances based on solar wind conditions

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    2005-06-01

    Full Text Available For the reliable performance of technologically advanced radio communications systems under geomagnetically disturbed conditions, the forecast and modelling of the ionospheric response during storms is a high priority. The ionospheric storm forecasting models that are currently in operation have shown a high degree of reliability during quiet conditions, but they have proved inadequate during storm events. To improve their prediction accuracy, we have to take advantage of the deeper understanding in ionospheric storm dynamics that is currently available, indicating a correlation between the Interplanetary Magnetic Field (IMF disturbances and the qualitative signature of ionospheric storm disturbances at middle latitude stations. In this paper we analyse observations of the foF2 critical frequency parameter from one mid-latitude European ionospheric station (Chilton in conjunction with observations of IMF parameters (total magnitude, Bt and Bz-IMF component from the ACE spacecraft mission for eight storm events. The determination of the time delay in the ionospheric response to the interplanetary medium disturbances leads to significant results concerning the forecast of the ionospheric storms onset and their development during the first 24 h. In this way the real-time ACE observations of the solar wind parameters may be used in the development of a real-time dynamic ionospheric storm model with adequate accuracy.

  14. On the statistics of the largest geomagnetic storms per solar cycle

    International Nuclear Information System (INIS)

    Siscoe, G.L.

    1976-01-01

    The theory of extreme value statistics is applied to the first, second, and third largest geomagnetic storms in nine solar cycles measured by the average half-daily aa indices compiled by Mayaud. Analytic expressions giving the probability of the extremes per solar cycle as a contour function of storm magnitude are obtained by least squares fitting of the observations to the appropriate theoretical extreme value probability functions. The results are used to obtain the statistical characteristics (mode, median, mean, and standard deviation) for the extreme values. The results are applied to find the expected range of extreme values in a set as a function of the number of solar cycles in the set. We find that the expected range of the largest storm is quite narrow and is larger for the second and third largest storms. The observed range of the extreme half-daily aa index for the nine solar cycles is 354--546 γ. In a set of 100 cycles the range is expanded esentially to 311--680γ, an increase of only 39% in the range. The result supports the argument for a change in solar cycle statistics in the latter part of the Seventeenth Century (the Maunder minimum)

  15. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  16. Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind

    Science.gov (United States)

    Osherovich, Vladimir A.; Fainberg, Joseph

    2015-01-01

    Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.

  17. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  18. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    Science.gov (United States)

    2001-08-01

    expanding set of loops similar to the loops seen at visible wavelengths. The radio loops, astronomers believe, indicate regions where electrons are being accelerated to nearly the speed of light at about the time the ejection process is getting started. The same ejection observed by the radio telescope also was observed by orbiting solar telescopes. Depending on what later radio observations show, the solar studies may reveal new insights into the physics of other astronomical phenomena. For example, shocks in the corona and the interplanetary medium accelerate electrons and ions, a process believed to occur in supernova remnants - the expanding debris from stellar explosions. The electrons also may be accelerated by processes associated with magnetic reconnection, a process that occurs in the Earth's magnetosphere. "The Sun is an excellent physics laboratory, and what it teaches us can then help us understand other astrophysical phenomena in the universe," Bastian said. The radio detection of a coronal mass ejection also means that warning of the potentially dangerous effects of these events could come from ground-based radio telescopes, rather than more-expensive orbiting observatories. "With solar radio telescopes strategically placed at three or four locations around the world, coronal mass ejections could be detected 24 hours a day to provide advance warning," Bastian said. The Nancay station for radio astronomy is a facility of the Paris Observatory. The Nancay Radioheliograph is funded by the French Ministry of Education, the Centre National de la Recherche Scientifique, and by the Region Centre. This research has also been supported by the Centre National d'Etudes Spatiales. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  19. Thermospheric storms and related ionospheric effects

    International Nuclear Information System (INIS)

    Chandra, S.; Spencer, N.W.

    1976-01-01

    A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms

  20. Variation of Magnetic Field (By , Bz Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

    Directory of Open Access Journals (Sweden)

    Ga-Hee Moon

    2011-06-01

    Full Text Available It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME-driven storms, co-rotating interaction region (CIR-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF By and Bz components (in geocentric solar magnetospheric coordinate system coordinate during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of Bz < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF Bz (T1~T4 is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0% under the Bz < 0 condition. It is found that the correlation is highest between the time-integrated IMF Bz and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is

  1. Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data

    Directory of Open Access Journals (Sweden)

    L. Cai

    2010-02-01

    Full Text Available Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min. This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect

  2. Prediction of SYM-H index during large storms by NARX neural network from IMF and solar wind data

    Directory of Open Access Journals (Sweden)

    L. Cai

    2010-02-01

    Full Text Available Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min. This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect on average the characteristic time of ring

  3. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  4. Effect of geomagnetic storms on VHF scintillations observed at low latitude

    Science.gov (United States)

    Singh, S. B.; Patel, Kalpana; Singh, A. K.

    2018-06-01

    A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.

  5. What is the Relationship between the Solar Wind and Storms/Substorms?

    Science.gov (United States)

    Fairfield, D. H.; Burlaga, L. F.

    1999-01-01

    The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.

  6. Energetic evaluation of the largest geomagnetic storms of solar cycle 24 on March 17, 2015 and September 8, 2017 during solar maximum and minimum, respectively

    International Nuclear Information System (INIS)

    Tomova, Dimitrinka; Velinov, Peter; Tassev, Yordan; Tomova, Dimitrinka

    2018-01-01

    Some of the most powerful Earth’s directed coronal mass ejections (CMEs) from the current 24 solar cycle have been investigated. These are CMEs on March 15, 2015 and on September 4 and 6, 2017. As a result of these impacts of Sun on Earth, the highest intensity of the geomagnetic storms for the 24th solar cycle is observed. These G4 – Severe geomagnetic storms are in the periods March 17÷19, 2015 and September 7÷10, 2017. We use the solar wind parameters (velocity V, density or concentration N , temperature T p and intensity of the magnetic field B) from measurements by WIND, ACE and SOHO space crafts in the Lagrange equilibrium point L1 between Sun and Earth. We make calculations for the kinetic (dynamic) energy density E k , thermal energy density E t and magnetic energy density E m during the investigated periods May 10÷24, 2015 and September 2÷16, 2017. Both the energy densities for the individual events and the cumulative energy for each of them are evaluated. The quantitative analysis shows that not always the size of the geomagnetic reaction is commensurate with the density of the energy flux reaching the magnetosphere. In both studied periods, the energy densities have different behaviour over time. But for both periods, we can talk about the prognostic effect – with varying degrees of increase of the dynamic and thermal energies. Such an effect is not observed in the density of magnetic energy. An inverse relationship between the magnitude of the density of energies and the effect of Forbush decrease of the galactic cosmic rays is established. Key words: solar activity, flares, coronal mass ejection (CME), G4 –Severe geomagnetic storms, energy density of the solar wind, space weather

  7. The Future of Geomagnetic Storm Predictions: Implications from Recent Solar and Interplanetary Observations

    Science.gov (United States)

    Tsurutani, B. T.; Gonzalez, W. D.

    1995-01-01

    Within the last 7-8 years, there has been a substantial growth in out knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.

  8. Classification and quantification of solar wind driver gases leading to intense geomagnetic storms

    Science.gov (United States)

    Adekoya, B. J.; Chukwuma, V. U.

    2018-01-01

    Classification and quantification of the interplanetary structures causing intense geomagnetic storms (Dst ≤ -100 nT) that occurred during 1997-2016 are studied. The subject of this consists of solar wind parameters of seventy-three intense storms that are associated with the southward interplanetary magnetic field. About 30.14% of the storms were driven by a combination of the sheath and ejecta (S + E), magnetic clouds (MC) and sheath field (S) are 26% each, 10.96% by combined sheath and MCs (S + C), while 5.48% of the storms were driven by ejecta (E) alone. Therefore, we want to aver that for storms driven by: (1) S + E. The Bz is high (≥10 nT), high density (ρ) (>10 N/cm3), high plasma beta (β) (>0.8), and unspecified (i.e. high or low) structure of the plasma temperature (T) and the flow speed (V); (2) MC. The Bz is ≥10 nT, low temperature (T ≤ 400,000 K), low ρ (≤10 N/cm3), high V (≥450 km), and low β (≤0.8); (3) The structures of S + C are similar to that of MC except that the V is low (V ≤ 450 km); (4) S. The Bz is high, low T, high ρ, unspecified V, and low β; and (5) E. Is when the structures are directly opposite of the one driven by MCs except for high V. Although, westward ring current indicates intense storms, but the large intensity of geomagnetic storms is determined by the intense nature of the electric field strength and the Bz. Therefore, great storms (i.e. Dst ≤ -200 nT) are manifestation of high electric field strength (≥13 mV/m).

  9. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    Science.gov (United States)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  10. The solar wind control of electron fluxes in geostationary orbit during magnetic storms

    International Nuclear Information System (INIS)

    Popov, G.V.; Degtyarev, V.I.; Sheshukov, S.S.; Chudnenko, S.E.

    1999-01-01

    The dynamics of electron fluxes (with energies from 30 to 1360 keV) in geostationary orbit during magnetic storms was investigated on the basis of LANL spacecraft 1976-059 and 1977-007 data. Thirty-seven magnetic storms with distinct onsets from the time interval July 1976-December 1978 were used in the analysis. A treatment of experimental data involved the moving averaging and the overlapping epoch method. The smoothed component of electron fluxes represents mainly trapped electrons and shows their strong dependence on the solar wind velocity. The time lag between a smoothed electron flux and the solar wind velocity increases with electron energy reflecting dynamics of the inner magnetosphere filling with trapped energetic electrons originating from substorm injection regions located not far outside geostationary orbit

  11. Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere.

    Science.gov (United States)

    Lastovicka, J.

    1996-05-01

    Geomagnetic storm effects at heights of about 0-100 km are briefly (not comprehensively) reviewed, with emphasis being paid to middle latitudes, particularly to Europe. Effects of galactic cosmic rays, solar particle events, relativistic and highly relativistic electrons, and IMF sector boundary crossings are briefly mentioned as well. Geomagnetic storms disturb the lower ionosphere heavily at high latitudes and very significantly also at middle latitudes. The effect is almost simultaneous at high latitudes, while an after-effect dominates at middle latitudes. The lower thermosphere is disturbed significantly. In the mesosphere and stratosphere, the effects become weaker and eventually non-detectable. There is an effect in total ozone but only under special conditions. Surprisingly enough, correlations with geomagnetic storms seem to reappear in the troposphere, particularly in the Northern Hemisphere. Atmospheric electricity is affected by geomagnetic storms, as well. We essentially understand the effects of geomagnetic storms in the lower ionosphere, but there is a lack of mechanisms to explain correlations found deeper in the atmosphere, particularly in the troposphere. There seem to be two different groups of effects with possibly different mechanisms - those observed in the lower ionosphere, lower thermosphere and mesosphere, and those observed in the troposphere.

  12. Effects of geomagnetic storm on low latitude ionospheric total ...

    Indian Academy of Sciences (India)

    1Department of Physics, Tripura University, Suryamaninagar, Tripura 799 022, India. ... the fact that the electro-dynamic effect of geomagnetic storms around EIA region is more effective than ... causes range of error in GPS communication.

  13. Solar effects on communications

    International Nuclear Information System (INIS)

    Cleveland, F.; Malcolm, W.; Nordell, D.E.; Zirker, J.

    1991-01-01

    When people involved in the power industry think of Solar Magnetic Disturbances (SMD), they normally consider the potential for disrupting power transmission which results form solar-induced disturbances to the earth's magnetic field known as geomagnetic storms. However, in addition to the disruption of power transmission, solar phenomena can interfere with utility communication systems. Utilities use many different types of communication media, some of which can be affected by various solar phenomena. These include wire-based facilities (metallic cables and power line carrier), radio systems (HF, VHF, UHF mobile radio, microwave networks, and satellite transmissions), and fiber optic systems. This paper reports that the solar flares and other solar phenomena can affect these media through different mechanisms: Radio communications can be disturbed by flare-induced changes in the ionispheric layer of the atmosphere; Cable communications can be disrupted by the flare-induced changes in the magnetosphere which surrounds the earth. These changes, in turn, induce currents in the power equipment that energizes long communications cables; Satellite communications can be disrupted by the flare-induced perturbations of satellite orbits and equipment

  14. Thermospheric response observed over Fritz peak, Colorado, during two large geomagnetic storms near solar cycle maximum

    International Nuclear Information System (INIS)

    Hernandez, G.; Roble, R.G.; Ridley, E.C.; Allen, J.H.

    1982-01-01

    Nightime thermospheric winds and temperatures have been measured over Fritz Peak Observatory, Colorado (39.9 0 N, 105.5 0 W), with a high resolution Fabry-Perot spectrometer. The winds and temperatures are obtained from the Doppler shifts and line profiles of the (O 1) 15,867K (630 nm) line emission. Measurements made during two large geomagnetic storm periods near solar cycle maximum reveal a thermospheric response to the heat and momentum sources associated with these storms that is more complex than the ones measured near solar cycle minimum. In the earlier measurements made during solar cycle minimum, the winds to the north of Fritz Peak Observatory had an enhanced equatorward component and the winds to the south were also equatorward, usually with smaller velocities. The winds measured to the east and west of the observatory both had an enhanced westward wind component. For the two large storms near the present solar cycle maximum period converging winds are observed in each of the cardinal directions from Fritz Peak Observatory. These converging winds with speeds of hundreds of meters per second last for several hours. The measured neutral gas temperature in each of the directions also increases several hundred degrees Kelvin. Numerical experiments done with the NCAR thermospheric general circulation model (TGCM) suggest that the winds to the east and north of the station are driven by high-latitude heating and enhanced westward ion drag associated with magnetospheric convection. The cause of the enhanced poleward and eastward winds measured to the south and west of Fritz Peak Observatory, respectively, is not known. During geomagnetic quiet conditions the circulation is typically from the soutwest toward the northeast in the evening hours

  15. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  16. The effect of geomagnetic storms on suicide

    African Journals Online (AJOL)

    QuickSilver

    of possible low-frequency electromagnetic field disturbances from the solar terrestrial .... tion in the magnetic field of the earth can be observed on the .... Perception and Motor Skills 1973; 36: 1131-1159. ... Manual of the international statistical.

  17. Great magnetic storms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  18. Predicting geomagnetic storms from solar-wind data using time-delay neural networks

    Directory of Open Access Journals (Sweden)

    H. Gleisner

    1996-07-01

    Full Text Available We have used time-delay feed-forward neural networks to compute the geomagnetic-activity index Dst one hour ahead from a temporal sequence of solar-wind data. The input data include solar-wind density n, velocity V and the southward component Bz of the interplanetary magnetic field. Dst is not included in the input data. The networks implement an explicit functional relationship between the solar wind and the geomagnetic disturbance, including both direct and time-delayed non-linear relations. In this study we especially consider the influence of varying the temporal size of the input-data sequence. The networks are trained on data covering 6600 h, and tested on data covering 2100 h. It is found that the initial and main phases of geomagnetic storms are well predicted, almost independent of the length of the input-data sequence. However, to predict the recovery phase, we have to use up to 20 h of solar-wind input data. The recovery phase is mainly governed by the ring-current loss processes, and is very much dependent on the ring-current history, and thus also the solar-wind history. With due consideration of the time history when optimizing the networks, we can reproduce 84% of the Dst variance.

  19. Ionospheric Storm Effects and Equatorial Plasma Irregularities During the 17-18 March 2015 Event

    Science.gov (United States)

    Zhou, Yun-Liang; Luhr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-01-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (E (sub m)). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/pre-noon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the post-sunset sector. As a response to a short-lived decline of E (sub m), EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 hours. Only after the onset of recovery phase does EPI activity start again in the post-midnight sector, lasting more than 7 hours

  20. A study of solar and interplanetary parameters of CMEs causing major geomagnetic storms during SC 23

    Directory of Open Access Journals (Sweden)

    C. Oprea

    2013-08-01

    Full Text Available In this paper we analyse 25 Earth-directed and strongly geoeffective interplanetary coronal mass ejections (ICMEs which occurred during solar cycle 23, using data provided by instruments on SOHO (Solar and Heliospheric Observatory, ACE (Advanced Composition Explorer and geomagnetic stations. We also examine the in situ parameters, the energy transfer into magnetosphere, and the geomagnetic indexes. We compare observed travel times with those calculated by observed speeds projected into the plane of the sky and de-projected by a simple model. The best fit was found with the projected speeds. No correlation was found between the importance of a flare and the geomagnetic Dst (disturbance storm time index. By comparing the in situ parameters with the Dst index we find a strong connection between some of these parameters (such as Bz, Bs · V and the energy transfer into the magnetosphere with the strength of the geomagnetic storm. No correlation was found with proton density and plasma temperature. A superposed epoch analysis revealed a strong dependence of the Dst index on the southward component of interplanetary magnetic field, Bz, and to the Akasofu coupling function, which evaluates the energy transfer between the ICME and the magnetosphere. The analysis also showed that the geomagnetic field at higher latitudes is disturbed before the field around the Earth's equator.

  1. An operational integrated short-term warning solution for solar radiation storms: introducing the Forecasting Solar Particle Events and Flares (FORSPEF) system

    Science.gov (United States)

    Anastasiadis, Anastasios; Sandberg, Ingmar; Papaioannou, Athanasios; Georgoulis, Manolis; Tziotziou, Kostas; Jiggens, Piers; Hilgers, Alain

    2015-04-01

    We present a novel integrated prediction system, of both solar flares and solar energetic particle (SEP) events, which is in place to provide short-term warnings for hazardous solar radiation storms. FORSPEF system provides forecasting of solar eruptive events, such as solar flares with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. It also provides nowcasting of SEP events based on actual solar flare and CME near real-time alerts, as well as SEP characteristics (peak flux, fluence, rise time, duration) per parent solar event. The prediction of solar flares relies on a morphological method which is based on the sophisticated derivation of the effective connected magnetic field strength (Beff) of potentially flaring active-region (AR) magnetic configurations and it utilizes analysis of a large number of AR magnetograms. For the prediction of SEP events a new reductive statistical method has been implemented based on a newly constructed database of solar flares, CMEs and SEP events that covers a large time span from 1984-2013. The method is based on flare location (longitude), flare size (maximum soft X-ray intensity), and the occurrence (or not) of a CME. Warnings are issued for all > C1.0 soft X-ray flares. The warning time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective warning time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes. We discuss the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on the Sun and the interplanetary space, while the combined usage of solar flare and SEP forecasting methods upgrades FORSPEF to an integrated forecasting solution. This

  2. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  3. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1999-03-01

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  4. Jupiter's Spot Seen Glowing - Scientists Get First Look at Weather Inside the Solar System's Biggest Storm

    Science.gov (United States)

    2010-03-01

    New ground-breaking thermal images obtained with ESO's Very Large Telescope and other powerful ground-based telescopes show swirls of warmer air and cooler regions never seen before within Jupiter's Great Red Spot, enabling scientists to make the first detailed interior weather map of the giant storm system linking its temperature, winds, pressure and composition with its colour. "This is our first detailed look inside the biggest storm of the Solar System," says Glenn Orton, who led the team of astronomers that made the study. "We once thought the Great Red Spot was a plain old oval without much structure, but these new results show that it is, in fact, extremely complicated." The observations reveal that the reddest colour of the Great Red Spot corresponds to a warm core within the otherwise cold storm system, and images show dark lanes at the edge of the storm where gases are descending into the deeper regions of the planet. The observations, detailed in a paper appearing in the journal Icarus, give scientists a sense of the circulation patterns within the solar system's best-known storm system. Sky gazers have been observing the Great Red Spot in one form or another for hundreds of years, with continuous observations of its current shape dating back to the 19th century. The spot, which is a cold region averaging about -160 degrees Celsius, is so wide that about three Earths could fit inside its boundaries. The thermal images were mostly obtained with the VISIR [1] instrument attached to ESO's Very Large Telescope in Chile, with additional data coming from the Gemini South telescope in Chile and the National Astronomical Observatory of Japan's Subaru Telescope in Hawaii. The images have provided an unprecedented level of resolution and extended the coverage provided by NASA's Galileo spacecraft in the late 1990s. Together with observations of the deep cloud structure by the 3-metre NASA Infrared Telescope Facility in Hawaii, the level of thermal detail observed

  5. Design an effective storm water pollution prevention plan

    International Nuclear Information System (INIS)

    Vivona, M.A.

    1995-01-01

    A case history shows ''how'' to plan and organize a storm water pollution prevention program (SWPPP). Using easy-to-use worksheets and guidelines, hydrocarbon processing industry (HPI) operators can build upon existing best management practices (i.e., housekeeping procedures, visual inspections, spill prevention programs, etc.) to meet tighter restrictions set by National Pollutant Discharge Elimination system (NPDES) permits. Especially in high rainfall areas, storm water poses an intermittent, but large volume problem. The facility's site size is another factor that impacts the scope and cost for SWPPP. The five steps to implementing a SWPPP are: Planning and organization; Assessment; Best management practice (BMP) identification; Implementation; Evaluation and monitoring. Initially, HPI operators must identify all potential contamination sources and past spills and leak areas. Following the SWPP guidelines, operators can map out a cost-effective storm water program that meets all NPDES requirements

  6. Solar sources of interplanetary southward B/sub z/ events responsible for major magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Tang, F.; Tsurutani, B.T.; Gonzalez, W.D.; Akasofu, S.I.; Smith, E.J.

    1989-01-01

    Tsurutani et al. [1988] analyzed the 10 intense interplanetary southward B/sub z/ events that led to major magnetic storms (Dst 3.0) are associated with prominence eruptions. For three of the five southward B/sub z/ events in which the driver gases are the causes of the intense southward field leading to magnetic storms, the photospheric fields of the solar sources have no dominant southward component, indicating the driver gas fields do not always result from a simple outward convection of solar magnetic fields. Finally we compare the solar events and their resulting interplanetary shocks and find that the standard solar parameters do not correlate with the strengths of the resulting shocks at 1 AU. The implications are discussed. copyright American Geophysical Union 1989

  7. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  8. The effect of geomagnetic storm on GPS derived total electron content (TEC) at Varanasi, India

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Singh, A K

    2010-01-01

    In this paper we studied the effect of geomagnetic storm on Global Positioning System (GPS) derived total electron content (TEC) at low latitude Varanasi (Geomagnetic lat 14 0 , 55' N, geomagnetic long 154 0 E) during the period of May 2007 to April 2008. During this period 2 storms were found, which were occurred on 20 November 2007 and 9 March 2008. In this study vertical total electron content (VTEC) of single Pseudorandom Noise (PRN) and average of VTEC of same PRN before 10 days of storm, which is called background TEC, were used to see the effect of these storms on the variation of TEC. From this study this is found that during the storm of March 2008 the TEC increases in main phase of storm while in the case of November 2007 storm, TEC decreases during the main phase of storm but increases in the recovery phase (next day) of storm.

  9. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    Science.gov (United States)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  10. The effects of storms and storm-generated currents on sand beaches in Southern Maine, USA

    Science.gov (United States)

    Hill, H.W.; Kelley, J.T.; Belknap, D.F.; Dickson, S.M.

    2004-01-01

    Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms. Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999-2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000-2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999-2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer. A northeast storm on March 5-6, 2001, resulted in currents in excess of 1 m s-1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches

  11. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Sobolev, A.V.; Kozlov, V.I.

    1997-01-01

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with K p index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  12. Assessing the Performance of GPS Precise Point Positioning Under Different Geomagnetic Storm Conditions during Solar Cycle 24

    Directory of Open Access Journals (Sweden)

    Xiaomin Luo

    2018-06-01

    Full Text Available The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP. However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF and single-frequency (SF PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS stations. The global root mean square (RMS maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.

  13. Evaluation of geomagnetic storm effects on the GPS derived Total Electron Content (TEC)

    International Nuclear Information System (INIS)

    Purohit, P K; Atulkar, Roshni; Mansoori, Azad A; Khan, Parvaiz A; Bhawre, Purushottam; Tripathi, Sharad C; Khatarkar, Prakash; Bhardwaj, Shivangi; Aslam, A M; Waheed, Malik A; Gwal, A K

    2015-01-01

    The geomagnetic storm represents the most outstanding example of solar wind- magnetospheric interaction, which causes global disturbances in the geomagnetic field as well as triggers ionospheric disturbances. We study the behaviour of ionospheric Total Electron Content (TEC) during the geomagnetic storms. For this investigation we have selected 47 intense geomagnetic storms (Dst ≤ -100nT) that were observed during the solar cycle 23 i.e. during 1998- 2006. We then categorized these storms into four categories depending upon their solar sources like Magnetic Cloud (MC), Co-rotating Interaction Region (CIR), SH+ICME and SH+MC. We then studied the behaviour of ionospheric TEC at a mid latitude station Usuda (36.13N, 138.36E), Japan during these storm events produced by four different solar sources. During our study we found that the smooth variations in TEC are replaced by rapid fluctuations and the value of TEC is strongly enhanced during the time of these storms belonging to all the four categories. However, the greatest enhancements in TEC are produced during those geomagnetic storms which are either caused by Sheath driven Magnetic cloud (SH+MC) or Sheath driven ICME (SH+ICME). We also derived the correlation between the TEC enhancements produced during storms of each category with the minimum Dst. We found the strongest correlation exists for the SH+ICME category followed by SH+MC, MC and finally CIR. Since the most intense storms were either caused by SH+ICME or SH+MC while the least intense storms were caused by CIR, consequently the correlation was strongest with SH+ICME and SH+MC and least with CIR. (paper)

  14. Type 2 solar radio burst with the reverse frequency drift on the background of a noise storm

    International Nuclear Information System (INIS)

    Korolev, O.S.; Fomichev, V.V.; Chertok, I.M.

    1979-01-01

    Discussed are the main peculiarities of solar radio burst of the 2nd type recorded on November, 19, 1975 in 11sup(h)02sup(m)-11sup(h)06sup(m)UT in the 45-90 MHz range. The burst considered occurred at the background of the developed noise storm with continuum radiation chearacteristic of it and narrow band. Short-term burst of the first type. The burst band drift was accompanied by the successive cessation of noise storm radiation at frequencies of 50-70 MHz. This phenomenon is interpreted as the result of the interaction between the shock wave spreading in the direction of increasing electron density, and the source of noise storm in coronal plasma. Estimated is the shock wave rate and the paremeters of coronal plasma in the direction of its spreading. A mechanism of interaction between the shock wave and the noise storm source is studied. The observed cessation of noise storm generation is explained by violation of conditions of development of instabilities, in particular, with the isotropization of electrons in the radiation source

  15. Solar radio continuum storms and a breathing magnetic field model. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms

  16. Storm Effects on Net Ecosystem Productivity in Boreal Forests

    Science.gov (United States)

    Vestin, Patrik; Grelle, Achim; Lagergren, Fredrik; Hellström, Margareta; Langvall, Ola; Lindroth, Anders

    2010-05-01

    Regional carbon budgets are to some extent determined by disturbance in ecosystems. Disturbance is believed to be partly responsible for the large inter-annual variability of the terrestrial carbon balance. When neglecting anthropogenic disturbance, forest fires have been considered the most important kind of disturbance. However, also insect outbreaks and wind-throw may be major factors in regional carbon budgets. The effects of wind-throw on CO2 fluxes in boreal forests are not well known due to lack of data. Principally, the reduced carbon sequestration capacity, increased substrate availability and severe soil perturbation following wind-throw are expected to result in increased CO2 fluxes from the forest to the atmosphere. In January 2005, the storm Gudrun hit Sweden, which resulted in approx. 66 × 106m3storm-felled stem wood distributed over an area of approx. 272 000 ha. Eddy covariance flux measurements started at storm-felled areas in Asa and Toftaholm in central Sweden during summer 2005. Data from the first months suggests increased CO2 fluxes by a factor of 2.5-10, as compared to normal silviculture (clear-cutting). An important question is how long such enhanced CO2 fluxes persist. The BIOME-BGC model will be calibrated against measured CO2 fluxes from both sites for 2005 through 2009. Modeled data will be used to fill gaps in the data sets and annual carbon balances will be calculated. Data from Asa and Toftaholm will be presented at the conference.

  17. Flow of Energy through the Inner Magnetosphere during the March 17, 2015 solar storm as observed by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

    Science.gov (United States)

    Manweiler, J. W.; Madanian, H.; Gerrard, A. J.; Patterson, J. D.; Mitchell, D. G.; Lanzerotti, L. J.

    2017-12-01

    On March 17, 2015, a large solar storm impacted the Earth's magnetosphere with a maximum negative Dst of -232 nT. We report on the temporal and spatial evolution of the proton energetic particle distributions in phase space during this storm, as measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board each of the Van Allen Probes. We characterize the distribution prior to onset of the storm to provide a definition of quiet time conditions. We then show how the distribution evolves during the storm noting key changes of the distribution as a function of L and MLT and showing how the pitch angle distributions change throughout the storm. These observations displayed a number of interesting features of the storm including high beta plasma conditions and multiple injections of protons into the inner magnetosphere. We present the radial changes of the distribution at storm onset and following the evolution of the distribution during storm recovery. We compare observations of the East/West asymmetry in the proton distribution before versus after onset using both Van Allen Probes A and B spacecraft observations. Finally, we note interesting changes in the distribution showing an anomalous dropout in mid-energies of the distribution and observe an outward radial propagation of this dropout during recovery.

  18. Prediction of geomagnetic storms from solar wind data with the use of a neural network

    Directory of Open Access Journals (Sweden)

    H. Lundstedt

    Full Text Available An artificial feed-forward neural network with one hidden layer and error back-propagation learning is used to predict the geomagnetic activity index (Dst one hour in advance. The Bz-component and ΣBz, the density, and the velocity of the solar wind are used as input to the network. The network is trained on data covering a total of 8700 h, extracted from the 25-year period from 1963 to 1987, taken from the NSSDC data base. The performance of the network is examined with test data, not included in the training set, which covers 386 h and includes four different storms. Whilst the network predicts the initial and main phase well, the recovery phase is not modelled correctly, implying that a single hidden layer error back-propagation network is not enough, if the measured Dst is not available instantaneously. The performance of the network is independent of whether the raw parameters are used, or the electric field and square root of the dynamical pressure.

  19. Effect of geomagnetic storm conditions on the equatorial ionization anomaly and equatorial temperature anomaly

    Science.gov (United States)

    Bharti, Gaurav; Bag, T.; Sunil Krishna, M. V.

    2018-03-01

    The effect of the geomagnetic storm on the equatorial ionization anomaly (EIA) and equatorial temperature anomaly (ETA) has been studied using the atomic oxygen dayglow emissions at 577.7 nm (OI 557.7 nm) and 732.0 nm (OII 732.0 nm). For the purpose of this study, four intense geomagnetic storms during the ascending phase of solar cycle 24 have been considered. This study is primarily based on the results obtained using photochemical models with necessary inputs from theoretical studies and experimental observations. The latest reaction rate coefficients, quantum yields and the corresponding cross-sections have also been incorporated in these models. The volume emission rate of airglow emissions has been calculated using the neutral densities from NRLMSISE-00 and charged densities from IRI-2012 model. The modeled volume emission rate (VER) for OI 557.7 nm shows a positive correlation with the Dst index at 150 km and negative correlation with Dst at 250 and 280 km altitudes. Latitudinal profile of the greenline emission rate at different altitudes show a distinct behaviour similar to what has been observed in EIA with crests on either sides of the equator. The EIA crests are found to show poleward movement in the higher altitude regions. The volume emission rate of 732.0 nm emission shows a strong enhancement during the main phase of the storm. The changes observed in the airglow emission rates are explained with the help of variations induced in neutral densities and parameters related to EIA and ETA. The latitudinal variation of 732.0 nm emission rate is correlated to the variability in EIA during the storm period.

  20. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  1. Solar wind variations and geomagnetic storms - A study of individual storms based on high time resolution ISEE 3 data

    Science.gov (United States)

    Akasofu, S.-I.; Olmsted, C.; Smith, E. J.; Tsurutani, B.; Okida, R.; Baker, D. N.

    1985-01-01

    Two independent methods are employed to determine the relationship between the parameter epsilon and total energy dissipation rate of the magnetosphere U sub T by selecting disturbed periods from the same data d set used by Baker et al. (1983). Specifically, four storms are examined in detail, since the accuracy of estimating U sub T is significantly improved during disturbed periods. The first method assumes that U sub T = M sub A exp.2- alpha(epsilon) where M sub A is the Alfven Mach number and alpha varies with time. The second method considers a linear, time-invariant dynamic system with epsilon as input and U sub T as output. This means that U sub T = W(asterisk)epsilon where asterisk is the convolution and W is a transfer function characteristic of the system. It is found that alpha values fluctuate mainly between 0 and -0.25. The transfer function analysis indicates that W often resembles a delta-function or a narrow rectangular impulse. Both results give the same implication (namely that U sub T is approximately equal to epsilon) and thus are consistent with the view that the magnetosphere is primarily a directly driven system during disturbed periods.

  2. Magnetic storm effects in electric power systems and prediction needs

    Science.gov (United States)

    Albertson, V. D.; Kappenman, J. G.

    1979-01-01

    Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.

  3. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  4. Effect of solar flare on the equatorial electrojet in eastern Brazil region

    Indian Academy of Sciences (India)

    R G Rastogi

    2017-06-07

    Jun 7, 2017 ... The effect of solar flare, sudden commencement of magnetic storm and of the disturbances ring current on the ... and measured east of geographic north. The ΔH .... Figure 2 shows the intensity of solar x-ray radiations in the ...

  5. The Equatorial Scintillations and Space Weather Effects on its Generation during Geomagnetic Storms

    Science.gov (United States)

    Biktash, Lilia

    Great diversity of the ionospheric phenomena leads to a variety of irregularity types with spatial size from many thousands of kilometers to few centimeters and lifetimes from days to fractions of second. Since the ionosphere strongly influences the propagation of radio waves, signal distortions caused by these irregularities affect short-wave transmissions on Earth, transiono-spheric satellite communications and navigation. In this work the solar wind and the equatorial ionosphere parameters, Kp, Dst, AU, AL indices characterized contribution of different mag-netospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the space weather effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict scintil-lations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of elec-tron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind -magnetosphere -ionosphere during magnetic storms have progressed greatly. We have examined scintillation relation to magnetospheric and ionospheric currents and show that the factor, which presents during magnetic storms to fully inhibit scin-tillation, is the positive Bz-component of the IMF. During the positive Bz IMF F layer cannot raise altitude where scintillations are formed. The auroral indices and Kp do better for the prediction of the ionospheric scintillations at the equator. The interplanetary magnetic field data and models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere cur-rents and

  6. Modeling atmospheric effects of the September 1859 Solar Flare

    OpenAIRE

    Thomas, Brian; Jackman, Charles; Melott, Adrian

    2006-01-01

    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.

  7. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  8. Current understanding of magnetic storms: Storm-substorm relationships

    International Nuclear Information System (INIS)

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-01-01

    This paper attempts to summarize the current understanding of the storm/substorm relationship by clearing up a considerable amount of controversy and by addressing the question of how solar wind energy is deposited into and is dissipated in the constituent elements that are critical to magnetospheric and ionospheric processes during magnetic storms. (1) Four mechanisms are identified and discussed as the primary causes of enhanced electric fields in the interplanetary medium responsible for geomagnetic storms. It is pointed out that in reality, these four mechanisms, which are not mutually exclusive, but interdependent, interact differently from event to event. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are found to be the primary phenomena responsible for the main phase of geomagnetic storms. The other two mechanisms, i.e., HILDCAA (high-intensity, long-duration, continuous auroral electrojet activity) and the so-called Russell-McPherron effect, work to make the ICME and CIR phenomena more geoeffective. The solar cycle dependence of the various sources in creating magnetic storms has yet to be quantitatively understood. (2) A serious controversy exists as to whether the successive occurrence of intense substorms plays a direct role in the energization of ring current particles or whether the enhanced electric field associated with southward IMF enhances the effect of substorm expansions. While most of the Dst variance during magnetic storms can be solely reproduced by changes in the large-scale electric field in the solar wind and the residuals are uncorrelated with substorms, recent satellite observations of the ring current constituents during the main phase of magnetic storms show the importance of ionospheric ions. This implies that ionospheric ions, which are associated with the frequent occurrence of intense substorms, are accelerated upward along magnetic field lines, contributing to the energy density of the

  9. Effects of ice storm damage on hardwood survival and growth in Ohio

    Science.gov (United States)

    Richard M. Turcotte; Thomas R. Elliott; Mary Ann Fajvan; Yong-Lak Park; Daniel A. Snider; Patrick C. Tobin

    2012-01-01

    In 2003, an ice storm occurred across four Mid-Atlantic states. This study investigated the effects of the ice-storm damage on growth and mortality of five tree species (Acer rubrum, Acer saccharum, Quercus alba, Quercus prinus, and Quercus rubra) from three forest stands in the Wayne National Forest in Ohio. We remeasured the same...

  10. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    E). We also study the effect of vertical component of interplanetary magnetic field (IMF) on the variation of the magnitude of H component during storm time of April, July and. November 2004. Results show that before sudden storm commencement. (SSC) time magnitude of H component and IMF show smooth variation but.

  11. Magnetic and solar effects on ionospheric absorption at high latitude

    Directory of Open Access Journals (Sweden)

    M. Pietrella

    2002-06-01

    Full Text Available Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E. It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2.

  12. Solar Particle Radiation Storms Forecasting and Analysis within the Framework of the `HESPERIA' HORIZON 2020 Project

    Science.gov (United States)

    Posner, A.; Malandraki, O.; Nunez, M.; Heber, B.; Labrenz, J.; Kühl, P.; Milas, N.; Tsiropoula, G.; Pavlos, E.

    2017-12-01

    Two prediction tools that have been developed in the framework of HESPERIA based upon the proven concepts UMASEP and REleASE. Near-relativistic (NR) electrons traveling faster than ions (30 MeV protons have 0.25c) are used to forecast the arrival of protons of Solar Energetic Particle (SEP) events with real-time measurements of NR electrons. The faster electrons arrive at L1 30 to 90 minutes before the slower protons. REleASE (Relativistic Electron Alert System for Exploration, Posner, 2007) uses this effect to predict the proton flux by utilizing actual electron fluxes and their most recent increases. Through HESPERIA, a clone of REleASE was built in open source programming language. The same forecasting principle was adapted to real-time data from ACE/EPAM. It is shown that HESPERIA REleASE forecasting works with any NR electron flux measurements. >500 MeV solar protons are so energetic that they usually have effects on the ground, producing Ground Level Enhancement (GLE) events. Within HESPERIA, a predictor of >500 SEP proton events near earth (geostationary orbit) has been developed. In order to predict these events, UMASEP (Núñez, 2011, 2015) has been used. UMASEP makes a lag-correlation of solar electromagnetic (EM) flux with the particle flux near earth. If the correlation is high, the model infers that there is a magnetic connection through which particles are arriving. If, additionally, the intensity of the flux of the associated solar event is also high, then UMASEP issues a SEP prediction. In the case of the prediction of >500 MeV SEP events, the implemented system, called HESPERIA UMASEP-500, correlates X-ray flux with differential proton fluxes by GOES, and with fluxes collected by neutron monitor stations around the world. When the correlation estimation and flare surpasses thresholds, a >500 MeV SEP forecast is issued. These findings suggest that a synthesis of the various approaches may improve over the status quo. Both forecasting tools are

  13. Geomagnetic storm related to intense solar radio burst type II and III ...

    African Journals Online (AJOL)

    The strong energetic particles ejected during sun's activity will propagate towards earth and contribute to solar radio bursts. These solar radio bursts can be detected using CALLISTO system. The open website of the NASA provides us the data including CALLISTO, TESIS, solar monitor, SOHO and space weather. The type ...

  14. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  15. Magnetic storm effects on the mid-latitude plasmasphere

    International Nuclear Information System (INIS)

    Smith, A.J.; Clilverd, M.A.

    1991-01-01

    Whistler mode group delays observed at Faraday, Antarctica (65 o S,64 0 W) decrease after the onset of magnetic storms, and slowly recover to normal levels in 1 or 2 days. This is interpreted as a decrease (typically of ∼50%) and recovery of the plasmaspheric electron density at L = 2.5. Within 1 day of the main phase of storms with K p (max) between 6 and 8, the number of observed whistler ducts increases by a factor of 2 or 3, recovering in a few days. During the most intense storms (K p > 8) the duct number decreases. The frequency of occurrence of observed whistler mode signals increases during storms, due probably to enhanced ionospheric propagation of the signals; the storm time dependence implies that there is no link with the apparent increase in duct numbers. The amplitudes of received whistler mode signals are increased by up to a factor of 10 during storms: this is interpreted in terms of magnetospheric amplification through wave-particle interactions, though the evidence suggests that amplification is not necessarily the mechanism by which increased duct numbers are observed. There appears to be a real increase in the duct formation rate, consistent with Walker's (1978) theory in which ring current penetration of the plasmasphere creates a preferential region for duct formation 1.5 R E inside the plasmapause. (author)

  16. Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010

    DEFF Research Database (Denmark)

    Lefèvre, Laure; Vennerstrøm, Susanne; Dumbović, Mateja

    2016-01-01

    An analysis of historical Sun–Earth connection events in the context of the most extreme space weather events of the last ∼ 150 years is presented. To identify the key factors leading to these extreme events, a sample of the most important geomagnetic storms was selected based mainly on the well-...

  17. Magnetic storm effects on the tropical ultraviolet airglow

    International Nuclear Information System (INIS)

    Gerard, J.; Anderson, D.N.; Matsushita, S.

    1977-01-01

    The intensity and latitudinal distribution of the O I 1304- and 1356-A nighttime emissions associated with the equatorial anomaly have been observed by the ultraviolet spectrometer on board the Ogo 4 satellite. Conspicuous effects, apparently related to magnetic activity, have been noticed during the geomagnetic storm of October 29 to November 4, 1968. These effects include (1) large latitudinal variations of the 1304/1356-A intensity ratio, (2) large interhemispheric asymmetries in the 1356-A intensity, and (3) a pronounced longitude dependence in the airglow intensity during the recovery phase. The results of model calculations allowing for changes in the vertical E x B drift velocity, the meridional and zonal wind velocity, and neutral composition are discussed. The variations of the 1304/1356-A ratio can be accounted for by changes in the altitude of the F layer due to neutral wind and E x B drift. Zonal wind speeds approaching 300 m/s explain the interhemispheric asymmetries observed in the Pacific sector, and both drift velocity and composition changes can explain the longitudinal differences observed during the recovery phase. In addition, it is found that the ratio 1304/1356 A=6 maps out H/sub max/(F 2 ) extremely well, independent of which E x B drift or neutral wind model is used

  18. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil.

    Science.gov (United States)

    Souza, Raquel Lima; Mugabe, Vánio André; Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Moreira, Patrícia Sousa Dos Santos; Nascimento, Leile Camila Jacob; Roundy, Christopher Michael; Weaver, Scott C; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2017-07-11

    Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. This study exemplifies how a simple intervention targeting storm drains can result in a major reduction of water retention, and, consequently, impact Ae. aegypti larval populations. Larger and multi-center evaluations are needed to confirm the potential of citywide structural modifications of storm drains to reduce Aedes spp. infestation level.

  19. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    Science.gov (United States)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  20. Magnetic storm injection of 0.9- to 16-keV/e solar and terrestrial ions into the high-altitude magnetosphere

    International Nuclear Information System (INIS)

    Balsiger, H.; Eberhardt, P.; Geiss, J.; Young, D.T.

    1980-01-01

    The Geos 1 ion composition experiments has surveyed the plasma composition in the energy per charge range below 16 keV/e at all local times and at L=3--8. During quiet and moderately disturbed times, H + is the dominant species with a few percent of heavy (M/Q>1) ions. Substorms and storms increase the relative amount of heavy ions, and occasionally, they can become the dominant species in the outer magnetosphere. Two sources, the solar wind (characterized by 4 He ++ ) and the ionosphere (characterized by O + ), give on the average comparable contributions to storm time plasma, although in individual storms one or the other may dominate. Data presented here suggest that high-altitude thermal plasma or the plasmasphere (characterized by He + and O ++ ) must be considered as a third source. Under storm conditions with Geos in the dawn-noon local time sector we have observed a mixed composition region just inside the magnetopause where high fluxes of H + , He ++ , O + , and occasionally He + ions are present. During several storms a composition profile could be measured down to Lapprox.3. Both O + and He + increase toward low altitudes, and O + (within our energy range) can become dominant at the inner edge of the ring current. On April 30, 1978, during a storm, O + contributed > or approx. =8% to the total local energy density of the ring current particles at L=4.1. In no storm has He + been observed to be the main constituent during the recovery phase. During storm recovery, H + and O + are the dominant ions, the H + /O + ratio remaining constant or even increasing during the days following the main phase of the storms. This suggests that charge exchange is not the only loss mechanism for the storm time ring current and/or that H + is replenished during the recovery phase

  1. Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China

    Directory of Open Access Journals (Sweden)

    Zhi-lin Sun

    2017-01-01

    Full Text Available Variations in coastline geometry caused by coastal engineering affect tides, storm surges, and storm tides. Three cluster land reclamation projects have been planned for construction in the Jiaojiang Estuary during the period from 2011 to 2023. They will cause significant changes in coastline geometry. In this study, a surge-tide coupled model was established based on a three-dimensional finite-volume coastal ocean model (FVCOM. A series of numerical experiments were carried out to investigate the effects of variations in coastline geometry on tides, storm surges, and storm tides. This model was calibrated using data observed at the Haimen and Ruian gauge stations and then used to reproduce the tides, storm surges, and storm tides in the Jiaojiang Estuary caused by Typhoon Winnie in 1997. Results show that the high tide level, peak storm surge, and high storm tide level at the Haimen Gauge Station increased along with the completion of reclamation projects, and the maximum increments caused by the third project were 0.13 m, 0.50 m, and 0.43 m, respectively. The envelopes with maximum storm tide levels of 7.0 m and 8.0 m inside the river mouth appeared to move seaward, with the latter shifting 1.8 km, 3.3 km, and 4.4 km due to the first project, second project, and third project, respectively. The results achieved in this study contribute to reducing the effects of, and preventing storm disasters after the land reclamation in the Jiaojiang Estuary.

  2. Modeling the entry and trapping of solar energetic particles in the magnetosphere during the November 24-25, 2001 storm

    Science.gov (United States)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2009-04-01

    We have modeled the entry of solar energetic particles (SEPs) into the magnetosphere during the November 24-25, 2001 magnetic storm and the trapping of particles in the inner magnetosphere. The study used the technique of following many test particles, protons with energies greater than about 100 keV, in the electric and magnetic fields from a global magnetohydrodynamic (MHD) simulation of the magnetosphere during this storm. SEP protons formed a quasi-trapped and trapped population near and within geosynchronous orbit. Preliminary data comparisons show that the simulation does a reasonably good job of predicting the differential flux measured by geosynchronous spacecraft. Particle trapping took place mainly as a result of particles becoming non-adiabatic and crossing onto closed field lines. Particle flux in the inner magnetosphere increased dramatically as an interplanetary shock impacted and compressed the magnetosphere near 0600 UT, but long term trapping (hours) did not become widespread until about an hour later, during a further compression of the magnetosphere. Trapped and quasi-trapped particles were lost during the simulation by motion through the magnetopause and by precipitation, primarily the former. This caused the particle population near and within geosynchronous orbit to gradually decrease later on during the latter part of the interval.

  3. Effects of Asian dust storm events on daily mortality in Taipei, Taiwan

    International Nuclear Information System (INIS)

    Chen, Y.-S.; Sheen, P.-C.; Chen, E.-R.; Liu, Y.-K.; Wu, T.-N.; Yang, C.-Y.

    2004-01-01

    In spring, windblown dust storms originating in the deserts of Mongolia and China make their way to Taipei City. These occurrences are known as Asian dust storm events. The objective of this study was to assess the possible effects of Asian dust storms on the mortality of residents in Taipei, Taiwan, during the period from 1995 to 2000. We identified 39 dust storm episodes, which were classified as index days. Daily deaths on the index days were compared with deaths on the comparison days. We selected two comparison days for each index day, 7 days before the index day and 7 days after the index day. The strongest estimated effects of dust storms were increases of 7.66% in risk for respiratory disease 1 day after the event, 4.92% for total deaths 2 days following the dust storms and 2.59% for circulatory diseases 2 days following the dust storms. However, none of these effects were statistically significant. This study found greater specificity for associations with respiratory deaths, and this increases the likelihood that the association between dust events and daily mortality represents a causal relationship

  4. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    Science.gov (United States)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  5. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  6. Effects of geomagnetic storms on the bottomside ionospheric F region

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia

    2005-01-01

    Roč. 35, - (2005), s. 429-439 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Geomagnetic storm * Bottomside F region electron density Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.706, year: 2005

  7. Reconstruction of solar wind features that caused a super geomagnetic storm

    Science.gov (United States)

    Lui, A. T. Y.; Gonzalez, W. D.

    2013-06-01

    A superstorm with Dst < -300 nT can cause major space disturbances. We examine one on March 31, 2001 that has the minimum Dst of -387 nT and obtain two-dimensional maps in pressure and magnetic field of the sheath region and a magnetic cloud behind it. Both the sheath and the magnetic cloud play a role in building the storm strength. Several properties of the magnetic cloud are inferred, including an estimated total magnetic flux of ~6.5×1012 Wb.

  8. Role of the lifetime of ring current particles on the solar wind-magnetosphere power transfer during the intense geomagnetic storm of 28 August 1978

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Lee, L.C.

    1990-01-01

    For the intense magnetic storms of 28 August 1978 it is shown that the power transfer from the solar wind to the magnetosphere is well represented by the expression obtained by Vasyliunas et al. (1982, Planet. Space Sci. 30, 359) from dimensional analysis, but this representation becomes improved when such an expression is modified by a factor due to an influence of the lifetime of ring current particles as suggested by Lee and Akasofu (1984, Planet. Space Sci. 32, 1423). During a steady state regime of the ring current evolution of this storm, our study suggests that the power transfer depends on the solar wind density, the transverse component of the IMF (Interplanetary magnetic field) (with respect to the Sun-Earth line) and also, explicitly, on the time constant for ring current energy decay, but not on the solar wind speed. (author)

  9. Effect of dust storms on FSO communications links

    KAUST Repository

    Esmail, Maged Abdullah

    2017-05-18

    In literature, there is a lake of information about free space optic (FSO) systems\\' performance in arid and semi-arid areas that are prone to frequent dust storms. Therefore, in this paper, we investigate the performance of FSO links under dust storm conditions. We aim to determine the limits and capabilities of such systems in this harsh environment. To achieve this goal, we use some performance metrics including signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. The results show that dust is a rough impairment that causes link drop under low visibility range. Moreover, we found that the system performance can be improved by using short segments or multi-hop system. Furthermore, the results show negligible improvement in system performance under dense dust. The comparison of fog and dust impairments show that dust introduces much higher attenuation than fog. Therefore, dust can be considered as the ultimate impairment for FSO links.

  10. Effect of dust storms on FSO communications links

    KAUST Repository

    Esmail, Maged Abdullah; Fathallah, Habib; Alouini, Mohamed-Slim

    2017-01-01

    In literature, there is a lake of information about free space optic (FSO) systems' performance in arid and semi-arid areas that are prone to frequent dust storms. Therefore, in this paper, we investigate the performance of FSO links under dust storm conditions. We aim to determine the limits and capabilities of such systems in this harsh environment. To achieve this goal, we use some performance metrics including signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. The results show that dust is a rough impairment that causes link drop under low visibility range. Moreover, we found that the system performance can be improved by using short segments or multi-hop system. Furthermore, the results show negligible improvement in system performance under dense dust. The comparison of fog and dust impairments show that dust introduces much higher attenuation than fog. Therefore, dust can be considered as the ultimate impairment for FSO links.

  11. Letter to the Editor: Geomagnetic storm effects at low latitudes

    OpenAIRE

    R. G. Rastogi; R. G. Rastogi

    1999-01-01

    The geomagnetic horizontal (H) field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday...

  12. Trustworthiness of magnetic storms effect on biological and man caused processes

    International Nuclear Information System (INIS)

    Kozin, I.D.; Fedulina, I.N.; Sokolova, O.I.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    It is shown that relative variations of geomagnetic field components at the middle latitudes do not exceeds 1 % even during strong magnetic storms, and changes of a field vector angle are less than 1 degree. It is supposed that such changes can not effect life organism functioning, including human, as well as working of electricity transmission lines and other technological equipment. Different causes occurring during magnetic storms may be responsible for that. (author)

  13. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    Science.gov (United States)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/ are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  14. Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity

    Science.gov (United States)

    Chandra, Harish; Bhatt, Beena

    2018-04-01

    In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.

  15. Effects of Solar Activity and Space Environment in 2003 Oct.

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Cho

    2004-12-01

    Full Text Available In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.

  16. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    Science.gov (United States)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  17. Effect of solar flare on the equatorial electrojet in eastern Brazil region

    Indian Academy of Sciences (India)

    The effect of solar flare, sudden commencement of magnetic storm and of the disturbances ring current on the equatorial electrojet in the Eastern Brazil region, where the ground magnetic declination is as large as 20∘W is studied based on geomagnetic data with one minute resolution from Bacabal during ...

  18. Role of neutral wind and storm time electric fields inferred from the storm time ionization distribution at low latitudes: in-situ measurements by Indian satellite SROSS-C2

    OpenAIRE

    Subrahmanyam , P.; Jain , A. R.; Singh , L.; Garg , S. C.

    2005-01-01

    Recently, there has been a renewal of interest in the study of the effects of solar weather events on the ionization redistribution and irregularity generation. The observed changes at low and equatorial latitudes are rather complex and are noted to be a function of location, the time of the storm onset and its intensity, and various other characteristics of the geomagnetic storms triggered by solar weather events. At these latitudes, the effects of geomagnetic storms are basically due to (a)...

  19. A study of the effect of geomagnetic storms on low latitude whistlers

    International Nuclear Information System (INIS)

    Rao, Manoranjan; Somayajulu, V.V.; Dikshit, S.K.

    1974-01-01

    This paper presents the results of a detailed study of the influence of geomagnetic storms on low latitude whistlers recorded on ground. Studied in detail is the effect of the geomagnetic storm of March 6-10, 1970 on whistlers recorded at Gulmarg (Geomagnetic coordinates: 24 0 10'N; 147 0 24'E); results of analysis for the earlier storm of January 13-15, 1967 are included for comparison. Some of the important results of the present study are: (i) Both the whistler occurrence rate and dispersion increase simultaneously with Kp, (ii) During the decaying phase of the storm, changes in occurrence rate and in dispersion lag behind those in Kp, (iii) There is an indication of the existence of a cross-over latitude where tube contents may not change appreciably during storm periods, (iv) Multipath whistlers are observed only during disturbed conditions, (v) Duct life ranges between several hours to few days and (vi) Maximum number of ducts is observed during the main and recovery phases of the storm. (auth.)

  20. Solar particle radiation storms forecasting and analysis the HESPERIA HORIZON 2020 project and beyond

    CERN Document Server

    Crosby, Norma

    2018-01-01

    Solar energetic particles (SEPs) emitted from the Sun are a major space weather hazard motivating the development of predictive capabilities. This book presents the results and findings of the HESPERIA (High Energy Solar Particle Events forecasting and Analysis) project of the EU HORIZON 2020 programme. It discusses the forecasting operational tools developed within the project, and presents progress to SEP research contributed by HESPERIA both from the observational as well as the SEP modelling perspective. Using multi-frequency observational data and simulations HESPERIA investigated the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space, to the detection near 1 AU. The book also elaborates on the unique software that has been constructed for inverting observations of relativistic SEPs to physical parameters that can be compared with spac e-borne measurements at lower energies. Introductory and pedagogical material incl...

  1. Geomagnetic storms

    International Nuclear Information System (INIS)

    McNamara, A.G.

    1980-01-01

    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  2. A comparative study of night-time enhancement of TEC at a low latitude station on storm and quiet nights including the local time, seasonal and solar activity dependence

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    Full Text Available The main characteristics of night-time enhancements in TEC during magnetic storms are compared with those during quiet nights for different seasons and solar activity conditions at Palehua, a low latitude station during the period 1980–1989. We find that the mean amplitude has both a seasonal and solar activity dependence: in winter, the values are higher for weak storms as compared to those during quiet nights and increase with an increase in solar activity. In summer, the mean amplitude values during weak storms and quiet nights are almost equal. But during equinox, the mean amplitude values for quiet nights are greater than those during weak storms. The mean half-amplitude duration is higher during weak storms as compared to that during quiet nights in summer. However, during winter and equinox, the durations are almost equal for both quiet and weak storm nights. For the mean half-amplitude duration, the quiet night values for all the seasons and equinoctial weak storm values increase with an increase in solar activity. The occurrence frequency (in percent of TEC enhancement during weak storms is greater than during quiet nights for all seasons. The mean amplitude, the mean half-amplitude duration and the occurrence frequency (in percent of TEC enhancement values are higher during major storms as compared to those during quiet nights. The above parameters have their highest values during pre-midnight hours. From the data analysed, this behaviour is true in the case of major storms also.

    Key words. Ionosphere (ionospheric disturbances; plasma convection Magnetospheric physics (storms and substorms

  3. DISSOLUÇÃO DE FRONTEIRAS E A EXPERIÊNCIA TRANSICIONAL EM SOLAR STORMS, DE LINDA HOGAN

    Directory of Open Access Journals (Sweden)

    Caroline Garcia de Souza

    2014-12-01

    Full Text Available O presente trabalho analisa a experiência transicional no romance Solar Storms, publicado pela escritora nativo-americana Linda Hogan (Chickasaw em 1995. A obra narra a jornada de Angela, uma mestiça indígena órfã que retorna à terra de seus antepassados na tentativa de desvendar sua história e de religar os fragmentos de um passado parcialmente obscuro. Ao longo da narrativa, percebe-se um processo de gradual desconstrução de categorias – temporais, físicas, espaciais – e de superação das relações dicotômicas que opõem, por exemplo, indivíduo e comunidade, interioridade e exterioridade, o mundo humano e o não humano. Esse movimento se dá na direção de uma dissolução das falsas fronteiras e no sentido de uma integração total.

  4. Atmospheric Electricity Effects of Eastern Mediterranean Dust Storms

    Science.gov (United States)

    Katz, Shai; Yair, Yoav; Yaniv, Roy; Price, Colin

    2016-04-01

    We present atmospheric electrical measurements conducted at the Wise Observatory (WO) in Mizpe-Ramon (30035'N, 34045'E) and Mt. Hermon (30024'N, 35051'E), Israel, during two massive and unique dust storms that occurred over the Eastern Mediterranean region on February 10-11 and September 08-12, 2015. The first event transported Saharan dust from Egypt and the Sinai Peninsula in advance of a warm front of a Cyprus low pressure system. In the second event, dust particles were transported from the Syrian desert, which dominates the north-east border with Iraq, through flow associated with a shallow Persian trough system. In both events the concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 2200 μg m-3. Aerosol Optical Thickness (AOT) obtained from the AERONET station in Sde-Boker reached values up to 4.0. The gradual intensification of the first event reached peak values on the February 11th > 1200 μg m-3 and an AOT ~ 1.8, while the second dust storm commenced on September 8th with a sharp increase reaching peak values of 2225 μg m-3 and AOT of 4.0. Measurements of the fair weather vertical electric field (Ez) and of the vertical current density (Jz) were conducted continuously with a 1 minute temporal resolution. During the February event, very large fluctuations in the electrical parameters were measured at the WO. The Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 and +20 pA m-2 (this is an order of magnitude larger compared to the fair weather current density of ~2 pA m-2. In contrast, during the September event, Ez values registered at WO were between -430 and +10 V m-1 while the Jz fluctuated between -6 and +3 pA m2. For the September event the Hermon site showed Ez and Jz values fluctuating between -460 and +570 V m-1 and -14.5 and +18 pA m-2 respectively. The electric field and current variability, amplitude and the

  5. Combined effect of storm movement and drainage network configuration on flood peaks

    Science.gov (United States)

    Seo, Yongwon; Son, Kwang Ik; Choi, Hyun Il

    2016-04-01

    This presentation reports the combined effect of storm movement and drainage network layout on resulting hydrographs and its implication to flood process and also flood mitigation. First, we investigate, in general terms, the effects of storm movement on the resulting flood peaks, and the underlying process controls. For this purpose, we utilize a broad theoretical framework that uses characteristic time and space scales associated with stationary rainstorms as well as moving rainstorms. For a stationary rainstorm the characteristic timescales that govern the peak response include two intrinsic timescales of a catchment and one extrinsic timescale of a rainstorm. On the other hand, for a moving rainstorm, two additional extrinsic scales are required; the storm travel time and storm size. We show that the relationship between the peak response and the timescales appropriate for a stationary rainstorm can be extended in a straightforward manner to describe the peak response for a moving rainstorm. For moving rainstorms, we show that the augmentation of peak response arises from both effect of overlaying the responses from subcatchments (resonance condition) and effect of increased responses from subcatchments due to increased duration (interdependence), which results in maximum peak response when the moving rainstorm is slower than the channel flow velocity. Second, we show the relation between channel network configurations and hydrograph sensitivity to storm kinematics. For this purpose, Gibbs' model is used to evaluate the network characteristics. The results show that the storm kinematics that produces the maximum peak discharge depends on the network configuration because the resonance condition changes with the network configuration. We show that an "efficient" network layout is more sensitive and results in higher increase in peak response compared to "inefficient" one. These results imply different flood potential risks for river networks depending on network

  6. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  7. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    Directory of Open Access Journals (Sweden)

    Kathryn Lane

    2013-01-01

    Full Text Available Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  8. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment.

    Science.gov (United States)

    Lane, Kathryn; Charles-Guzman, Kizzy; Wheeler, Katherine; Abid, Zaynah; Graber, Nathan; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  9. RadWorks Storm Shelter Design for Solar Particle Event Shielding

    Science.gov (United States)

    Simon, Matthew A.; Cerro, Jeffrey; Clowdsley, Martha

    2013-01-01

    In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASA's RadWorks Advanced Exploration Systems (AES) Project to design minimal mass SPE radiation shelter concepts leveraging available resources. Discussion items include a description of the shelter trade space, the prioritization process used to identify the four primary shelter concepts chosen for maturation, a summary of each concept's design features, a description of the radiation analysis process, and an assessment of the parasitic mass of each concept.

  10. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  11. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    James E. Neumann

    2015-05-01

    Full Text Available This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam. Permanently inundated lands and temporary flood zones are analyzed by combining sea level rise scenarios for 2050 with simulated storm surge levels for the 100-year event. Our analysis finds that sea level rise through 2050 could increase the effective frequency of the current 100-year storm surge, which is associated with a storm surge of roughly five meters, to once every 49 years. Approximately 10% of the Hanoi region’s GDP is vulnerable to permanent inundation due to sea level rise, and more than 40% is vulnerable to periodic storm surge damage consistent with the current 100-year storm. We conclude that coastal adaptation measures, such as a planned retreat from the sea, and construction of a more substantial seawall and dike system, are needed to respond to these threats.

  12. Ionospheric storm effects in the nighttime E region caused by neutralized ring current particles

    Directory of Open Access Journals (Sweden)

    R. Bauske

    1997-03-01

    Full Text Available During magnetic storms an anomalous increase in the ionization density of the nighttime E region is observed at low and middle latitudes. It has been suggested that this effect is caused by the precipitation of neutralized ring current particles. Here a coupled ring current decay-ionosphere model is used to confirm the validity of this explanation.

  13. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H Component. Rajni Devi Smita Dubey Shailendra Saini Babita Devi Ajay Dhar S. K. Vijay A. K. Gwal. Volume 29 Issue 1-2 March-June 2008 pp 281-286 ...

  14. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Paschmann, G.; Sckopke, N.; Hynds, R.J.

    1981-01-01

    Data from the Los Alamos Scientific Laboratory/Max-Planck-Institut fast plasma experiment on Isee 2 have been combined with data from the European Space Agency/Imperial College/Space Research Laboratory low-energy proton experiment on Isee 3 to obtain for the first time an ion velocity distribution function f(v) extending from solar wind energies (-1 keV) to 1.6 MeV during the postshock phase of an energetic storm particle (ESP) event. This study reveals that f(v) of the ESP population is roughly isotropic in the solar wind frame from solar wind thermal energies out to 1.6 MeV. Emerging smoothly out of the solar wind thermal distribution, the ESP f(v) initially falls with increasing energy as E/sup -2.4/ in the solar wind frame. Above about 40 keV no single power law exponent adequately describes the energy dependence of f(v) in the solar wind frame. Above approx.200 keV in both the spacecraft frame and the solar wind frame, f(v) can be described by an exponential in speed (f(v)proportionale/sup -v/v//sub o/) with v/sub o/ = 1.05 x 10 8 cm s -1 . The ESP event studied (August 27, 1978) was superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. Our observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with the shock wave disturbance. The acceleration mechanism is sufficiently efficient that approx.1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approx.290 eV cm -3

  15. Natural Disasters under the Form of Severe Storms in Europe: the Cause-Effect Analysis

    Directory of Open Access Journals (Sweden)

    Virginia Câmpeanu

    2009-07-01

    Full Text Available For more than 100 years, from 1900 to 2008, there were almost 400 storms natural disasters in Europe, 40% of which occurred in the 1990s. The international prognoses for the world weather suggest a tendency toward increasing in frequency and intensity of the severe storms as the climate warms. In these circumstances, for a researcher in the field of Environmental Economics, a natural question occurs, on whether people can contribute to reducing the frequency and the magnitude of severe storms that produce disastreous social and economic effects, by acting on their causes. In researching an answer to support the public policies in the field, a cause-effect analysis applied to Europe might make a contribution to the literature in the field. This especially considering the fact that international literature regarding the factors influencing global warming contains certainties in regard to the natural factors of influence, but declared incertitudes or skepticism in regard to anthropogenic ones. Skepticism, and even tension arised during the international negotiations in Copenhagen (December 2009 in regard to the agreement for limiting global warming, with doubts being raised about the methods used by experts of the International Climate Experts Group (GIEC, and thus the results obtained, which served as a basis for the negotiations. The object of critics was in regard to the form, and at times in regard to the content. It was not about contesting the phenomenon of Global warming during the negotiations, but the methods of calculation. The methodology relies on qualitative (type top down and quantitative (type correlations bottom up cause-effect analysis of the storm disasters in Europe. Based on the instruments used, we proposed a dynamic model of association of the evolution of storm disasters in Europe with anthropogenic factors, with 3 variants. Results: The diagram cause-effect (Ishikawa or fishbone diagram and quantitative correlation of sub

  16. The effect of wave current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Xie, Lian; Liu, Huiqing; Peng, Machuan

    The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.

  17. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    Science.gov (United States)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  18. Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres

    Directory of Open Access Journals (Sweden)

    M. Mendillo

    2009-04-01

    Full Text Available The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions, the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA and Hobart (Tasmania have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2 spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964–1976, 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means showed a remarkable

  19. Thoracic Epidural Anesthesia Can Be Effective for the Short-Term Management of Ventricular Tachycardia Storm.

    Science.gov (United States)

    Do, Duc H; Bradfield, Jason; Ajijola, Olujimi A; Vaseghi, Marmar; Le, John; Rahman, Siamak; Mahajan, Aman; Nogami, Akihiko; Boyle, Noel G; Shivkumar, Kalyanam

    2017-10-27

    Novel therapies aimed at modulating the autonomic nervous system, including thoracic epidural anesthesia (TEA), have been shown in small case series to be beneficial in treating medically refractory ventricular tachycardia (VT) storm. However, it is not clear when these options should be considered. We reviewed a multicenter experience with TEA in the management of VT storm to determine its optimal therapeutic use. Data for 11 patients in whom TEA was instituted for VT storm between July 2005 and March 2016 were reviewed to determine the clinical characteristics, outcomes, and role in management. The clinical presentation was incessant VT in 7 (64%), with polymorphic VT in 3 (27%) and monomorphic VT in 8 (73%). The underlying conditions were nonischemic cardiomyopathy in 5 (45%), ischemic cardiomyopathy in 3 (27%), and hypertrophic cardiomyopathy, Brugada syndrome, and cardiac lipoma in 1 (9%) each. Five (45%) had a complete and 1 (9%) had a partial response to TEA; 4 of the complete responders had incessant VT. All 4 patients with a documented response to deep sedation demonstrated a complete response to TEA. More than half of the patients with VT storm in our series responded to TEA. TEA may be effective and should be considered as a therapeutic option in patients with VT storm, especially incessant VT, who are refractory to initial management. Improvement in VT burden with deep sedation may suggest that sympathoexcitation plays a key role in perpetuating VT and predict a positive response to TEA. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    International Nuclear Information System (INIS)

    Fontheim, E.G.; Ong, R.S.B.; Roble, R.G.; Mayr, H.G.; Hoegy, W.H.; Baron, M.J.; Wickwar, V.B.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A=1)disagrees considerably with the measured profile over most of the altitude range up to 450km. It is shown that an anomaly coefficient with a sharp peak of the order of 10 4 centered aroung the F 2 peak is consistent with observations

  1. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  2. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  3. Substorms during different storm phases

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2011-11-01

    Full Text Available After the deep solar minimum at the end of the solar cycle 23, a small magnetic storm occurred on 20–26 January 2010. The Dst (disturbance storm time index reached the minimum of −38 nT on 20 January and the prolonged recovery that followed the main phase that lasted for about 6 days. In this study, we concentrate on three substorms that took place (1 just prior to the storm, (2 during the main phase of the storm, and (3 at the end of the recovery of the storm. We analyse the solar wind conditions from the solar wind monitoring spacecraft, the duration and intensity of the substorm events as well as the behaviour of the electrojet currents from the ground magnetometer measurements. We compare the precipitation characteristics of the three substorms. The results show that the F-region electron density enhancements and dominant green and red auroral emission of the substorm activity during the storm recovery resembles average isolated substorm precipitation. However, the energy dissipated, even at the very end of a prolonged storm recovery, is very large compared to the typical energy content of isolated substorms. In the case studied here, the dissipation of the excess energy is observed over a 3-h long period of several consecutive substorm intensifications. Our findings suggest that the substorm energy dissipation varies between the storm phases.

  4. Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region

    Science.gov (United States)

    Amaechi, P. O.; Oyeyemi, E. O.; Akala, A. O.

    2018-04-01

    The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (-229 nT), 22nd June 2015 (-204 nT), 7th October 2015 (-124 nT), and 20th December 2015 (-170 nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth's magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities.

  5. Assessing cost-effectiveness of specific LID practice designs in response to large storm events

    Science.gov (United States)

    Chui, Ting Fong May; Liu, Xin; Zhan, Wenting

    2016-02-01

    Low impact development (LID) practices have become more important in urban stormwater management worldwide. However, most research on design optimization focuses on relatively large scale, and there is very limited information or guideline regarding individual LID practice designs (i.e., optimal depth, width and length). The objective of this study is to identify the optimal design by assessing the hydrological performance and the cost-effectiveness of different designs of LID practices at a household or business scale, and to analyze the sensitivity of the hydrological performance and the cost of the optimal design to different model and design parameters. First, EPA SWMM, automatically controlled by MATLAB, is used to obtain the peak runoff of different designs of three specific LID practices (i.e., green roof, bioretention and porous pavement) under different design storms (i.e., 2 yr and 50 yr design storms of Hong Kong, China and Seattle, U.S.). Then, life cycle cost is estimated for the different designs, and the optimal design, defined as the design with the lowest cost and at least 20% peak runoff reduction, is identified. Finally, sensitivity of the optimal design to the different design parameters is examined. The optimal design of green roof tends to be larger in area but thinner, while the optimal designs of bioretention and porous pavement tend to be smaller in area. To handle larger storms, however, it is more effective to increase the green roof depth, and to increase the area of the bioretention and porous pavement. Porous pavement is the most cost-effective for peak flow reduction, followed by bioretention and then green roof. The cost-effectiveness, measured as the peak runoff reduction/thousand Dollars of LID practices in Hong Kong (e.g., 0.02 L/103 US s, 0.15 L/103 US s and 0.93 L/103 US s for green roof, bioretention and porous pavement for 2 yr storm) is lower than that in Seattle (e.g., 0.03 L/103 US s, 0.29 L/103 US s and 1.58 L/103 US s for

  6. Learning Storm

    CERN Document Server

    Jain, Ankit

    2014-01-01

    If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications.

  7. The dual effect of vegetation green-up date and strong wind on the return period of spring dust storms.

    Science.gov (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-08-15

    Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The effects of solar variability on climate

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1990-01-01

    It has been hypothesized for at least a century that some of the observed variance in global temperature records arises from variations in solar output. Theories of solar-variability effects on climate could not be tested directly prior to satellite measurements because uncertainties in ground-based measurements of solar irradiance were larger than the solar variations themselves. Measurements by the Active Cavity Radiometer (ACRIM) onboard the Solar Max satellite and by the Earth Radiation Budget (ERB) instrument onboard Nimbus 6 are now available which indicate solar-constant variations are positively correlated with solar activity over an 11-yr solar cycle, and are of order ± 1.0 W m -2 relative to a mean solar constant of S 0 = 1,367 W m -2 , ΔS/S 0 ∼ ± 0.07%. For a typical climate sensitivity parameter of β = S 0 ∂T/∂S ∼ 100 C, the corresponding variations in radiative equilibrium temperature at the Earth's surface are ΔT e ∼ ± 0.07 C. The realized temperature variations from solar forcing, ΔT, can be significantly smaller because of thermal damping by the ocean. The author considers effects of solar variability on the observed and projected history of the global temperature record in light of this data using an upwelling-diffusion ocean model to assess the effect of ocean thermal inertia on the thermal response. The response to harmonic variations of the 11-yr sunspot cycle is of order ΔT ∼ ± 0.02 C, though the coupling between response and forcing is stronger for long-term variations in the envelope of the solar cycle which more nearly match the thermal response time of the deep ocean

  9. Global evolution of storm-time effects in the-F region during 17-18 December 1971

    International Nuclear Information System (INIS)

    Alamelu, V.; Mukunda Rao, M.; Sethuraman, R.

    1982-01-01

    The latitudinal variation of the effect of the great storm of 17 Dec. 71 is investigated by choosing stations of varying latitudes but of approximately the same longitude. In addition, three stations, one each in the American, African and Indian zone, are chosen to find the longitudinal changes produced during this storm. It is seen that the storm is mainly a negative one in the southern hemisphere of this longitude sector. The noon biteout is enhanced on the major storm day, viz., 17 Dec. 71, at the American equator, with large evening peaks on both 17th and 18th. The northern hemisphere does not exhibit any large change in the critical frequency of the F layer. The reported changes in TEC measurements are not reflected in the parameter f 0 F 2 at Lindau

  10. The Effect of Storm Driver and Intensity on Magnetospheric Ion Temperatures

    Science.gov (United States)

    Keesee, Amy M.; Katus, Roxanne M.; Scime, Earl E.

    2017-09-01

    Energy deposited in the magnetosphere during geomagnetic storms drives ion heating and convection. Ions are also heated and transported via internal processes throughout the magnetosphere. Injection of the plasma sheet ions to the inner magnetosphere drives the ring current and, thus, the storm intensity. Understanding the ion dynamics is important to improving our ability to predict storm evolution. In this study, we perform superposed epoch analyses of ion temperatures during storms, comparing ion temperature evolution by storm driver and storm intensity. The ion temperatures are calculated using energetic neutral atom measurements from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission. The global view of these measurements provide both spatial and temporal information. We find that storms driven by coronal mass ejections (CMEs) tend to have higher ion temperatures throughout the main phase than storms driven by corotating interaction regions (CIRs) but that the temperatures increase during the recovery phase of CIR-driven storms. Ion temperatures during intense CME-driven storms have brief intervals of higher ion temperatures than those during moderate CME-driven storms but have otherwise comparable ion temperatures. The highest temperatures during CIR-driven storms are centered at 18 magnetic local time and occur on the dayside for moderate CME-driven storms. During the second half of the main phase, ion temperatures tend to decrease in the postmidnight to dawn sector for CIR storms, but an increase is observed for CME storms. This increase begins with a sharp peak in ion temperatures for intense CME storms, likely a signature of substorm activity that drives the increased ring current.

  11. Changes in electron precipitation inferred from spectra deduced from D region electron densities during a post--magnetic storm effect

    International Nuclear Information System (INIS)

    Montbriand, L.E.; Belrose, J.S.

    1976-01-01

    The occurrence of enhanced ionization after geomagnetic storms, commonly referred to as storm aftereffect, is investigated on the hypothesis that the enhancement is due to a 'drizzle' of energetic electrons from the radiation belts. The study utilized electron density-height profiles obtained from the partial reflection experiment at Ottawa and available information on the height profile of the steady state loss coefficient for energetic electron events in combination with the ion pair production treatments of Ress (1963) and Berger et al. (1974) to deduce two-component differential energy spectra of the electron drizzle. The period studied, December 13--20, 1970, was unique for examining poststorm effects in that the geomagnetic storm on December 14--15 was intense and brief, and it was preceded and followed by periods of geomagnetic calm. The results indicate that the drizzle deduced was minimal before the storm and on the storm day and maximized 2--3 days after the peak of the storm at a time when geomagnetic activity had returned to calm. The results also suggest that the spectrum was hardest shortly after the drizzle maximized. No satisfactory source for the enhanced ionization during the poststorm other than particle drizzle could be found that would produce both the magnitude and the diurnal variation of the effect observed, a conclusion which establishes the validity of the hypothesis made

  12. On the utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects

    International Nuclear Information System (INIS)

    Forbes, J.M.; Codrescu, M.; Hall, T.J.

    1988-01-01

    Upper atmosphere science is placing increased emphasis on global coupling between the magnetosphere, ionosphere, and thermosphere systems, particularly with regard to the penetration of dynamic, chemical, and electrodynamic effects from high to low latitudes during magnetically disturbed periods. An emerging potential exists for latitudinal and longitudinal chains of ionosondes to contribute uniquely to this thrust in ways complementary to the capabilities and shortcomings of other groundbased sensors and satellites. Here we illustrate a methodology whereby the fullest potential of such ionosonde data can be realized. Data from a chain of stations close to the -165 0 magnetic meridian and separated by about 5 0 in magnetic latitude are used to study the relationships between magnetic activity, hmF2, foF2, and inferred meridional winds during 17--28 April, 1979. Hourly values are fit in latitude using Legendre polynomials, and variations from quiet-time values are displayed in latitude-U.T. coordinates using a color graphics method which provides an illuminating illustration of the penetration of ionospheric disturbances in latitude and their dependence on Kp, storm time, and local time. Observed effects are interpreted in terms of plausible electric field, neutral wind, and neutral composition changes during the storm period. For instance, net depletions in foF2 occur over the entire disturbed interval down to about 25 0 --30 0 latitude, apparently due to such increased N 2 densities that the resulting enhanced plasma loss rates overcompensate and ''positive'' storm effects whereby southward winds elevate the F-layer peak to altitudes of reduced chemical loss

  13. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    presents our investigation of the corresponding solar eventsand their characteristics. The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well...... occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data...... %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented. Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar...

  14. Effect of TADs on the F-region of Low midlatitude ionosphere during intense geomagnetic storm.

    Science.gov (United States)

    Upadhayaya, Arun Kumar; Joshi, Shivani; Singh Dabas, Raj; Das, Rupesh M.; Yadav, Sneha

    Effect of TAD's on the F region ionosphere of low-mid latitude ionosphere during three intense storms of20 th Nov,2003(-422nT),30 th Oct 2003(-383nT),07Nov,2004(-373nT)respectively are studued using ionosonde data of Delhi(28ø N 77øE).It has been seen that the electon density profile in the F1 region are greatly influenced by the TAD's presence. Further the pre-existing F1 cusp become better devloped during the passage of TAD's.

  15. Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

    Directory of Open Access Journals (Sweden)

    R. P. Singh

    2004-09-01

    Full Text Available The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February and near equinoxes (March-April; September-October, whereas it depresses the scintillations during the summer (May-July. In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.

  16. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    Science.gov (United States)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  17. Multi-Instrument Observations of a Geomagnetic Storm and its Effects on the Arctic Ionosphere: A Case Study of the 19 February 2014 Storm

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    2017-01-01

    We present a multi-instrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time (Dst) index that year. The geomagnetic storm was the result of two powerful Earth......-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar-cap. We employed GNSS networks, geomagnetic observatories, and a specific ionosonde station in Greenland. We complemented the approach with spaceborne measurements...... specifically found that, (1) Thermospheric O/N2 measurements demonstrated significantly lower values over the Greenland sector than prior to the storm-time. (2) An increased ion flow in the topside ionosphere was observed during the negative storm phase. (3) Negative storm phase was a direct consequence...

  18. Numerical simulation of the effects of cooling tower complexes on clouds and severe storms. Final report, September 1976-June 1979

    International Nuclear Information System (INIS)

    Orville, H.D.; Eckhoff, P.A.; Peak, J.E.; Hirsch, J.H.; Kopp, F.J.

    1979-11-01

    A two-dimensional, time-dependent model was developed which gives realistic simulations of many severe storm processes - such as heavy rains, hail, and strong winds. The model is a set of partial differential equations describing time changes of momentum, energy, and mass (air and various water substances such as water vapor, cloud liquid, cloud ice, rainwater, and hail). In addition, appropriate boundary And initial conditions (taken from weather sounding data) are imposed on a domain approximately 20 km high by 20 km wide with 200 m grid intervals to complete the model. Modifications were made to the model which allow additional water vapor and heat to be added at several lower grid points, simulating effluents from a power park. Cases were run which depict realistic severe storm situations. One atmospheric sounding has a strong middle-level inversion which tends to inhibit the first convective clouds but gives rise later to a severe storm with hail and heavy rains. One other sounding is taken from a day in which a severe storm occurred in the Miami area. A third sounding depicts atmospheric conditions in which severe storms formed in the vicinity of Huron, South Dakota. The results indicate that a power park emitting 80% latent heat and 20% sensible heat has little effect on the simulated storm. A case with 100% sensible heat emission leads to a much different solution, with the simulated storm reduced in severity and the rain and hail redistributed. A case in which water vapor is accumulated in a region and released over a broad depth results in sightly more rain from a severe storm

  19. The postsunset vertical plasma drift during geomagnetic storms and its effects on the generation of equatorial spread F

    Science.gov (United States)

    Huang, C.

    2017-12-01

    We will present two distinct phenomena related to the postsunset vertical plasma drift and equatorial spread F (ESF) observed by the Communication/Navigation Outage Forecasting System satellite over six years. The first phenomenon is the behavior of the prereversal enhancement (PRE) of the vertical plasma drift during geomagnetic storms. Statistically, storm-time disturbance dynamo electric fields cause the PRE to decrease from 30 to 0 m/s when Dst changes from -60 to -100 nT, but the PRE does not show obvious variations when Dst varies from 0 to -60 nT. The observations show that the storm activities affect the evening equatorial ionosphere only for Dst correlated with the PRE and that the occurrence of small-amplitude ESF irregularities does not show a clear pattern at low solar activity but is anti-correlated with large-amplitude irregularities and the PRE at moderate solar activity. That is, the months and longitudes with high occurrence probability of large-amplitude irregularities are exactly those with low occurrence probability of small-amplitude irregularities, and vice versa. The generation of large-amplitude ESF irregularities is controlled by the PRE, and the generation of small-amplitude ESF irregularities may be caused by gravity waves and other disturbances, rather than by the PRE.

  20. Geomagnetic storm forecasting service StormFocus: 5 years online

    Science.gov (United States)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  1. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  2. Midlatitude ionospheric changes to four great geomagnetic storms of solar cycle 23 in Southern and Northern Hemispheres

    Czech Academy of Sciences Publication Activity Database

    Matamba, T. M.; Habarulema, J. B.; Burešová, Dalia

    2016-01-01

    Roč. 14, č. 12 (2016), s. 1155-1171 ISSN 1542-7390 R&D Projects: GA ČR(CZ) GAP209/12/2440 Institutional support: RVO:68378289 Keywords : total electron-content * traveling atmospheric disturbances * November 2004 superstorms * magnetic storm s * interplanetary origins * equatorial ionosphere * neutral composition * physical-mechanism * middle latitudes * content response Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.581, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016SW001516/abstract

  3. Solar Neutrino Day-Night Effect

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy; Snellman, Hakan

    2005-01-01

    We summarize the results of Ref. [M. Blennow, T. Ohlsson and H. Snellman, Phys. Rev. D 69 (2004) 073006, hep-ph/0311098] in which we determine the effects of three flavor mixing on the day-night asymmetry in the flux of solar neutrinos. Analytic methods are used to determine the difference in the day and night solar electron neutrino survival probabilities and numerical methods are used to determine the effect of three flavor mixing at detectors

  4. Assessment of the effect of rainfall dynamics on the storm overflow performance

    Directory of Open Access Journals (Sweden)

    Szeląg Bartosz

    2016-06-01

    Full Text Available Assessment of the effect of rainfall dynamics on the storm overfl ow performance. This research study analyzes the effect of the rainfall characteristics (total and maximum 10-, 15- and 30-minute rainfall depth, its duration, the dry weather period on the performance of the emergency overflow weir located at the inflow to an existing treatment plant. The analyses used the numerical calculation results of the inflow hydrographs performed in the SWMM (Storm Water Management Model program on the basis of six-year-long rainfall measurement sequence. The obtained simulation results for the analysed catchment allowed for the performance of statistical analyses, which demonstrated that the volume of stormwater discharge, the maximum instantaneous flow and the share of stormwater volume discharged through the emergency overflow weir in relation to the total volume of the inflow hydrograph from the catchment are affected by the maximum 30-minute rainfall depth, whereas the discharge duration is affected by the depth of the catchment rainfall layer. Taking into account the results of statistical and hydraulic calculations it can be concluded that in the case of the analysed catchment the performance of the emergency overflow weir is affected to the greatest extent by the rainfall intensity distribution.

  5. SOLAR ROTATION EFFECTS ON THE HELIOSHEATH FLOW NEAR SOLAR MINIMA

    International Nuclear Information System (INIS)

    Borovikov, Sergey N.; Pogorelov, Nikolai V.; Ebert, Robert W.

    2012-01-01

    The interaction between fast and slow solar wind (SW) due to the Sun's rotation creates corotating interaction regions (CIRs), which further interact with each other creating complex plasma structures at large heliospheric distances. We investigate the global influence of CIRs on the SW flow in the inner heliosheath between the heliospheric termination shock (TS) and the heliopause. The stream interaction model takes into account the major global effects due to slow-fast stream interaction near solar minima. The fast and slow wind parameters are derived from the Ulysses observations. We investigate the penetration of corotating structures through the TS and their further propagation through the heliosheath. It is shown that the heliosheath flow structure may experience substantial modifications, including local decreases in the radial velocity component observed by Voyager 1.

  6. Interplanetary sources of magnetic storms: A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed T......-p/T-exp, together with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more...

  7. Interplanetary sources to magnetic storms - A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed Tp/Texp, together...... with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more so. Only...

  8. The Effects of Solar Irradience and Ambient Temperature on Solar ...

    African Journals Online (AJOL)

    Solar energy is abundant. It is however low grade energy and cannot be easily used in the form it occurs for work. Converting solar energy directly to electricity, using solar photovoltaic (PV) modules is however a low efficiency process. Optimizing this conversion, especially in the face of the high cost of solar panels, is thus ...

  9. Flow Velocity Effects on Fe(III Clogging during Managed Aquifer Recharge Using Urban Storm Water

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2018-03-01

    Full Text Available Storm water harvesting and storage has been employed for nearly a hundred years, and using storm water to recharge aquifers is one of the most important ways to relieve water scarcity in arid and semi-arid regions. However, it cannot be widely adopted because of clogging problems. The risk of chemical clogging is mostly associated with iron oxyhydroxide precipitation; anhydrous ferric oxide (HFO clogging remains a problem in many wellfields. This paper investigates Fe(III clogging levels at three flow velocities (Darcy velocities, 0.46, 1.62 and 4.55 m/d. The results indicate that clogging increases with flow velocity, and is mostly affected by the first 0–3 cm of the column. The highest water velocity caused full clogging in 35 h, whereas the lowest took 53 h to reach an stable 60% reduction in hydraulic conductivity. For the high flow velocity, over 90% of the HFO was deposited in the 0–1 cm section. In contrast, the lowest flow velocity deposited only 75% in this section. Fe(III deposition was used as an approximation for Fe(OH3. High flow velocity may promote Fe(OH3 flocculent precipitate, thus increasing Fe(III deposition. The main mechanism for a porous matrix interception of Fe(III colloidal particles was surface filtration. Thus, the effects of deposition, clogging phenomena, and physicochemical mechanisms, are more significant at higher velocities.

  10. Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms

    Science.gov (United States)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    2017-12-01

    During intense magnetic storms, prompt penetration electric fields (PPEFs) through E × B forces near the magnetic equator uplift the dayside ionosphere. This effect has been called the dayside super-fountain effect. Ion-neutral drag forces between the upward moving O+ (oxygen ions) and oxygen neutrals will elevate the oxygen atoms to higher altitudes. This paper gives a linear calculation indicating how serious the effect may be during an 1859-type (Carrington) superstorm. It is concluded that the oxygen neutral densities produced at low-Earth-orbiting (LEO) satellite altitudes may be sufficiently high to present severe satellite drag. It is estimated that with a prompt penetrating electric field of ˜ 20 mV m-1 turned on for 20 min, the O atoms and O+ ions are uplifted to 850 km where they produce about 40-times-greater satellite drag per unit mass than normal. Stronger electric fields will presumably lead to greater uplifted mass.

  11. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2008-06-01

    Full Text Available The impact of 14 geomagnetic storms from a list of CEDAR, GEM and ISTP storms, that occurred during 1997–1999, on radio propagation conditions has been investigated. The propagation conditions were estimated through variations of the MOF and LOF (the maximum and lowest operation frequencies on three high-latitude HF radio paths in north-west Russia. Geophysical data of Dst, Bz, AE as well as some riometer data from Sodankyla observatory, Finland, were used for the analysis. It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character. Nevertheless, there are common patterns in variation of the propagation parameters for all storms. Thus, the frequency range Δ=MOF−LOF increases several hours before a storm, then it narrows sharply during the storm, and expands again several hours after the end of the storm. This regular behaviour should be useful for the HF radio propagation predictions and frequency management at high latitudes. On the trans-auroral radio path, the time interval when the signal is lost through a storm (tdes depends on the local time. For the day-time storms an average value tdes is 6 h, but for night storms tdes is only 2 h. The ionization increase in the F2 layer before storm onset is 3.5 h during the day-time and 2.4 h at night. Mechanisms to explain the observed variations are discussed including some novel possibilities involving energy input through the cusp.

  12. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2008-06-01

    Full Text Available The impact of 14 geomagnetic storms from a list of CEDAR, GEM and ISTP storms, that occurred during 1997–1999, on radio propagation conditions has been investigated. The propagation conditions were estimated through variations of the MOF and LOF (the maximum and lowest operation frequencies on three high-latitude HF radio paths in north-west Russia. Geophysical data of Dst, Bz, AE as well as some riometer data from Sodankyla observatory, Finland, were used for the analysis. It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character. Nevertheless, there are common patterns in variation of the propagation parameters for all storms. Thus, the frequency range Δ=MOF−LOF increases several hours before a storm, then it narrows sharply during the storm, and expands again several hours after the end of the storm. This regular behaviour should be useful for the HF radio propagation predictions and frequency management at high latitudes. On the trans-auroral radio path, the time interval when the signal is lost through a storm (tdes depends on the local time. For the day-time storms an average value tdes is 6 h, but for night storms tdes is only 2 h. The ionization increase in the F2 layer before storm onset is 3.5 h during the day-time and 2.4 h at night. Mechanisms to explain the observed variations are discussed including some novel possibilities involving energy input through the cusp.

  13. Great Britain Storm Surge Modeling for a 10,000-Year Stochastic Catalog with the Effect of Sea Level Rise

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Blair, A.; Yablonsky, R. M.

    2017-12-01

    Storm surge caused by Extratropical Cyclones (ETCs) has significantly impacted not only the life of private citizens but also the insurance and reinsurance industry in Great Britain. The storm surge risk assessment requires a larger dataset of storms than the limited recorded historical ETCs. Thus, historical ETCs were perturbed to generate a 10,000-year stochastic catalog that accounts for surge-generating ETCs in the study area with return periods from one year to 10,000 years. Delft3D-Flexible Mesh hydrodynamic model was used to numerically simulate the storm surge along the Great Britain coastline. A nested grid technique was used to increase the simulation grid resolution up to 200 m near the highly populated coastal areas. Coarse and fine mesh models were calibrated and validated using historical recorded water elevations. Then, numerical simulations were performed on a 10,000-year stochastic catalog. The 50-, 100-, and 500-year return period maps were generated for Great Britain coastal areas. The corresponding events with return periods of 50-, 100-, and 500-years in Humber Bay and Thames River coastal areas were identified, and simulated with the consideration of projected sea level rises to reveal the effect of rising sea levels on the inundation return period maps in two highly-populated coastal areas. Finally, the return period of Storm Xaver (2013) was determined with and without the effect of rising sea levels.

  14. Observations and global numerical modelling of the St. Patrick's Day 2015 geomagnetic storm event

    Science.gov (United States)

    Foerster, M.; Prokhorov, B. E.; Doornbos, E.; Astafieva, E.; Zakharenkova, I.

    2017-12-01

    With a sudden storm commencement (SSC) at 04:45 UT on St. Patrick's day 2015 started the most severe geomagnetic storm in solar cycle 24. It appeared as a two-stage geomagnetic storm with a minimum SYM-H value of -233 nT. In the response to the storm commencement in the first activation, a short-term positive effect in the ionospheric vertical electron content (VTEC) occurred at low- and mid-latitudes on the dayside. The second phase commencing around 12:30 UT lasted longer and caused significant and complex storm-time changes around the globe with hemispherical different ionospheric storm reactions in different longitudinal ranges. Swarm-C observations of the neutral mass density variation along the orbital path as well as Langmuir probe plasma and magnetometer measurements of all three Swarm satellites and global TEC records are used for physical interpretations and modelling of the positive/negative storm scenario. These observations pose a challenge for the global numerical modelling of thermosphere-ionosphere storm processes as the storm, which occurred around spring equinox, obviously signify the existence of other impact factors than seasonal dependence for hemispheric asymmetries to occur. Numerical simulation trials using the Potsdam version of the Upper Atmosphere Model (UAM-P) are presented to explain these peculiar M-I-T storm processes.

  15. SAPS effects on thermospheric winds during the 17 March 2013 storm

    Science.gov (United States)

    Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.

    2017-12-01

    Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.

  16. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    International Nuclear Information System (INIS)

    Deng, W.; Killeen, T.L.; Burns, A.G.; Roble, R.G.; Slavin, J.A.; Wharton, L.E.

    1993-01-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere

  17. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  18. IRI STORM validation over Europe

    Science.gov (United States)

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  19. Effects of storm-water runoff on water quality of the Edwards Aquifer near Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Schertz, Terry L.; Slade, Raymond M.; Rawson, Jack

    1984-01-01

    Analyses of samples collected from Barton Springs at approximately weekly Intervals and from Barton Creek and five wells in the Austin area during selected storm-runoff periods generally show that recharge during storm runoff resulted in significant temporal and area! variations in the quality of ground water in the recharge zone of the Edwards aquifer. Recharge during storm runoff resulted in significant increases of bacterial densities in the ground water. Densities of fecal coliform bacteria in samples collected from Barton Springs, the major point of ground-water discharge, ranged from less than 1 colony per 100 milliliters during dry weather in November 1981 and January and August 1982 to 6,100 colonies per 100 milliliters during a storm in May 1982. Densities of fecal streptococcal bacteria ranged from 1 colony per 100 miniliters during dry weather in December 1981 to 11,000 colonies per 100 miniliters during a storm in May 1982.

  20. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  1. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    Science.gov (United States)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  2. The structure of the big magnetic storms

    International Nuclear Information System (INIS)

    Mihajlivich, J. Spomenko; Chop, Rudi; Palangio, Paolo

    2010-01-01

    The records of geomagnetic activity during Solar Cycles 22 and 23 (which occurred from 1986 to 2006) indicate several extremely intensive A-class geomagnetic storms. These were storms classified in the category of the Big Magnetic Storms. In a year of maximum solar activity during Solar Cycle 23, or more precisely, during a phase designated as a post-maximum phase in solar activity (PPM - Phase Post maximum), near the autumn equinox, on 29, October 2003, an extremely strong and intensive magnetic storm was recorded. In the first half of November 2004 (7, November 2004) an intensive magnetic storm was recorded (the Class Big Magnetic Storm). The level of geomagnetic field variations which were recorded for the selected Big Magnetic Storms, was ΔD st=350 nT. For the Big Magnetic Storms the indicated three-hour interval indices geomagnetic activity was Kp = 9. This study presents the spectral composition of the Di - variations which were recorded during magnetic storms in October 2003 and November 2004. (Author)

  3. Project ice storm : effects of prenatal stress on children's physical, cognitive and behavioral development

    Energy Technology Data Exchange (ETDEWEB)

    LaPlante, D.P.; King, S.; Brunet, A. [Douglas Hospital Research Centre, Montreal, PQ (Canada)

    2005-07-01

    The ice storm in the winter of 1998 left three million people in Quebec without power for as long as 40 days. This study recruited 224 women who were pregnant during the storm or who became pregnant within 3 months after the storm. The study examined the effects of prenatal maternal stress (PNMS) in an effort to fill gaps in literature regarding prenatal stress and increased risks and to assist in the development of preventive interventions for pregnant women who have experienced stress or trauma. Natural disaster studies provide good opportunities to study the effects of PNMS, as effects are random across large numbers of women and can be assessed independently of the pregnant women's own personality traits. The study examined whether there was an effect of the timing and severity of the ice storm on perinatal outcomes and later health; intellectual and linguistic functioning at two and a half and five years of age; behavioural and attention problems at four and five and a half years of age and physical features. The study concluded that pregnant women are a risk group and need proper interventions as children experienced delays or deficiencies in several key developmental areas. tabs., figs.

  4. The Idea Storming Cube: Evaluating the Effects of Using Game and Computer Agent to Support Divergent Thinking

    Science.gov (United States)

    Huang, Chun-Chieh; Yeh, Ting-Kuang; Li, Tsai-Yen; Chang, Chun-Yen

    2010-01-01

    The objective of this article is to evaluate the effectiveness of a collaborative and online brainstorming game, Idea Storming Cube (ISC), which provides users with a competitive game-based environment and a peer-like intelligent agent. The program seeks to promote students' divergent thinking to aid in the process of problem solving. The…

  5. Evaluating the Role and Effects of Precipitation on Relativistic Electron Losses during Storms

    Science.gov (United States)

    Chen, Y.; Fu, X.

    2016-12-01

    Theoretic studies have suggested that during storm times various waves (e.g., whistler-mode chorus and electromagnetic ion cyclotron waves) can cause significant precipitation of relativistic ( MeV) electrons that are originally trapped inside the outer radiation belt. However, the role of precipitation and its quantitative contribution to the losses of outer-belt electrons remain open questions. In this study, we tackle these questions by systemically examining the latest wave and electron in-situ, simultaneous observations made at different altitudes by Van Allen Probes from near equator, NOAA POES at low Earth orbits near/across electron loss cone, and BARREL under the mesosphere. After calibrating with DEMTER observations, we first confirm and quantify the response of POES MEPED proton channels to MeV electrons. Next, we identify a list of precipitation events from BARREL and POES measurements, examine the temporal adn spatial relation between the two data sets, and estimate the intensities of electron precipitation with ascertained uncertainties. Then, from Van Allen Probes data, we select another list of dropout events during storms. By cross checking the above two lists, we are able to determine the causal relation between precipitation and dropouts through individual case as well as statistical studies so as to quantify the contributions from precipitation. This study mainly focuses on the relatively small L-shells with positive phase space density radial gradient in order to alleviate the impacts from outward radial diffusion and adiabatic effects. Based upon the recent discovery of cross-energy cross-pitch angle coherence, we pay particular attention to the cross-term diffusions which may account for the extra "loss" needed by observed MeV electron dropouts. Results from this observational study will advance our knowledge on the loss mechanism of outer-belt electrons, and thus lay down another stepping stone towards high-fidelity physics-based models for

  6. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  7. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  8. Ionospheric effects at low latitudes during the March 22, 1979, geomagnetic storm

    International Nuclear Information System (INIS)

    Fesen, C.G.; Crowley, G.; Roble, R.G.

    1989-01-01

    This paper investigates the response of the equatorial ionosphere to the neutral atmosphere perturbations produced by the magnetic storm of March 22, 1979. A numerical model of the equatorial ionosphere is used to calculate the maximum electron densities and F layer heights associated with a storm-perturbed neutral atmosphere and circulation model. Possible electric field perturbations due to the storm are ignored. The neutral atmosphere and dynamics are simulated by the National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the storm day of March 22, 1979, and the preceding quiet day. The most striking feature of the TGCM storm day simulations is the presence of waves in the neutral composition, wind, and temperature fields which propagate from high latitudes to the equator. The TGCM-calculated fields for the two days are input into a low-latitude ionosphere model which calculates n max and h max between ±20 degree dip latitude. The calculated nighttime 6300-angstrom airglow emission and the altitude profiles of electron concentration are also highly perturbed by the storm. Examination of ionosonde data for March 22, 1979, shows remarkable agreement between the measured and predicted changes in f 0 F 2 and h max near 140 degree W. Poorer agreement near 70 degree W may be due to the neglect of electric field perturbations and the approximations inherent in the modeling. The results of these simulations indicate that the major factor influencing the storm time ionospheric behavior in this case is the neutral wind

  9. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  10. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Science.gov (United States)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  11. Multifluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms-Initial Results

    Science.gov (United States)

    Glocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J.-C.; Kistler, L. M.

    2009-01-01

    The magnetosphere contains a significant amount of ionospheric O+, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H+ and O+, which is not possible when utilizing the other techniques considered

  12. Effects of magnetic storm phases on F layer irregularities below the auroral oval

    International Nuclear Information System (INIS)

    Aarons, J.; Gurgiolo, C.; Rodger, A.S.

    1988-01-01

    Observations of F-layer irregularity development and intensity were obtained between September and October 1981, primarily over subauroral latitudes in the area of the plasmapause. The results reveal the descent of the auroral irregularity region to include subauroral latitudes in the general area of the plasmapause during the main phases of a series of magnetic storms. Irregularities were found primarily at lower latitudes during the subauroral or plasmapause storm. A model for the subauroral irregularities in recovery phases of magnetic storms is proposed in which energy stored in the ring current is slowly released. 27 references

  13. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  14. Mars atmospheric phenomena during major dust storms, as measured at surface

    International Nuclear Information System (INIS)

    Ryan, J.A.; Henry, R.M.

    1979-01-01

    Meteorological instrumentation aboard the Viking Mars Landers measures wind, temperature, and pressure. Two global dust storms occurred during northern autumn and winter, observed both by the orbiters and by the landers. The meteorological data from the landers has been analyzed for the period just before first storm arrival to just after second storm arrival, with the objectives being definition of meteorological phenomena during the storm period, determination of those associated with storm and dust arrival, and evaluation of effects on synoptic conditions and the general circulation. Times of dust arrival over the sites could be defined fairly closely from optical and pressure (solar tide) data, and dust arrival was also accompanied by changes in diurnal temperature range, temperature maxima, and temperature minima. The arrivals of the storms at VL-1 were accompanied by significant increase in wind speed and pressure. No such changes were observed at VL-2. It is possible that surface material could have been raised locally at VL-1. Throughout the period except following the second dust storm synoptic picture at VL-2 was one of eastward moving cyclonic and anticyclonic systems. These disappeared following the second storm, a phenomenon which may be related to the storm

  15. Distributed series resistance effects in solar cells

    DEFF Research Database (Denmark)

    Nielsen, Lars Drud

    1982-01-01

    A mathematical treatment is presented of the effects of one-dimensional distributed series resistance in solar cells. A general perturbation theory is developed, including consistently the induced spatial variation of diode current density and leading to a first-order equivalent lumped resistance...

  16. Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms

    Directory of Open Access Journals (Sweden)

    G. S. Lakhina

    2017-12-01

    Full Text Available During intense magnetic storms, prompt penetration electric fields (PPEFs through E  ×  B forces near the magnetic equator uplift the dayside ionosphere. This effect has been called the dayside super-fountain effect. Ion-neutral drag forces between the upward moving O+ (oxygen ions and oxygen neutrals will elevate the oxygen atoms to higher altitudes. This paper gives a linear calculation indicating how serious the effect may be during an 1859-type (Carrington superstorm. It is concluded that the oxygen neutral densities produced at low-Earth-orbiting (LEO satellite altitudes may be sufficiently high to present severe satellite drag. It is estimated that with a prompt penetrating electric field of ∼ 20 mV m−1 turned on for 20 min, the O atoms and O+ ions are uplifted to 850 km where they produce about 40-times-greater satellite drag per unit mass than normal. Stronger electric fields will presumably lead to greater uplifted mass.

  17. Fuelling effect of tangential compact toroid injection in STOR-M Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Onchi, T.; Liu, Y., E-mail: tao668@mail.usask.ca [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Dreval, M. [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Inst. of Plasma Physics NSC KIPT, Kharkov (Ukraine); McColl, D. [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Asai, T. [Inst. of Plasma Physics NSC KIPT, Kharkov (Ukraine); Wolfe, S. [Nihon Univ., Dept. of Physics, Tokyo (Japan); Xiao, C.; Hirose, A. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2012-07-01

    Compact torus injection (CTI) is the only known candidate for directly fuelling the core of a tokamak fusion reactor. Compact torus (CT) injection into the STOR-M tokamak has induced improved confinement accompanied by an increase in the electron density, reduction in Hα emission, and suppression of the saw-tooth oscillations. The measured change in the toroidal flow velocity following tangential CTI has demonstrated momentum injection into the STOR-M plasma. (author)

  18. Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot

    Science.gov (United States)

    Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin

    2017-08-01

    The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.

  19. Positive ionospheric storm effects at Latin America longitude during the superstorm of 20–22 November 2003: revisit

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2012-05-01

    Full Text Available Positive ionospheric storm effects that occurred during the superstorm on 20 November 2003 are investigated using a combination of ground-based Global Positioning System (GPS total electron content (TEC, and the meridian chain of ionosondes distributed along the Latin America longitude of ~280° E. Both the ground-based GPS TEC and ionosonde electron density profile data reveal significant enhancements at mid-low latitudes over the 280° E region during the main phase of the November 2003 superstorm. The maximum enhancement of the topside ionospheric electron content is 3.2–7.7 times of the bottomside ionosphere at the locations of the ionosondes distributed around the mid- and low latitudes. Moreover, the height of maximum electron density exceeds 400 km and increases by 100 km compared with the quiet day over the South American area from middle to low latitudes, which might have resulted from a continuous eastward penetration electric field and storm-generated equatorward winds. Our results do not support the conclusions of Yizengaw et al. (2006, who suggested that the observed positive storm over the South American sector was mainly the consequence of the changes of the bottomside ionosphere. The so-called "unusual" responses of the topside ionosphere for the November 2003 storm in Yizengaw et al. (2006 are likely associated with the erroneous usage of magnetometer and incomplete data.

  20. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  1. Assessing the short-term effects of an extreme storm on Mediterranean forest raptors

    Science.gov (United States)

    Martínez, José E.; Jiménez-Franco, María V.; Zuberogoitia, Iñigo; León-Ortega, Mario; Calvo, José F.

    2013-04-01

    Different species show different responses to natural disturbances, depending on their capacity to exploit the altered environment and occupy new niches. In the case of semi-arid Mediterranean areas, there is no information available on the response of bird communities to disturbance caused by extreme weather events. Here, we evaluate the short-term effects of a heavy snowfall and strong winds on three long-lived species of forest-dwelling raptor in a semi-arid Mediterranean region situated in the south-east of Spain. The loss of nests was significantly higher in the first and second years following the disturbance than in the third year. The three species studied exhibited great tolerance to the short-term effects of the storm since we found no differences in density or reproductive parameters between the nine breeding seasons prior to the disturbance and the three which immediately followed it. We suggest that the tolerance shown by these three species to windstorms in semi-arid Mediterranean zones could be an adaptive response, resulting from the climatic and human pressures which have prevailed from the Bronze Age to the present day.

  2. Topographic Correction Module at Storm (TC@Storm)

    Science.gov (United States)

    Zaksek, K.; Cotar, K.; Veljanovski, T.; Pehani, P.; Ostir, K.

    2015-04-01

    Different solar position in combination with terrain slope and aspect result in different illumination of inclined surfaces. Therefore, the retrieved satellite data cannot be accurately transformed to the spectral reflectance, which depends only on the land cover. The topographic correction should remove this effect and enable further automatic processing of higher level products. The topographic correction TC@STORM was developed as a module within the SPACE-SI automatic near-real-time image processing chain STORM. It combines physical approach with the standard Minnaert method. The total irradiance is modelled as a three-component irradiance: direct (dependent on incidence angle, sun zenith angle and slope), diffuse from the sky (dependent mainly on sky-view factor), and diffuse reflected from the terrain (dependent on sky-view factor and albedo). For computation of diffuse irradiation from the sky we assume an anisotropic brightness of the sky. We iteratively estimate a linear combination from 10 different models, to provide the best results. Dependent on the data resolution, we mask shades based on radiometric (image) or geometric properties. The method was tested on RapidEye, Landsat 8, and PROBA-V data. Final results of the correction were evaluated and statistically validated based on various topography settings and land cover classes. Images show great improvements in shaded areas.

  3. Forest greenness after the massive 2008 Chinese ice storm: integrated effects of natural processes and human intervention

    International Nuclear Information System (INIS)

    Sun Ying; Dickinson, Robert E; Gu Lianhong; Zhou Benzhi

    2012-01-01

    About 10% of China’s forests were impacted by a destructive ice storm and subsequently subjected to poorly planned salvage logging in 2008. We used the remote-sensing products of Enhanced Vegetation Indexes (EVI) corroborated with information gathered from ground visits to examine the spatial patterns and temporal trajectories of greenness of these nearly 20 million hectares of forests. We found (1) the EVI of about 50% of the impacted forests returned to normal status (i.e., within the 95% confidence interval of the long-term mean) within five months, and about 80% within one year after the storm, (2) the higher the pre-storm EVI (relative to the long-term mean), the slower the rebound of post-storm EVI, and (3) the rebound of greenness was slowest in forests that were moderately impacted by the ice storm only (i.e. before the occurrences of logging), resulting in a nonlinear relationship between greenness rebound time (GRT) and ice storm impact severity (IS). Ground visits suggested a hypothesis that the region-wide rebound in greenness was a consequence of resprouting of physically damaged trees and growth of understory plants including shrub, herbaceous and epiphytic species. These processes were facilitated by the rapid increase in temperature and ample moisture after the ice storm. Gap-phase dynamics could be responsible for the counterintuitive relationship between IS and GRT that was obtained. However, a more parsimonious explanation appears to be biased salvage logging, which may have selectively targeted lightly to moderately impacted forests for economic and accessibility reasons and thus adversely affected the GRT of these forests. Although a purely natural disturbance may result in forest greenness patterns different than those reported here, we suggest that remote-sensing-based dynamic analyses of greenness can play a major role in evaluating disturbance theories and in developing testable hypotheses to guide ground-based studies of the integrated

  4. Weekend Effect" in Summertime U.S. Rainfall: Evidence for Midweek Intensification of Storms by Pollution

    Science.gov (United States)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Hahnenberger, Maura

    2006-01-01

    Persistent and strong dependence of rain rate on the day of the week has been found in Tropical Rainfall Measuring Mission (TRMM) satellite estimates of summer afternoon rainfall over the southeast U.S. and the nearby Atlantic from 1998 to 2005. Midweek (Tue-Thu) rain rates and rain area appear to increase over land, and this increase is accompanied by a corresponding diminution of rainfall over nearby waters. Reanalysis data from atmospheric models, suggest that there is a corresponding weekly variation in atmospheric winds consistent with the changes in rainfall. These variations are almost certainly caused by weekly variations in human activity. The most likely cause of the observed changes in rainfall is the well documented weekly variation in atmospheric pollution. Particulate pollution is highest in the middle of the week. Considerable observational and modeling evidence has accumulated concerning the effects of aerosols on precipitation. Most of this evidence relates to the suppression of precipitation by aerosols, but it has been argued that storms in highly unstable moist environments can be invigorated by aerosols, and some modeling studies seem to confirm this. The strong weekly cycle in rainfall observed over the southeast U.S. along with what appears to be dynamical suppression of rainfall over the nearby Atlantic, and the lack of an observable cycle over the southwest U.S., are consistent with this theory.

  5. CFD analysis for greenhouse effect solar dryer

    International Nuclear Information System (INIS)

    Wulandani, D.; Abdullah, K.; Hartulistiyoso, E.; Siswantara, I.

    2006-01-01

    Greenhouse Effect (GHE) solar dryer is a transparent wall structure, consists of absorber plate as solar heat collector, product holders (tray or batch) and fans to discharge moisture from the product. GHE solar dryer is one of the alternative dryer for the farmer and merchants to improve the quality of dried products. Direct sun drying is still popular choice by farmers because it is cheap and simple. However, the method is greatly dependent on the existence of solar irradiation and the product is contaminated very easily by pollution and dirt. The general constraint in designing artificial dryer is the problem of non-uniformity of final moisture content of product, especially for the cabinet of rack type dryer. This condition can be solved by providing uniform distribution of temperature, relative humidity (RH) and airflow velocity of the drying air. Therefore, in this study, such problem was approached by conducting flow simulation within the drying structure by using computational fluid dynamics (CFD) technology to determine the proper position of drying air inlet and outlet, location and capacity of the heat exchanger unit, the position and the capacity of the fan, to produce uniform distribution of the drying air temperature, RH and airflow velocity within the drying chamber.(Author)

  6. The effect of severe storms on the ice cover of the northern Tatarskiy Strait

    Science.gov (United States)

    Martin, Seelye; Munoz, Esther; Drucker, Robert

    1992-01-01

    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  7. A superposed epoch analysis of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1994-06-01

    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  8. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    International Nuclear Information System (INIS)

    Proelss, G.W.

    1993-01-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects

  9. On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model

    Directory of Open Access Journals (Sweden)

    H. Morrison

    2012-08-01

    Full Text Available A cloud system-resolving model (the Weather Research and Forecasting model with 1 km horizontal grid spacing is used to investigate the response of an idealized supercell storm to increased cloud droplet concentrations associated with polluted conditions. The primary focus is on exploring robustness of simulated aerosol effects in the face of complex process interactions and feedbacks between the cloud microphysics and dynamics. Simulations are run using sixteen different model configurations with various microphysical or thermodynamic processes modified or turned off. Robustness of the storm response to polluted conditions is also explored for each configuration by performing additional simulations with small perturbations to the initial conditions. Differences in the domain-mean accumulated surface precipitation and convective mass flux between polluted and pristine conditions are small for almost all model configurations, with relative differences in each quantity generally less than 15%. Configurations that produce a decrease (increase in cold pool strength in polluted conditions also tend to simulate a decrease (increase in surface precipitation and convective mass flux. Combined with an analysis of the dynamical and thermodynamic fields, these results indicate the importance of interactions between microphysics, cold pool evolution, and dynamics along outflow boundaries in explaining the system response. Several model configurations, including the baseline, produce an overall similar storm response (weakening in polluted conditions despite having different microphysical or thermodynamic processes turned off. With hail initiation turned off or the hail fallspeed-size relation set to that of snow, the model produces an invigoration instead of weakening of the storm in polluted conditions. These results highlight the difficulty of foreseeing impacts of changes to model parameterizations and isolating process interactions that drive the system

  10. Faraday effect and solar neutrino problem

    International Nuclear Information System (INIS)

    Nawaz, S.

    2001-01-01

    We have studied the Faraday effect and solar neutrino problem. Our main emphasis was on the Faraday rotation of neutrino de Broglie wave of electron-neutrino producing in the nuclear reactions in the sun and converting into any other flavor of neutrino while passing through matter and/or magnetic field of the sun. We have shown that specific Faraday angle can minimize the number of free parameters occurring in the neutrino oscillation. We have also shown that the resonant Faraday angle corresponding to the resonance of MSW effect can be obtained the knowledge of the oscillation parameter delta m/sup 2/ and the neutrino energy. Using neutrino-Faraday angle approach, we have shown that the matter enhanced neutrino oscillations is dominating over the resonant spin flavor precession (RSFP) even in the favorable region of the spin flavor procession. Using the latest solar neutrino data, we have shown that Faraday angle is almost 10/sup -3/ times smaller. This can be interpreted as the interaction of magnetic moment of neutrino with the solar magnetic field is negligibly small as compare to the effect of matter field on the neutrino oscillation. (author)

  11. A case of thyroid storm with multiple organ failure effectively treated with plasma exchange.

    Science.gov (United States)

    Sasaki, Kazuki; Yoshida, Akira; Nakata, Yukiko; Mizote, Isamu; Sakata, Yasushi; Komuro, Issei

    2011-01-01

    We describe a 48-year-old man with thyroid storm presenting with heart failure. He presented severely impaired left ventricular wall motion and a marked increase in the liver enzymes. He developed disseminated intravascular coagulation on day 2. Due to elevated serum thyroid hormone level, anti-thyroid hormone receptor antibody positivity, and his clinical symptoms, he was diagnosed as thyroid storm due to untreated Graves' disease. His condition did not improve even after 6 days of conventional therapy including steroids. After therapeutic plasma exchange was carried out, his thyroid hormone level decreased markedly. Consequently, his condition recovered gradually, and he was discharged at day 43.

  12. Effect of solar wind plasma parameters on space weather

    International Nuclear Information System (INIS)

    Rathore, Balveer S.; Gupta, Dinesh C.; Kaushik, Subhash C.

    2015-01-01

    Today's challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field (IMF) conditions. Correlative studies between geomagnetic storms (GMSs) and the various interplanetary (IP) field/plasma parameters have been performed to search for the causes of geomagnetic activity and develop models for predicting the occurrence of GMSs, which are important for space weather predictions. We find a possible relation between GMSs and solar wind and IMF parameters in three different situations and also derived the linear relation for all parameters in three situations. On the basis of the present statistical study, we develop an empirical model. With the help of this model, we can predict all categories of GMSs. This model is based on the following fact: the total IMF B total can be used to trigger an alarm for GMSs, when sudden changes in total magnetic field B total occur. This is the first alarm condition for a storm's arrival. It is observed in the present study that the southward B z component of the IMF is an important factor for describing GMSs. A result of the paper is that the magnitude of B z is maximum neither during the initial phase (at the instant of the IP shock) nor during the main phase (at the instant of Disturbance storm time (Dst) minimum). It is seen in this study that there is a time delay between the maximum value of southward B z and the Dst minimum, and this time delay can be used in the prediction of the intensity of a magnetic storm two-three hours before the main phase of a GMS. A linear relation has been derived between the maximum value of the southward component of B z and the Dst, which is Dst = (−0.06) + (7.65) B z +t. Some auxiliary conditions should be fulfilled with this, for example the speed of the solar wind should, on average, be 350 km s −1 to 750 km s −1 , plasma β should be low and, most importantly, plasma temperature

  13. Effect of solar-terrestrial phenomena on solar cell's efficiency

    International Nuclear Information System (INIS)

    Zahee, K. B.; Ansari, W.A.; Raza, S.M.M.

    2012-01-01

    It is assumed that the solar cell efficiency of PV device is closely related to the solar irradiance, consider the solar parameter Global Solar Irradiance (G) and the meteorological parameters like daily data of Earth Skin Temperature (E), Average Temperature (T), Relative Humidity (H) and Dew Frost Point (D), for the coastal city Karachi and a non-coastal city Jacobabad, K and J is used as a subscripts for parameters of Karachi and Jacobabad respectively. All variables used here are dependent on the location (latitude and longitude) of our stations except G. To employ ARIMA modeling, the first eighteen years data is used for modeling and forecast is done for the last five years data. In most cases results show good correlation among monthly actual and monthly forecasted values of all the predictors. Next, multiple linear regression is employed to the data obtained by ARIMA modeling and models for mean monthly observed G values are constructed. For each station, two equations are constructed, the R values are above 93% for each model, showing adequacy of the fit. Our computations show that solar cell efficiency can be increased if better modeling for meteorological predictors governs the process. (author)

  14. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  15. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  16. Questionable effects of antireflective coatings on inefficiently cooled solar cells

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Galster, Georg; Larsen, Esben

    1998-01-01

    of the output power and efficiency curves throughout the day the coherence between technical parameters of the solar cells and the climate in the operation region is observed and examined. It is shown how the drop in output power around noon can be avoided by fitting technical parameters of the solar cells......A model for temperature effects in p-n junction solar cells is introduced. The temperature of solar cells and the losses in the solar cell junction region caused by elevating temperature are discussed. The model developed is examined for low-cost silicon solar cells. In order to improve the shape...

  17. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  18. Effects of field storage method on E. coli concentrations measured in storm water runoff

    Science.gov (United States)

    Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers are challenging conventional protocols for sample hold...

  19. Effects of Storm Events on Bacteria and Nutrients in the Bayou Chico Watershed

    Science.gov (United States)

    Hobbs, S. E.; Truong, S.

    2017-12-01

    Levels of Escherichia coli and abiotic nutrients often increase in response to storm events due to urban runoff. The urban setting, aging septic systems, and ample pet waste (predominant sources of bacterial and nutrient contamination) that surround Bayou Chico, provide abundant possibilities for contamination. E. coli is a gram-negative, rod shaped bacteria commonly found in the intestines of animals; while some strains are harmless, others produce dangerous toxins that can cause side effects and sometimes death. Along with E. coli, inorganic nutrient concentrations (orthophosphate, nitrate/nitrite, and ammonium) are key indicators of water quality. Dissolved nutrients promote the growth of primary producers and excessive amounts lead to algal blooms, often reducing biodiversity. Four sites were sampled weekly in June and July 2017; during which, June had the highest rainfall in comparison to the past three years; these four sites represented three different sub-watersheds of the Bayou Chico Watershed, with differing land-use at each site. Historical nutrient and bacterial data from the Bream Fishermen Association was also compared and examined to determine long term trends and obtain a more in-depth understanding of the dynamics of water quality in th urban setting. E. coli levels were universally high (ranging from 98 to 12,997 MPN/100mL) for all sites and did not show observable correlations to rainfall; possibly influenced by the systemic and anomalous heavy precipitation during most of the summer study period. Nitrate was detected at levels between 2.5 and 154.0 µM, while ammonium levels ranged from 0 to 16.1 µM. Three of four stations showed extremely elevated dissolved inorganic nitrogen and ammonium while one station showed low levels of these nutrients. Correlations between these nutrient loads and rainfall, support the hypothesis that runoff into tributary creeks contributes significant inorganic nutrient loads to the Bayou Chico urban estuary.

  20. The effects of opening areas on solar chimney performance

    Science.gov (United States)

    Ling, L. S.; Rahman, M. M.; Chu, C. M.; Misaran, M. S. bin; Tamiri, F. M.

    2017-07-01

    To enhance natural ventilation at day time, solar chimney is one of the suitable options for topical country like Malaysia. Solar chimney creates air flow due to stack effect caused by temperature difference between ambient and inside wall. In the solar chimney, solar energy is harvested by the inner wall that cause temperature rise compare to ambient. Therefore, the efficiency of the solar chimney depends on the availability of solar energy as well as the solar intensity. In addition, it is very hard to get good ventilation at night time by using a solar chimney. To overcome this problem one of the suitable valid option is to integrate solar chimney with turbine ventilator. A new type of solar chimney is designed and fluid flow analyzed with the computational fluid dynamics (CFD) software. The aim of CFD and theoretical study are to investigate the effect of opening areas on modified solar chimney performance. The inlet and outlet area of solar chimney are varied from 0.0224m2 to 0.6m2 and 0.1m2 to 0.14m2 respectively based on the changes of inclination angle and gap between inner and outer wall. In the CFD study the constant heat flux is considered as 500W/m2. CFD result shows that there is no significant relation between opening areas and the air flow rate through solar chimney but the ratio between inlet and outlet is significant on flow performance. If the area ratio between inlet and outlet are equal to two or larger, the performance of the solar chimney is better than the solar chimney with ratio lesser than two. The solar chimney performance does not effect if the area ratio between inlet and outlet varies from 1 to 2. This result will be useful for design and verification of actual solar chimney performance.

  1. Solar Neutrino Observables Sensitive to Matter Effects

    Directory of Open Access Journals (Sweden)

    H. Minakata

    2012-01-01

    Full Text Available We discuss constraints on the coefficient AMSW which is introduced to simulate the effect of weaker or stronger matter potential for electron neutrinos with the current and future solar neutrino data. The currently available solar neutrino data leads to a bound AMSW=1.47+0.54−0.42(+1.88−0.82 at 1σ (3σ CL, which is consistent with the Standard Model prediction AMSW=1. For weaker matter potential (AMSW1, the bound is milder and is dominated by the day-night asymmetry of 8B neutrino flux recently observed by Super-Kamiokande. Among the list of observables of ongoing and future solar neutrino experiments, we find that (1 an improved precision of the day-night asymmetry of 8B neutrinos, (2 precision measurements of the low-energy quasi-monoenergetic neutrinos, and (3 the detection of the upturn of the 8B neutrino spectrum at low energies are the best choices to improve the bound on AMSW.

  2. Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms

    Directory of Open Access Journals (Sweden)

    M. Fukata

    2002-07-01

    Full Text Available During the recovery phase of geomagnetic storms, the flux of relativistic (>2 MeV electrons at geosynchronous orbits is enhanced. This enhancement reaches a level that can cause devastating damage to instruments on satellites. To predict these temporal variations, we have developed neural network models that predict the flux for the period 1–12 h ahead. The electron-flux data obtained during storms, from the Space Environment Monitor on board a Geostationary Meteorological Satellite, were used to construct the model. Various combinations of the input parameters AL, SAL, Dst and SDst were tested (where S denotes the summation from the time of the minimum Dst. It was found that the model, including SAL as one of the input parameters, can provide some measure of relativistic electron-flux prediction at geosynchronous orbit during the recovery phase. We suggest from this result that the relativistic electron-flux enhancement during the recovery phase is associated with recurring substorms after Dst minimum and their accumulation effect.Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storms and substorms

  3. Space storms as natural hazards

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2008-04-01

    Full Text Available Eruptive activity of the Sun produces a chain of extreme geophysical events: high-speed solar wind, magnetic field disturbances in the interplanetary space and in the geomagnetic field and also intense fluxes of energetic particles. Space storms can potentially destroy spacecrafts, adversely affect astronauts and airline crew and human health on the Earth, lead to pipeline breaking, melt electricity transformers, and discontinue transmission. In this paper we deal with two consequences of space storms: (i rise in failures in the operation of railway devices and (ii rise in myocardial infarction and stroke incidences.

  4. Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe

    Science.gov (United States)

    Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.

    2017-12-01

    The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.

  5. Study of solar features causing GMSs with 250γ H 400γ

    Indian Academy of Sciences (India)

    The effect of solar features on geospheric conditions leading to geomagnetic storms (GMSs) with planetary index, p ≥ 20 and the range of horizontal component of the Earth's magnetic field such that 250 < < 400 has been investigated using interplanetary magnetic field (IMF), solar wind plasma (SWP) and solar ...

  6. Solar flare effects on the zodiacal light

    International Nuclear Information System (INIS)

    Misconi, N.Y.

    1975-01-01

    An observational and theoretical study was carried out of possible solar flare effects on the zodiacal light. A total of 38 nights (February, March and April 1966, March 1967, and March 1968) of ground based observations, which were taken from Mt. Haleakala, Hawaii by Weinberg, were searched for solar flare effects. No changes were found in the shape of the main cone of the zodiacal light at elongations greater than 23 degrees from the sun to a limit of approximately 20 S 10 (V) units, and none were found in the level of brightness from night to night to a limit of approximately 100 S 10 (V) units. The earlier reported enhancement in the zodiacal light due to a large solar flare by Blackwell and Ingham (1961) is considered doubtful for two reasons: probable contamination of their observations by enhanced atmospheric emission, and detailed geometry of that event shows that it is unlikely that the plasma/dust interaction could have caused a 40 percent enhancement in the zodiacal light. Whether or not the plasma/dust interaction can be effective in causing a brightness change, a knowledge of the brightness contribution along the lines of sight and as a function of heliocentric distance is needed. For this purpose models of dielectric and metallic particles with spatial distribution of the form r/sup -ν/, ν = 0,1,2, and size distribution of the form a/sup -p/, p = 2.5,4, were computed using the Mie scattering theory. Dynamical processes affecting the dust particle's heliocentric orbit were considered in relation to brightness changes

  7. Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics

    Science.gov (United States)

    Karan, Deepak K.; Pallamraju, Duggirala

    2018-05-01

    The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the

  8. Storming the Bastille: the effect of electric fields on the ionospheric F-layer

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2010-04-01

    Full Text Available We discuss different phenomena occurring during ionospheric F-region storms that in principle might be caused by electric fields and point out challenges that must be faced when considering the physical processes at work. We consider the transport of plasma across many degrees of latitude at sub-auroral latitudes, the origin of patches of so-called "storm enhanced density" at high mid-latitudes, and the very high reported heights of the F2 peak at low latitudes. We discuss the role that electric fields might play in changing locally the net production of ionization as well as transporting it. We suggest that the local change in ionization production should be considered as a more important process for producing plasma density enhancements than transport from a more remote source of enhanced density.

  9. Extended neutral atmosphere effect on solar wind interaction with nonmagnetic bodies of the solar system

    International Nuclear Information System (INIS)

    Breus, T.K.; Krymskij, A.M.; Mitnitskij, V.Ya.

    1987-01-01

    Numeric modelling of the Venus flow-around by the solar wind with regard to stream loading by heavy ions, produced under photoionization of the Venus neutral oxygen corona, is conducted. It is shown, that this effect can account for a whole number of peculiarities related to the solar wind interaction with the planet which have not been clearly explained yet, namely, shock wave position, solar wind stream and magnetic field characteristics behind the front

  10. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system

    Science.gov (United States)

    Mikhailova, G. A.; Mikhailov, Y. M.

    Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the

  11. An effective XML based name mapping mechanism within StoRM

    International Nuclear Information System (INIS)

    Corso, E; Forti, A; Ghiselli, A; Magnoni, L; Zappi, R

    2008-01-01

    In a Grid environment the naming capability allows users to refer to specific data resources in a physical storage system using a high level logical identifier. This logical identifier is typically organized in a file system like structure, a hierarchical tree of names. Storage Resource Manager (SRM) services map the logical identifier to the physical location of data evaluating a set of parameters as the desired quality of services and the VOMS attributes specified in the requests. StoRM is a SRM service developed by INFN and ICTP-EGRID to manage file and space on standard POSIX and high performing parallel and cluster file systems. An upcoming requirement in the Grid data scenario is the orthogonality of the logical name and the physical location of data, in order to refer, with the same identifier, to different copies of data archived in various storage areas with different quality of service. The mapping mechanism proposed in StoRM is based on a XML document that represents the different storage components managed by the service, the storage areas defined by the site administrator, the quality of service they provide and the Virtual Organization that want to use the storage area. An appropriate directory tree is realized in each storage component reflecting the XML schema. In this scenario StoRM is able to identify the physical location of a requested data evaluating the logical identifier and the specified attributes following the XML schema, without querying any database service. This paper presents the namespace schema defined, the different entities represented and the technical details of the StoRM implementation

  12. Investigation of turbidity effect on exergetic performance of solar ponds

    International Nuclear Information System (INIS)

    Atiz, Ayhan; Bozkurt, Ismail; Karakilcik, Mehmet; Dincer, Ibrahim

    2014-01-01

    Highlights: • A comprehensive experimental work on a turbidity of the solar pond. • Percentage transmission evaluation of the turbid and clean salty water of the zones. • Exergy analysis of the inner zones for turbid and clean salty water. • Turbidity effect on exergy efficiencies of the solar pond. • The thermal performance assessment by comparing the exergetic efficiencies of the solar pond. - Abstract: The present paper undertakes a study on the exergetic performance assessment of a solar pond and experimental investigation of turbidity effect on the system performance. There are various types of solar energy applications including solar ponds. One of significant parameters to consider in the assessment of solar pond performance is turbidity which is caused by dirty over time (e.g., insects, leaf, dust and wind bringing parts fall down). Thus, the turbidity in the salty water decreases solar energy transmission through the zones. In this study, the samples are taken from the three zones of the solar pond and analyzed using a spectrometer for three months. The transmission aspects of the solar pond are investigated under calm and turbidity currents to help distinguish the efficiencies. Furthermore, the maximum exergy efficiencies are found to be 28.40% for the calm case and 22.27% with turbidity effects for the month of August, respectively. As a result, it is confirmed that the solar pond performance is greatly affected by the turbidity effect

  13. Effects of the May 5-6, 1973, storm in the Greater Denver area, Colorado

    Science.gov (United States)

    Hansen, Wallace R.

    1973-01-01

    Rain began falling on the Greater Denver area the evening of Saturday, May 5, 1973, and continued through most of Sunday, May 6. Below about 7,000 feet altitude, the precipitation was mostly rain; above that altitude, it was mostly snow. Although the rate of fall was moderate, at least 4 inches of rain or as much as 4 feet of snow accumulated in some places. Sustained precipitation falling at a moderate rate thoroughly saturated the ground and by midday Sunday sent most of the smaller streams into flood stage. The South Platte River and its major tributaries began to flood by late Sunday evening and early Monday morning. Geologic and hydrologic processes activated by the May 5-6 storm caused extensive damage to lands and to manmade structures in the Greater Denver area. Damage was generally most intense in areas where man had modified the landscape--by channel constrictions, paving, stripping of vegetation and topsoil, and oversteepening of hillslopes. Roads, bridges, culverts, dams, canals, and the like were damaged or destroyed by erosion and sedimentation. Streambanks and structures along them were scoured. Thousands of acres of croplands, pasture, and developed urban lands were coated with mud and sand. Flooding was intensified by inadequate storm sewers, blocked drains, and obstructed drainage courses. Saturation of hillslopes along the Front Range caused rockfalls, landslides, and mudflows as far west as Berthoud Pass. Greater attention to geologic conditions in land-use planning, design, and construction would minimize storm damage in the future.

  14. Effects of storm waves on rapid deposition of sediment in the Yangtze Estuary channel

    Directory of Open Access Journals (Sweden)

    Xu Fumin

    2008-03-01

    Full Text Available Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.

  15. Effect of solar eclipse on microbes

    Directory of Open Access Journals (Sweden)

    Amrita Shriyan

    2011-01-01

    Full Text Available Objective : A solar eclipse was observed in India on 15 th January, 2010. It was a total eclipse in some parts of the country, while it was a partial eclipse in other parts. Microorganisms play an important role in various phenomena on the earth. This study was undertaken to know the influence of solar eclipse on nature indirectly, by analyzing certain genotypic and phenotypic variations in prokaryotes and eukaryotes. Since yeast have similar gene expression as that of humans, investigations were pursued on Candida albicans. Hence the study of the effect of solar eclipse on cultures of Staphylococcus aureus, Klebsiella species, Escherichia coli, and C. albicans was performed in the laboratory. The effect of the total or partial eclipse on the microorganism isolated from clinical isolates was investigated during the time period from 11.15 am to 3.15 pm. Materials and Methods : Cultures of S. aureus, Klebsiella species, and E. coli colonies on nutrient agar slants and broth and C. albicans on Sabouraud′s dextrose agar plates and broth. Slants were exposed to sunlight during eclipse and exposure to normal sunlight at Mangalore, Dakshina Kannada district, Karnataka state, India. Results : There was significant change observed during exposure to normal sunlight and eclipse phase. Bacterial colonies showed difference in morphology on smear examination and sensitivity pattern during this study. One fungal species and three bacterial isolates were studied and changes were recorded. Fungal species showed a definite change in their morphology on exposure to sunlight during eclipse observed by stained smear examination from broth, plate, and slant. Conclusion : Present study concludes that blocking of the sun rays during eclipse does not harm prokaryotes and eukaryotes, instead promoted the progeny of predators in the race of better acclimatization and survival in the natural and changing environmental conditions.

  16. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    Science.gov (United States)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  17. [Electrical storm].

    Science.gov (United States)

    Barnay, C; Taieb, J; Morice, R

    2007-11-01

    Electrical storm is defined as repeated occurrence of severe ventricular arrhythmias requiring multiple cardioversions, two or more or three or more following different studies. The clinical aspect can sometimes be made of multiple, self aggravating, life threatening accesses. There are three main clinical circumstances of occurrence: in patients equipped with intracardiac defibrillators, during the acute phase of myocardial infarction and in Brugada syndrome. 10 to 15% of patients with cardiac defibrillators are subject to electrical storms in a period of two years. The causative arrhythmia is most often ventricular tachycardia than ventricular fibrillation, especially in secondary prevention and if the initial arrhythmias justifying the device was a ventricular tachycardia. Precipitaing factors are present in one third of cases, mainly acute heart failure, ionic disorders and arrhythmogenic drugs. Predictive factors are age, left ventricular ejection fractionelectrical shock in 50% of cases, antitachycardi stimulation in 30% and in 20% by association of the two. Treatment, after elimination of inappropriate shocks, is mainly based on beta-blockers and amiodarone, class I antiarrhythmics, lidocaïne or bretylium in some cases, and sedation pushed to general anesthesia in some cases. Radio-frequency ablation and even heart transplantation have been proposed in extreme cases. Quinidine has been proved efficient in cases of Brugada syndrome.

  18. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  19. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita

    Science.gov (United States)

    Rego, JoãO. L.; Li, Chunyan

    2010-06-01

    This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for tides and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high tide. For low- and high-tide landfalls, nonlinear effects due to tide-surge coupling were constructive and destructive to total storm tide, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. Tide-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, tides, and landfall timings (relative to tide). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 tide and up to 47% with a K1 tide. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of tide (both with a K1 tide). The nonlinear effect was greatest for landfalls at low tide, followed by landfalls at high tide and then by landfalls at midebb or midflood.

  20. Return currents in solar flares - Collisionless effects

    Science.gov (United States)

    Rowland, H. L.; Vlahos, L.

    1985-01-01

    If the primary, precipitating electrons in a solar flare are unstable to beam plasma interactions, it is shown that strong Langmuir turbulence can seriously modify the way in which a return current is carried by the background plasma. In particular, the return (or reverse) current will not be carried by the bulk of the electrons, but by a small number of high velocity electrons. For beam/plasma densities greater than 0.01, this can reduce the effects of collisions on the return current. For higher density beams where the return current could be unstable to current driven instabilities, the effects of strong turbulence anomalous resistivity is shown to prevent the appearance of such instabilities. Again in this regime, how the return current is carried is determined by the beam generated strong turbulence.

  1. Estimation of radiative effect of a heavy dust storm over northwest China using Fu–Liou model and ground measurements

    International Nuclear Information System (INIS)

    Wang, Wencai; Huang, Jianping; Zhou, Tian; Bi, Jianrong; Lin, Lei; Chen, Yonghang; Huang, Zhongwei; Su, Jing

    2013-01-01

    A heavy dust storm that occurred in Northwestern China during April 24–30 2010 was studied using observational data along with the Fu–Liou radiative transfer model. The dust storm was originated from Mongolia and affected more than 10 provinces of China. Our results showed that dust aerosols have a significant impact on the radiative energy budget. At Minqin (102.959°E, 38.607°N) and Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL, 104.13°E, 35.95°N) sites, the net radiative forcing (RF) ranged from 5.93 to 35.7 W m −2 at the top of the atmosphere (TOA), −6.3 to −30.94 W m −2 at surface, and 16.77 to 56.32 W m −2 in the atmosphere. The maximum net radiative heating rate reached 5.89 K at 1.5 km on 24 April at the Minqin station and 4.46 K at 2.2 km on 29 April at the SACOL station. Our results also indicated that the radiative effect of dust aerosols is affected by aerosol optical depth (AOD), single-scattering albedo (SSA) and surface albedo. Modifications of the radiative energy budget by dust aerosols may have important implications for atmospheric circulation and regional climate. -- Highlights: ► Dust aerosols' optical properties and radiative effects were investigated. ► We have surface observations on Minqin and SACOL where heavy dust storm occurred. ► Accurate input parameters for model were acquired from ground-based measurements. ► Aerosol's optical properties may have changed when transported

  2. Observations of energetic helium ions in the Earth's radiation belts during a sequence of geomagnetic storms

    International Nuclear Information System (INIS)

    Spjeldvik, W.N.; Fritz, T.A.

    1981-01-01

    Every year a significant number of magnetic storms disturb the earth's magnetosphere and the trapped particle populations. In this paper, we present observations of energetic (MeV) helium ions made with Explorer 45 during a sequence of magnetic storms during June through December of 1972. The first of these storms started on June 17 and had a Dst index excursion to approx.190 gamma, and the MeV helium ions were perturbed primarily beyond 3 earth radii in the equatorial radiation belts with a typical flux increase of an order of magnitude at L = 4. The second storm period took place during August and was associated with very major solar flare activity. Although the Dst extremum was at best 35 gamma less than the June storm, this period can be characterized as irregular (or multi-storm) with strong compression of the magnetosphere and very large (order of magnitude) MeV helium ion flux enhancements down to Lapprox.2. Following this injection the trapped helium ion fluxes showed positive spectral slope with the peak beyond 3.15 MeV at L = 2.5; and at the lowest observable L shells (Lapprox.2--3) little flux decay (tau>100 days) was seen during the rest of the year. Any effects of two subsequent major magnetic storms in September and November were essentially undetectable in the prolonged after-effect of the August solar flare associated MeV helium ion injection. The helium ion radial profile of the phase space density showed a significant negative slope during this period, and we infer that radial diffusion constitutes a significant loss of helium ions on L shells above Lapprox. =4 during the aftermath of the August 1972 magnetic storm

  3. Effects of solar photovoltaic technology on the environment in China.

    Science.gov (United States)

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  4. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  5. The influence of solar wind on extratropical cyclones – Part 1: Wilcox effect revisited

    Directory of Open Access Journals (Sweden)

    M. Rybanský

    2009-01-01

    mean VAI response to SBP associated with the north-to-south reversal of BZ is leading by up to 2 days the mean VAI response to SBP associated with the south-to-north reversal of BZ. For the latter, less geoeffective events, the VAI minimum deepens (with the above exception of the Northern Hemisphere low-aerosol 500-mb VAI and the VAI maximum is delayed. The phase shift between the mean VAI responses obtained for these two subsets of SBP events may explain the reduced amplitude of the overall Wilcox effect. In a companion paper, Prikryl et al. (2009 propose a new mechanism to explain the Wilcox effect, namely that solar-wind-generated auroral atmospheric gravity waves (AGWs influence the growth of extratropical cyclones. It is also observed that severe extratropical storms, explosive cyclogenesis and significant sea level pressure deepenings of extratropical storms tend to occur within a few days of the arrival of high-speed solar wind. These observations are discussed in the context of the proposed AGW mechanism as well as the previously suggested atmospheric electrical current (AEC model (Tinsley et al., 1994, which requires the presence of stratospheric aerosols for a significant (Wilcox effect.

  6. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  7. [Effect of antecedent dry weather period on urban storm runoff pollution load].

    Science.gov (United States)

    Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci

    2007-10-01

    Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.

  8. Relationships of storm-time changes in thermospheric mass density with solar wind/IMF parameters and ring current index of Sym-H

    Science.gov (United States)

    Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann

    The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing

  9. Modeling the dynamics of a storm-time acceleration event: combining MHD effects with wave-particle interactions

    Science.gov (United States)

    Elkington, S. R.; Alam, S. S.; Chan, A. A.; Albert, J.; Jaynes, A. N.; Baker, D. N.; Wiltberger, M. J.

    2017-12-01

    Global simulations of radiation belt dynamics are often undertaken using either a transport formalism (e.g. Fokker-Plank), or via test particle simulations in model electric and magnetic fields. While transport formalisms offer computational efficiency and the ability to deal with a wide range of wave-particle interactions, they typically rely on simplified background fields, and often are limited to empirically-specified stochastic (diffusive) wave-particle interactions. On the other hand, test particle simulations may be carried out in global MHD simulations that include realistic physical effects such as magnetopause shadowing, convection, and substorm injections, but lack the ability to handle physics outside the MHD approximation in the realm of higher frequency (kHz) wave populations.In this work we introduce a comprehensive simulation framework combining global MHD/test particle techniques to provide realistic background fields and radial transport processes, with a Stochastic Differential Equation (SDE) method for addressing high frequency wave-particle interactions. We examine the March 17, 2013 storm-time acceleration period, an NSF-GEM focus challenge event, and use the framework to examine the relative importance of physical effects such as magnetopause shadowing, diffusive and advective transport processes, and wave-particle interactions through the various phases of the storm.

  10. Role of neutral wind and storm time electric fields inferred from the storm time ionization distribution at low latitudes: in-situ measurements by Indian satellite SROSS-C2

    Directory of Open Access Journals (Sweden)

    P. Subrahmanyam

    2005-11-01

    Full Text Available Recently, there has been a renewal of interest in the study of the effects of solar weather events on the ionization redistribution and irregularity generation. The observed changes at low and equatorial latitudes are rather complex and are noted to be a function of location, the time of the storm onset and its intensity, and various other characteristics of the geomagnetic storms triggered by solar weather events. At these latitudes, the effects of geomagnetic storms are basically due to (a direct penetration of the magnetospheric electric fields to low latitudes, (b development of disturbance dynamo, (c changes in atmospheric neutral winds at ionospheric level and (d changes in neutral composition triggered by the storm time atmospheric heating.

    In the present study an attempt is made to further understand some of the observed storm time effects in terms of storm time changes in zonal electric fields and meridional neutral winds. For this purpose, observations made by the Retarding Potential Analyzer (RPA payload on board the Indian satellite SROSS-C2 are examined for four prominent geomagnetic storm events that occurred during the high solar activity period of 1997-2000. Available simultaneous observations, from the GPS satellite network, are also used. The daytime passes of SROSS-C2 have been selected to examine the redistribution of ionization in the equatorial ionization anomaly (EIA region. In general, EIA is observed to be weakened 12-24 h after the main phase onset (MPO of the storm. The storm time behaviour inferred by SROSS-C2 and the GPS satellite network during the geomagnetic storm of 13 November 1998, for which simultaneous observations are available, is found to be consistent. Storm time changes in the delay of received GPS signals are noted to be ~1-3 m, which is a significant component of the total delay observed on a quiet day.

    An attempt is made to identify and

  11. The effects of Poynting-Robertson drag on solar sails

    Science.gov (United States)

    Abd El-Salam, F. A.

    2018-06-01

    In the present work, the concept of solar sailing and its developing spacecraft are presented. The effects of Poynting-Robertson drag on solar sails are considered. Some analytical control laws with some mentioned input constraints for optimizing solar sails dynamics in heliocentric orbit using Lagrange's planetary equations are obtained. Optimum force vector in a required direction is maximized by deriving optimal sail cone angle. New control laws that maximize thrust to obtain certain required maximization in some particular orbital element are obtained.

  12. Geomagnetic storm effects in ionospheric TEC at an euatorial station: contribution of EXB drifts and meridional neutral winds

    International Nuclear Information System (INIS)

    Dabas, R.S.; Jain, A.R.

    1985-01-01

    Storm-time variations in TEC measurements at the Indian station Ootacamund with IEC data for four stations in the anomaly region. Variations in Nsub(T)(OOTY) are found to be smaller compared to those observed at anomaly stations. The equatorial electrojet control of Nsub(T)(OOTY) is weaker compared to that of Nsub(m)F2. This result and absence of midday biteout in Nsub(T)(OOTY) are interpreted in terms of plasma exchange between ionosphere and plasmasphere which, to some extent, compensates the loss of plasma in the column due to E x B drifts. The anomaly depth is found to be well correlated with the electrojet strength. It is also noticed that for the same anomaly is weaker on a storm day than for quiet days. This is interpreted in terms of converging equatorward meridional winds. Thus, ionosphere-plasmasphere plasma exchange and, during disturbed period, the converging equatorward meridional winds also have significant effects on the distribution of ionization at these latitudes though the E x B drifts are most important in affecting the ionization distribution at low latitudes. (author)

  13. Solar Magnetic Atmospheric Effects on Global Helioseismic ...

    Indian Academy of Sciences (India)

    provide priceless diagnostic tools in the search for hidden aspects of the solar interior ... The overall structure of the helioseismic frequency spectrum, see Figure 1, has not .... 10.7 cm radio flux were used as a proxy of the solar surface activity. All the ..... According to their predictions, at least B = 5 × 105 G field strength is.

  14. Cheap effective thermal solar-energy collectors

    Energy Technology Data Exchange (ETDEWEB)

    Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy

    1996-04-01

    A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)

  15. Solar and Stellar Flares and Their Effects on Planets

    Science.gov (United States)

    Shibata, Kazunari

    2015-08-01

    Recent space observations of the Sun revealed that the solar atmosphere is full of explosions, such as flares and flare-like phenomena. These flares generate not only strong electromagnetic emissions but also nonthermal particles and bulk plasma ejections, which sometimes lead to geomagnetic storms and affect terrestrial environment and our civilization, damaging satellite, power-grids, radio communication etc. Solar flares are prototype of various explosions in our universe, and hence are important not only for geophysics and environmental science but also for astrophysics. The energy source of solar flares is now established to be magnetic energy stored near sunspots. There is now increasing observational evidence that solar flares are caused by magnetic reconnection, merging of anti-parallel magnetic field lines and associated magneto-plasma dynamics (Shibata and Magara 2011, Living Review). It has also been known that many stars show flares similar to solar flares, and often such stellar flares are much more energetic than solar flares. The total energy of a solar flare is typically 10^29 - 10^32 erg. On the other hand, there are much more energetic flares (10^33 - 10^38 erg) in stars, especially in young stars. These are called superflares. We argue that these superflares on stars can also be understood in a unified way based on the reconnection mechanism. Finally we show evidence of occurrence of superflares on Sun-like stars according to recent stellar observations (Maehara et al. 2012, Nature, Shibayama et al. 2013), which revealed that superflares with energy of 10^34 - 10^35 erg (100 - 1000 times of the largest solar flares) occur with frequency of once in 800 - 5000 years on Sun-like stars which are very similar to our Sun. Against the previous belief, these new observations as well as theory (Shibata et al. 2013) suggest that we cannot deny the possibility of superflares on the present Sun. Finally, we shall discuss possible impacts of these superflares

  16. The effects of Poynting–Robertson drag on solar sails

    Directory of Open Access Journals (Sweden)

    F.A. Abd El-Salam

    2018-06-01

    Full Text Available In the present work, the concept of solar sailing and its developing spacecraft are presented. The effects of Poynting–Robertson drag on solar sails are considered. Some analytical control laws with some mentioned input constraints for optimizing solar sails dynamics in heliocentric orbit using Lagrange’s planetary equations are obtained. Optimum force vector in a required direction is maximized by deriving optimal sail cone angle. New control laws that maximize thrust to obtain certain required maximization in some particular orbital element are obtained. Keywords: Poynting–Robertson drag, Solar sail, Control laws, Optimal sail, Cone angle

  17. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  18. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    OpenAIRE

    Neumann, James; Ludwig, Lindsay; Verly, Caroleen; Emanuel, Kerry Andrew; Ravela, Srinivas

    2015-01-01

    This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam an area already known to be highly vulnerable to coastal risks. By combining a range of sea level rise scenarios for 2050 with the simulated storm surge level for the 100-year storm surge, we analyze permanently inundated lands and temporary flood zones. As is well-established in the literature, sea level rise will increase the risk of storms by raising the base sea level from which surg...

  19. Mathematical modeling of the moderate storm on 28 February 2008

    Science.gov (United States)

    Eroglu, Emre

    2018-04-01

    The sun is an active star with plasma-filled prominences. The sudden ejection of the solar plasma creates storms in the form of bursting or spraying. A magnetospheric storm is a typical phenomenon that lasts 1-3 days and involves all magnetosphere from the earth's ionosphere to the magnetotail. The storms are known by different categorical names such as weak, moderate, strong, intense. One of these is the moderate geomagnetic storm on February 28, 2008, which occurred in the 24th solar cycle. The reason for discussing this storm is that it is the first moderate storm in the 24th solar cycle. In this study, we investigate the storm and entered the 24th solar cycle. The correlation among the parametres has been investigated via statistics. The solar wind parameters and the zonal geomagnetic indices have been analyzed separately and then the interaction with each other has been exhibited. The author has concluded the work with two new nonlinear mathematical models. These explain the storm with 79.1% and 87.5% accuracy.

  20. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains.

    Science.gov (United States)

    Csilléry, Katalin; Kunstler, Georges; Courbaud, Benoît; Allard, Denis; Lassègues, Pierre; Haslinger, Klaus; Gardiner, Barry

    2017-12-01

    Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms -1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these

  1. Effect of the Dust on the Performance of Solar Water Collectors in Iraq

    Directory of Open Access Journals (Sweden)

    Omer Khalil Ahmed

    2016-02-01

    Full Text Available There is little research about it in present literatures in Iraq. So the effect of dust accumulation on the performance of conventional of solar collectors is analyzed. The experimental study was carried out mainly on a flat solar collector, which comprised the major part of this work. According to the experimental results obtained, there is a limited decrease in the instantaneous efficiency which was 1.6 % for the dirty collector. At load condition, the outlet temperature reaches a maximum value of 43.85oC at 12 noon without dust on the front glass and 33.7 oC in the presence of the dust. The instantaneous efficiency reaches its maximum value of 49.74 % at 12 noon without dust and 48.94% with dust after that the efficiency was decreased. The variation of useful transferred energy closely follows the variation of solar intensity and reaches its maximum value of 690 W/m2 at 12 noon in the presence of the dust for this particular day. It is also observed that, at the second half of the day, there is a large decrease in the instantaneous efficiency resulting from a large reduction in the useful energy transferred. Therefore, for Iraqi places, daily cleaning of the glass covers is strictly recommended as part of the maintenance works but the equipment should be cleaned immediately after a dust storm to keep the collector efficient. Article History: Received August 16, 2015; Received in revised form Nov 17, 2015; Accepted Dec 19, 2015; Available onlineHow to Cite This Article: Ahmed, O.K (2016. Effect of the Dust on the Performance of Solar Water Collectors in Iraq. Int. Journal of Renewable Energy Development, 5(1, 65-72.http://dx.doi.org/10.14710/ijred.5.1.65-72 

  2. MSW effect and solar neutrino experiments

    International Nuclear Information System (INIS)

    Rosen, S.P.

    1986-01-01

    We describe the MSW solutions to the 37 Cl solar neutrino experiment, and their implications for the 71 Ga experiment. Measurement of the spectrum of electron-type neutrinos arriving at earth is emphasized. 8 refs., 2 figs., 1 tab

  3. Effects of dust storm events on weekly clinic visits related to pulmonary tuberculosis disease in Minqin, China

    Science.gov (United States)

    Wang, Yun; Wang, Ruoyu; Ming, Jing; Liu, Guangxiu; Chen, Tuo; Liu, Xinfeng; Liu, Haixia; Zhen, Yunhe; Cheng, Guodong

    2016-02-01

    Pulmonary tuberculosis (PTB) is a major public health problem in China. Minqin, a Northwest county of China, has a very high number of annual PTB clinic visits and it is also known for its severe dust storms. The epidemic usually begins in February and ends in July, while the dust storms mainly occur throughout spring and early summer, thereby suggesting that there might be a close link between the causative agent of PTB and dust storms. We investigated the general impact of dust storms on PTB over time by analyzing the variation in weekly clinic visits in Minqin during 2005-2012. We used the Mann-Whitney-Pettitt test and a regression model to determine the seasonal periodicity of PTB and dust storms in a time series, as well as assessing the relationships between meteorological variables and weekly PTB clinic visits. After comparing the number of weekly PTB cases in Gansu province with dust storm events, we detected a clear link between the population dynamics of PTB and climate events, i.e., the onset of epidemics and dust storms (defined by an atmospheric index) occurred in almost the same mean week. Thus, particulate matter might be the cause of PTB outbreaks on dust storm days. It is highly likely that the significant decline in annual clinic visits was closely associated with improvements in the local environment, which prevented desertification and decreased the frequency of dust storm events. To the best of our knowledge, this is the first population-based study to provide clear evidence that a PTB epidemic was affected by dust storms in China, which may give insights into the association between this environmental problem and the evolution of epidemic disease.

  4. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2004-04-01

    Full Text Available Magnetic disturbances in the Earth's magnetosphere can be very different depending on the type of solar wind driver. We have determined the solar wind causes for intense magnetic storms (DstDst index was more difficult to model for a sheath region or a post-shock stream driven storm than for a storm caused by a magnetic cloud.

  5. Geomagnetic storms in the Antarctic F-region

    International Nuclear Information System (INIS)

    Wrenn, G.L.; Rodger, A.S.; Rishbeth, H.

    1987-01-01

    New analysis procedures are used to show that the main phase mid-latitude storm effects conform to consistent patterns in local time when suitable selection rules are applied, with averaging over several years. Changes in the maximum plasma frequency, foF2, with respect to estimated quiet-time values, are analysed in terms of asub(p)(t), a new geomagnetic index derived to take account of integrated disturbance. Reduction of foF2 is greatest during the early morning hours, in summer, at higher geomagnetic latitudes, near solar minimum and through the more active periods. The various dependencies are quantitatively determined for the first time by creating an average 'steady state' disturbance, rather than following specific storm events. This approach permits tests of competing theories using available modelling programs. (author)

  6. The Effect of Neutral Winds on Simulated Inner Magnetospheric Electric Fields During the 17 March 2013 Storm

    Science.gov (United States)

    Chen, M.; Lemon, C.; Walterscheid, R. L.; Hecht, J. H.; Sazykin, S. Y.; Wolf, R.

    2017-12-01

    We investigate how neutral winds and particle precipitation affect the simulated development of electric fields including Sub-Auroral Polarization Streams (SAPS) during the 17 March 2013 storm. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) to simulate the inner magnetospheric electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. Ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. The electron and proton contributions to the auroral conductance in the RCM-E are calculated using the empirical Robinson et al. [JGR, 1987] and Galand and Richmond [JGR, 2001] equations, respectively. The "background" ionospheric conductance is based on parameters from the International Reference Ionosphere [Bilitza and Reinisch, JASR, 2008] but modified to include the effect of specified ionospheric troughs. Neutral winds are modeled by the empirical Horizontal Wind Model (HWM07) in the RCM-E. We compare simulated precipitating particle energy flux, E x B velocities with DMSP observations during the 17 March 2013 storm with and without the inclusion of neutral winds. Discrepancies between the simulations and observations will aid us in assessing needed improvements in the model.

  7. Non-storm irregular variation of the Dst index

    Directory of Open Access Journals (Sweden)

    S. Nakano

    2012-01-01

    Full Text Available The Dst index has a long-term variation that is not associated with magnetic storms. We estimated the long-term non-storm component of the Dst variation by removing the short-term variation related to magnetic storms. The results indicate that the variation of the non-storm component includes not only a seasonal variation but also an irregular variation. The irregular long-term variation is likely to be due to an anti-correlation with the long-term variation of solar-wind activity. In particular, a clear anti-correlation is observed between the non-storm component of Dst and the long-term variation of the solar-wind dynamic pressure. This means that in the long term, the Dst index tends to increase when the solar-wind dynamic pressure decreases. We interpret this anti-correlation as an indication that the long-term non-storm variation of Dst is influenced by the tail current variation. The long-term variation of the solar-wind dynamic pressure controls the plasma sheet thermal pressure, and the change of the plasma sheet thermal pressure would cause the non-storm tail current variation, resulting in the non-storm variation of Dst.

  8. Eruptive prominences and long-delay geomagnetic storms

    International Nuclear Information System (INIS)

    Wright, C.S.

    1983-01-01

    The relationship between disappearing solar fragments and geomagnetic disturbances was investigated. It is shown that long-delay storms are associated with filaments well removed from the disc centre, and particularly in the case of large filaments and prominences, the proportion of events that produce long-delay storms increases with angular distance from the centre

  9. Solar proton events and their effect on space systems

    International Nuclear Information System (INIS)

    Tranquille, C.

    1994-01-01

    Solar protons present a major problem to space systems because of the ionisation and displacement effects which arise from their interaction with matter. This is likely to become a greater problem in the future due to the use of more sensitive electronic components and the proposed expansion of manned activities in space. An outline is provided of the physical processes associated with individual solar events, the solar activity cycle and the transport of solar particles between the Sun and the Earth. The problems of predicting solar event fluences, both over short- and long-term periods, are discussed. The currently available solar proton event models used for long-term forecasting are briefly reviewed, and the advantages and deficiencies of each model are investigated. Predictions using the models are compared to measurements made by the GOES-7 satellite during the rising phase of the current solar cycle. These measurements are also used to illustrate the sensitivity of the models to the choice of confidence level and to the spectral form used for extrapolation over the solar proton energy range. (author)

  10. Ionosonde observations of the effects of the major magnetic storm of September 22-26, 1999 at equatorial station in west Africa

    Science.gov (United States)

    Coulibaly, I. S.; Adohi, B. J.-P.; Tanoh, K. S.

    2018-05-01

    A new approach to study the mechanisms of storm-time variations in the F-layer height and critical frequency at dip-equator is proposed. The latitudinal variations in the magnetic disturbance index DP were combined with h'F and foF2 data from an IPS 42-type ionosonde at Korkogo (9.2° N, 5° W; 2.4° S dip lat), Ivory Coast, to investigate the nighttime ionospheric effects of the geomagnetic storm of September 22-26, 1999 in the West-African sector. A clear equatorward penetration of magnetic disturbances from high latitudes regions was observed. At dip-equator, the DP magnetic disturbance pattern showed up to four distinct regimes of disturbance electric fields, each associated with a specific phase of the storm. A regime of westward transient electric fields followed by a regime of eastward transient electric fields occurred during the main phase of the storm. This was preceded by a period of quasi-absence of disturbance during the compression phase, the whole followed by a regime of westward persistent disturbance electric fields during the recovery phase. From the latitudinal variations and the shapes of these perturbations, we could associate the regime of westward (resp. eastward) disturbance electric fields with prompt penetration (resp. overshielding) occasioned by magnetospheric convections and the persistent one with a cumulative effect of storm-time winds and magnetospheric convections from high latitudes regions. The h'F variations were found to be strongly correlated with the DP ones, clearly providing evidence for the prevalence of these electric fields on the observed F-layer motions. Additionally, the foF2 variations showed two periods of depleted electron density, one in the evening during the compression phase of the storm and the other near midnight. We discussed the mechanisms of these ionospheric negative storms in the light of earlier investigations of storm-time ionospheric disturbances and validated our method by comparison of the above

  11. A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: local energetics and moisture effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Seon; Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Lee, June-Yi; Wang, Bin; Jin, Fei-Fei [University of Hawaii, School of Ocean and Earth Science and Technology, Honolulu, HI (United States); Lee, Woo-Jin [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2011-12-15

    Distinct differences of the storm track-jet relationship over the North Pacific and North Atlantic are investigated in terms of barotropic and baroclinic energetics using NCEP-2 reanalysis data for the period of 1979-2008. From fall to midwinter the Pacific storm track (PST) activity weakens following the southward shift of the Pacific jet, whereas the Atlantic storm track (AST) activity remains steady in position and intensifies regardless of the slight southward shift of the Atlantic jet. This study is devoted to seeking for the factors that can contribute to this conspicuous difference between the two storm tracks on climatological subseasonal variation by analyzing eddy properties and local energetics. Different eddy properties over the two oceans lead to different contribution of barotropic energy conversion to the initiation of storm tracks. In the North Atlantic, meridionally elongated eddies gain kinetic energy efficiently from stretching deformation of the mean flow in the jet entrance. On the other hand, the term associated with shearing deformation is important for the initiation of PST. Analysis of baroclinic energetics reveals that the intensification of the AST activity in midwinter is mainly attributed to coincidence between location of maximum poleward and upward eddy heat fluxes and that of the largest meridional temperature gradient over slight upstream of the AST. The relatively large amount of precipitable water and meridional eddy moisture flux along baroclinic energy conversion axis likely provides a more favorable environment for baroclinic eddy growth over the North Atlantic than over the North Pacific. In the meantime, the midwinter minimum of the PST activity is attributable to the southward shift of the Pacific jet stream that leads to discrepancy between core region of poleward and upward heat fluxes and that of meridional thermal gradient. Weakening of eddy-mean flow interaction due to eddy shape and reduction of moist effect are also

  12. New storm water regulations impact industry

    International Nuclear Information System (INIS)

    Gemar, C.

    1991-01-01

    In November 1990, new Environmental Protection Agency (EPA) regulations aimed at governing the discharge of storm water from industrial facilities became effective. Because some industrial runoff contains toxics and other pollutants, the EPA considers storm water a major source of water contamination. The new regulations will have a profound impact on the National Pollutant Discharge Elimination System (NPDES) permit requirements for industry. This paper summarizes the new storm water regulations, focusing on the requirements for industrial facilities. It also presents suggestions for compliance

  13. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  14. Placement and efficiency effects on radiative forcing of solar installations

    International Nuclear Information System (INIS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-01-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes

  15. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  16. NCDC Storm Events Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of...

  17. Entrance Effects in Solar Hot Water Stores

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    A theoretical and experimental analysis of water jets entering a solar storage tank is performed. CFD calculations of three inlet designs with different inlet flow rates were carried out to illustrate the varying behaviour of the thermal conditions in a solar store. The results showed the impact ...... in an analysis using the first and second law of thermodynamics. The results showed how the entropy changes and the exergy changes in the storage during the draw-offs influenced by the Richardson number, the volume draw-off and the initial tank conditions....

  18. Trends and solar cycle effects in mesospheric ice clouds

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Fiedler, Jens; Baumgarten, Gerd; Gerding, Michael

    Lidar observations of mesospheric ice layers (noctilucent clouds, NLC) are now available since 12 years which allows to study solar cycle effects on NLC parameters such as altitudes, bright-ness, and occurrence rates. We present observations from our lidar stations in Kuehlungsborn (54N) and ALOMAR (69N). Different from general expectations the mean layer characteris-tics at ALOMAR do not show a persistent anti-correlation with solar cycle. Although a nice anti-correlation of Ly-alpha and occurrence rates is detected in the first half of the solar cycle, occurrence rates decreased with decreasing solar activity thereafter. Interestingly, in summer 2009 record high NLC parameters were detected as expected in solar minimum conditions. The morphology of NLC suggests that other processes except solar radiation may affect NLC. We have recently applied our LIMA model to study in detail the solar cycle effects on tempera-tures and water vapor concentration the middle atmosphere and its subsequent influence on mesospheric ice clouds. Furthermore, lower atmosphere effects are implicitly included because LIMA nudges to the conditions in the troposphere and lower stratosphere. We compare LIMA results regarding solar cycle effects on temperatures and ice layers with observations at ALO-MAR as well as satellite borne measurements. We will also present LIMA results regarding the latitude variation of solar cycle and trends, including a comparison of northern and southern hemisphere. We have adapted the observation conditions from SBUV (wavelength and scatter-ing angle) in LIMA for a detailed comparison with long term observations of ice clouds from satellites.

  19. The electric storm of November 1882

    Science.gov (United States)

    Love, Jeffrey J.

    2018-01-01

    In November 1882, an intense magnetic storm related to a large sunspot group caused widespread interference to telegraph and telephone systems and provided spectacular and unusual auroral displays. The (ring current) storm time disturbance index for this storm reached maximum −Dst ≈ 386 nT, comparable to Halloween storm of 29–31 October 2003, but from 17 to 20 November the aa midlatitude geomagnetic disturbance index averaged 214.25 nT, the highest 4 day level of disturbance since the beginning of aa index in 1868. This storm contributed to scientists' understanding of the reality of solar‐terrestrial interaction. Past occurrences of magnetic storms, like that of November 1882, can inform modern evaluations of the deleterious effects that a magnetic superstorm might have on technological systems of importance to society.

  20. Storm Sewage Dilution in Smaller Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1987-01-01

    A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow.......A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow....

  1. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  2. Treatment of solar neutrino-oscillations in solar matter. The MSW effect

    International Nuclear Information System (INIS)

    Messiah, A.

    1986-01-01

    Mikheyev and Smirnov, following Wolfenstein's theory of neutrino oscillations in the presence of matter, have found that the change of flavour of solar neutrinos may be spectacularly enhanced in the presence of solar matter, when the parameters of the neutrino mass operator fall in a suitable range (MSW effect). It is shown that this effect can be readily deduced from the adiatic solution of the equation of flavour evolution. A complete study of the two-flavour case is given, permitting to calculate, for any set of values of the mass operator parameters, the ν e suppression factor at the site of detection on earth. The adiabatic approximation holds over a wide range of the parameters, leading to especially simple expressions. Our calculations cover the whole range, including domains where the adiabatic approximation is no longer valid. Some of the results, presented in a form most suited for an analysis of solar neutrino experiments, are displayed for illustration and discussed. 7 refs

  3. A Case Study of Preliminary Cost-Benefit Analysis of Building Levees to Mitigate the Joint Effects of Sea Level Rise and Storm Surge

    Directory of Open Access Journals (Sweden)

    Binbin Peng

    2018-02-01

    Full Text Available Sea-level rise (SLR will magnify the impacts of storm surge; the resulting severe flooding and inundation can cause huge damage to coastal communities. Community leaders are considering implementing adaptation strategies, typically hard engineering projects, to protect coastal assets and resources. It is important to understand the costs and benefits of the proposed project before any decision is made. To mitigate the flooding impact of joint effects of storm surge and SLR, building levee segments is chosen to be a corresponding adaptation strategy to protect the real estate assets in the study area—the City of Miami, FL, USA. This paper uses the classic Cost-Benefit Analysis (CBA to assess the cost efficiency and proposes corresponding improvements in the benefit estimation, by estimating the avoided damages of implementing levee projects. Results show that the city will benefit from implementing levee projects along the Miami River in both a one-time 10 year storm event with SLR and cumulative long-term damage scenarios. This study also suggests that conducting CBA is a critical process before making coastal adaptation planning investment. A more meaningful result of cost effectiveness is estimated by accounting for the appreciation and time value. In addition, a sensitivity analysis is conducted to verify how the choice of discount rate influences the result. Uncertain factors including the rate of SLR, storm intensification, land use changes, and real estate appreciation are further analyzed.

  4. Fine structure in fast drift storm bursts

    International Nuclear Information System (INIS)

    McConnell, D.; Ellis, G.R.A.

    1981-01-01

    Recent observations with high time resolution of fast drift storm (FDS) solar bursts are described. A new variety of FDS bursts characterised by intensity maxima regularly placed in the frequency domain is reported. Possible interpretations of this are mentioned and the implications of the short duration of FDS bursts are discussed. (orig.)

  5. M-number dependence of rotation period of the solar magnetic field and its effect on coronal hole and solar flare

    International Nuclear Information System (INIS)

    Saito, Takao; Oki, Tosio

    1989-01-01

    The photospheric magnetic field is revealed to rotate with different solar rotation periods depending on its m-number, or its longitudinal range. The m-dependent rotation reveals the unexplained solar cycle variation of the 28-day period of the IMF 2-sector structure in inclining/minimum years and of the 27-day period in the declining/minimum years. The m-dependent rotation reveals also the unexplained 155-day periodicity in the occurrence of solar flare clusters, suggesting a motion of the sunspot field relative to the large-scale field. The IMF sector structure is closely related to recurrent geomagnetic storms, while the flare occurrence is related to sporadic SC storms. Hence, the m-dependent rotation is quite important in the study of the STE forecast. (author)

  6. Effects of solar electromagnetic radiation on the terrestrial environment

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The general intent of this essay is to discuss the effect of solar electromagnetic radiation on the terrestrial environment. Instead of giving a systematic approach considering all environment processes where solar emission is the primary energy source and all important materials which have been generated by solar driven processes, the author sketches an impression of the range of the effects of solar radiation on the environment by surveying a number of topics of particular current interest, in varying levels of detail. These include atmospheric chemistry, some aspects of the transfer of radiation within the atmosphere, global energy balance and climate feedbacks, especially those due to clouds, impacts of fossil fuel energy use, evolution of early life processes, photosynthesis and plant productivity as it relates to photosynthesis and the global carbon cycle. (Auth.)

  7. Modeling the Effects of Storm Surge from Hurricane Jeanne on Saltwater Intrusion into the Surficial Aquifer, East-Central Florida (USA)

    Science.gov (United States)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Hall, C. R.

    2017-12-01

    Saltwater intrusion (SWI) that has been widely recognized as a detrimental issue causing the deterioration of coastal aquifer water quality and degradation of coastal ecosystems. While it is widely recognized that SWI is exacerbated worldwide due to global sea-level rise, we show that increased SWI from tropical cyclones under climate change is also a concern. In the Cape Canaveral Barrier Island Complex (CCBIC) located in east-central Florida, the salinity level of the surficial aquifer is of great importance to maintain a bio-diverse ecosystem and to support the survival of various vegetation species. Climate change induced SWI into the surficial aquifer can lead to reduction of freshwater storage and alteration of the distribution and productivity of vegetation communities. In this study, a three-dimensional variable-density SEAWAT model is developed and calibrated to investigate the spatial and temporal variation of salinity level in the surficial aquifer of CCBIC. We link the SEAWAT model to surge model data to examine the effects of storm surge from Hurricane Jeanne. Simulation results indicate that the surficial aquifer salinity level increases significantly right after the occurrence of storm surge because of high aquifer permeability and rapid infiltration and diffusion of the overtopping saltwater, while the surficial aquifer salinity level begins to decrease after the fresh groundwater recharge from the storm's rainfall. The tropical storm precipitation generates an effective hydraulic barrier further impeding SWI and providing seaward freshwater discharge for saltwater dilution and flushing. To counteract the catastrophic effects of storm surge, this natural remediation process may take at least 15-20 years or even several decades. These simulation results contribute to ongoing research focusing on forecasting regional vegetation community responses to climate change, and are expected to provide a useful reference for climate change adaptation planning

  8. Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyomin Park

    2012-01-01

    Full Text Available To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.

  9. Hurricane Ingrid and Tropical Storm Hanna's effects on the salinity of the coastal aquifer, Quintana Roo, Mexico

    Science.gov (United States)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Stastna, Marek; Coutino, Aaron; Werner, Christopher; Collins, Shawn V.; Devos, Fred; Le Maillot, Christophe

    2017-08-01

    There is a lack of information on aquifer dynamics in anchialine systems, especially in the Yucatán Peninsula of Mexico. Most of our knowledge is based on ;spot; measurements of the aquifer with no long-term temporal monitoring. In this study spanning four years (2012-2016), sensors (water depth and conductivity (salinity)) were deployed and positioned (-9 and -10 m) in the meteoric Water Mass (WM) close to the transition with the marine WM (halocline) in 2 monitoring sites within the Yax Chen cave system to investigate precipitation effects on the salinity of the coastal aquifer. The results show variation in salinity (95 mm) such as Hurricane Ingrid (2013) and Tropical Storm Hanna (2014) shows meteoric water mass salinity rapidly increasing (approx. 6.39 to >8.6 ppt), but these perturbations have a shorter duration (weeks and days). Wavelet analysis of the salinity record indicates seasonal mixing effects in agreement with the wet and dry periods, but also seasonal effects of tidal mixing (meteoric and marine water masses) occurring on shorter time scales (diurnal and semi-diurnal). These results demonstrate that the salinity of the freshwater lens is influenced by precipitation and turbulent mixing with the marine WM. The salinity response is scaled with precipitation; larger more intense rainfall events (>95 mm) create a larger response in terms of the magnitude and duration of the salinity perturbation (>1 ppt). The balance of precipitation and its intensity controls the temporal and spatial patterning of meteoric WM salinity.

  10. Solar Radiation effect on the bituminous binder; Efecto de la radiacion solar sobre el ligante bituminoso

    Energy Technology Data Exchange (ETDEWEB)

    Tadeo Rico, A.; Torres Perez, A.

    2010-07-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  11. Diamagnetic effect in the foremoon solar wind observed by Kaguya

    Science.gov (United States)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-04-01

    Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.

  12. On the equivalence of the solar wind coupling parameter ε and the magnetospheric energy output parameter UT during intense geomagnetic storms

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Tsurutani, B.T.

    1990-01-01

    For intervals with intense geomagnetic activity it is shown that the solar wind coupling parameter ε and the magnetospheric output parameter U T are equivalent and that ranges of values of ε can be set up in terms of values of the ring current-time constant τ. (author)

  13. Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems

    Science.gov (United States)

    Piersanti, Mirko; Alberti, Tommaso; Bemporad, Alessandro; Berrilli, Francesco; Bruno, Roberto; Capparelli, Vincenzo; Carbone, Vincenzo; Cesaroni, Claudio; Consolini, Giuseppe; Cristaldi, Alice; Del Corpo, Alfredo; Del Moro, Dario; Di Matteo, Simone; Ermolli, Ilaria; Fineschi, Silvano; Giannattasio, Fabio; Giorgi, Fabrizio; Giovannelli, Luca; Guglielmino, Salvatore Luigi; Laurenza, Monica; Lepreti, Fabio; Marcucci, Maria Federica; Martucci, Matteo; Mergè, Matteo; Pezzopane, Michael; Pietropaolo, Ermanno; Romano, Paolo; Sparvoli, Roberta; Spogli, Luca; Stangalini, Marco; Vecchio, Antonio; Vellante, Massimo; Villante, Umberto; Zuccarello, Francesca; Heilig, Balázs; Reda, Jan; Lichtenberger, János

    2017-11-01

    A full-halo coronal mass ejection (CME) left the Sun on 21 June 2015 from active region (AR) NOAA 12371. It encountered Earth on 22 June 2015 and generated a strong geomagnetic storm whose minimum Dst value was -204 nT. The CME was associated with an M2-class flare observed at 01:42 UT, located near disk center (N12 E16). Using satellite data from solar, heliospheric, and magnetospheric missions and ground-based instruments, we performed a comprehensive Sun-to-Earth analysis. In particular, we analyzed the active region evolution using ground-based and satellite instruments (Big Bear Solar Observatory (BBSO), Interface Region Imaging Spectrograph (IRIS), Hinode, Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), covering Hα, EUV, UV, and X-ray data); the AR magnetograms, using data from SDO/ Helioseismic and Magnetic Imager (HMI); the high-energy particle data, using the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument; and the Rome neutron monitor measurements to assess the effects of the interplanetary perturbation on cosmic-ray intensity. We also evaluated the 1 - 8 Å soft X-ray data and the {˜} 1 MHz type III radio burst time-integrated intensity (or fluence) of the flare in order to predict the associated solar energetic particle (SEP) event using the model developed by Laurenza et al. ( Space Weather 7(4), 2009). In addition, using ground-based observations from lower to higher latitudes ( International Real-time Magnetic Observatory Network (INTERMAGNET) and European Quasi-Meridional Magnetometer Array (EMMA)), we reconstructed the ionospheric current system associated with the geomagnetic sudden impulse (SI). Furthermore, Super Dual Auroral Radar Network (SuperDARN) measurements were used to image the global ionospheric polar convection during the SI and during the principal phases of the geomagnetic storm. In addition

  14. The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs

    OpenAIRE

    Borovsky, Joseph E.; Denton, Michael

    2013-01-01

    A corotating interaction region (CIR) is formed when fast coronal hole origin solar wind overtakes slow solar wind and forms a region of compressed plasma and magnetic field. The slow wind upstream of the coronal hole fast wind can be either of helmet streamer origin or pseudostreamer origin. For a collection of 125 CIR-driven geomagnetic storms, the slow wind ahead of each CIR is examined; for those storm not containing ejecta, each CIR is categorized as a helmet streamer CIR (74 of the 125 ...

  15. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  16. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  17. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  18. Solar cosmic rays in the system of solar terrestrial relations

    Science.gov (United States)

    Miroshnichenko, Leonty I.

    2008-02-01

    In this brief review, we discuss a number of geophysical effects of solar energetic particles (SEPs) or solar cosmic rays (SCR). We concentrate mainly on the observational evidence and proposed mechanisms of some expected effects and/or poor-studied phenomena discovered within the last three decades, in particular, depletion of the ozone layer, perturbations in the global electric current, effects on the winter storm vorticity, change of the atmospheric transparency and production of nitrates. Some "archaeological" data on SCR fluxes in the past and upper limit of total energy induced by SEPs are also discussed. Due attention is paid to the periodicities in the solar particle fluxes. Actually, many solar, heliospheric and terrestrial parameters changing generally in phase with the solar activity are subjected to a temporary depression close to the solar maximum ("Gnevyshev Gap"). A similar gap has been found recently in the yearly numbers of the >10 MeV proton events. All the above-mentioned findings are evidently of great importance in the studies of general proton emissivity of the Sun and long-term trends in the behaviour of solar magnetic fields. In addition, these data can be very helpful for elaborating the methods for prediction of the radiation conditions in space and for estimation of the SEPs' contribution to solar effects on the geosphere, their relative role in the formation of terrestrial weather and climate and in the problem of solar-terrestrial relations (STR) on the whole.

  19. Storm Warning

    Science.gov (United States)

    Lee, Tammy; Kier, Meredith; Phillips, Kelsey

    2016-01-01

    To show students how engineering design practices reduce the impacts of a natural hazard, the authors--two science educators and an elementary teacher--taught a three-day 5E lesson that focused on hurricanes. They specifically focused on hurricanes because their students are located near a coastal area and are familiar with the effects of this…

  20. Overcoming obstacles against effective solar lighting interventions in South Asia

    International Nuclear Information System (INIS)

    Wong, Sam

    2012-01-01

    Basing on our devised World Bank’s ‘Design Principles’ for effective renewable energy projects in developing countries and an in-depth analysis of our two solar lighting projects in Bangladesh and India, this paper explores three key obstacles that constrain poor people from obtaining solar lighting: financial exclusion, weak governance, and passive NGO and customer participation. The low take-up rate has a social and psychological impact. This paper recommends creating easy access to credit, establishing a robust complaint system, and developing strategic partnership to overcome the obstacles. - Research Highlights: ► To provide a critical analysis of the World Bank's 'Design Principles' for renewable energy policies in developing countries. ► To explain why some solar lighting projects do not work and how the barriers can be overcome. ► To highlight the roles of poverty, governance and technical support in solar lighting design.

  1. The effect of solar activity on ill and healthy people under conditions of neurous and emotional stresses

    Science.gov (United States)

    Zakharov, I. G.; Tyrnov, O. F.

    2001-01-01

    It is commonly agreed that solar activity has adverse effects first of all on enfeebled and ill organisms. In our study we have traced that under conditions of neurous and emotional stresses (at work, in the street, and in cars) the effect may be larger (˜ 30 %) for healthy people. Our calculations have been carried out applying the epoch-superposition method, spectrum and correlation analyses to daily data over a 1992 to 1994 period from three independent databases (Kharkiv City) on patients (adults and children) suffering from mental diseases and physical traumas. The effect is most marked during the recovery phase of geomagnetic storms and accompanied by the inhibition in the central nervous system.

  2. The effect of solar activity on ill and healthy people under conditions of nervous (correction of neurous) and emotional stresses.

    Science.gov (United States)

    Zakharov, I G; Tyrnov, O F

    2001-01-01

    It is commonly agreed that solar activity has adverse effects first of all on enfeebled and ill organisms. In our study we have traced that under conditions of neurvous and emotional stresses (at work, in the street, and in cars) the effect may be larger (~ 30%) for healthy people. Our calculations have been carried out applying the epoch-superposition method, spectrum and correlation analyses to daily data over a 1992 to 1994 period from three independent databases (Kharkiv City) on patients (adults and children) suffering from mental diseases and physical traumas. The effect is most marked during the recovery phase of geomagnetic storms and accompanied by the inhibition in the central nervous system. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  3. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    Science.gov (United States)

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  4. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Science.gov (United States)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  5. Grand scheme for solar-terrestrial research

    International Nuclear Information System (INIS)

    Intriligator, D.S.

    1985-01-01

    The study of solar wind and its interaction with magnetic fields and electrical currents is examined. The effects of magnetic storms caused by solar wind interaction with magnetic fields in the magnetosphere and ionosphere are described. The effect of magnetospheric plasma processes on spacecraft operations and the operation of ground-based systems are explained. The development of an International Solar Terrestrial Physics program, which will be designed to place diagnostic experiments on a collection of spacecraft positioned near space is discussed; the components of the program are described

  6. Mir Environmental Effects Payload and Returned Mir Solar Panel Cleanliness

    Science.gov (United States)

    Harvey, Gale A.; Humes, Donald H.; Kinard, William H.

    2000-01-01

    The MIR Environmental Effects Payload (MEEP) was attached to the Docking Module of the MIR space station for 18 months during calendar years 1996 and 1997 (March 1996, STS 76 to October 1997, STS 86). A solar panel array with more than 10 years space exposure was removed from the MIR core module in November 1997, and returned to Earth in January, 1998, STS 89. MEEP and the returned solar array are part of the International Space Station (ISS) Risk Mitigation Program. This space flight hardware has been inspected and studied by teams of space environmental effects (SEE) investigators for micrometeoroid and space debris effects, space exposure effects on materials, and electrical performance. This paper reports changes in cleanliness of parts of MEEP and the solar array due to the space exposures. Special attention is given to the extensive water soluble residues deposited on some of the flight hardware surfaces. Directionality of deposition and chemistry of these residues are discussed.

  7. The evaluation and management of electrical storm.

    Science.gov (United States)

    Eifling, Michael; Razavi, Mehdi; Massumi, Ali

    2011-01-01

    Electrical storm is an increasingly common and life-threatening syndrome that is defined by 3 or more sustained episodes of ventricular tachycardia, ventricular fibrillation, or appropriate shocks from an implantable cardioverter-defibrillator within 24 hours. The clinical presentation can be dramatic. Electrical storm can manifest itself during acute myocardial infarction and in patients who have structural heart disease, an implantable cardioverter-defibrillator, or an inherited arrhythmic syndrome. The presence or absence of structural heart disease and the electrocardiographic morphology of the presenting arrhythmia can provide important diagnostic clues into the mechanism of electrical storm. Electrical storm typically has a poor outcome.The effective management of electrical storm requires an understanding of arrhythmia mechanisms, therapeutic options, device programming, and indications for radiofrequency catheter ablation. Initial management involves determining and correcting the underlying ischemia, electrolyte imbalances, or other causative factors. Amiodarone and β-blockers, especially propranolol, effectively resolve arrhythmias in most patients. Nonpharmacologic treatment, including radiofrequency ablation, can control electrical storm in drug-refractory patients. Patients who have implantable cardioverter-defibrillators can present with multiple shocks and may require drug therapy and device reprogramming. After the acute phase of electrical storm, the treatment focus should shift toward maximizing heart-failure therapy, performing revascularization, and preventing subsequent ventricular arrhythmias. Herein, we present an organized approach for effectively evaluating and managing electrical storm.

  8. Effect of exposure to an Asian dust storm on fractional exhaled nitric oxide in adult asthma patients in Western Japan.

    Science.gov (United States)

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Shimizu, Eiji

    2015-01-01

    Epidemiological investigations indicate that an Asian dust storm (ADS) can aggravate respiratory disorders. However, the effects of ADS on airway inflammation remain unclear. The aim of this study was to investigate the association of exposure to ADS with airway inflammation. The subjects were 33 adult patients with asthma who measured daily peak flow expiratory (PEF) from March to May 2012. Fractional exhaled nitric oxide (FeNO) was measured before and after ADS. The FeNO values were 13.8±13.7 ppb before the ADS and 20.3±19.0 ppb after the ADS, with no significant difference. There was also no significant association of PEF with ADS exposure. However, the increase of FeNO after ADS exposure was proportional to the decrease of PEF (R=-0.78, P<0.0001). These results suggest that airway inflammation aggravated by ADS exposure may induce a decrease in pulmonary function in some adult patients with asthma.

  9. Effects on Storm-Water Management for Three Major US Cities Using Location Specific Extreme Precipitation Dynamical Downscaling

    Science.gov (United States)

    Pelle, A.; Allen, M.; Fu, J. S.

    2013-12-01

    With rising population and increasing urban density, it is of pivotal importance for urban planners to plan for increasing extreme precipitation events. Climate models indicate that an increase in global mean temperature will lead to increased frequency and intensity of storms of a variety of types. Analysis of results from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) has demonstrated that global climate models severely underestimate precipitation, however. Preliminary results from dynamical downscaling indicate that Philadelphia, Pennsylvania is expected to experience the greatest increase of precipitation due to an increase in annual extreme events in the US. New York City, New York and Chicago, Illinois are anticipated to have similarly large increases in annual extreme precipitation events. In order to produce more accurate results, we downscale Philadelphia, Chicago, and New York City using the Weather Research and Forecasting model (WRF). We analyze historical precipitation data and WRF output utilizing a Log Pearson Type III (LP3) distribution for frequency of extreme precipitation events. This study aims to determine the likelihood of extreme precipitation in future years and its effect on the of cost of stormwater management for these three cities.

  10. Development of a Severe Sand-dust Storm Model and its Application to Northwest China

    International Nuclear Information System (INIS)

    Zhang Xiaoling; Cheng, Linsheng; Chung, Yong-Seung

    2003-01-01

    A very strong sand-dust storm occurred on 5 May, 1993 in Northwest China. In order to give a detailed description of the evolution of a mesoscale system along with the heavy sand-dust storm, a complex model including improved physical processes and a radiation parameterization scheme was developed based on a simulation model. The improved model introduced a sand-dust transport equation as well as a lifting transport model, sand-dust aerosols and radiation parameterization scheme.Using this model, the super sand-dust storm case on 5 May was simulated. Results indicated that the coupled mesoscale model successfully simulated the mesoscale vortex, its strong upward movement and the warm core structure of PBL. The generation and development of these structures were consistent with that of the sand-dust storm and dry squall-line (which was different with normal squall-line). Simulated sand-dust concentration and its radiative effect corresponded with observation data. The radiative effect of sand-dust aerosols caused the air to heat on the top of aerosol layer with a heating rate amounting to 2 K hr -1 . As a result, solar radiation flux that reached the surface, net radiation flux and surface temperature all suddenly went down. The temperature gradient across the cold front became obviously larger. Therefore, enhancing the development of the mesoscale system. The simulation generally reflected features during the squall-line passage of this strong sand-dust storm

  11. Solar Dynamics and Its Effects on the Heliosphere and Earth

    CERN Document Server

    Baker, D. N; Schwartz, S. J; Schwenn, R; Steiger, R

    2007-01-01

    The SOHO and Cluster missions form a single ESA cornerstone. Yet they observe very different regions in our solar system: the solar atmosphere on one hand and the Earth’s magnetosphere on the other. At the same time the Ulysses mission provides observations in the third dimension of the heliosphere, and many others add to the picture from the Lagrangian point L1 to the edge of the heliosphere. It is the aim of this ISSI volume to tie these observations together in addressing the topic of Solar Dynamics and its Effects on the Heliosphere and Earth, thus contributing to the International Living With a Star (ILWS) program. The volume starts out with an assessment and description of the reasons for solar dynamics and how it couples into the heliosphere. The three subsequent sections are each devoted to following one chain of events from the Sun all the way to the Earth’s magnetosphere and ionosphere: The normal solar wind chain, the chain associated with coronal mass ejections, and the solar energetic particl...

  12. Multi-Fluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms, Initial Results

    Science.gov (United States)

    Gkocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J. C.; Kistler, L. M.

    2010-01-01

    The magnetosphere contains a significant amount of ionospheric O{+}, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the BATS-R-US model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multi-fluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single- fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multi-fluid MHD model (with outflow) gives comparable results to the multi-species MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multi-species and multi-fluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H{+} and O(+}, which is not possible when utilizing the other techniques considered.

  13. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    2000-04-01

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help to create the positive ionospheric

  14. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help

  15. Solar-terrestrial physics

    International Nuclear Information System (INIS)

    Patel, V.L.

    1977-01-01

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: geomagnetic field; coordinate systems; geomagnetic indices; Dst index; auroral electrojet index AE; daily, 27-day and semi-annual variations of geomagnetic field; micropulsation; geomagnetic storms; storm sudden commencement (SSC) or sudden commencement (SC); initial phase; ring current; sudden impulses; ionosphere; D region; polar cap absorption; sudden ionospheric disturbance; E region; sporadic E; equatorial electrojet; solar flare effect; F 1 and F 2 regions; spread F; travelling ionospheric disturbances; magnetosphere; magnetospheric coordinate systems; plasmasphere; magnetosheath; magnetospheric tail; substorm; radiation belts or Van Allen belts; whistlers; VLF emissions; aurora; auroral forms; auroral oval and auroral zones; auroral intensity; stable auroral red arcs; pulsing aurora; polar glow aurora; and airglow. (B.R.H.)

  16. Effects-Based Targeting: Application in Operation Desert Storm and Operation Iraqi Freedom

    National Research Council Canada - National Science Library

    Hansbarger, Thomas

    2004-01-01

    .... The United States military must be able to apply effects-based targeting to capitalize on improved capabilities in operational fires and application of national resources against a dynamic, adapting enemy...

  17. Two-dimensional numerical modeling of the cosmic ray storm

    International Nuclear Information System (INIS)

    Kadokura, A.; Nishida, A.

    1986-01-01

    A numerical model of the cosmic ray storm in the two-dimensional heliosphere is constructed incorporating the drift effect. We estimate the effect of a flare-associated interplanetary shock and the disturbed region behind it (characterized by enhancement in velocity and magnetic field, and decrease in mean free path) on the density and anisotropy of cosmic rays in the heliosphere. As the disturbance propagates outward, a density enhancement appears on the front side, and a density depression region is produced on the rear side. The effect of drift on the cosmic ray storm appears most clearly in the higher-latitude region. For the parallel (antiparallel) state of the solar magnetic field which corresponds to the pre(post-) 1980 period, the density in the higher-latitude region decreases (increases) before the shock arrival. The maximum density depression near the earth for the parallel state is greater than for the antiparallel state, and the energy spectrum of the density depression in percentage is softer for the parallel state than for the antiparallel state. Prior to the arrival of the shock, the phase of solar diurnal anisotropy begins to shift to the earlier hours, and its amplitude becomes greater for both polarity states. North-south anisotropy also becomes greater because of the enhanced drift for both polarity states

  18. Electron precipitation in solar flares - Collisionless effects

    Science.gov (United States)

    Vlahos, L.; Rowland, H. L.

    1984-01-01

    A large fraction of the electrons which are accelerated during the impulsive phase of solar flares stream towards the chromosphere and are unstable to the growth of plasma waves. The linear and nonlinear evolution of plasma waves as a function of time is analyzed with a set of rate equations that follows, in time, the nonlinearly coupled system of plasma waves-ion fluctuations. As an outcome of the fast transfer of wave energy from the beam to the ambient plasma, nonthermal electron tails are formed which can stabilize the anomalous Doppler resonance instability responsible for the pitch angle scattering of the beam electrons. The non-collisional losses of the precipitating electrons are estimated, and the observational implication of these results are discussed.

  19. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    Directory of Open Access Journals (Sweden)

    R. Liu

    2010-09-01

    Full Text Available With the help of four years (2002–2005 of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmin<−100 nT are chosen for a statistical study. In order to achieve a good correlation Em is preconditioned. Contrary to general opinion, Em has to be applied without saturation effect in order to obtain good results for magnetic storms of all activity levels. The memory effect of the thermosphere is accounted for by a weighted integration of Em over the past 3 h. In addition, a lag time of the mass density response to solar wind input of 0 to 4.5 h depending on latitude and local time is considered. A linear model using the preconditioned Em as main controlling parameter for predicting mass density changes during magnetic storms is developed: ρ=0.5 Em + ρamb, where ρamb is based on the mean density during the quiet day before the storm. We show that this simple relation predicts all storm-induced mass density variations at CHAMP altitude fairly well especially if orbital averages are considered.

  20. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    Science.gov (United States)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  1. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    OpenAIRE

    Łabuz, Tomasz A.

    2014-01-01

    The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves at...

  2. The effect of excitons on CdTe solar cells

    International Nuclear Information System (INIS)

    Karazhanov, S. Zh.; Zhang, Y.; Mascarenhas, A.; Deb, S.

    2000-01-01

    Temperature and doping-level dependence of CdTe solar cells is investigated, taking into account the involvement of excitons on photocurrent transport. We show that the density of excitons in CdTe is comparable with that of minority carriers at doping levels ≥10 15 cm -3 . From the investigation of the dark-saturation current, we show that the product of electron and hole concentrations at equilibrium is several orders of magnitude more than the square of the intrinsic carrier concentration. With this assumption, we have studied the effect of excitons on CdTe solar cells, and the effect is negative. CdTe solar cell performance with excitons included agrees well with existing experimental results. (c) 2000 American Institute of Physics

  3. Solar activity effects in the ionospheric D region

    Directory of Open Access Journals (Sweden)

    A. D. Danilov

    1998-12-01

    Full Text Available Variations in the D-region electron concentration within the solar activity cycle are considered. It is demonstrated that conclusions of various authors, who have analyzed various sets of experimental data on [e], differ significantly. The most reliable seem to be the conclusions based on analysis of the [e] measurements carried out by the Faraday rotation method and on the theoretical concepts on the D-region photochemistry. Possible QBO effects in the relation of [e] to solar activity are considered and an assumption is made that such effects may be the reason for the aforementioned disagreement in conclusions on the [e] relation to solar indices.Key words. Atmospheric composition and structure · Ion chemistry of the atmosphere · Middle atmosphere

  4. Effect of solar radiation on drying house performance

    International Nuclear Information System (INIS)

    Rachmat, R.

    2000-01-01

    Solar drying is one of thermal utilization where radiation energy can be utilized efficiently. Solar drying of all sorts of agricultural products have been thoroughly studied and reported in literature, but brown rice drying system has not yet done as many as other products. The aim of the present study is to investigate the effect of solar radiation on drying house performance and brown rice drying characteristics. A construction of drying house is made from FRP sheets with 30 deg. of root slope faces southern part and inside the drying house is installed a flat bed dryer. The site of construction has 136 deg. 31.4'E in longitude and 34 deg. 43.8N in latitude with 3 m in elevation from sea level. The investigated parameters are global solar radiation, absorbed and net radiation and brown rice drying characteristics. The results showed that in unload condition, the air temperature inside drying house was higher (10 deg. C - 12 deg. C) than ambient air when there was not collector and temperature rise become higher (16 deg. C) when there was a black FRP collector inside drying house. The effect of solar radiation on temperature rise has the trend as a linear function. The heat collection efficiency of drying house with black FRP collector was two times higher (36.9 percent) than that without collector (16.3 percent). These phenomena exhibited significant result of collector utilization to the advantageous condition for a drying purpose [in

  5. Solar wind parameters responsible for the plasma injection into the magnetospheric ring current region

    International Nuclear Information System (INIS)

    Bobrov, M.S.

    1977-01-01

    Solar wind effect on the magnetospheric ring-current region has been considered. The correlations with solar wind parameters of the magnitude qsub(o) proportional to the total energy of particles being injected into the magnetospheric ring-current region per one hour are studied statistically and by comparison of time variations. The data on 8 sporadic geomagnetic storms of various intensity, from moderate to very severe one, are used. It is found that qsub(o) correlates not only with the magnitude and the direction of the solar-wind magnetic field component normal to the ecliptic plane, Bsub(z), but also with the variability, sigmasub(B), of the total magnetic-field strength vector. The solar-wind flux velocity ν influences the average storm intensity but the time variations of ν during any individual storm do not correlate with those of qsub(o)

  6. Effects of mid-latitude ionosphere observed from ground-based ionosonde data obtained at Alma-Ata station during strong geomagnetic storms

    International Nuclear Information System (INIS)

    Gordienko, G.I.; Vodynnikov, V.V.; Yakovets, A.E.

    2006-01-01

    The ionospheric effects of fourteen great geomagnetic storms occurred in the 1986-2005 time period observed over Alma-Ata (43.25 N , 76.92 E ) were studied experimentally using ground-based ionosonde. The observations showed a number of unusual (for the Alma-Ata location) ionospheric phenomena during the active phase of geomagnetic storms, along with a negative phase in the ionospheric F2-layer disturbance an anomalous formation of the E, E2, and F1 layers at nighttime, and the appearance of aurora-type sporadic E layers were found. Processes of interaction of energetic neutrals with the upper atmosphere modeled by Bauske et al. (1997) for magnetically distributed condition seem to explain the phenomena of ionization of F1 and E region at night. (author)

  7. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  8. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    Science.gov (United States)

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  9. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  10. Effect of Alfvenic fluctuations on the solar wind

    International Nuclear Information System (INIS)

    Chien, T.H.

    1974-01-01

    The major source of microscale fluctuations in the interplanetary medium due to the outwardly propagating Alfven waves is considered. The effect of the Alfven waves on the supersonic expansion of the solar wind is studied under the assumption that the motion of the interplanetary medium can be resolved physically into a comparatively smooth and slowly varying mesoscale flow and field with very irregular disordered incompressible microscale Alfvenic fluctuations superposed on it. The important features of the solar wind such as heat conduction flux, spiral interplanetary magnetic field, and proton thermal anisotropy are included in the theory. For inviscid, steady state, spherically symmetrical model of the solar wind, the two-fluid formulation of the background mesoscale MHD equations is obtained. The results show that during the expansion process, fluctuation energy is converted into the kinetic energy of the solar wind. Due to the presence of the Alfvenic fluctuations, the velocity of the solar wind is about 5 percent higher than that without considering the fluctuations. (U.S.)

  11. Effect of solarization with fresh chicken manure on verticillium wilt ...

    African Journals Online (AJOL)

    The present study was carried out to evaluate the effect of reducing wilt disease through the medium of fresh chicken manure (FCM) mixed with soil before solarized and then artificial Verticillium dahliae (V.d) inoculation on yield of eggplant (Solanum melongena L.) under field conditions. According to the splitplot design, ...

  12. Asteroseismology of solar-type stars: particular physical effects

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, F [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Eggenberger, P; Leyder, J-C [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 aout, 4000 Liege (Belgium)], E-mail: fabien@ster.kuleuven.be

    2008-10-15

    Since the success of helioseismology, numerous efforts have been made to detect solar-like oscillations on other stars. The measurement of the frequencies of p-mode oscillations provides an insight into the internal structure and is nowadays the most powerful constraint on the theory of stellar evolution. The existing asteroseismic observations were mainly motivated by the need to explore the seismological properties of stars with various global parameters, i.e. various locations in the HR diagram. With the aim of testing different physical effects on solar-like oscillations, we report here detection of acoustic modes on solar-like targets achieved with the spectrograph HARPS installed on the 3.6-m telescope at ESO La Silla Observatory.

  13. Effects of electrons on the solar wind proton temperature anisotropy

    International Nuclear Information System (INIS)

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H.

    2014-01-01

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  14. The effects of air leaks on solar air heating systems

    Science.gov (United States)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  15. Effects of stratospheric perturbations on the solar radiation budget

    International Nuclear Information System (INIS)

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  16. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    Science.gov (United States)

    Liu, R.; Lühr, H.; Doornbos, E.; Ma, S.-Y.

    2010-09-01

    With the help of four years (2002-2005) of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmineffect in order to obtain good results for magnetic storms of all activity levels. The memory effect of the thermosphere is accounted for by a weighted integration of Em over the past 3 h. In addition, a lag time of the mass density response to solar wind input of 0 to 4.5 h depending on latitude and local time is considered. A linear model using the preconditioned color: #000;">Em as main controlling parameter for predicting mass density changes during magnetic storms is developed: ρ=0.5 color: #000;">Em + ρamb, where ρamb is based on the mean density during the quiet day before the storm. We show that this simple relation predicts all storm-induced mass density variations at CHAMP altitude fairly well especially if orbital averages are considered.

  17. Solar-Terrestrial Interactions

    National Research Council Canada - National Science Library

    Kahler, Stephen W

    2008-01-01

    ...) particle events, the solar wind, and geomagnetic storms. The investigators, working at Hanscom AFB, MA, have used many different kinds of space- and ground-based observations and have collaborated with workers at various institutions in this work...

  18. Nippon Storm Study design

    Directory of Open Access Journals (Sweden)

    Takashi Kurita

    2012-10-01

    Full Text Available An understanding of the clinical aspects of electrical storm (E-storms in patients with implantable cardiac shock devices (ICSDs: ICDs or cardiac resynchronization therapy with defibrillator [CRT-D] may provide important information for clinical management of patients with ICSDs. The Nippon Storm Study was organized by the Japanese Heart Rhythm Society (JHRS and Japanese Society of Electrocardiology and was designed to prospectively collect a variety of data from patients with ICSDs, with a focus on the incidence of E-storms and clinical conditions for the occurrence of an E-storm. Forty main ICSD centers in Japan are participating in the present study. From 2002, the JHRS began to collect ICSD patient data using website registration (termed Japanese cardiac defibrillator therapy registration, or JCDTR. This investigation aims to collect data on and investigate the general parameters of patients with ICSDs, such as clinical backgrounds of the patients, purposes of implantation, complications during the implantation procedure, and incidence of appropriate and inappropriate therapies from the ICSD. The Nippon Storm Study was planned as a sub-study of the JCDTR with focus on E-storms. We aim to achieve registration of more than 1000 ICSD patients and complete follow-up data collection, with the assumption of a 5–10% incidence of E-storms during the 2-year follow-up.

  19. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  20. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Spatial interpolation of hourly rainfall – effect of additional information, variogram inference and storm properties

    Directory of Open Access Journals (Sweden)

    A. Verworn

    2011-02-01

    Full Text Available Hydrological modelling of floods relies on precipitation data with a high resolution in space and time. A reliable spatial representation of short time step rainfall is often difficult to achieve due to a low network density. In this study hourly precipitation was spatially interpolated with the multivariate geostatistical method kriging with external drift (KED using additional information from topography, rainfall data from the denser daily networks and weather radar data. Investigations were carried out for several flood events in the time period between 2000 and 2005 caused by different meteorological conditions. The 125 km radius around the radar station Ummendorf in northern Germany covered the overall study region. One objective was to assess the effect of different approaches for estimation of semivariograms on the interpolation performance of short time step rainfall. Another objective was the refined application of the method kriging with external drift. Special attention was not only given to find the most relevant additional information, but also to combine the additional information in the best possible way. A multi-step interpolation procedure was applied to better consider sub-regions without rainfall.

    The impact of different semivariogram types on the interpolation performance was low. While it varied over the events, an averaged semivariogram was sufficient overall. Weather radar data were the most valuable additional information for KED for convective summer events. For interpolation of stratiform winter events using daily rainfall as additional information was sufficient. The application of the multi-step procedure significantly helped to improve the representation of fractional precipitation coverage.

  2. The Effect of "Rogue" Active Regions on the Solar Cycle

    Science.gov (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  3. Final report for the IAEA urban aquifers RCA : determining the effects of storm water infiltration on groundwater quality in an urban fractured rock aquifer, Auckland, New Zealand

    International Nuclear Information System (INIS)

    Rosen, M.R.; Hong, Y.S.; Sheppard, D.; Roberts, K.; Viljevac, Z.; Smaill, A.; Reeves, R.R.

    2000-01-01

    Disposal of storm water in the Mt Eden-Mt Albert area of Auckland, New Zealand, is via ''soak holes'' drilled directly into the top of the fractured basalt. These soak holes receive storm water and sediment runoff from city streets throughout Mt Eden. Although this method of disposal has been used for at least 60 years, its sustainability with respect to groundwater quality has not been addressed. This study aimed to determine the impact of soakage on the chemical and isotopic composition of the groundwater. In addition, sediments captured by the soak holes were analysed to determine their effectiveness at trapping contaminants. Groundwater samples were collected between August 1998 and August 1999. Three sampling trips were carried out after rainfall events in October 1998, April 1999 and August 1999. Samples were analysed for major and trace components, including nutrients, dissolved and total heavy metals (As, Cr, Cu, Zn, Pb, Cd, and Ni), polynuclear aromatic hydrocarbons (PAHs), chlorofluorocarbons (CFCs) and stable and radiogenic isotopes. Cores of sediment collected in the soak holes were analysed for major components, total and leachable heavy metals, and PAHs to determine the ability of the sediments to adsorp contaminants. In summary, the Mt Eden aquifer system shows the effect of storm water infiltration rapidly after a rainfall event in some parts of the aquifer. Water quality has been effected in some areas, but in general the water quality is quite good considering the quantity of storm water discharge that has occurred in the area for the past 60 years. The relatively high quality of the water in the wells monitored may be attributed to the ability of the accumulated sediment in the soak holes and the aquifer fractures to trap contaminants. Further research is needed to determine if continued use of the groundwater system as a conduit for storm water infiltration will lead to clogging of the fractures in the aquifer and/or transport of particulates

  4. Role of solar influences on geomagnetosphere and upper atmosphere

    Science.gov (United States)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  5. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Sobh, Hana

    1995-01-01

    Author.Soil solarization was conducted at three locations on the Lebanese coast. Maximum soil temperatures recorded were 53 and 48 celsius degrees at Jiyeh, 48.9, 46 and 43 celsius degrees at Naameh and 48, 45 and 43.5 celsius degrees at Khaldeh at 5, 15 and 25cm soil depths respectively. Mean soil temperatures recorded at 3pm were at Jiyeh 51.6, 47 and 46 celsius degrees compared to Naameh 47, 45 and 41 celsius degrees and Khaldeh 44, 42 and 41 celsius degrees at 5, 15 and 25 cm respectively. The mean temperature in solarized soils were 7.3 to 15 celsius degrees higher than those of the nonsolarized soils indicating a sustained increase of soil temperature in the solarized soils. The effect of soil solarization on artificially introduced fungal pathogens in the soil at Khaldeh, resulted in complete destruction of sclerotia of Sclerotinia spp. at three depths studied. However, with respect to the two other pathogens tested, solarization resulted in reduction of the viability of microsclerotia of Verticillium spp. by 99-79% and of Fusarium oxysporum f. sp. melonis inoculum by 88-54% at 5 and 15 cm respectively, but only by 45% and 14% reduction at 25 cm. This level of control is significant when it is compared to the percentage of control where the level of reduction of inoculum viability did not exceed 10% at any soil depth. As there were contradicting reports in the literature on nematodes, two field trials in greenhouses were conducted to study the possibility of integrating 2 methods for management on nematodes. Soil solarization alone or in combination with biological control of nematodes using Arthrobotrys spp. and Dactyl ella brocophaga to control the root-knot nematodes on two crops, tomato at Naameh and cucumber at Jiyeh were compared to Methyl Bromide treatment. It was evident that, even on a very susceptible crop like cucumber, the integration of biological control and soil solarization gave a good level of control similar to methyl bromide. Neither root

  6. Elliptical magnetic clouds and geomagnetic storms

    Czech Academy of Sciences Publication Activity Database

    Antoniadou, I.; Geranios, A.; Vandas, Marek; Panagopoulou, M.; Zacharopoulou, O.; Malandraki, O.

    2008-01-01

    Roč. 56, 3-4 (2008), s. 492-500 ISSN 0032-0633 R&D Projects: GA AV ČR 1QS300120506; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic clouds * geomagnetic storms * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.506, year: 2008

  7. New forecasting methods of the intensity and time development of geomagnetic and ionospheric storms

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1981-01-01

    The main phase of a geomagnetic storm develops differently from one storm to another. A description is given of the solar wind quantity which controls directly the development of the main phase of geomagnetic storms. The parameters involved include the solar wind speed, the magnetic field intensity, and the polar angle of the solar wind magnetic field projected onto the dawn-dusk plane. A redefinition of geomagnetic storm and auroral activity is given. It is pointed out that geomagnetic disturbances are caused by the magnetic fields of electric currents which are generated by the solar wind-magnetosphere dynamo. Attention is given to approaches for forecasting the occurrence and intensity of geomagnetic storms and ionospheric disturbances

  8. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe

    Science.gov (United States)

    Stankov, Stanimir M.; Bergeot, Nicolas; Berghmans, David; Bolsée, David; Bruyninx, Carine; Chevalier, Jean-Marie; Clette, Frédéric; De Backer, Hugo; De Keyser, Johan; D'Huys, Elke; Dominique, Marie; Lemaire, Joseph F.; Magdalenić, Jasmina; Marqué, Christophe; Pereira, Nuno; Pierrard, Viviane; Sapundjiev, Danislav; Seaton, Daniel B.; Stegen, Koen; Van der Linden, Ronald; Verhulst, Tobias G. W.; West, Matthew J.

    2017-08-01

    A total solar eclipse occurred on 20 March 2015, with a totality path passing mostly above the North Atlantic Ocean, which resulted in a partial solar eclipse over Belgium and large parts of Europe. In anticipation of this event, a dedicated observational campaign was set up at the Belgian Solar-Terrestrial Centre of Excellence (STCE). The objective was to perform high-quality observations of the eclipse and the associated effects on the geospace environment by utilising the advanced space- and ground-based instrumentation available to the STCE in order to further our understanding of these effects, particularly on the ionosphere. The study highlights the crucial importance of taking into account the eclipse geometry when analysing the ionospheric behaviour during eclipses and interpreting the eclipse effects. A detailed review of the eclipse geometry proves that considering the actual obscuration level and solar zenith angle at ionospheric heights is much more important for the analysis than at the commonly referenced Earth's surface or at the plasmaspheric heights. The eclipse occurred during the recovery phase of a strong geomagnetic storm which certainly had an impact on (some of) the ionospheric characteristics and perhaps caused the omission of some "low-profile" effects. However, the analysis of the ionosonde measurements, carried out at unprecedented high rates during the eclipse, suggests the occurrence of travelling ionospheric disturbances (TIDs). Also, the high temporal and spatial resolution measurements proved very important in revealing and estimating some finer details of the delay in the ionospheric reaction and the ionospheric disturbances.

  9. From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2006-12-01

    Full Text Available We show that distinct changes in scaling parameters of the Dst index time series occur as an intense magnetic storm approaches, revealing a gradual reduction in complexity. The remarkable acceleration of energy release – manifested in the increase in susceptibility – couples to the transition from anti-persistent (negative feedback to persistent (positive feedback behavior and indicates that the occurence of an intense magnetic storm is imminent. The main driver of the Dst index, the VBSouth electric field component, does not reveal a similar transition to persistency prior to the storm. This indicates that while the magnetosphere is mostly driven by the solar wind the critical feature of persistency in the magnetosphere is the result of a combination of solar wind and internal magnetospheric activity rather than solar wind variations alone. Our results suggest that the development of an intense magnetic storm can be studied in terms of "intermittent criticality" that is of a more general character than the classical self-organized criticality phenomena, implying the predictability of the magnetosphere.

  10. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  11. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  12. A Regional GPS Receiver Network For Monitoring Mid-latitude Total Electron Content During Storms

    Science.gov (United States)

    Vernon, A.; Cander, Lj. R.

    A regional GPS receiver network has been used for monitoring mid-latitude total elec- tron content (TEC) during ionospheric storms at the current solar maximum. Differ- ent individual storms were examined to study how the temporal patterns of changes develop and how they are related to solar and geomagnetic activity for parameter de- scriptive of plasmaspheric-ionospheric ionisation. Use is then made of computer con- touring techniques to produce snapshot maps of TEC for different study cases. Com- parisons with the local ionosonde data at different phases of the storms enable the storm developments to be studied in detail.

  13. AI techniques in geomagnetic storm forecasting

    Science.gov (United States)

    Lundstedt, Henrik

    This review deals with how geomagnetic storms can be predicted with the use of Artificial Intelligence (AI) techniques. Today many different Al techniques have been developed, such as symbolic systems (expert and fuzzy systems) and connectionism systems (neural networks). Even integrations of AI techniques exist, so called Intelligent Hybrid Systems (IHS). These systems are capable of learning the mathematical functions underlying the operation of non-linear dynamic systems and also to explain the knowledge they have learned. Very few such powerful systems exist at present. Two such examples are the Magnetospheric Specification Forecast Model of Rice University and the Lund Space Weather Model of Lund University. Various attempts to predict geomagnetic storms on long to short-term are reviewed in this article. Predictions of a month to days ahead most often use solar data as input. The first SOHO data are now available. Due to the high temporal and spatial resolution new solar physics have been revealed. These SOHO data might lead to a breakthrough in these predictions. Predictions hours ahead and shorter rely on real-time solar wind data. WIND gives us real-time data for only part of the day. However, with the launch of the ACE spacecraft in 1997, real-time data during 24 hours will be available. That might lead to the second breakthrough for predictions of geomagnetic storms.

  14. Earlier vegetation green-up has reduced spring dust storms.

    Science.gov (United States)

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  15. Effects of solar ultraviolet radiation on tropical algal communities

    International Nuclear Information System (INIS)

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity

  16. The effects of solar particle events on the middle atmosphere

    International Nuclear Information System (INIS)

    Jackman, C.H.; Douglass, A.R.; Meade, P.E.

    1989-01-01

    Solar particle events (SPEs) have been investigated since the late 1960's for possible effects on the middle atmosphere. Solar protons from SPEs produce ionizations, dissociations, dissociative ionizations, and excitations in the middle atmosphere. The production of HO(x) and NO(x) and their subsequent effects on ozone can also be computed using energy deposition and photochemical models. The effects of SPE-produced HO(x) species on the odd nitrogen abundance of the middle atmosphere as well as the SPE-produced long term effects on ozone. Model computations indicate fairly good agreement with ozone data for the SPE-induced ozone depletion caused by NO(y) species connected with the August 1972 SPE. The model computations indicate that NO(y) will not be substantially changed over a solar cycle by SPEs. The changes are mainly at high latitudes and are on time scales of several months, after which the NO(y) drifts back to its ambient levels

  17. Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2005-03-01

    Full Text Available The effects of the 31 March 2001 severe magnetic storm on the Southern Hemisphere ionosphere have been studied using ground-based and satellite measurements. The prime goal of this comprehensive study is to track the ionospheric response from high-to-low latitude to obtain a clear understanding of storm-time ionospheric change. The study uses a combination of ionospheric Total Electron Content (TEC obtained from GPS signal group delay and phase advance measurements, ionosonde data, and data from satellite in-situ measurements, such as the Defense Metrological Satellite Program (DMSP, TOPographic EXplorer (TOPEX, and solar wind data from the Advanced Composition Explorer (ACE. A chain of Global Positioning System (GPS stations near the 150° E meridian has been used to give comprehensive latitude coverage extending from the cusp to the equatorial region. A tomographic inversion algorithm has been applied to the GPS TEC measurements to obtain maps of the latitudinal structure of the ionospheric during this severe magnetic storm period, enabling both the spatial and temporal response of the ionosphere to be studied. Analysis of data from several of the instruments indicates that a strong density enhancement occurred at mid-latitudes at 11:00 UT on 31 March 2001 and was followed by equatorward propagating large-scale Travelling Ionospheric Disturbances (TIDs. The tomographic reconstruction revealed important features in ionospheric structure, such as quasi-wave formations extending finger-like to higher altitudes. The most pronounced ionospheric effects of the storm occurred at high- and mid-latitudes, where strong positive disturbances occurred during the storm main phase, followed by a long lasting negative storm effect during the recovery phase. Relatively minor storm effects occurred in the equatorial region.

  18. Automated detection of geomagnetic storms with heightened risk of GIC

    Science.gov (United States)

    Bailey, Rachel L.; Leonhardt, Roman

    2016-06-01

    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  19. Effects of solar radiation on hair and photoprotection.

    Science.gov (United States)

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Storm Data Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 'Storm Data and Unusual Weather Phenomena' is a monthly publication containing a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail,...

  1. The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)

    Science.gov (United States)

    Ni, Y. Y.

    2018-03-01

    We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.

  2. Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storm

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    1994-06-01

    Full Text Available The relationship between the auroral electrojet indices (AE and the ring current magnetic field (DR was investigated by observations obtained during the magnetic storm on 1-3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE'. To determine AE' during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE' which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE' values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE' and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence of saturation for minimum (maximum AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current. ASY increases (decreases faster during the main phase (the recovery phase than DR. The magnetic field decay at low latitudes in the

  3. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  4. Storm water permitting for oil and gas facilities

    International Nuclear Information System (INIS)

    de Blanc, P.C.

    1991-01-01

    After several false starts, the US Environmental Protection Agency (EPA) published new federal storm water regulations in the November 16, 1990 Federal Register. These regulations identify facilities which must apply for a storm water permit and detail permit application requirements. The regulations appear at 40 CFR 122 Subpart B and became effective December 17, 1990. An outline of these regulations and their applicability to oil and gas facilities is presented. They are: facilities which require a storm water permit; types of storm water permits; permit application deadlines; permit application forms; facilities with existing storm water permits; storm water permit application data requirements; storm water sampling and analysis requirements; and EPA contacts for additional information

  5. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    Science.gov (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  6. Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms

    Science.gov (United States)

    Chapagain, N. P.; Rana, B.; Adhikari, B.

    2017-12-01

    Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.

  7. MHD effects of the solar wind flow around planets

    Directory of Open Access Journals (Sweden)

    H. K. Biernat

    2000-01-01

    Full Text Available The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc., the boundary conditions at the magnetopause (low/high magnetic shear, and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.

  8. Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models

    Directory of Open Access Journals (Sweden)

    May R. D.

    2011-01-01

    Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.

  9. The effect of coupling a flat-plat collector on the solar still productivity

    International Nuclear Information System (INIS)

    Badran, O. O.; Al-Tahaineh, H. A.

    2006-01-01

    Experimental investigation to study the effect of coupling a flat plate solar collector on the productivity of solar stills was carried out. Other different parameters (i.e. water depth, direction of still, solar radiation) to enhance the productivity were also studied. Single slope solar still with mirrors fixed to its interior sides was coupled with a flat plate collector. It has been found that coupling of a solar collector with a still has increased the productivity by 56%. Also the increase of water depth has decreased the productivity, while the still productivity is found to be proportional to the solar radiation intensity.(Author)

  10. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    Science.gov (United States)

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of 20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  11. Mapping Hurricane Rita inland storm tide

    Science.gov (United States)

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  12. Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems

    Directory of Open Access Journals (Sweden)

    Hussein Al-Taani

    2018-02-01

    Full Text Available Solar irradiance measurement is a key component in estimating solar irradiation, which is necessary and essential to design sustainable energy systems such as photovoltaic (PV systems. The measurement is typically done with sophisticated devices designed for this purpose. In this paper we propose a smartphone-aided setup to estimate the solar irradiance in a certain location. The setup is accessible, easy to use and cost-effective. The method we propose does not have the accuracy of an irradiance meter of high precision but has the advantage of being readily accessible on any smartphone. It could serve as a quick tool to estimate irradiance measurements in the preliminary stages of PV systems design. Furthermore, it could act as a cost-effective educational tool in sustainable energy courses where understanding solar radiation variations is an important aspect.

  13. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-01-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  14. The Weekend Effect for Precipitation Over Eastern U.S.: Evidence for Midweek Storm Intensification by Pollution

    Science.gov (United States)

    Bell, Thomas

    2007-01-01

    Every week the U.S. population carries out a climate-change experiment by varying their activities with the day of the week. It is well documented that pollution levels vary on a weekly basis. Particulate aerosol pollution is generally a maximum in the middle of the week and a minimum on weekends. It is also well known that aerosols can affect precipitation, although whether they suppress or enhance storm development depends on many factors. The Tropical Rainfall Measuring Mission (TRMM) satellite has provided evidence that rain statistics change with the day of the week over the southeast U.S. and neighboring waters during the summer months (JJA) of 1998-2005. There is a midweek increase in both rain area and intensity over land, and a midweek decrease over the nearby Atlantic and perhaps the Gulf of Mexico. Statistical tests suggest that the weekly variations are very unlikely to be due to the random behavior of weather. We will discuss the TRMM evidence. Wind data from model reanalysis, rain-gauge data, and TRMM radar data all appear to be consistent with the picture that aerosols are causing summertime storms to grow more vigorously and to produce more rainfall.

  15. The effect of pole's height on the output performance of solar power ...

    African Journals Online (AJOL)

    Solar energy is a renewable (non-conventional) source of energy supply that has been used as a reliable energy source in view of its economic importance and its wide range of applications. In this study the effect of pole's height on the output performance of solar power system has been investigated. A solar panel of 45 ...

  16. Aerosol Effects on Microphysical Processes, Storm Structure, and Cold Pool Strength in Simulated Supercell Thunderstorms from VORTEX-2 and VORTEX-SE

    Science.gov (United States)

    Guo, M.; Dawson, D. T., II; Baldwin, M. E.; Mansell, E. R.

    2017-12-01

    The cloud condensation nuclei (CCN) concentration has been found to strongly affect microphysical, dynamical and thermodynamical processes in supercells and other deep convective storms. Moreover, recent simulation studies have shown aerosols effects differ between higher- and lower-CAPE environments. Owing to the known sensitivity of severe storms to microphysical differences, studying the impact of aerosols supercell storms different environments is of clear societal importance. Tornadic environments in the southwastern U.S. are generally characterized by lower magnitudes CAPE and deeper tropospheric moisture than those in the Great Plains. These two regions were the focus of Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX)-2 and VORTEX-Southeast (SE) field campaigns, respectively. In our study, we simulate several cases from VORTEX-2 and -SE with the Advanced Regional Prediction System (ARPS) Model at 6 different CCN concentrations (100-3000 cm-3). We use NSSL 3-moment microphysics parameterization schemeto explicitly predict precipitation particle size distributions and microphysirocess rates. Overall, storms under the higher-CAPE VORTEX-2 environments are more sensitiveto the change of CCN than those under the lower-CAPE VORTEX-SE environments. Updraft volume decreases as CCN increases for the VORTEX-2 cases, whereas the opposite is true but with a much weaker trend for the VORTEX-SE cases. Moreover, the cold pool strength drops dramatically as CCN surpasses 1000 cm-3n the VORTEX-2 cases but barely changes for the VORTEX-SE cases. Through a microphysics budget analysis, we show the change of the importance of ice processes is key to the differing sensitivities. in the VORTEX-2 cases, deposition to ice nuclei, cloud drop freezing and rain drop freezing in the upper levels (5-11km) contribute more to latent heating since more rain and cloud drops are lifted above the freezing level due to stronger updrafts. For CCN concentration over 1000

  17. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  18. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta; Milvidaite, Irena; Kubilius, Raimondas; Stasionyte, Jolanta

    2014-08-01

    A number of studies have established the effects of solar-geomagnetic activity on the human cardio-vascular system. It is plausible that the heliophysical conditions existing during and after hospital admission may affect survival in patients with acute coronary syndromes (ACS). We analyzed data from 1,413 ACS patients who were admitted to the Hospital of Kaunas University of Medicine, Lithuania, and who survived for more than 4 days. We evaluated the associations between active-stormy geomagnetic activity (GMA), solar proton events (SPE), and solar flares (SF) that occurred 0-3 days before and after admission, and 2-year survival, based on Cox's proportional-hazards model, controlling for clinical data. After adjustment for clinical variables, active-stormy GMA on the 2nd day after admission was associated with an increased (by 1.58 times) hazard ratio (HR) of cardiovascular death (HR = 1.58, 95 % CI 1.07-2.32). For women, geomagnetic storm (GS) 2 days after SPE occurred 1 day after admission increased the HR by 3.91 times (HR = 3.91, 95 % CI 1.31-11.7); active-stormy GMA during the 2nd-3rd day after admission increased the HR by over 2.5 times (HR = 2.66, 95 % CI 1.40-5.03). In patients aged over 70 years, GS occurring 1 day before or 2 days after admission, increased the HR by 2.5 times, compared to quiet days; GS in conjunction with SF on the previous day, nearly tripled the HR (HR = 3.08, 95 % CI 1.32-7.20). These findings suggest that the heliophysical conditions before or after the admission affect the hazard ratio of lethal outcome; adjusting for clinical variables, these effects were stronger for women and older patients.

  19. Effect of solar radiation on severity of soybean rust.

    Science.gov (United States)

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  20. Local time and cutoff rigidity dependences of storm time increase associated with geomagnetic storms

    International Nuclear Information System (INIS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1987-01-01

    The cosmic ray increases due to considerable depressions of cosmic ray cutoff rigidity during large geomagnetic storms are investigated. Data from a worldwide network of cosmic ray neutron monitors are analyzed for 17 geomagnetic storms which occurred in the quiet phase of the solar activity cycle during 1966-1978. As expected from the longitudinal asymmetry of the low-altitude geomagnetic field during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray intensity is obtained. It is shown that the maximum phases of the local time dependence occur at around 1800 LT and that the amplitudes of the local time dependence are consistent with presently available theoretical estimates. The dependence of the increment on the cutoff rigidity is obtained for both the local time dependent part and the local time independent part of the storm time increase. The local time independent part, excluding the randomizing local time dependent part, shows a clear-cut dependence on cutoff rigidity which is consistent with theoretical estimates

  1. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Science.gov (United States)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C.

    2009-08-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  2. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Directory of Open Access Journals (Sweden)

    L. Fita

    2009-08-01

    Full Text Available The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA. An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity

  3. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Energy Technology Data Exchange (ETDEWEB)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C. [Univ. de les Illes Balears, Palma de Mallorca (Spain). Grup de Meteorologia

    2009-07-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  4. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  5. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  6. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    OpenAIRE

    Reames, Donald V.

    2018-01-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances o...

  7. Reproductive Consequences of Nest Site Use in Fork-tailed Storm-Petrels in the Aleutian Islands, Alaska: Potential Lasting Effects of an Introduced Predator

    Directory of Open Access Journals (Sweden)

    Brie A. Drummond

    2010-12-01

    Full Text Available We examined the reproductive consequences of differential nest site use in Fork-tailed Storm-Petrels (Oceanodroma furcata in the Aleutian Islands, Alaska, where birds on islands where foxes were introduced nest in rocky substrate rather than in typical soil habitat. We investigated how physical and microclimatic nest site characteristics influenced storm-petrel breeding success 20 years after fox removal. We then examined whether those nest site characteristics that affected success were related to the amount of rock that composed the nest. In both years of our study, nest temperature had the strongest influence on chick survival and overall reproductive success, appearing in all the top models and alone explaining 14-35% of the variation in chick survival. The relationship between reproductive success and nest temperature was positive in both years, with higher survival in warmer nests. In turn, the best predictor of nest temperature was the amount of rock that composed the site. Rockier nests had colder average temperatures, which were driven by lower daily minimum temperatures, compared to nests with more soil. Thus, the rockiness of the nest site appeared to affect chick survival and overall reproductive success through its influence on nest temperature. This study suggests that the use of rocky nest sites, presumed to be a result of historic predation from introduced foxes, could decrease breeding success in this recovering population, and thus be a long-lasting effect of introduced predators.

  8. Use of reflectors to enhance the synergistic effects of solar heating and solar wavelengths to disinfect drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Rijal, G.K. [Metropolitan Water Reclamation District of Greater Chicago, Cicero, Illinois (United States); Fujioka, R.S. [University of Hawaii, Honolulu (United States). Water Resources Research Center

    2004-07-01

    Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to <1 CFU/100 ml to meet drinking water standards. Solar units with reflectors disinfected to the water sooner by increasing the water temperature by 8-10{sup o}C to 64-75{sup o}C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4{sup o}C to a maximum of 43-49{sup o}C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56{sup o}C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C perfringens > FRNA coliphages > enterococci >E. coli > faecal coliform. (author)

  9. Use of reflectors to enhance the synergistic effects of solar heating and solar wavelengths to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2003-01-01

    Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to water standards. Solar units with reflectors disinfected the water sooner by increasing the water temperature by 8-10 degrees C to 64-75 degrees C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4 degrees C to a maximum of 43-49 degrees C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56 degrees C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C. perfringens > FRNA coliphages > enterococci > E. coli > faecal coliform.

  10. How the effects of winds and electric fields in F2-layer storms vary with latitude and longitude - A theoretical study

    Science.gov (United States)

    Mendillo, M.; He, X.-Q.; Rishbeth, H.

    1992-01-01

    The effects of thermospheric winds and electric fields on the ionospheric F2-layer are controlled by the geometry of the magnetic field, and so vary with latitude and longitude. A simple model of the daytime F2-layer is adopted and the effects at midlatitudes (25-65 deg geographic) of three processes that accompany geomagnetic storms: (1) thermospheric changes due to auroral heating; (2) equatorward winds that tend to cancel the quiet-day poleward winds; and (3) the penetration of magnetospheric electric fields are studied. At +/- 65 deg, the effects of heating and electric fields are strongest in the longitudes toward which the geomagnetic dipole is tilted, i.e., the North American and the South Indian Ocean sectors. Because of the proximity of the geomagnetic equator to the East Asian and South American sectors, the reverse is true at +/- 25 deg.

  11. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  12. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.

    1988-01-01

    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed

  13. The effects of solarization on the performance of a gas turbine

    Science.gov (United States)

    Homann, Christiaan; van der Spuy, Johan; von Backström, Theodor

    2016-05-01

    Various hybrid solar gas turbine configurations exist. The Stellenbosch University Solar Power Thermodynamic (SUNSPOT) cycle consists of a heliostat field, solar receiver, primary Brayton gas turbine cycle, thermal storage and secondary Rankine steam cycle. This study investigates the effect of the solarization of a gas turbine on its performance and details the integration of a gas turbine into a solar power plant. A Rover 1S60 gas turbine was modelled in Flownex, a thermal-fluid system simulation and design code, and validated against a one-dimensional thermodynamic model at design input conditions. The performance map of a newly designed centrifugal compressor was created and implemented in Flownex. The effect of the improved compressor on the performance of the gas turbine was evident. The gas turbine cycle was expanded to incorporate different components of a CSP plant, such as a solar receiver and heliostat field. The solarized gas turbine model simulates the gas turbine performance when subjected to a typical variation in solar resource. Site conditions at the Helio100 solar field were investigated and the possibility of integrating a gas turbine within this system evaluated. Heat addition due to solar irradiation resulted in a decreased fuel consumption rate. The influence of the additional pressure drop over the solar receiver was evident as it leads to decreased net power output. The new compressor increased the overall performance of the gas turbine and compensated for pressure losses incurred by the addition of solar components. The simulated integration of the solarized gas turbine at Helio100 showed potential, although the solar irradiation is too little to run the gas turbine on solar heat alone. The simulation evaluates the feasibility of solarizing a gas turbine and predicts plant performance for such a turbine cycle.

  14. SOLAR ENERGETIC PARTICLE EVENTS AND THE KIPLINGER EFFECT

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2012-01-01

    The Kiplinger effect is an observed association of solar energetic (E > 10 MeV) particle (SEP) events with a 'soft-hard-harder' (SHH) spectral evolution during the extended phases of the associated solar hard (E > 30 keV) X-ray (HXR) flares. Besides its possible use as a space weather predictor of SEP events, the Kiplinger effect has been interpreted as evidence of SEP production in the flare site itself, contradicting the widely accepted view that particles of large SEP events are predominately or entirely accelerated in shocks driven by coronal mass ejections (CMEs). We review earlier work to develop flare soft X-ray (SXR) and HXR spectra as SEP event forecast tools and then examine recent Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) evidence supporting the association of SHH HXR flares with large SEP events. We point out that ad hoc prediction criteria using the CME widths and SXR flare durations of associated RHESSI hard X-ray bursts (HXBs) can yield results comparable to those of the SHH prediction criteria. An examination of the RHESSI dynamic plots reveals several ambiguities in the determination of whether and when the SHH criteria are fulfilled, which must be quantified and applied consistently before an SHH-based predictive tool can be made. A comparative HXR spectral study beginning with the large population of relatively smaller SEP events has yet to be done, and we argue that those events will not be so well predicted by the SHH criteria. SHH HXR flares and CMEs are both components of large eruptive flare events, which accounts for the good connection of the SHH HXR flares with SEP events.

  15. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence.

  16. Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22-23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques

    Science.gov (United States)

    Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M. R.; Coley, W. R.

    2018-03-01

    We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22-23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were largely impacted by the prompt penetration electric fields (PPEF). The PPEF were first directed eastward and caused significant ionospheric uplift and positive ionospheric storm on the dayside, and downward drift on the nightside. Furthermore, about 45 min after the storm commencement, the interplanetary magnetic field (IMF) Bz component turned northward, leading to the EEJ changing sign to westward, and to overall decrease of the vertical total electron content (VTEC) and electron density on the dayside. At the end of the main phase of the storm, and with the second long-term IMF Bz southward turn, we observed several oscillations of the EEJ, which led us to conclude that at this stage of the storm, the disturbance dynamo effect was already in effect, competing with the PPEF and reducing it. Our analysis showed no significant upward or downward plasma motion during this period of time; however, the electron density and the VTEC drastically increased on the dayside (over the Asian region). We show that this second positive storm was largely influenced by the disturbed thermospheric conditions.

  17. The magnitude and effects of extreme solar particle events

    Directory of Open Access Journals (Sweden)

    Jiggens Piers

    2014-06-01

    Full Text Available The solar energetic particle (SEP radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm−2 as a function of particle energy (in MeV. This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads, non-ionising energy loss (MeV g−1, single event upsets (upsets/bit and the dose in humans compared to established limits for stochastic (or cancer-causing effects and tissue reactions (such as acute radiation sickness in humans given in grey-equivalent and sieverts respectively.

  18. Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs by the multiple titanium oxide (TiO2 layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency.

  19. Effects of solar collecting area and water flow rate on the performance of a sand bed solar collector

    International Nuclear Information System (INIS)

    Maganhar, A.L.; Memon, A.H.; Panhwar, M.I.

    2005-01-01

    The often discussed renewable sources of energy have been great interest to energy researchers and planners for quite some time. The primary of renewing all sources of energy is the sun. There have been two main problems not yet fully resolved. One is the large scale production of energy and other is the cost factor. In the present study, the cost factor is under consideration. In this regard a non-conventional solar collector using indigenous material (pit sand) as solar absorber is designed and manufactured. This paper presents the results of an investigation of the effect of solar collecting area and water flow rate on the performance of a pit sand bed solar collector especially in terms of rise in water temperature. Three pit sand solar collectors of area 1m/sup 2/ each were connected in series to enhance the collecting area and the system was tested for different flow rates. Experimental results proved that there was increase in water temperature with increase in solar collecting area an decreases in water temperature with increase in flow rate. (author)

  20. Longitudinal effect in the ionospheric plasma density in the evening sector during the magnetic storm on 18-19.12.1978

    International Nuclear Information System (INIS)

    Besprozvannaya, A.S.; Gdalevich, G.L.; Eliseev, A.Yu.; Kolomijtsev, O.P.

    1986-01-01

    The longitidinal effect in the ionospheric plasma density in the evening sector during the magnetic storm on 18-19 December 1978 is investigated. The quantitative confirmation of substantial role of the F2 layer vertical drifts in formation of the ionization level at the height of approximately 500 km is obtained. The observed at these heights plasma density variati ons can be explained by penetration of magnetospheric electrical fields into mean latitudes. It is shown that in case of simulation of disturbance development in the evening sector longitudinal asymmetry in the development of ionospheric disturbance should be taken into account. This effect can provide electron density variations comparable with variations caused by penetration of electrical field of magnetoshperic origin into mean-latitudinal ionosphere

  1. California's Perfect Storm

    Science.gov (United States)

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  2. Dave Storm esitleb singlit

    Index Scriptorium Estoniae

    2002-01-01

    7. märtsil klubis Spirit ja 8. märtsil klubis Terminal presenteerib tallinlane DJ Dave Storm oma uut singlit "Ride", millel teeb laulmisega kaasa ameeriklane Charlie C. Singelplaadi annab peadselt välja Inglise plaadifirma Refunkt

  3. Interview with Gert Storm

    NARCIS (Netherlands)

    Storm, Gerrit

    2013-01-01

    Gert Storm studied biology at the Utrecht University, The Netherlands, and obtained his PhD degree in 1987 at the Department of Pharmaceutics of the same university. He is now Professor of targeted drug delivery at the University of Utrecht, as well as Professor of targeted therapeutics at the MIRA

  4. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  5. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    Science.gov (United States)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Detection of Asian Dust Storm Using MODIS Measurements

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2017-08-01

    Full Text Available Every year, a large number of aerosols are released from dust storms into the atmosphere, which may have potential impacts on the climate, environment, and air quality. Detecting dust aerosols and monitoring their movements and evolutions in a timely manner is a very significant task. Satellite remote sensing has been demonstrated as an effective means for observing dust aerosols. In this paper, an algorithm based on the multi-spectral technique for detecting dust aerosols was developed by combining measurements of moderate resolution imaging spectroradiometer (MODIS reflective solar bands and thermal emissive bands. Data from dust events that occurred during the past several years were collected as training data for spectral and statistical analyses. According to the spectral curves of various scene types, a series of spectral bands was selected individually or jointly, and corresponding thresholds were defined for step-by-step scene classification. The multi-spectral algorithm was applied mainly to detect dust storms in Asia. The detection results were validated not only visually with MODIS true color images, but also quantitatively with products of Ozone Monitoring Instrument (OMI and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP. The validations showed that this multi-spectral detection algorithm was suitable to monitor dust aerosols in the selected study areas.

  7. Effects of soil solarization and some amendments to control ...

    African Journals Online (AJOL)

    SCM) (1 kg m-2), solarization + olive processing waste (SOPW) (2 kg m-2), solarization + urea (SU) (100 g m-2) and an untreated control (C). Maximum soil temperatures reached in solarized plots were 54.7 and 43.9°C and in the ...

  8. Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2010-02-01

    Full Text Available Severe storms (Dst and Forbush decreases (FD during cycle 23 showed that maximum negative Dst magnitudes usually occurred almost simultaneously with the maximum negative values of the Bz component of interplanetary magnetic field B, but the maximum magnitudes of negative Dst and Bz were poorly correlated (+0.28. A parameter Bz(CP was calculated (cumulative partial Bz as sum of the hourly negative values of Bz from the time of start to the maximum negative value. The correlation of negative Dst maximum with Bz(CP was higher (+0.59 as compared to that of Dst with Bz alone (+0.28. When the product of Bz with the solar wind speed V (at the hour of negative Bz maximum was considered, the correlation of negative Dst maximum with VBz was +0.59 and with VBz(CP, 0.71. Thus, including V improved the correlations. However, ground-based Dst values have a considerable contribution from magnetopause currents (several tens of nT, even exceeding 100 nT in very severe storms. When their contribution is subtracted from Dst(nT, the residue Dst* representing true ring current effect is much better correlated with Bz and Bz(CP, but not with VBz or VBz(CP, indicating that these are unimportant parameters and the effect of V is seen only through the solar wind ram pressure causing magnetopause currents. Maximum negative Dst (or Dst* did not occur at the same hour as maximum FD. The time evolutions of Dst and FD were very different. The correlations were almost zero. Basically, negative Dst (or Dst* and FDs are uncorrelated, indicating altogether different mechanism.

  9. Solar-terrestrial disturbances of June-September 1982, 4

    International Nuclear Information System (INIS)

    Watanabe, Shigeaki; Ondoh, Tadanori

    1985-01-01

    Several ion whistlers were observed by the polar orbiting satellites, ISIS's during geomagnetic storms associated with large solar flares in 1982. It seems that the proton density ratio to the total ions deduced from the crossover frequency of the trans-equatorial ion whistlers observed at geomagnetic low latitudes during the main phase of the geomagnetic storm on July 14th 1982 was lower than the usual density rate. An abnormal pattern seen on the time-compressed dynamic spectra for September 6 th 1982 suggests existence of effects by the component 3 He + in a quite small amount. (author)

  10. Solar Distillation System Based on Multiple-Effect Diffusion Type Still

    KAUST Repository

    Huang, Bin-Juine

    2014-03-01

    The present study intends to develop a high-performance solar-assisted desalination system (SADS) using multi-effect diffusion type still (MEDS) and the vacuum tube solar collector (VTSC). A MEDS prototype was designed and built. The measured result is very close to the estimation. The 10-effect MEDS will produce pure water at about 13.7 L/day/m2 collector area at a solar irradiation of 600 W/m2 and 19.7 L/day/m2 collector area at solar irradiation 800 W/m2. For 20-effect still, the yield rate increase is 32% compared to 10-effect still.

  11. A modeling study of ionospheric F2-region storm effects at low geomagnetic latitudes during 17-22 March 1990

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2006-05-01

    Full Text Available We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2, which were observed in the low-latitude ionosphere simultaneously by the Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders, by the middle and upper atmosphere (MU radar during 17-22 March 1990, and by the Arecibo radar for the time period of 20-22 March 1990. A comparison between the electron and ion temperatures measured by the MU and Arecibo radars and those produced by the model of the ionosphere and plasmasphere is presented. The empirical zonal electric field, the meridional neutral wind taken from the HWM90 wind model, and the NRLMSISE-00 neutral temperature and densities are corrected so that the model results agree reasonably with the ionospheric sounder observations, and the MU and Arecibo radar data. It is proved that the nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess (1997 or Scherliess and Fejer (1999, in combination with the corrected wind-induced plasma drift along magnetic field lines, provides the development of the nighttime enhancements in NmF2 observed over Manila during 17-22 March 1990. As a result, the new physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator includes the nighttime weakening of the equatorial zonal electric field and equatorward nighttime plasma drift along magnetic field lines caused by neutral wind in the both geomagnetic hemispheres. It is found that the latitudinal positions of the crests depend on the E×B drift velocity and on the neutral wind velocity. The relative role of the main mechanisms of the equatorial anomaly suppression observed during geomagnetic storms is studied for the first time in terms of storm-time variations of the model crest-to-trough ratios of the equatorial anomaly. During most of the studied time period, a total contribution from

  12. Output performance analyses of solar array on stratospheric airship with thermal effect

    International Nuclear Information System (INIS)

    Li, Jun; Lv, Mingyun; Tan, Dongjie; Zhu, Weiyu; Sun, Kangwen; Zhang, Yuanyuan

    2016-01-01

    Highlights: • A model investigating the output power of solar array is proposed. • The output power in the cruise condition with thermal effect is researched. • The effect of some factors on output performance is discussed in detail. • A suitable transmissivity of external layer is crucial in preliminary design step. - Abstract: Output performance analyses of the solar array are very critical for solving the energy problem of a long endurance stratospheric airship, and the solar cell efficiency is very sensitive to temperature of the solar cell. But the research about output performance of solar array with thermal effect is rare. This paper outlines a numerical model including the thermal model of airship and solar cells, the incident solar radiation model on the solar array, and the power output model. Based on this numerical model, a MATLAB computer program is developed. In the course of the investigation, the comparisons of the simulation results with and without considering thermal effect are reported. Furthermore, effects of the transmissivity of external encapsulation layer of solar array and wind speed on the thermal performance and output power of solar array are discussed in detail. The results indicate that this method is helpful for planning energy management.

  13. Erosive effects of the storms HELENA (1963) and HUGO (1989) on Basse-Terre island (Guadeloupe - Lesser Antilles Arc).

    Science.gov (United States)

    Le Bivic, Rejanne; Allemand, Pascal; Delacourt, Christophe; Quiquerez, Amélie

    2014-05-01

    Basse-Terre is a volcanic island which belongs to the archipelago of Guadeloupe located in the Lesser Antilles Arc (Caribbean Sea). As a mountainous region in the tropical belt, Basse-Terre is affected by intense sediment transport due to extreme meteorological events. During the last fifty years, eight major tropical storms and hurricanes with intense rainfalls induced landslides and scars in the weathered layers. The purpose of this study is to compare two major meteorological events within a period of 26 years (HELENA in 10/1963 and HUGO in 09/1989) in order to qualify the parameters responsible of the spatial distribution of landslides and scars. The storm HELENA affected Basse-Terre between the 23rd and the 25th of October, 1963. The maximal daily rainfall reached 300 mm in Baillif which is located on the leeward coast at the altitude of 650 m while the maximum wind velocity reached 50 km/h. A similar exceptional event happened when the hurricane HUGO slammed the island in September 17, 1989. The maximum daily rainfall recorded in Sainte-Rose (on the northern coast) was 250 mm while it reached 208 mm in Petit-Bourg and the maximum wind speed was 60 km/h. Aerial images were acquired by the IGN (French Geographical Institute) before and a few weeks after the extreme events: less than three months after the event HELENA and less than a month after the event HUGO. Those images have been orthorectified at a metric resolution and combined in a GIS with a 10 m resolution DEM. Scars and landslides were digitalized and their surface area and mean slope were measured for both HELENA and HUGO. This work confirms several results proposed by a previous study related to the HELENA event: (1) the landslides occurred mainly in the center of the island and (2) the slope is the main parameter for the initiation of landslides, since all of them occurred with a slope superior to 30°. Furthermore, the resiliency of the surface affected by the landslides induced by HELENA was

  14. Observations by the CUTLASS radar, HF Doppler, oblique ionospheric sounding, and TEC from GPS during a magnetic storm

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2005-07-01

    Full Text Available Multi-diagnostic observations, covering a significant area of northwest Europe, were made during the magnetic storm interval (28–29 April 2001 that occurred during the High Rate SolarMax IGS/GPS-campaign. HF radio observations were made with vertical sounders (St. Petersburg and Sodankyla, oblique incidence sounders (OIS, on paths from Murmansk to St. Petersburg, 1050 km, and Inskip to Leicester, 170 km, Doppler sounders, on paths from Cyprus to St. Petersburg, 2800 km, and Murmansk to St. Petersburg, and a coherent scatter radar (CUTLASS, Hankasalmi, Finland. These, together with total electron content (TEC measurements made at GPS stations from the Euref network in northwest Europe, are presented in this paper. A broad comparison of radio propagation data with ionospheric data at high and mid latitudes, under quiet and disturbed conditions, was undertaken. This analysis, together with a geophysical interpretation, allow us to better understand the nature of the ionospheric processes which occur during geomagnetic storms. The peculiarity of the storm was that it comprised of three individual substorms, the first of which appears to have been triggered by a compression of the magnetosphere. Besides the storm effects, we have also studied substorm effects in the observations separately, providing an improved understanding of the storm/substorm relationship. The main results of the investigations are the following. A narrow trough is formed some 10h after the storm onset in the TEC which is most likely a result of enhanced ionospheric convection. An enhancement in TEC some 2–3 h after the storm onset is most likely a result of heating and upwelling of the auroral ionosphere caused by enhanced currents. The so-called main effect on ionospheric propagation was observed at mid-latitudes during the first two substorms, but only during the first substorm at high latitudes. Ionospheric irregularities observed by CUTLASS were clearly related to the

  15. Prediciting Solar Activity: Today, Tomorrow, Next Year

    Science.gov (United States)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  16. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  17. Solar Array Sails: Possible Space Plasma Environmental Effects

    Science.gov (United States)

    Mackey, Willie R.

    2005-01-01

    An examination of the interactions between proposed "solar sail" propulsion systems with photovoltaic energy generation capabilities and the space plasma environments. Major areas of interactions ere: Acting from high voltage arrays, ram and wake effects, V and B current loops and EMI. Preliminary analysis indicates that arcing will be a major risk factor for voltages greater than 300V. Electron temperature enhancement in the wake will be produce noise that can be transmitted via the wake echo process. In addition, V and B induced potential will generate sheath voltages with potential tether like breakage effects in the thin film sails. Advocacy of further attention to these processes is emphasized so that plasma environmental mitigation will be instituted in photovoltaic sail design.

  18. The StoRM Certification Process

    International Nuclear Information System (INIS)

    Ronchieri, Elisabetta; Dibenedetto, Michele; Zappi, Riccardo; Dal Pra, Stefano; Aiftimiei, Cristina; Traldi, Sergio

    2011-01-01

    StoRM is an implementation of the SRM interface version 2.2 used by all Large Hadron Collider (LHC) experiments and non-LHC experiments as SRM endpoint at different Tiers of Worldwide LHC Computing Grid. The complexity of its services and the demand of experiments and users are increasing day by day. The growing needs in terms of service level by the StoRM users communities make it necessary to design and implement a more effective testing procedure to quickly and reliably validate new StoRM candidate releases both in code side (for example via test units, and schema valuator) and in final product software (for example via functionality tests, and stress tests). Testing software service is a very critical quality activity performed in a very ad-hoc informal manner by developers, testers and users of StoRM up to now. In this paper, we describe the certification mechanism used by StoRM team to increase the robustness and reliability of the StoRM services. Various typologies of tests, such as quality, installation, configuration, functionality, stress and performance, defined on the base of a set of use cases gathered as consequence of the collaboration among the StoRM team, experiments and users, are illustrated. Each typology of test is either increased or decreased easily from time to time. The proposed mechanism is based on a new configurable testsuite. This is executed by the certification team, who is responsible for validating the release candidate package as well as bug fix (or patch) package, given a certain testbed that considers all possible use cases. In correspondence of each failure, the package is given back to developers waiting for validating a new package.

  19. Ice storm 1998 : lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    McCready, J. [Eastern Ontario Model Forest, Kemptville, ON (Canada)

    2006-07-01

    This paper presented details of a partnership formed in response to the ice storm of 1998, which caused extensive damage to trees in woodlots and urban settings in eastern Ontario and western Quebec. The aim of the Ice Storm Forest Recovery Group was to assist in the recovery of eastern forests, collect information on the extent of the damage to trees as well as contribute to the development of assistance programs for woodlot owners and municipalities. In response to the group's request, an initial aerial survey was conducted by the Ontario Ministry of Natural Resources to map the extent of the damage in eastern Ontario, which was followed by a more scientific survey with the Canadian Forest Service through the development of a flying grid pattern to observe the status of trees, followed by extensive ground checks. Damage was variable, depending on tree species, stand age and composition, management practices, wind direction, topography and ice deposition patterns. A summary of the severity of damage indicated that conifers suffered less than hardwoods. Consultants were hired to prepare news releases and extension notes to the public in order to provide information for the caring of trees. Various educational workshops were held which attracted large numbers of landowners and homeowners. A literature review was undertaken to produce a summary of current published knowledge covering the effects of storms and ice damage to trees and forests. Science efforts were published in a series of papers, and financial assistance programs were then organized by governmental agencies. It was concluded that cooperation between all agencies, groups and levels of government is needed in order to coordinate effective emergency strategies. 7 refs., 1 tab., 1 fig.

  20. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm.

    Science.gov (United States)

    Varsani, A; Nakamura, R; Sergeev, V A; Baumjohann, W; Owen, C J; Petrukovich, A A; Yao, Z; Nakamura, T K M; Kubyshkina, M V; Sotirelis, T; Burch, J L; Genestreti, K J; Vörös, Z; Andriopoulou, M; Gershman, D J; Avanov, L A; Magnes, W; Russell, C T; Plaschke, F; Khotyaintsev, Y V; Giles, B L; Coffey, V N; Dorelli, J C; Strangeway, R J; Torbert, R B; Lindqvist, P-A; Ergun, R

    2017-11-01

    During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 R E .

  1. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria.

    OpenAIRE

    McCambridge, J; McMeekin, T A

    1981-01-01

    The effect of solar radiation and predacious microorganisms on the survival of bacteria of fecal and plant origin was studied. The decline in the numbers of Escherichia coli cells in estuarine water samples was found to be significantly greater in the presence of both naturally occurring microbial predators and solar radiation than when each of these factors was acting independently. The effect of solar radiation on microbial predators was negligible, whereas the susceptibility of bacteria to...

  2. Childhood body mass index at 5.5 years mediates the effect of prenatal maternal stress on daughters' age at menarche: Project Ice Storm.

    Science.gov (United States)

    Duchesne, A; Liu, A; Jones, S L; Laplante, D P; King, S

    2017-04-01

    Early pubertal timing is known to put women at greater risk for adverse physiological and psychological health outcomes. Of the factors that influence girls' pubertal timing, stress experienced during childhood has been found to advance age at menarche (AAM). However, it is not known if stress experienced by mothers during or in the months before conception can be similarly associated with earlier pubertal timing. Prenatal maternal stress (PNMS) is associated with metabolic changes, such as increased childhood adiposity and risk of obesity, that have been associated with earlier menarchal age. Using a prospective longitudinal design, the present study tested whether PNMS induced by a natural disaster is either directly associated with earlier AAM, or whether there is an indirect association mediated through increased girls' body mass index (BMI) during childhood. A total of 31 girls, whose mothers were exposed to the Quebec's January 1998 ice storm during pregnancy were followed from 6 months to 5 1/2 to 5.5 years of age. Mother's stress was measured within 6 months of the storm. BMI was measured at 5.5 years, and AAM was assessed through teen's self-report at 13.5 and 15.5 years of age. Results revealed that greater BMI at 5.5 years mediated the effect of PNMS on decreasing AAM [B=-0.059, 95% confidence intervals (-0.18, -0.0035)]. The present study is the first to demonstrate that maternal experience of stressful conditions during pregnancy reduces AAM in the offspring through its effects on childhood BMI. Future research should consider the impact of AAM on other measures of reproductive ability.

  3. The effects of operation parameter on the performance of a solar-powered adsorption chiller

    International Nuclear Information System (INIS)

    Luo, Huilong; Wang, Ruzhu; Dai, Yanjun

    2010-01-01

    A solar-powered adsorption chiller with heat and mass recovery cycle was designed and constructed. It consists of a solar water heating unit, a silica gel-water adsorption chiller, a cooling tower and a fan coil unit. The adsorption chiller includes two identical adsorption units and a second stage evaporator with methanol working fluid. The effects of operation parameter on system performance were tested successfully. Test results indicated that the COP (coefficient of performance) and cooling power of the solar-powered adsorption chiller could be improved greatly by optimizing the key operation parameters, such as solar hot water temperature, heating/cooling time, mass recovery time, and chilled water temperature. Under the climatic conditions of daily solar radiation being about 16-21 MJ/m 2 , this solar-powered adsorption chiller can produce a cooling capacity about 66-90 W per m 2 collector area, its daily solar cooling COP is about 0.1-0.13.

  4. Advances in magnetospheric storm and substorm research: 1989-1991

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1992-01-01

    Geomagnetic storms represent the magnetospheric response to fast solar wind and unusually large southward interplanetary magnetic fields that are caused by solar processes and resulting dynamics in the interplanetary medium. The solar wind/magnetosphere interaction is, however, more commonly studied via smaller, more common, magnetospheric substorms. Accumulating evidence suggests that two separate magnetospheric current systems are important during magnetospheric substorms. Currents directly driven by the solar wind/magnetosphere interaction produce magnetic field variations that make important contributions to the AE index but have little relation to the many effects traditionally associated with sudden substorm onsets. Currents driven by energy unloaded from the magnetotail form the nightside current wedge and are associated with onset effects such as auroral breakup, field dipolarization, and particle acceleration. Observations are gradually leading to a coherent picture of the interrelations among these various onset phenomena, but their cause remains a controversial question. The abrupt nature of substorm onsets suggests a magnetospheric instability, but doubt remains as to its nature and place of origin. Measurements increasingly suggest the region of 7-10 R E near midnight as the likely point of origin, but it is not clear that the long-popular tearing mode can go unstable this close to the Earth, where it may be stabilized by a small northward field component. Also the tailward flows that would be expected tailward of a near-Earth neutral line are seldom seen inside of 19 R E . The changing magnetic field configuration during substorms means that existing static models cannot be used to map phenomena between the magnetosphere and the ground at these interesting times

  5. Using solar oscillations to probe the effects of element diffusion in the solar interior

    International Nuclear Information System (INIS)

    Guzik, J.A.; Cox, A.N.

    1993-01-01

    There is growing evidence from solar oscillation and evolution studies that the Sun's convection zone helium mass fraction has decreased by about 0.03 due to element diffusion. Evolution calculations show that diffusion also produces a steep Y and Z composition gradient below the convection zone. Comparisons between calculated and observed solar p-mode frequencies of angular degrees 5 thru 60 that are sensitive to solar structure near the convection zone bottom support this steep composition gradient, rather than one smoothed significantly by turbulent mixing. Turbulent mixing induced by convective overshoot or rotation has been the favored explanation for much of the solar surface lithium depletion by a factor of 200 from its presumed primordial value. These limits on the extent of turbulent mixing imply that either most of the solar lithium destruction occurred pre-main sequence, which is not supported by observation of young star, or that some other mechanism, for example a small amount of early main-sequence mass loss, is responsible for the low observed lithium abundance. Solar models including such mass loss as well as diffusion have a slightly steeper central density gradient. Comparisons between observed and calculated low-degree p-mode frequencies that are sensitive to the Sun's central structure can be used to probe this density gradient and constrain the possible amount of mass loss

  6. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  7. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  8. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  9. Studies on the Effect of Type and Solarization Period on Germination Percentage of Four Weed Species

    Directory of Open Access Journals (Sweden)

    J. Rostam

    2011-01-01

    Full Text Available Abstract In order to study the effects of soil solarization on weed control, an experiment with factorial arrangement in a randomized complete block design with four replications was conducted in a fallow farm in Daregaz in 2008. Factors included solarization duration (0, 2, 4 and 6 weeks and soil moisture content (dry and moist. Soil seed bank was sampled (in two depth, 0-10 and 10-20 cm prior to the experiment and immediately after applying treatments, and germination percentage of weed species were determined. Results of this study showed that seed germination percentage in 10 cm soil depth was influenced by soil moisture and solarization and their interactions, while in 20 cm soil depth only solarization period affected the weed seed germination. Germination percentage in moist soil was less than that in dry soil. Seed germination percentage declined more by increasing solarization duration, so that the greatest decline was obtained after 6 weeks solarization. Solarization decreased germination percentage in moist soil more than that in dry soil. Overall, the results of this experiment indicated that solarization of moist soil for 6 weeks was the most effective treatment in controlling common lambsquatres (Chenopodium album, common purslane (Portulaca oleracea, redroot pigweed (Amaranthus retroflexus, and wild mustard (Sinapis arvensis, while solarization of dry soil for 2 weeks was the least effective treatment for weed control. Keywords: Solarization, Soil moisture, Seed bank

  10. The effect of sunny area ratios on the thermal performance of solar ponds

    International Nuclear Information System (INIS)

    Bozkurt, Ismail; Karakilcik, Mehmet

    2015-01-01

    Highlights: • The effect of sunny area ratio on model solar ponds in different geometries. • The sunny area ratio was calculated for 8 different cases. • The efficiency of the model solar pond was determined for 8 different cases. • The energy efficiencies of the solar pond are affected by the sizes of the solar pond, strongly. • The results help to select the sizes of the solar pond before construction. - Abstract: In this study, we investigated the effect of the sunny area ratios on thermal efficiency of model solar pond for different cases in Adiyaman, Turkey. For this purpose, we modeled the solar ponds to compute theoretical sunny area ratios of the zones and temperature distributions in order to find the performance of the model solar ponds. Incorporating the finite difference approach, one and two dimensional heat balances were written for inner zones and insulation side walls. Through, careful determination of the dimensions, insulation parameter and incoming solar radiation reaching the storage zone increased the efficiency of the solar pond. The efficiencies of the model solar pond were determined for case1a–2a–3a–4a to be maximum 14.93%, 20.42%, 23.51% and 27.84%, and for case1b–2b–3b–4b to be maximum 12.65%, 16.76%, 21.37% and 23.30% in August, respectively. With the increase of the sunny area ratio, the performance of the solar pond significantly increased. However, with the increasing rate of the surface area, performance increase rate decreased gradually. The results provide a strong perspective to determine the dimensions of the solar pond before starting the project of a solar pond

  11. Measuring the Storm: Methods of Quantifying Hurricane Exposure in Public Health

    Science.gov (United States)

    Increasing coastal populations and storm intensity may lead to more adverse health effects from tropical storms and hurricanes. Exposure during pregnancy can influence birth outcomes through mechanisms related to healthcare, infrastructure disruption, stress, nutrition, and inju...

  12. Leonid storm research

    CERN Document Server

    Rietmeijer, Frans; Brosch, Noah; Fonda, Mark

    2000-01-01

    This book will appeal to all researchers that have an interest in the current Leonid showers It contains over forty research papers that present some of the first observational results of the November 1999 Leonid meteor storm, the first storm observed by modern observing techniques The book is a first glimpse of the large amount of information obtained during NASA's Leonid Multi-Instrument Aircraft Campaign and groundbased campaigns throughout the world It provides an excellent overview on the state of meteor shower research for any professional researcher or amateur meteor observer interested in studies of meteors and meteoroids and their relation to comets, the origin of life on Earth, the satellite impact hazard issue, and upper atmosphere studies of neutral atom chemistry, the formation of meteoric debris, persistent trains, airglow, noctilucent clouds, sprites and elves

  13. The ionosphere of Europe and North America before the magnetic storm of October 28, 2003

    Science.gov (United States)

    Blagoveshchensky, D. V.; Macdugall, J. W.; Pyatkova, A. V.

    2006-05-01

    The X17 solar flare occurred on October 28, 2003, and was followed by the X10 flare on October 29. These flares caused very strong geomagnetic storms (Halloween storms). The aim of the present study is to compare the variations in two main ionospheric parameters ( foF2 and hmF2) at two chains of ionosondes located in Europe and North America for the period October 23-28, 2003. This interval began immediately before the storm of October 28 and includes its commencement. Another task of the work is to detect ionospheric precursors of the storm or substorm expansion phase. An analysis is based on SPIDR data. The main results are as follows. The positive peak of δ foF2 (where δ is the difference between disturbed and quiet values) is observed several hours before the magnetic storm or substorm commencement. This peak can serve as a disturbance precursor. The amplitude of δ foF2 values varies from 20 to 100% of the foF2 values. The elements of similarity in the variations in the δ foF2 values at two chains are as follows: (a) the above δ foF2 peak is as a rule observed simultaneously at two chains before the disturbance; (b) the δ foF2 variations are similar at all midlatitude (or, correspondingly, high-latitude) ionosondes of the chain. The differences in the δ foF2 values are as follows: (a) the effect of the main phase and the phase of strong storm recovery at one chain differs from such an effect at another chain; (b) the manifestation of disturbances at high-latitude stations of the chain differ from the manifestations at midlatitude stations. The δ hmF2 variations are approximately opposite to the δ foF2 variations, and the δ hmF2 values lie in the interval 15-25% of the hmF2 values. The performed study is useful and significant in studying the problems of the space weather, especially in a short-term prediction of ionospheric disturbances caused by magnetospheric storms or substorms.

  14. Dust storm, northern Mexico

    Science.gov (United States)

    1983-01-01

    This large dust storm along the left side of the photo, covers a large portion of the state of Coahuila, Mexico (27.5N, 102.0E). The look angle of this oblique photo is from the south to the north. In the foreground is the Sierra Madre Oriental in the states Coahuila and Nuevo Leon with the Rio Grande River, Amistad Reservoir and Texas in the background.

  15. LibrarySTORM

    DEFF Research Database (Denmark)

    Breüner, Niels; Bech, Tine

    2013-01-01

    Når flere uddannelser samles i en nybygning til Campus C på Ceres grunden i Aarhus, skal der også indrettes et fælles bibliotek. Når der samtidig er midler til at arbejde med brugerdreven innovation, lå det lige for at inddrage de studerende og få deres visioner for fremtidens bibliotek. Der blev...... arrangeret en udviklingsdag, hvor der skulle brainstormes – og projektet blev kaldt LibrarySTORM....

  16. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  17. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    Science.gov (United States)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  18. The First Use of Coordinated Ionospheric Radio and Optical Observations Over Italy: Convergence of High-and Low-Latitude Storm-Induced Effects

    Science.gov (United States)

    Cesaroni, C.; Alfonsi, L.; Pezzopane, M.; Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.; Musicò, E.; Lazzarin, M.; Umbriaco, G.

    2017-11-01

    Ionospheric storm effects at midlatitudes were analyzed using different ground-based instruments distributed in Italy during the 13-15 November 2012 geomagnetic storm. These included an all-sky imager (ASI) in Asiago (45.8°N, 11.5°E), a network of dual-frequeny Global Navigation Satellite Systems receivers (Rete Integrata Nazionale GPS network), and ionosondes in Rome (41.8°N, 12.5°E) and San Vito (40.6°N, 17.8°E). GPS measurements showed an unusual enhancement of total electron content (TEC) in southern Italy, during the nights of 14 and 15 November. The ASI observed colocated enhancements of 630 nm airglow at the same time, as did variations in NmF2 measured by the ionosondes. Moreover, wave-like perturbations were identified propagating from the north. The Ensemble Empirical Mode Decomposition, applied to TEC values revealed the presence of traveling ionospheric disturbances (TIDs) propagating southward between 01:30 UT and 03:00 UT on 15 November. These TIDs were characterized by weak TEC oscillations ( ±0.5 TEC unit), period of 45 min, and velocity of 500 m/s typical of large-scale TIDs. Optical images showed enhanced airglow entering the field of view of the ASI from the N-NE at 02:00 UT and propagating to the S-SW, reaching the region covered by the GPS stations after 03:00 UT, when TEC fluctuations are very small ( ±0.2 TEC unit). The enhancement of TEC and airglow observed in southern Italy could be a consequence of a poleward expansion of the northern crest of the equatorial ionization anomaly. The enhanced airglow propagating from the north and the TEC waves resulted from energy injected at auroral latitudes as confirmed by magnetometer observations in Scandinavia.

  19. Gravitational frequency shift effect in the solar system

    International Nuclear Information System (INIS)

    Sarmiento G, A.

    1983-01-01

    An extension of the Parameterized Post-Newtonian (PPN) formalism to third order in the expansion parameter m/r (where m = GM/c 2 denotes the mass of the source of the field and r the distance to its center) is used to derive analytical expressions accurate to the same order for the prediction of the experimental measurments of the frequency shift effect on electromagnetic signals travelling within the solar system. An experimental situation is considered for which it is seen that the consequences of including higher order terms are undetectable by present-day observations or experiments. Some deliberations on issues in the historic context in which the development of the relevant ideas took place is considered necessary to round this work out and is presented in an introductory section. (author)

  20. Noise storm coordinated observations

    International Nuclear Information System (INIS)

    Elgaroey, Oe.; Tlamicha, A.

    1983-01-01

    The usually accepted bipolar model of noise storm centers is irrelevant for the present observations. An alternative model has been proposed in which the different sources of a noise storm center are located in different flux tubes connecting active regions with their surroundings. Radio emission is observed from the wide, descending branch of the flux tubes, opposite to the flaring site. The relation between the sense of circular polarization of the radio emission and the magnetic polarity, has been more precisely defined. The radiation is in the ordinary mode with respect to the underlying large scale photospheric magnetic polarity. Thus the ''irregular'' polarity of noice storm center ''B'' is explained. As regards center ''C'', one should note that although the observed radio emission is polarized in the ordinary mode with respect to the leading spot of region HR 17653, center ''C'' is not situated in flux tubes originating from the leading part of this region according to the proposed model. Rather, the radio sources are located in the wide and descending part of flux tubes connecting a large, quiet area of south magnetic polarity with the following part of the region HR 17653 (of north magnetic polarity). Thus it is the polarity of the extended area which determines the polarization of the radio emission. The observed polarization should result rather from the emission process than from complicated conditions of propagation for the radio waves

  1. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  2. About novelty of radiation drug 'Storm in cells'

    International Nuclear Information System (INIS)

    Korchubekov, B.

    2005-01-01

    Drugs 'Storm in cells' is intended for treatment of infection wounds and burns in medical practice. The preparation represents the electro- activated mixture consisting uranium and thorium masses in the mumie base, table salt, activated carbon and water. Advantage of the drug 'Storm in cells' in comparison with prototype is increase of wound and burns repair effectiveness in 10-11 %

  3. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  4. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [CEPT Univ., Ahmedabad (India); Rawal, Rajan [CEPT Univ., Ahmedabad (India)

    2017-08-09

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  5. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    Science.gov (United States)

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  6. Tormenta tiroidea Thyroid storm

    Directory of Open Access Journals (Sweden)

    Lisette Leal Curí

    2012-12-01

    Full Text Available La tormenta tiroidea es una de las situaciones más críticas entre las emergencias endocrinas y tiene una significativa mortalidad. La etiología más común de tirotoxicosis es la enfermedad de Graves y el factor precipitante que predomina es la infección. Clínicamente se caracteriza por la disfunción de varios sistemas (termorregulador, nervioso central, gastrointestinal y cardiovascular, con niveles de hormonas tiroideas libres o totales por encima de los valores normales. El tratamiento debe tener un enfoque multidisciplinario, e incluye medidas de soporte en unidades de cuidados intensivos, normalización de la temperatura corporal, reducción de la producción y liberación de hormonas tiroideas, con antitiroideos de síntesis y yodo respectivamente, bloqueo de los efectos periféricos mediante la administración de beta-bloqueadores, y corrección del factor desencadenante. Una vez que el paciente se encuentra estable es necesario planificar una terapia definitiva que impida la recurrencia futura de la crisis tirotóxica.The thyroid storm is one of the most critical situations in the endocrine emergencies and exhibits a significant mortality rate. The most common etiology of thyrotoxicosis is Graves' disease and the predominant precipitating factor is infection. The clinical characteristics are dysfunction of several systems (heat-regulator, central nervous, gastrointestinal and cardiovascular, and levels of total or free thyroid hormones that exceed the normal values. The treatment must be multidisciplinary and include support measures in intensive care units, normalization of body temperature, reduction of the production and the release of thyroid hormones by using synthesis and iodine anti-thyroid products respectively, blockade of the peripheral effects through administration of Beta-blockers and correction of the unleashing factor. Once the patients are stabilized, it is necessary to plan the final therapy that will prevent the

  7. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine; Chong, Tze-Ling; Wu, Po-Hsien; Dai, Han-Yi; Kao, Yeong-Chuan

    2015-01-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest

  8. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling; Huang, Bin-Juine; Wu, Po-Hsien; Kao, Yeong-Chuan

    2014-01-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector

  9. The Southern Hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm

    OpenAIRE

    Yizengaw, Endawoke

    2004-01-01

    The ionospheric storm evolution process was monitored during the 22 September 1999 magnetic storm over the Australian eastern region, through measurements of the ionospheric Total Electron Content (TEC) from seven Global Positioning Systems (GPS) stations. The spatial and temporal variations of the ionosphere were analysed as a time series of TEC maps. Results of our analysis show that the main ionospheric effect of the storm under consideration are: the long lasting negative storm effect dur...

  10. Investigation of back surface fields effect on bifacial solar cells

    Science.gov (United States)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  11. No Calm After the Storm: A Systematic Review of Human Health Following Flood and Storm Disasters.

    Science.gov (United States)

    Saulnier, Dell D; Brolin Ribacke, Kim; von Schreeb, Johan

    2017-10-01

    Introduction How the burden of disease varies during different phases after floods and after storms is essential in order to guide a medical response, but it has not been well-described. The objective of this review was to elucidate the health problems following flood and storm disasters. A literature search of the databases Medline (US National Library of Medicine, National Institutes of Health; Bethesda, Maryland USA); Cinahl (EBSCO Information Services; Ipswich, Massachusetts USA); Global Health (EBSCO Information Services; Ipswich, Massachusetts USA); Web of Science Core Collection (Thomson Reuters; New York, New York USA); Embase (Elsevier; Amsterdam, Netherlands); and PubMed (National Center for Biotechnology Information, National Institutes of Health; Bethesda, Maryland USA) was conducted in June 2015 for English-language research articles on morbidity or mortality and flood or storm disasters. Articles on mental health, interventions, and rescue or health care workers were excluded. Data were extracted from articles that met the eligibility criteria and analyzed by narrative synthesis. The review included 113 studies. Poisonings, wounds, gastrointestinal infections, and skin or soft tissue infections all increased after storms. Gastrointestinal infections were more frequent after floods. Leptospirosis and diabetes-related complications increased after both. The majority of changes occurred within four weeks of floods or storms. Health changes differently after floods and after storms. There is a lack of data on the health effects of floods alone, long-term changes in health, and the strength of the association between disasters and health problems. This review highlights areas of consideration for medical response and the need for high-quality, systematic research in this area. Saulnier DD , Brolin Ribacke K , von Schreeb J . No calm after the storm: a systematic review of human health following flood and storm disasters. Prehosp Disaster Med. 2017;32(5):568-579.

  12. Effect of light trapping in an amorphous silicon solar cell

    International Nuclear Information System (INIS)

    Iftiquar, S.M.; Jung, Juyeon; Park, Hyeongsik; Cho, Jaehyun; Shin, Chonghoon; Park, Jinjoo; Jung, Junhee; Bong, Sungjae; Kim, Sunbo; Yi, Junsin

    2015-01-01

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V oc ) of 0.87, 0.90 V, short circuit current densities (J sc ) of 14.2, 15.36 mA/cm 2 respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d i ) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d i while the V oc and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d i = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J sc and red response of the external quantum efficiency to 16.6 mA/cm 2 and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J sc increases and V oc decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J sc improved from 15.4 mA/cm 2 to 16.6 mA/cm 2 due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE

  13. Discrimination between preseismic electromagnetic anomalies and solar activity effects

    Science.gov (United States)

    Koulouras, Gr; Balasis, G.; Kontakos, K.; Ruzhin, Y.; Avgoustis, G.; Kavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kHz to very high MHz frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only at laboratory but also at geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated to earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to related to a few sources, i.e., they might be atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, lithospheric effect, namely pre-seismic activity. We focus on this point. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the herein presented set of criteria these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  14. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  15. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  16. Hydrogen escape from Mars enhanced by deep convection in dust storms

    Science.gov (United States)

    Heavens, Nicholas G.; Kleinböhl, Armin; Chaffin, Michael S.; Halekas, Jasper S.; Kass, David M.; Hayne, Paul O.; McCleese, Daniel J.; Piqueux, Sylvain; Shirley, James H.; Schofield, John T.

    2018-02-01

    Present-day water loss from Mars provides insight into Mars's past habitability1-3. Its main mechanism is thought to be Jeans escape of a steady hydrogen reservoir sourced from odd-oxygen reactions with near-surface water vapour2, 4,5. The observed escape rate, however, is strongly variable and correlates poorly with solar extreme-ultraviolet radiation flux6-8, which was predicted to modulate escape9. This variability has recently been attributed to hydrogen sourced from photolysed middle atmospheric water vapour10, whose vertical and seasonal distribution is only partly characterized and understood11-13. Here, we report multi-annual observational estimates of water content and dust and water transport to the middle atmosphere from Mars Climate Sounder data. We provide strong evidence that the transport of water vapour and ice to the middle atmosphere by deep convection in Martian dust storms can enhance hydrogen escape. Planet-encircling dust storms can raise the effective hygropause (where water content rapidly decreases to effectively zero) from 50 to 80 km above the areoid (the reference equipotential surface). Smaller dust storms contribute to an annual mode in water content at 40-50 km that may explain seasonal variability in escape. Our results imply that Martian atmospheric chemistry and evolution can be strongly affected by the meteorology of the lower and middle atmosphere of Mars.

  17. Solar Effects of Low-Earth Orbit objects in ORDEM 3.0

    Science.gov (United States)

    Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.

    2014-01-01

    Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.

  18. Climate change and wind erosion by dust storms

    International Nuclear Information System (INIS)

    Wheaton, E.E.; Wittrock, V.

    1991-01-01

    Dust storms and their associated wind erosion are thought to be almost synonymous with drought. Dust storms have varying impacts including sandblasting and burying crops, wind erosion of soil, health effects and traffic accidents. A comparison of drought periods for southern Saskatchewan with dust storm frequencies for the period 1977-1988 revealed that the worst drought conditions coincided with the greatest April dust storm frequencies, with 1981 having the worst drought, and secondary spring droughts occurring in 1977, 1988, 1980 and 1982, and spring dust storm peaks occurring, in order of magnitude, in 1981, 1977, 1987, and 1982. An increase in atmospheric dust particles may lead to enhanced atmospheric subsidence and associated drought, and could be a positive feedback for drought intensity. Wind erosion potential may rise with rising temperature due to decreased vegetation cover, but the effect might be offset by rising precipitation

  19. Effects of increased solar ultraviolet radiation on terrestrial plants

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Teramura, A.H.; Tevini, M.; Bornman, J.F.; Björn, L.O.; Kulandaivelu, G.

    1995-01-01

    Physiological and developmental processes of plants are affected by UV-B radiation, even by the amount of UV-B in present-day sunlight. Plants also have several mechanisms to ameliorate or repair these effects and may acclimate to a certain extent to increased levels of UV-B. Nevertheless, plant growth can be directly affected by UV-B radiation. Response to UV-B also varies considerably among species and also cultivars of the same species. In agriculture, this may necessitate using more UV-B-tolerant cultivars and breeding new ones. In forests and grasslands, this will likely result in changes in species composition; therefore there are implications for the biodiversity in different ecosystems. Indirect changes caused by UV-B-such as changes in plant form, biomass allocation to parts of the plant, timing of developmental phases and secondary metabolism-may be equally, or sometimes more important than damaging effects of UV-B. These changes can have important implications for plant competitive balance, herbivory, plant pathogens, and biogeochemical cycles. These ecosystem-level effects can be anticipated, but not easily predicted or evaluated. Research at the ecosystem level for solar UV-B is barely beginning. Other factors, including those involved in climate change such as increasing CO2, also interact with UV-B. Such reactions are not easily predicted, but are of obvious importance in both agriculture and in nonagricultural ecosystems

  20. TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Vech, Daniel; Chen, Christopher H K

    2016-01-01

    We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.

  1. TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Vech, Daniel; Chen, Christopher H K, E-mail: dvech@umich.edu [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-11-20

    We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R{sub E}), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.

  2. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  3. Statistical analysis of solar events associated with SSC over one year of solar maximum during cycle 23: propagation and effects from the Sun to the Earth

    Science.gov (United States)

    Cornilleau-Wehrlin, Nicole; Bocchialini, Karine; Menvielle, Michel; Chambodut, Aude; Fontaine, Dominique; Grison, Benjamin; Marchaudon, Aurélie; Pick, Monique; Pitout, Frédéric; Schmieder, Brigitte; Régnier, Stéphane; Zouganelis, Yannis

    2017-04-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, helicity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The observed Sun-to-Earth travel times are compared to those estimated using existing simple models of propagation in the interplanetary medium. This comparison is used to statistically assess performances of various models. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach (for instance the all 12 well identified Magnetic Clouds of 2002 give rise to SSCs).

  4. Effects of the provisions of the corporate and personal income tax codes on solar investment decisions

    Science.gov (United States)

    Sedmak, M. R.

    The effects of the provisions of the existing corporate and personal income tax codes on solar investment decisions are analyzed. It is shown that the provisions of a tax code do not discriminate against investment in solar technologies if the present value of depreciation and interest expense tax deductions over the relevant decision period is equal to the present value of actual capital expenses. However, on the basis of a quantitative analyses, it is concluded that the existing corporate income tax code does discriminate against solar investments for the majority of corporations, although the 25 percent tax credit available to businesses for solar investments is sufficient to alleviate the distortion in most cases. In contrast, the provisions of the existing personal income tax code favor solar investments over investments in less capital intensive energy generating units, as the interest paid on loads used to finance solar investments made by individuals is tax deductible, while conventional fuel expenses are not deductible.

  5. Effect of silicon solar cell processing parameters and crystallinity on mechanical strength

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, V.A.; Yunus, A.; Janssen, M.; Richardson, I.M. [Delft University of Technology, Department of Materials Science and Engineering, Delft (Netherlands); Bennett, I.J. [Energy Research Centre of the Netherlands, Solar Energy, PV Module Technology, Petten (Netherlands)

    2011-01-15

    Silicon wafer thickness reduction without increasing the wafer strength leads to a high breakage rate during subsequent handling and processing steps. Cracking of solar cells has become one of the major sources of solar module failure and rejection. Hence, it is important to evaluate the mechanical strength of solar cells and influencing factors. The purpose of this work is to understand the fracture behavior of silicon solar cells and to provide information regarding the bending strength of the cells. Triple junctions, grain size and grain boundaries are considered to investigate the effect of crystallinity features on silicon wafer strength. Significant changes in fracture strength are found as a result of metallization morphology and crystallinity of silicon solar cells. It is observed that aluminum paste type influences the strength of the solar cells. (author)

  6. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  7. Relative outflow enhancements during major geomagnetic storms – Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Schillings

    2017-12-01

    Full Text Available The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst  < −100 nT or Kp  > 7+. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere are distorted during large magnetic storms, we use both plasma beta (β and ion characteristics to define a spatial box where the upward O+ flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only O+ data were used because H+ may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004 and the highest scaled O+ outflow observed is 2  ×  1014 m−2 s−1 (29 October 2003.

  8. Storm Warnings for Cuba

    Science.gov (United States)

    1994-01-01

    Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet : order@rand.org. al Accesion For "Ni %&’ Storm WarningsDTI’ TAB E03 --- - - -for...reaction leading to an uncontrol- lable burgeoning of private entrepreneurial activity. As one observer 14See Acuerdo del Buro Politico , "Para llevar a...34 10Comisi6n de Relaciones Internacionales, Asamblea Nacional del Poder Popular, Datos, Reflexiones y Argumentos Sobre la Actual Situaci6n de Cuba, n.p

  9. The women day storm

    OpenAIRE

    Parnowski, Aleksei; Polonska, Anna; Semeniv, Oleg

    2012-01-01

    On behalf of the International Women Day, the Sun gave a hot kiss to our mother Earth in a form of a full halo CME generated by the yesterday's double X-class flare. The resulting geomagnetic storm gives a good opportunity to compare the performance of space weather forecast models operating in near-real-time. We compare the forecasts of most major models and identify some common problems. We also present the results of our own near-real-time forecast models.

  10. Effect of soil solarization using plastic mulch in controlling root-knot ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... effect of soil solarization using plastic mulch in controlling root-knot nematode infestation and yield of ... addition to their increased toxic effects in the soil over the .... thereby promoting conducive environment for the utiliza- ...

  11. Studies of effect of heterocyclic dyes in photogalvanic cells for solar ...

    Indian Academy of Sciences (India)

    Unknown

    Studies of effect of heterocyclic dyes in photogalvanic cells for solar ... observed and current–voltage characteristics of the cell studied, and a mechanism has been proposed for the generation ... dye work effectively in the strong alkaline range.

  12. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  13. Equatorial storm sudden commencements and interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1980-01-01

    A comparison is made of the signatures of interplanetary (IP) shocks in the B and theta plots of interplanetary magnetic field (IMF) data of satellites Explorer 33, 34 and 35 and in the H magnetograms at ground observatories within the equatorial electrojet belt, Huancayo, Addis Ababa and Trivandrum associated with major storm sudden commencements during 1967-70. The IP shocks showing sudden increase of the scalar value of IMF, i.e. B without any change of the latitude theta or with the southward turning of theta, were followed by a purely positive sudden increase of H, at any of the magnetic observatories, either on the dayside or the nightside of the earth. The IP shocks identified by a sudden increase of B and with the northward turning of the latitude theta (positive ΔBsub(z)) were associated with purely positive sudden commencement (SC) at the observatories in the nightside, but at the equatorial observatories in the dayside of the earth the signature of the shock was a SC in H with a preliminary negative impulse followed by the main positive excursion (SC-+). It is suggested that the SCs in H at low latitudes are composed of two effects, viz. (i) one due to hydromagnetic pressure on the magnetosphere by the solar plasma and (ii) the other due to the induced electric field associated with the solar wind velocity, V and the Z-component of the IP magnetic field (E = - V x Bsub(z)). The effect of magnetosphere electric field is faster than the effect due to the compression of the magnetosphere by the impinging solar plasma. The negative impulse of SC-+ at low latitude is seen at stations close to the dip equator and only during daytime due to the existence of high ionospheric conductivities in the equatorial electrojet region. (author)

  14. Radial growth of hardwoods following the 1998 ice storm in New Hampshire and Maine

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    2003-01-01

    Ice storms and resulting injury to tree crowns occur frequently in North America. Reaction of land managers to injury caused by the regional ice storm of January 1998 had the potential to accelerate the harvesting of northern hardwoods due to concern about the future loss of wood production by injured trees. To assess the effect of this storm on radial stem growth,...

  15. Effectiveness of solar disinfection (SODIS) in rural coastal Bangladesh.

    Science.gov (United States)

    Islam, Md Atikul; Azad, Abul Kalam; Akber, Md Ali; Rahman, Masudur; Sadhu, Indrojit

    2015-12-01

    Scarcity of drinking water in the coastal area of Bangladesh compels the inhabitants to be highly dependent on alternative water supply options like rainwater harvesting system (RWHS), pond sand filter (PSF), and rain-feed ponds. Susceptibility of these alternative water supply options to microbial contamination demands a low-cost water treatment technology. This study evaluates the effectiveness of solar disinfection (SODIS) to treat drinking water from available sources in the southwest coastal area of Bangladesh. A total of 50 households from Dacope upazila in Khulna district were selected to investigate the performance of SODIS. Dat