WorldWideScience

Sample records for solar semidiurnal tide

  1. Secular Changes in the Solar Semidiurnal Tide of the Western North Atlantic Ocean

    Science.gov (United States)

    Ray, Richard D.

    2009-01-01

    An analysis of twentieth century tide gauge records reveals that the solar semidiurnal tide S, has been decreasing in amplitude along the eastern coast of North America and at the mid-ocean site Bermuda. In relative terms the observed rates are unusually large, of order 10% per century. Periods of greatest change, however, are inconsistent among the stations, and roughly half the stations show increasing amplitude since the late 1990s. Excepting the Gulf of Maine, lunar tides are either static or slightly increasing in amplitude; a few stations show decreases. Large changes in solar, but not lunar, tides suggest causes related to variable radiational forcing, but the hypothesis is at present unproven. Citation: Ray, R. D. (2009), Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean

  2. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides

    Science.gov (United States)

    Gong, Wenping; Schuttelaars, Henk; Zhang, Heng

    2016-05-01

    Different types of tidal asymmetry (see review of de Swart and Zimmerman Annu Rev Fluid Mech 41: 203-229, 2009) are examined in this study. We distinguish three types of tidal asymmetry: duration and magnitude differences between flood and ebb tidal flow, duration difference between the rising and falling tides. For waterborne substance transport, the first two asymmetries are important while the last one is not. In this study, we take the Huangmaohai Estuary (HE), Pearl River Delta, China as an example to examine the spatio-temporal variations of the tidal asymmetry in a mixed semidiurnal tidal regime and to explain them by investigating the associated mechanisms. The methodology defining the tidal duration asymmetry and velocity skewness, proposed by Nidzieko (J Geophys Res 115: C08006. doi: 10.1029/2009JC005864 , 2010) and synthesized by Song et al. (J Geophys Res 116: C12007. doi: 10.1029/2011JC007270 , 2011), is utilized here and referred to as tidal duration asymmetry (TDA) and flow velocity asymmetry (FVA), respectively. The methodology is further used to quantify the flow duration asymmetry (FDA). A positive asymmetry means a shorter duration of low water slack for FDA, a shorter duration of the rising tide for TDA, and a flood dominance for FVA and vice versa. The Regional Ocean Modeling System (ROMS) model is used to provide relatively long-term water elevation and velocity data and to conduct diagnostic experiments. In the HE, the main tidal constituents are diurnal tides K 1, O 1 and semidiurnal tides M 2 and S 2. The interaction among the diurnal and semidiurnal tides generates a negative tidal asymmetry, while the interactions among semidiurnal tides and their overtides or compound tides result in a positive tidal asymmetry. The competition among the above interactions determines the FDA and TDA, whereas for the FVA, aside from the interaction among different tidal constituents, an extra component, the residual flow, plays an important role. The

  3. Semidiurnal Solar Tide during the Fall Transition in the Northern Hemisphere

    Science.gov (United States)

    Conte, J. F.; Chau, J. L.; Laskar, F.; Stober, G.; Schmidt, H.

    2017-12-01

    We present an analysis of the semidiurnal solar tide (S2) during the fall transition in the Northern Hemisphere mesosphere and lower thermosphere (MLT) region. The tidal information has been derived from wind measurements provided by meteor radars at Andenes (69°N) and Juliusruh (54°N). During the autumn, S2 is characterized by a sudden and pronounced decrease occurring around day 285, every year and at all height levels. The spring transition also shows a decrease of S2, but that progressively extends from lower to higher altitudes during an interval of 15 to 40 days whose starting date varies from one year to the next. Possible explanations for the differences observed between fall and spring time periods are investigated using Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) simulations of zonal and meridional winds, as well as ozone concentrations. Our results indicate that both, the westward propagating wave number 2 migrating tide (SW2) and the westward propagating wave number 1 non-migrating tide (SW1) decrease significantly during the fall, which results in a pronounced decrease of S2, as seen in the observations. During the spring, SW2 also decreases while SW1 remains approximately constant or slightly increases, resulting in a not so pronounced and more extended in time decrease of S2. SW2 and ozone concentrations do not show significant differences from one year to the next. SW1 on the other hand, presents considerable variability, which suggests that its source might be connected to interaction with other waves, such as gravity and planetary waves.

  4. Seasonal variation of semidiurnal internal tides in the East/Japan Sea

    Science.gov (United States)

    Jeon, Chanhyung; Park, Jae-Hun; Varlamov, Sergey M.; Yoon, Jong-Hwan; Kim, Young Ho; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik; Lee, Jae Hak; Kim, Cheol-Ho

    2014-05-01

    The seasonal variation of semidiurnal internal tides in the East/Japan Sea was investigated using 25 month long output from a real-time ocean forecasting system. The z coordinate eddy-resolving high-resolution numerical model, called the RIAM ocean model, incorporates data assimilation that nudges temperature and salinity fields together with volume transport through the Korea Strait to produce realistic oceanic currents and stratification. In addition to atmospheric forcing, it includes tidal forcing of 16 major components along open boundaries. The model generates energetic semidiurnal internal tides around the northern entrance of the Korea Strait. Energy conversion from barotropic to baroclinic (internal) tides varies seasonally with maxima in September (ranging 0.48-0.52 GW) and minima in March (ranging 0.11-0.16 GW). This seasonal variation is induced by the seasonality in stratification near the southwestern East/Japan Sea. The propagation distance of the internal tides is associated with generation intensity and wavelength. From late summer to early winter, the semidiurnal internal tides travel relatively far from the generation region due to stratification changes; its energy dissipates less as a result of longer wavelengths. Our results suggest that spatiotemporal variation of internal-tide-induced mixing due to the seasonality in the generation, propagation, and dissipation of internal tides should be considered for a more realistic simulation of water masses and circulation in models of the East/Japan Sea.

  5. Semidiurnal tide in the E region from incoherent scatter measurements at Arecibo

    International Nuclear Information System (INIS)

    Wand, R.H.

    1976-01-01

    A five-pulse technique was implemented for the 430 MHz incoherent scatter radar at Arecibo Observatory (18.3 0 N) to explore the detailed thermal structure of the E region from 105 to 130 km with an altitude resolution of 3 km. Five days of measurements in Sept-Oct 1970 showed long-period temperature fluctuations having a downward phase progression. The temperature oscillations are interpreted as manifestations of a semidiurnal tide which is quite stable over a 12-day period, together with a superimposed spectrum of shorter-period gravity waves which are randomly phased from day to day. The semidiurnal tide increased to a maximum amplitude of 17 percent of the mean temperature near 115 km and decreased above this altitude as dissipative effects became important. The vertical wavelength, deduced from the altitude variation of semidiurnal tidal phase, showed a smooth increase from about 20 km at an altitude of 109 km to about 50 km at an altitude of 127 km. No ready interpretation of the observed tidal characteristics was possible in terms of present theories for the semidiurnal tide. Altitude profiles of mean daytime temperature and ion-neutral collision frequency were also obtained from the measurements. The mean temperature gradient between 115 and 130 km was 15 K/km, which is somewhat larger than that given by current atmospheric models

  6. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    Science.gov (United States)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  7. Solar tides in the equatorial upper thermosphere: A comparison between AE-E data and the TIGCM for solstice, solar minimum conditions

    International Nuclear Information System (INIS)

    Burrage, M.D.; Storz, M.F.; Abreu, V.J.; Fesen, C.G.; Roble, R.G.

    1991-01-01

    Equatorial thermospheric tidal temperatures and densities inferred from Atmosphere Explorer E (AE-E) mass spectrometer data are compared with theoretical predictions from the National Center for Atmospheric Research Thermosphere/Ionisphere General Circulation Model (TIGCM) for solar minimum, solstice conditions. The thermospheric diurnal and semidiurnal tides are excited in situ by solar heating and by ion-neutral momentum coupling. Semidiurnal tides are also generated by upward propagating waves excited by heating in the lower atmosphere. The model calculations include all of these sources. The TIGCM reproduces the gross tidal features observed by the satellite, including the midnight temperature anomaly, and the diurnal phases are in good agreement for the densities of atomic oxygen and molecular nitrogen. However, for the neutral temperature, the predicted phases are 1-2 hours earlier than observed. In addition, the diurnal temperature and density amplitudes predicted by the model are considerably weaker than indicated by the AE-E measurements. The semidiurnal variations found in the observations agree well with the model for December solstice but not for June. The present results indicate that upward propagating tides from the lower atmosphere are responsible for at least half of the amplitude of the semidiurnal tide in the upper thermosphere

  8. Global distributions of diurnal and semi-diurnal tides: observations from HRDI-UARS of the MLT region

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2002-11-01

    Full Text Available HRDI (High Resolution Doppler Interferometer-UARS winds data have been analyzed in 4° latitude by 10° longitude cells at 96 km to obtain global contour maps of solar-tidal amplitudes and phases, and also mean winds. The solstices June–July (1993, December–January (1993–1994, and one equinox September–October (1994 are shown.  The 24-h diurnal tide that maximizes near the 20–25° latitude has significant seasonal changes with equinoctial maxima, and very clear longitudinal variability. Maxima are very clear over the oceans. In contrast, the 12-h semi-diurnal tides that maximize near the 40–55° latitude have very strong seasonal changes with winter maxima, and more modest longitudinal changes. The similarities with MLT (mesosphere-lower thermosphere radar observations (90 km and the GSWM (Global Scale Wave Model are very satisfactory. The mean winds are consistent with expectations and show clear poleward flow from summer to winter hemispheres in the solstices.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides Radio science (remote sensing

  9. A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth

    Science.gov (United States)

    Lau, Harriet C. P.; Yang, Hsin-Ying; Tromp, Jeroen; Mitrovica, Jerry X.; Latychev, Konstantin; Al-Attar, David

    2015-08-01

    Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate

  10. Global distributions of diurnal and semi-diurnal tides: observations from HRDI-UARS of the MLT region

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    Full Text Available HRDI (High Resolution Doppler Interferometer-UARS winds data have been analyzed in 4° latitude by 10° longitude cells at 96 km to obtain global contour maps of solar-tidal amplitudes and phases, and also mean winds. The solstices June–July (1993, December–January (1993–1994, and one equinox September–October (1994 are shown. 

    The 24-h diurnal tide that maximizes near the 20–25° latitude has significant seasonal changes with equinoctial maxima, and very clear longitudinal variability. Maxima are very clear over the oceans. In contrast, the 12-h semi-diurnal tides that maximize near the 40–55° latitude have very strong seasonal changes with winter maxima, and more modest longitudinal changes. The similarities with MLT (mesosphere-lower thermosphere radar observations (90 km and the GSWM (Global Scale Wave Model are very satisfactory. The mean winds are consistent with expectations and show clear poleward flow from summer to winter hemispheres in the solstices.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides Radio science (remote sensing

  11. Global distributions of diurnal and semidiurnal tides: observations from HRDI-UARS of the MLT region and comparisons with GSWM-02 (migrating, nonmigrating components

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2004-04-01

    Full Text Available HRDI (High Resolution Doppler Interferometer-UARS winds data have been analyzed in 4°-latitude by 10°-longitude cells at 96km to obtain the global distribution of the solar-tidal amplitudes and phases. The solstices June–July (1993, December–January (1993–1994, and one equinox (September–October, 1994 are analyzed. In an earlier paper (Manson et al., 2002b the emphasis was solely upon the longitudinal and latitudinal variations of the amplitudes and phases of the semidiurnal (12h and diurnal (24h tides. The longitudinal structures were shown to be quite distinctive, and in the case of the EW component of the diurnal tide there were typically four maxima/perturbations of amplitudes or phases around a latitude circle. In this case they tended to be associated with the locations of the major oceans. Here, a spatial complex spectral analysis has been applied to the data set, to obtain the zonal wave numbers for the tides as functions of latitude. For the diurnal tide the dominant s=1 migrating component and nonmigrating tides with wave numbers s=–3, –2, 0, 2 are identified; and for the semidiurnal tide, as well as the dominant s=2 migrating component, the spectra indicate the presence of nonmigrating tides with wave numbers s=–2, 0, 4. These wave numbers are also simply related to the global longitudinal structures in the tidal amplitudes and phases. Comparisons are made with the Global Scale Wave Model (GSWM-02, which now incorporates migrating and nonmigrating tides associated with tropospheric latent heat processes, and offers monthly outputs. For the diurnal tide the dominant nonmigrating tidal spectral feature (94km is for wave number s=–3; it is relatively stronger than in the HRDI winds, and produces quite consistent structures in the global tidal fields with four longitudinal maxima. Overall, the modelled 24-h tidal amplitudes are larger than observed during the equinox beyond 40° latitude. For the semidiurnal tide

  12. A numerical study on the impact of nonlinear interactions on the amplitude of the migrating semidiurnal tide

    Directory of Open Access Journals (Sweden)

    C. M. Huang

    2006-12-01

    Full Text Available To quantitatively study the effects of nonlinear interactions on tide structure, a nonlinear numerical tidal model is developed, and the reliability and convergence of the adopted algorithm and coding are checked by numerical experiments. Under the same conditions as those employed by the GSWM-00 (Global Scale Wave Model 2000, our model provides the nonlinear quasi-steady solution of the migrating semidiurnal tide, which differs from the GSWM-00 result (the linear steady solution in the MLT region, especially above 100 km. Additionally, their amplitude difference displays a remarkable month-to-month variation, and its significant magnitudes occur during the month with strong semidiurnal tide. A quantitative analysis suggests that the main cause for the amplitude difference is that the initial migrating 12-h tide will interact with the mean flow as well as the nonlinearity-excited 6-h tide, and subsequently yield a new 12-h tidal part. Furthermore, our simulations also show that the mean flow/tidal interaction will significantly alter the background wind and temperature fields. The large magnitudes of the tidal amplitude difference and the background alteration indicate that the nonlinear processes involved in tidal propagations should be comprehensively considered in the description of global atmospheric dynamics in the MLT region. The comparisons among our simulations, the GSWMs and some observations of tides suggest that the nonlinearity-induced tidal structure variation could be a possible mechanism to account for some discrepancies between the GSWMs and the observations.

  13. Global distributions of diurnal and semidiurnal tides: observations from HRDI-UARS of the MLT region and comparisons with GSWM-02 (migrating, nonmigrating components

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2004-04-01

    Full Text Available HRDI (High Resolution Doppler Interferometer-UARS winds data have been analyzed in 4°-latitude by 10°-longitude cells at 96km to obtain the global distribution of the solar-tidal amplitudes and phases. The solstices June–July (1993, December–January (1993–1994, and one equinox (September–October, 1994 are analyzed.

    In an earlier paper (Manson et al., 2002b the emphasis was solely upon the longitudinal and latitudinal variations of the amplitudes and phases of the semidiurnal (12h and diurnal (24h tides. The longitudinal structures were shown to be quite distinctive, and in the case of the EW component of the diurnal tide there were typically four maxima/perturbations of amplitudes or phases around a latitude circle. In this case they tended to be associated with the locations of the major oceans. Here, a spatial complex spectral analysis has been applied to the data set, to obtain the zonal wave numbers for the tides as functions of latitude. For the diurnal tide the dominant s=1 migrating component and nonmigrating tides with wave numbers s=–3, –2, 0, 2 are identified; and for the semidiurnal tide, as well as the dominant s=2 migrating component, the spectra indicate the presence of nonmigrating tides with wave numbers s=–2, 0, 4. These wave numbers are also simply related to the global longitudinal structures in the tidal amplitudes and phases.

    Comparisons are made with the Global Scale Wave Model (GSWM-02, which now incorporates migrating and nonmigrating tides associated with tropospheric latent heat processes, and offers monthly outputs. For the diurnal tide the dominant nonmigrating tidal spectral feature (94km is for wave number s=–3; it is relatively stronger than in the HRDI winds, and produces quite consistent structures in the global tidal fields with four longitudinal maxima. Overall, the modelled 24-h tidal amplitudes are larger than observed

  14. Barometric Tides from ECMWF Operational Analyses

    Science.gov (United States)

    Ray, R. D.; Ponte, R. M.

    2003-01-01

    The solar diurnal and semidiurnal tidal oscillations in surface pressure are extracted from the the operational analysis product of the European Centre for Medium Range Weather Forecasting (ECMWF). For the semidiurnal tide this involves a special temporal interpolation, following Van den Dool and colleagues. The resulting tides are compared with a ground truth tide dataset, a compilation of well-determined tide estimates deduced from long time series of station barometer measurements. These comparisons show that the ECMWF tides are significantly more accurate than the tides deduced from two other widely available reanalysis products. Spectral analysis of ECMWF pressure series shows that the tides consist of sharp central peaks with modulating sidelines at integer multiples of 1 cycle/year, superimposed on a broad cusp of stochastic energy. The integrated energy in the cusp dominates that of the sidelines. This complicates development of a simple model that can characterize the full temporal variability of the tides.

  15. Atmospheric Tides in Gale Crater, Mars

    Science.gov (United States)

    Guzewich, Scott D,; Newman, C. E; de la Torre Juarez, M.; Wilson, R. J.; Lemmon, M.; Smith, M. D.; Kahanpaa, H.; Harri, A.-M.

    2015-01-01

    Atmospheric tides are the primary source of daily air pressure variation at the surface of Mars. These tides are forced by solar heating of the atmosphere and modulated by the presence of atmospheric dust, topography, and surface albedo and thermal inertia. This results in a complex mix of sun-synchronous and nonsun- synchronous tides propagating both eastward and westward around the planet in periods that are integer fractions of a solar day. The Rover Environmental Monitoring Station on board the Mars Science Laboratory has observed air pressure at a regular cadence for over 1 Mars year and here we analyze and diagnose atmospheric tides in this pressure record. The diurnal tide amplitude varies from 26 to 63 Pa with an average phase of 0424 local true solar time, while the semidiurnal tide amplitude varies from 5 to 20 Pa with an average phase of 0929. We find that both the diurnal and semidiurnal tides in Gale Crater are highly correlated to atmospheric opacity variations at a value of 0.9 and to each other at a value of 0.77, with some key exceptions occurring during regional and local dust storms. We supplement our analysis with MarsWRF general circulation modeling to examine how a local dust storm impacts the diurnal tide in its vicinity. We find that both the diurnal tide amplitude enhancement and regional coverage of notable amplitude enhancement linearly scales with the size of the local dust storm. Our results provide the first long-term record of surface pressure tides near the martian equator.

  16. Determination of semi-diurnal ocean tide loading constituents using GPS in Alaska

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Tscherning, C.C.

    2001-01-01

    During the past years, the accuracy of relative positioning using differential GPS (DGPS) has been improved significantly. The present accuracy of DGPS allows us to directly estimate the differential amplitudes and Greenwich phase lags of the main semi-diurnal ocean tide loading constituents (S-2......, K-2, M-2 and N-2). For this purpose a test is carried out using two GPS stations in Alaska. One station, Chi3, is located on an island in the Gulf of Alaska, while the second station, Fair, is located far away from the coastal areas. Processing hourly GPS solutions for the baseline between Fair...

  17. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2–70° N, modelled tides (GSWM, CMAM

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2002-05-01

    Full Text Available In an earlier paper (Manson et al., 1999a tidal data (1990–1997 from six Medium Frequency Radars (MFR were compared with the Global Scale Wave Model (GSWM, original 1995 version. The radars are located between the equator and high northern latitudes: Christmas Island (2° N, Hawaii (22° N, Urbana (40° N, London (43° N, Saskatoon (52° N and Tromsø (70° N. Common harmonic analysis was applied, to ensure consistency of amplitudes and phases in the 75–95 km height range. For the diurnal tide, seasonal agreements between observations and model were excellent while for the semi-diurnal tide the seasonal transitions between clear solstitial states were less well captured by the model. Here the data set is increased by the addition of two locations in the Pacific-North American sector: Yamagawa 31° N, and Wakkanai 45° N. The GSWM model has undergone two additional developments (1998, 2000 to include an improved gravity wave (GW stress parameterization, background winds from UARS systems and monthly tidal forcing for better characterization of seasonal change. The other model, the Canadian Middle Atmosphere Model (CMAM which is a General Circulation Model, provides internally generated forcing (due to ozone and water vapour for the tides. The two GSWM versions show distinct differences, with the 2000 version being either closer to, or further away from, the observations than the original 1995 version. CMAM provides results dependent upon the GW parameterization scheme inserted, but one of the schemes provides very useful tides, especially for the semi-diurnal component.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  18. The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2013-08-01

    Full Text Available Based on 10 yr of magnetic field measurements by the CHAMP satellite we draw a detailed picture of the equatorial electrojet (EEJ tidal variations. For the first time the complete EEJ spectrum related to average solar tides has been compiled. A large fraction of the resulting spectrum is related to the switch on/off of the EEJ between day and night. This effect has carefully been considered when interpreting the results. As expected, largest amplitudes are caused by the migrating tides representing the mean diurnal variation. Higher harmonics of the daily variations show a 1/f fall-off in amplitude. Such a spectrum is required to represent the vanishing of the EEJ current at night. The migrating tidal signal exhibits a distinct annual variation with large amplitudes during December solstice and equinox seasons but a depression by a factor of 1.7 around June–July. A rich spectrum of non-migrating tidal effects is deduced. Most prominent is the four-peaked longitudinal pattern around August. Almost 90% of the structure can be attributed to the diurnal eastward-propagating tide DE3. In addition the westward-propagating DW5 is contributing to wave-4. The second-largest non-migrating tide is the semi-diurnal SW4 around December solstice. It causes a wave-2 feature in satellite observations. The three-peaked longitudinal pattern, often quoted as typical for the December season, is significantly weaker. During the months around May–June a prominent wave-1 feature appears. To first order it represents a stationary planetary wave SPW1 which causes an intensification of the EEJ at western longitudes beyond 60° W and a weakening over Africa/India. In addition, a prominent ter-diurnal non-migrating tide TW4 causes the EEJ to peak later, at hours past 14:00 local time in the western sector. A particularly interesting non-migrating tide is the semi-diurnal SW3. It causes largest EEJ amplitudes from October through December. This tidal component shows a

  19. Non-Migrating Tides, with Zonally Symmetric Component, Generated in the Mesosphere

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we discuss results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). The NSM extends from the ground into the thermosphere and describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. With emphasis on the non-migrating tides, having periods of 24 and 12 hours, we discuss our modeling results that account for the classical migrating solar excitation sources only. As reported earlier, the NSM reproduces the observed seasonal variations and in particular the large equinoctial maxima in the amplitude of the migrating diurnal tide at altitudes around 90 km. Filtering of the tide by the zonal circulation and GW momentum deposition was identified as the cause. The GWs were also shown to produce a strong non-linear interaction between the diurnal and semi-diurnal tides. Confined largely to the mesosphere, the NSM produces through dynamical interactions a relatively large contribution of non-migrating tides. A striking feature is seen in the diurnal and semi-diurnal oscillations of the zonal mean (m = 0). Eastward propagating tides are also generated for zonal wave numbers m = 1 to 4. When the NSM is run without GWs, the amplitudes for the non-migrating tides, including m = 0, are generally small. Planetary wave interaction and non-linear coupling that involves the filtering of GWs and related height integration of dynamical features are discussed as possible mechanisms for generating these non-migrating tides in the NSM. As is the case for the solar migrating tides, the non-migrating tides reveal persistent seasonal variations. Under the influence of the QBO and SAO, interannual variations are produced.

  20. Mean zonal and meridional accelerations and mean heating induced by solar tides for equinox and solstice conditions

    International Nuclear Information System (INIS)

    Groves, G.V.; Forbes, J.M.

    1985-01-01

    Evaluations are presented of the momentum and energy flux divergences of the diurnal and semidiurnal tidal fields calculated by Forbes from 0 to 400 km altitude. Results are presented in the form of meridional cross-sections from 0 to 78 0 N or S latitude with a 6 0 latitude interval. Comparisons are made with evaluations of the momentum flux divergences of the diurnal tide by Miyahara and good agreement is obtained in the lower thermosphere (below about 130 km) but a large disparity arises in the upper thermosphere. In the lower thermosphere momentum flux divergences of the semidiurnal tide are comparable with those of the diurnal tide and should be included in general circulation calculations of the 90-120 km region. (author)

  1. The magnetic tides of Honolulu

    Science.gov (United States)

    Love, Jeffrey J.; Rigler, Erin Joshua

    2013-01-01

    We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.

  2. Climatologies of tides at mid-latitudes in the lower termosphere

    International Nuclear Information System (INIS)

    Cevolani, G.

    1991-01-01

    Time variations of the semi-diurnal and diurnal tides observed at Budrio (45N, 12E) in the wind structure of the lower termosphere ((80-110) km) throughout the period 1976-1990 are herewith represented as monthly contours of both amplitudes and phases vs. height. The semi-diurnal tide has more marked seasonal variations, showing amplitudes generally larger than the diurnal ones ((10-30) m/s vs. (5-15) m/s). The vertical wavelengths are longer in summer than in winter, at least below 100 km. Agreement with new numerical models for semi-diurnal tide at 50N appears to be satisfactory

  3. Short-term variations in mesozooplankton, ichthyoplankton, and nutrients associated with semi-diurnal tides in a patagonian Gulf

    Science.gov (United States)

    Castro, L. R.; Cáceres, M. A.; Silva, N.; Muñoz, M. I.; León, R.; Landaeta, M. F.; Soto-Mendoza, S.

    2011-03-01

    The relationships between the distribution of different zooplankton and ichthyoplankton stages and physical and chemical variables were studied using samples and data (CTD profiles, ADCP and current meter measurements, nutrients, mesozooplankton, ichthyoplankton) obtained from different strata during two 24-h cycles at two oceanographic stations in a Chilean Patagonian gulf during the CIMAR 10-Fiordos cruise (November, 2004). A station located at the Chacao Channel was dominated by tidal mixing and small increments in surface stratification during high tides, leading to decreased nutrient availability. This agreed with short periods of increased phytoplankton abundance during slack waters at the end of flood currents. Increases in larval density for all zooplankton and ichthyoplankton taxa corresponded to the flooding phases of the tidal cycle. When the larval density data were fit to a sinusoidal model, the regression coefficients were high, suggesting that tides are important features that modulate short-term variations in plankton abundance. All larvae did not vary synchronously with the tidal phase; rather, time lags were observed among species. The abundances of older individuals of the copepodite Rhincalanus nasutus and all zoea stages of the squat lobster Munida gregaria increased during night flood tides, whereas younger stages increased during daytime flood tides. At a station located at the Queullin Pass, which was dominated by vertical stratification patterns, the variations in peak larval density were better fitted to the semi-diurnal sea level fluctuations. Other evidence indicated internal tides below the pycnocline, which could promote larval transport in deeper layers. In the overall picture that emerges from this study, planktonic organisms from different habitats and phylogenetic origins seem to respond to the local tidal regimes. In some cases, this response might be beneficial, transporting these individuals inshore to areas that are rich in

  4. Atmospheric Pressure Corrections in Geodesy and Oceanography: a Strategy for Handling Air Tides

    Science.gov (United States)

    Ponte, Rui M.; Ray, Richard D.

    2003-01-01

    Global pressure data are often needed for processing or interpreting modern geodetic and oceanographic measurements. The most common source of these data is the analysis or reanalysis products of various meteorological centers. Tidal signals in these products can be problematic for several reasons, including potentially aliased sampling of the semidiurnal solar tide as well as the presence of various modeling or timing errors. Building on the work of Van den Dool and colleagues, we lay out a strategy for handling atmospheric tides in (re)analysis data. The procedure also offers a method to account for ocean loading corrections in satellite altimeter data that are consistent with standard ocean-tide corrections. The proposed strategy has immediate application to the on-going Jason-1 and GRACE satellite missions.

  5. Caves as observatories for atmospheric thermal tides: an example from Ascunsă Cave, Romania

    Directory of Open Access Journals (Sweden)

    Virgil Drăgușin

    2018-01-01

    Full Text Available As part of a microclimate study at Ascunsă Cave, Romania, we used Gemini Tinytag Plus 2 data loggers to record cave air temperature variability. At one of the monitoring points we recognized the presence of semidiurnal cycles on the order of a few thousands of a degree Celsius that could be produced under the influence of the semidiurnal tidal components of the Sun (S2 or the Moon (M2. Using a Gemini Tinytag Plus 2 data logger with an external probe we measured core rock temperature and showed that it does not influence the cave air temperature on such short time scales. We thus rejected the possibility that Earth tides, mostly produced by the lunar tidal influence on the Earth’s crust, would have had a semidiurnal influence on cave air temperature. Moreover, time series analysis revealed a 12.00-hour periodicity in temperature data, specific for the S2, allowing us to assign these variations to the influence of the thermo-tidal action of the Sun. Using the Ideal Gas Law and assuming a constant volume and amount of air, we calculated that a theoretical change in atmospheric pressure of around 40 Pa was needed to produce the temperature changes we observed. This agrees with published values of atmospheric pressure changes induced by the semidiurnal solar component of the thermal tides (S2(t. We thus can assign the observed temperature changes to semidiurnal atmospheric pressure changes (S2(p induced by the thermal excitation of the Sun. Our study signals the possibility that readily available data from cave monitoring studies around the world could be used in the study of atmospheric tides. Moreover, it appears that Ascunsă Cave acts as a natural meteorological filter on a short time scale, removing the direct thermal influences of the Sun (especially night and day differences and preserving only the barometric information from the surface.

  6. Tides, the PIG, and 'warm' water

    International Nuclear Information System (INIS)

    Robertson, Robin

    2010-01-01

    The present rapid melting of the Pine Island Glacier (PIG) has been attributed to basal melting driven by the ocean. Specifically, this ocean melting is attributed to currents and tides pumping 'warm' Circumpolar Deep Water (CDW) into the ice shelf cavity. To identify tidal activity in the region, an observational time series of yo-yo CTD (Conductivity, Temperature, and Depth) data collected in the PIG outflow region was analyzed. The water column in front of the PIG consisted of two primary layers, a meltwater layer exiting the ice shelf cavity over a layer of CDW. Semidiurnal tides were present in both layers, with both the strength and direction of the tides differing between the two layers. The upper layer tides were stronger and directed in and out of the cavity, while the lower layer tides were primarily directed along the front of the cavity. Energy was found to be transferred from the semidiurnal tide to other frequencies and to be reflected by the ice shelf front. These mechanisms were most prominent at the interfaces between layers and indicate potential mixing between the layers. In conclusion, tides were found to contribute to the circulation into the ice shelf cavity and also to mixing of the exiting water, which influences pumping of the CDW into the ice shelf cavity and melting of the PIG.

  7. Earthquake swarms and the semidiurnal solid earth tide

    Energy Technology Data Exchange (ETDEWEB)

    Klein, F W

    1976-01-01

    Several correlations between peak earthquake activity during swarms and the phase and stress orientation of the calculated solid earth tide are described. The events correlating with the tide are clusters of swarm earthquakes. Swarm clusters from many sequences recorded over several years are used. Significant tidal correlations (which have less than a 5% chance of being observed if earthquakes were random) are found in the Reykjanes Peninsula in Iceland, the central Mid-Atlantic Ridge, the Imperial Valley and northern Gulf of California, and larger (m/sub b/ greater than or equal to 5.0) aftershocks of the 1965 Rat Islands earthquake. In addition, sets of larger single earthquakes on Atlantic and north-east Pacific fracture zones are significantly correlated with the calculated solid tide. No tidal correlation, however, could be found for the Matsushiro Japan swarm of 1965 to 1967. The earthquake-tide correlations other than those of the Reykjanes Peninsula and Mid-Atlantic Ridge can be interpreted as triggering caused by enhancement of the tectonic stress by tidal stress, i.e. the alignment of fault and tidal principal stresses. All tidal correlations except in the Aleutians are associated with oceanic rifts or their landward extensions. If lithospheric plates are decoupled at active rifts, then tidal stresses channeled along the lithospheric stress guide may be concentrated at ridge-type plate boundaries. Tidal triggering of earthquakes at rifts may reflect this possible amplification of tidal strains in the weakened lithosphere at ridges. 25 figures, 2 tables.

  8. Tides in three enclosed basins: the Baltic, Black and Caspian seas

    Directory of Open Access Journals (Sweden)

    Igor P Medvedev

    2016-04-01

    Full Text Available Tides are the main type of sea level variability in the world ocean. However, oceanic tides penetrate weakly, or do not penetrate at all, into enclosed basins such as the Baltic, Black and Caspian seas. Consequently, only directly forced tides are formed in these basins. Long observation time series (up to 123 years in the Baltic Sea and 38 years in the Black and Caspian seas at numerous stations were used to precisely estimate tidal constituents. High-resolution spectra revealed fine structure of discrete peaks at tidal frequencies. The diurnal radiational constituent S1 (1 cpd, apparently associated with breeze winds, was found to play an important role in general tidal dynamics in these seas. Harmonic analysis of tides for individual yearly series with consecutive vector averaging over the entire observational period was applied to estimate mean amplitudes and phases of tidal constituents. Our findings indicate that the formation and predominance of diurnal or semidiurnal tides in these seas appears to depend on the frequency-selective properties of the basins. Thus, in the Baltic Sea with fundamental modal period of about 27 h, diurnal tides dominate in the major eastern gulfs. In the Black Sea resonant amplification of semidiurnal tides is observed in the northwestern part. The predominance of semidiurnal tides in the Caspian Sea has also probably a resonant nature. Maximum tidal heights estimated for a 100-year period are 23 cm in the Baltic Sea, 18 cm in the Black Sea and 21 cm in the southern Caspian Sea.

  9. Solar and lunar daily geomagnetic variations at Dourbes

    International Nuclear Information System (INIS)

    De Meyer, F.

    1980-01-01

    Spectral analysis of the Dourbes H component hourly data from the period 1960-1978 revealed the existence of a number of minor terms, in addition to the main solar and lunar peaks. The relative amplitudes of oscillations in the geomagnetic spectrum are unrelated with those predicted through lunar tide theory. The minor terms agree more closely with the 27-day amplitude modulation mechanism. A high frequency resolution power spectrum clearly shows the splitting of the solar diurnal and semi-diurnal line, and even of the lunar semi-diurnal line by the annual variation and its harmonics. The correlation between the amplitude of the M 2 wave and the mean sunspot number is of no significance. (author)

  10. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2 to 70°N, and the GSWM tidal model

    Science.gov (United States)

    Manson, A.; Meek, C.; Hagan, M.; Hall, C.; Hocking, W.; MacDougall, J.; Franke, S.; Riggin, D.; Fritts, D.; Vincent, R.; Burrage, M.

    1999-07-01

    Continuous observations of the wind field have been made by six Medium Frequency Radars (MFRs), located between the equator and high northern latitudes: Christmas Islands (2°N), Hawaii (22°N), Urbana (40°N), London (43°N), Saskatoon (52°N) and Tromsø (70°N). Data have been sought for the time interval 1990-1997, and typically 5 years of data have become available from each station, to demonstrate the level of annual consistency and variability. Common harmonic analysis is applied so that the monthly amplitudes and phases of the semi-diurnal (SD) and diurnal (D) wind oscillations are available in the height range of (typically) 75-95 km in the upper Middle Atmosphere. Comparisons are made with tides from the Global Scale Wave Model (GSWM), which are available for 3-month seasons. The emphasis is upon the monthly climatologies at each location based upon comparisons of profiles, and also latitudinal plots of amplitudes and phases at particular heights. For the diurnal tide, the agreement between observations and model is now quite excellent with modelled values frequently lying within the range of yearly values. Both observations and model demonstrate strong seasonal changes. This result is a striking improvement over the comparisons of 1989 (JATP, Special issue). In particular, the phases and phase-gradients for the non-winter months at mid- to high-latitudes are now in excellent agreement. Some of the low latitude discrepancies are attributed to the existence of non-migrating tidal components associated with tropospheric latent heat release. For the semi-diurnal tide, the observed strong transitions between clear solstitial states are less well captured by the model. There is little evidence for improvement over the promising comparisons of 1989. In particular, the late-summer/autumnal tidal maximum of mid-latitudes is observed to be larger, and with strong monthly variability. Also the summer modelled tide has unobserved short (20 km) wavelengths at high

  11. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  12. Dynamic ocean-tide effects on Earth's rotation

    Science.gov (United States)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  13. Sidereal semi-diurnal variation observed at high zenith angles at Mawson, 1968-1984, and the polarity of the solar main field

    International Nuclear Information System (INIS)

    Jacklyn, R.M.; Duldig, M.L.

    1985-01-01

    High zenith-angle North/South telescopes viewing equatorially and at midlatitudes through 40 MWE of atmosphere have been operating at Mawson since early 1968. It is evident that a sidereal semi-diurnal component of galactic origin has been observed, over and above a possible spurious component proposed by Nagashima, arising from a bi-directional component of the solar anisotropy. Although a very pronounced reduction in the semi-diurnal galactic response followed the reversal of polarity of the solar main field during 1969 to 1971, so far the observations indicate that there has been no recurrence of a larger galactic response following the reversal of polarity around 1981. The possible role of the latitudional extent lambda omicron of the wavy neutral sheet is discussed

  14. Winter variability in the western Gulf of Maine: Part 1: Internal tides

    Science.gov (United States)

    Brown, W. S.

    2011-09-01

    During the winter 1997-1998, a field program was conducted in Wilkinson Basin-western Gulf of Maine-as part of a study of winter convective mixing. The field program consisted of (1) Wilkinson basin-scale hydrographic surveys, (2) a tight three-mooring array with ˜100 m separations measured temperature and conductivity at rates of 2-15 min and (3) a single pair of upward/downward-looking pair acoustic Doppler current profiling (ADCP) instruments measured currents with 8 m vertical resolution over the 270 m water column in north-central Wilkinson basin at a rate of 10 min. The moored array measurements below the mixed layer (˜100 m depth) between 11 January and 6 February 1998 were dominated by a combination of the relatively strong semidiurnal external (depth-independent or barotropic) tide; upon which were superposed a weaker phase-locked semidiurnal internal tide and a very weak water column mean currents of about 1 cm/s southward or approximately across the local isobaths. The harmonic analysis of a vertical average of the relatively uniform ADCP velocities in the well-mixed upper 123 m of the water column, defined the external tidal currents which were dominated by a nearly rectilinear, across-isobath (326°T) M 2 semidiurnal tidal current of about 15 cm/s. The depth-dependent residual current field, which was created by subtracting the external tidal current, consisted of (1) clockwise-rotating semidiurnal internal tidal currents of about 5 cm/s below the mixed layer; (2) clockwise-rotating inertial currents; and (3) a considerably less energetic subtidal current variability. The results from both frequency-domain empirical orthogonal function and tidal harmonic analyses of the of isotherm displacement series at each of the three moorings in the 100 m array mutually confirm an approximate east-northeastward phase propagation of the dominant M 2 semidiurnal internal tide across Wilkinson Basin. Further investigation supports the idea that this winter internal

  15. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    Science.gov (United States)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  16. Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data

    Science.gov (United States)

    Zaron, Edward D.; Ray, Richard D.

    2017-01-01

    Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.

  17. Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign

    Directory of Open Access Journals (Sweden)

    B. P. Williams

    2006-07-01

    Full Text Available The winter MaCWAVE (Mountain and convective waves ascending vertically rocket campaign took place in January 2003 at Esrange, Sweden and the ALOMAR observatory in Andenes, Norway. The campaign combined balloon, lidar, radar, and rocket measurements to produce full temperature and wind profiles from the ground to 105 km. This paper will investigate gravity wave propagation in the mesosphere and lower thermosphere using data from the Weber sodium lidar on 28–29 January 2003. A very large semidiurnal tide was present in the zonal wind above 80 km that grew to a 90 m/s amplitude at 100 km. The superposition of smaller-scale gravity waves and the tide caused small regions of possible convective or shear instabilities to form along the downward progressing phase fronts of the tide. The gravity waves had periods ranging from the Nyquist period of 30 min up to 4 h, vertical wavelengths ranging from 7 km to more than 20 km, and the frequency spectra had the expected –5/3 slope. The dominant gravity waves had long vertical wavelengths and experienced rapid downward phase progression. The gravity wave variance grew exponentially with height up from 86 to 94 km, consistent with the measured scale height, suggesting that the waves were not dissipated strongly by the tidal gradients and resulting unstable regions in this altitude range.

  18. Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.

    Science.gov (United States)

    Briciu, Andrei-Emil

    2018-02-22

    The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.

  19. Simulations of the September 1987 lower thermospheric tides with the National Center for Atmospheric Research thermosphere-ionosphere general circulation model

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.

    1991-01-01

    The National Center for Atmospheric Research thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. These model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic K p index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. The diurnal tides at Sondrestrom were also simulated. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. This may indicate a need to incorporate coupling of the neutral atmosphere and ionosphere with the E region dynamo in the equatorial region to obtain a better representation of low-latitude thermospheric tides. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period. In general, the ion temperatures were predicted to be affected more than the winds, and the diurnal components more than the semidiurnal. The effects are typically largest at high latitudes and higher altitudes, but discernible differences were produced at low latitudes

  20. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    Science.gov (United States)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  1. Thermal tides and Martian dust storms: Direct evidence for coupling

    International Nuclear Information System (INIS)

    Leovy, C.B.; Zurek, R.W.

    1979-01-01

    Observations of surface pressure oscillations at the Viking 1 and Viking 2 lander sites on Mars indicate that the thermally driven global atmospheric tides were closely coupled to the dust content of the Martian atmosphere, especially during northern fall and winter, when two successive global dust storms occurred. The onset of each of these global storms was marked by substantial, nearly simultaneous increases in the dust opacity and in the range of the daily surface pressure variation observed at both lander sites. Although both the diurnal and semidiurnal tidal surface pressure components were amplified at Lander 1 during the onset of a global dust storm, the semidiurnal component was greatly enhanced in relation to the diurnal tide. Semidiurnal wind components were prominent at both lander sites during the height of the global dust storm. We have attempted to interpret these observations using simplified dynamical models. In particular, the semidiurnal wind component can be successfully related to the observed surface pressure variation using a simplified model of a semidiurnally forced Ekman boundary layer. On the other hand, a classical atmospheric tidal model shows that the preferential enhancement of the semidiurnal surface pressure oscillation at Lander 1 can be produced by a tidal heating distribution which places most of the heating (per unit mass) above 10-km altitude. Furthermore, when a dust storm expands to global scale, it does so rather quickly, and the total atmospheric heating at the peak of the dust storm can represent more than 50% of the available insolation. The Viking observations suggest that a number of mechanisms are important for the generation and decay of these episodic Martian global dust storms

  2. Intraseasonal variability and tides in Makassar Strait

    Science.gov (United States)

    Susanto, R. Dwi; Gordon, Arnold L.; Sprintall, Janet; Herunadi, Bambang

    2000-05-01

    Intraseasonal variability and tides along the Makassar Strait, the major route of Indonesian throughflow, are investigated using spectral and time-frequency analyses which are applied to sea level, wind and mooring data. Semidiurnal and diurnal tides are dominant features, with higher (lower) semidiurnal (diurnal) energy in the north compared to the south. Sea levels and mooring data display intraseasonal variability which are probably a response to remotely forced Kelvin waves from the Indian Ocean through Lombok Strait and to Rossby waves from the Pacific Ocean. Sea levels in Tarakan and Balikpapan and Makassar mooring velocities reveal intraseasonal features with periods of 48-62 days associated with Rossby waves from the Sulawesi Sea. Kelvin wave features with periods of 67-100 days are seen in Bali (Lombok Strait), at the mooring sites and in Balikpapan, however, they are not seen in Tarakan, which implies that these waves diminish after passing through the Makassar Strait.

  3. Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere

    Science.gov (United States)

    Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.

    2017-12-01

    Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.

  4. Correlations between solid tides and worldwide earthquakes MS ≥ 7.0 since 1900

    Directory of Open Access Journals (Sweden)

    Q. H. Xu

    2012-03-01

    Full Text Available Most studies on the correlations between earthquakes and solid tides mainly concluded the syzygies (i.e. new or full moons of each lunar cycle have more earthquakes than other days in the month. We show a correlation between the aftershock sequence of the ML = 6.3 Christchurch, New Zealand, earthquake and the diurnal solid tide. Ms ≥ 7 earthquakes worldwide since 1900 are more likely to occur during the 0°, 90°, 180° or 270° phases (i.e. earthquake-prone phases of the semidiurnal solid earth tidal curve (M2. Thus, the semidiurnal solid tides triggers earthquakes. However, the long-term triggering effect of the lunar periodicity is uncertain. This proposal is helpful in defining possible origin times of aftershocks several days after a mainshock and can be used for warning of subsequent larger shocks.

  5. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    Science.gov (United States)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  6. Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations

    Science.gov (United States)

    Sakazaki, Takatoshi; Fujiwara, Masatomo; Shiotani, Masato

    2018-02-01

    Atmospheric solar tides in the stratosphere and the lower mesosphere are investigated using temperature data from five state-of-the-art reanalysis data sets (MERRA-2, MERRA, JRA-55, ERA-Interim, and CFSR) as well as TIMED SABER and Aura MLS satellite measurements. The main focus is on the period 2006-2012 during which the satellite observations are available for direct comparison with the reanalyses. Diurnal migrating tides, semidiurnal migrating tides, and nonmigrating tides are diagnosed. Overall the reanalyses agree reasonably well with each other and with the satellite observations for both migrating and nonmigrating components, including their vertical structure and the seasonality. However, the agreement among reanalyses is more pronounced in the lower stratosphere and relatively weaker in the upper stratosphere and mesosphere. A systematic difference between SABER and the reanalyses is found for diurnal migrating tides in the upper stratosphere and the lower mesosphere; specifically, the amplitude of trapped modes in reanalyses is significantly smaller than that in SABER, although such difference is less clear between MLS and the reanalyses. The interannual variability and the possibility of long-term changes in migrating tides are also examined using the reanalyses during 1980-2012. All the reanalyses agree in exhibiting a clear quasi-biennial oscillation (QBO) in the tides, but the most significant indications of long-term changes in the tides represented in the reanalyses are most plausibly explained by the evolution of the satellite observing systems during this period. The tides are also compared in the full reanalyses produced by the Japan Meteorological Agency (i.e., JRA-55) and in two parallel data sets from this agency: one (JRA-55C) that repeats the reanalysis procedure but without any satellite data assimilated and one (JRA-55AMIP) that is a free-running integration of the model constrained only by observed sea surface temperatures. Many aspects

  7. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    OpenAIRE

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we consider internal gravity waves at the lunar semidiurnal (M-2) tidal frequency, omega(M2). Profiles of N-2(z) (the quantity in the equations of motion) are computed using conductivity, temperature, and de...

  8. Observing atmospheric tides in Earth rotation parameters with VLBI

    Science.gov (United States)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael

    2015-04-01

    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  9. Global Earth Response to Loading by Ocean Tide Models

    Science.gov (United States)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  10. Observations of the atmospheric tide, mean wind, and sodium nightglow near the mesopause with the magneto- optic Doppler analyzer

    Science.gov (United States)

    Williams, Bifford Preston

    1997-09-01

    In this thesis, I (1) demonstrate a new instrument design that is capable of measuring winds and nightglow; (2) present measurements of the mean winds, tides, and sodium nightglow near the mesopause (ca. 90 km); (3) compare these wind results with those measured by other instruments and results of numerical and empirical models; and (4) compare the nightglow intensity measurements with the predictions of a comprehensive numerical model, to better understand the interaction of the tides with the mesopause-region chemistry. I designed, constructed and operated the Magneto-Optic Doppler Analyzer (MODA). For 1.5 years, Moda observed the sodium nightglow intensity variation and the horizontal wind integrated from ~86-96 km altitude at Niwot Ridge, Colorado (40.0o N, 105.5o W). The observed nightglow intensity showed a significant semidiurnal oscillation, with a 5 hr phase shift in the fall. The mean zonal wind peaked in the summer and winter with a minimum at the equinoxes. The meridional wind was slightly southward or near zero. The semidiurnal tide amplitude peaked in the early summer with a minimum in February. The phases were roughly in quadrature. The measured phase difference between the intensity and zonal wind indicated a seasonal variation of the tide-nightglow interaction. MODA wind results were compared with results from the Urbana Medium-Frequency (MF) Radar, the High Resolution Doppler Imager (HRDI), the empirical Horizontal Wind Model 1993 (HWM93), and the theoretical Global Scale Wave Model (GSWM). The annual variation of the mean winds showed the same pattern amongst the instruments and models. MODA measured the smallest tidal amplitudes, possibly due to longitudinal differences. MODA semidiurnal phases agreed better with HRDI and HWM93 (1-2 hr difference), than with GSWM (~6 hr difference). The calculated semidiurnal sodium nightglow variation from the Thermosphere-Ionosphere-Mesosphere- Electrodynamics General Circulation Model for March shows a

  11. Three-Dimensional Structures of Thermal Tides Simulated by a Venus GCM

    Science.gov (United States)

    Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa

    2018-02-01

    Thermal tides in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal tides obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal tides depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal tides, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal tides, which may be excited by the nonlinear interactions among the diurnal and semidiurnal tides in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.

  12. Tides and Their Dynamics over the Sunda Shelf of the Southern South China Sea.

    Science.gov (United States)

    Daryabor, Farshid; Ooi, See Hai; Abu Samah, Azizan; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modelling System is used to study the tidal characteristics and their dynamics in the Sunda Shelf of the southern South China Sea. In this model, the outer domain is set with a 25 km resolution and the inner one, with a 9 km resolution. Calculations are performed on the inner domain. The model is forced at the sea surface by climatological monthly mean wind stress, freshwater (evaporation minus precipitation), and heat fluxes. Momentum and tracers (such as temperature and salinity) are prescribed in addition to the tidal heights and currents extracted from the Oregon State University TOPEX/Poseidon Global Inverse Solution (TPXO7.2) at the open boundaries. The results are validated against observed tidal amplitudes and phases at 19 locations. Results show that the mean average power energy spectrum (in unit m2/s/cph) for diurnal tides at the southern end of the East Coast of Peninsular Malaysia is approximately 43% greater than that in the East Malaysia region located in northern Borneo. In contrast, for the region of northern Borneo the semidiurnal power energy spectrum is approximately 25% greater than that in the East Coast of Peninsular Malaysia. This implies that diurnal tides are dominant along the East Coast of Peninsular Malaysia while both diurnal and semidiurnal tides dominate almost equally in coastal East Malaysia. Furthermore, the diurnal tidal energy flux is found to be 60% greater than that of the semidiurnal tides in the southern South China Sea. Based on these model analyses, the significant tidal mixing frontal areas are located primarily off Sarawak coast as indicated by high chlorophyll-a concentrations in the area.

  13. Multimission empirical ocean tide modeling for shallow waters and polar seas

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2011-01-01

    A new global ocean tide model named DTU10 (developed at Technical University of Denmark) representing all major diurnal and semidiurnal tidal constituents is proposed based on an empirical correction to the global tide model FES2004 (Finite Element Solutions), with residual tides determined using...... tide gauge sets show that the new tide model fits the tide gauge measurements favorably to other state of the art global ocean tide models in both the deep and shallow waters, especially in the Arctic Ocean and the Southern Ocean. One example is a comparison with 207 tide gauge data in the East Asian...... marginal seas where the root-mean-square agreement improved by 35.12%, 22.61%, 27.07%, and 22.65% (M-2, S-2, K-1, and O-1) for the DTU10 tide model compared with the FES2004 tide model. A similar comparison in the Arctic Ocean with 151 gauge data improved by 9.93%, 0.34%, 7.46%, and 9.52% for the M-2, S-2...

  14. Observations of enhanced nonlinear instability in the surface reflection of internal tides

    NARCIS (Netherlands)

    Xie, X.; Shang, X.; van Haren, H.; Chen, G.

    2013-01-01

    Enhanced vertically standing waves formed by the superposition of two upward and downward going near-diurnal (D1) waves are observed during one semidiurnal (D2) spring tide in an approximately 75day long velocity record from the northeastern South China Sea. Bicoherence estimates suggest that the

  15. Numerical modelling of the M2 tide on the northern Patagonian Shelf

    Science.gov (United States)

    Glorioso, P. D.; Simpson, J. H.

    1994-02-01

    The previously reported occurrence of tidal fronts on the Patagonian Shelf ( CARRETOet al., 1986 , Journal of Plankton Research, 8, 15-28; GLORIOSO, 1987 , Continental Shelf Research, 7, 27-34), motivated the application of a numerical model to solve the shallow-water equations with external forcing by the principal-lunar semidiurnal tide (M2) prescribed along the open boundary. The mean width of the Patagonian Shelf is comparable with a quarter wavelength of the semidiurnal tide, giving the conditions for standing wave resonance at that frequency ( WEBB, 1975 , Deep-Sea Research, 23, 1-15). The region is well recognized by its large tidal elevations and by the speed of the tidal wave changing phase very rapidly. Some of the results obtained from the modelling exercise include the mapping of the M2 tidal constants, the Simpson-Hunter stratification parameter, the mean sea surface elevation, and the distribution of tidal energy dissipation by bottom friction. These results agree qualitatively with the ship data available and with satellite infrared imagery.

  16. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  17. The lunar tide in sporadic E

    Directory of Open Access Journals (Sweden)

    R. J. Stening

    1999-10-01

    Full Text Available It seems that the wind shear theory is accepted for the explanation of sporadic E at mid and low latitudes. Some examples from Arecibo are displayed to show this. The effect of lunar tides should then modify the wind-shear theory in a manner that yields the observed features of the lunar tide in the critical frequency foEs and the height h'Es of the sporadic E. This is shown to imply that the phase of the lunar tide in h'Es should be the same as the phase of the lunar tide in the eastward wind and that the phase of the lunar tide in foEs is three hours later. Hourly values of foEs, f bEs (the blanketing critical frequency and h'Es from several observatories are analysed for the lunar semidiurnal tide. It is found that the phase of the tide in foEs is often about 3 hours later than for h'Es in agreement with the theory. Seasonal variations in the tide are also examined with the statistically most significant results (largest amplitudes usually occurring in summer. After reviewing the many difficulties associated with determining the lunar tide in Es, both experimentally and theoretically, the analysed phase results are compared with what might be expected from Hagan's global scale wave model. Agreement is only fair (a success rate of 69% among the cases examined but probably as good as might be expected.Key words. Ionosphere (ionosphere – atmosphere interactions – ionospheric irregularities, Meteorology and atmosphere dynamics (waves and tides

  18. Atmospheric solar tides and their electrodynamic effects. I. The global Ssub(q) current system

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J M; Lindzen, R S [Harvard Univ., Cambridge, Mass. (USA)

    1976-09-01

    This paper is Part I of a study dealing with the electrodynamic consequences of solar tides in the E-region of the Earth's atmosphere. The major result to emerge from Part I is that E-region dynamo action of combined diurnal and semidiurnal winds consistent with measurements is found to account for the Ssub(q) variations in ground magnetic data, without having to resort to electric fields of plasmaspheric origin as suggested in the recent literature. Real discrepancies of the order of 20% in amplitude and 1 to 2 h in phase still exist between the data and the present theoretical model. The model couples a global thin-shell dynamo solution which takes into account the vertical structure of the winds with a full three-dimensional model of the equatorial electrojet. Part I is primarily concerned with the classical thin-shell global solution, whereas Part II (Forbes et al., J. Atmos. Terr. Phys.; 38:911 (1976)) deals solely with the equatorial electrojet; however, the equatorial magnetic variations to be presented here are taken from Part II. Previous global dynamo models have utilized winds which are shown to be unrealistic by recent measurements and dissipative tidal theory, and do not include the important effects of vertical current flow at the magnetic equator. Inclusion of vertical current effects, which are discussed in detail in Part II, relaxes the need for E-region diurnal wind speeds as large as those required by previous workers to reproduce the Ssub(q) current system. Computed vertical structures of the Ssub(q) currents explain some puzzling features of the few midlatitude rocket magnetometer measurements that are available. The Joule heating by Ssub(q) currents is comparable to solar EUV heating above 60/sup 0/N, but contribute negligibly to the total heat budget of the thermosphere.

  19. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  20. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  1. Aquifer response to earth tides

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Narasimhan, T.N.

    1981-01-01

    The relation presented in the first part of this paper are applicable to packed-off wells and other situations where appreciable flow to the well does not exist. Comparisons of aquifer properties determined from the response to earth tides and from the more standard pumping tests for the two California fields are reasonably good. The case of an open well makes the problem more complicated, since there may be an appreciable amount of flow to the well. This flow to the well is seen as either a phase lag or as a difference in the ratio of the well signal to the tide for the semidiurnal and diurnal components of the tide. The latter is probably the better and more accurate indicator of flow to the well. Analyses of such situations, however, become involved and are probably best done as case-by-case studies. The numerical solutions show that treating the inverse problem through numerical modeling is at least feasible for any individual situation. It may be possible to simplify the inverse problem through the generation of type curves, but general type curves that are applicable to diverse situations are not likely to be practical. 7 figures

  2. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  3. Effect of Southern Hemisphere Sudden Stratospheric Warmings on Antarctica Mesospheric Tides: First Observational Study

    Science.gov (United States)

    Eswaraiah, S.; Kim, Yong Ha; Lee, Jaewook; Ratnam, M. Vankat; Rao, S. V. B.

    2018-03-01

    We analyzed the structure and variability of observed winds and tides in the Antarctica mesosphere and lower thermosphere (MLT) during the 2002 major sudden stratospheric warming (SSW) and the 2010 minor SSWs. We noted the effect of SSW on the variability of MLT tides for the first time in the Southern Hemisphere, although it has been well recognized in the Northern Hemisphere. We utilized the winds measured by Rothera (68°S, 68°W) medium frequency radar and King Sejong Station (62.22°S, 58.78°W) meteor radar for estimating the tidal components (diurnal, semi-diurnal, and ter-diurnal) in the MLT region. The unusual behavior of diurnal tide (DT) and semidiurnal tide (SDT) was observed in 2002. Zonal SDT amplitudes were enhanced up to 27 m/s after 18 days from the associated SSW day. However, the meridional tidal amplitudes of both DT and SDT suddenly decreased during the peak SSW, and SDT amplitudes slightly increased to 18 m/s afterward. In the normal years, SDT amplitude stays below 15 m/s. During the 2010 SSW, SDT zonal amplitudes increased up to 40 m/s and 50 m/s at altitudes of 80 km and 90 km, respectively, 30 days after the associated SSW. Similar but weaker effect is noticed in the meridional components. The ter-diurnal tide does not show any significant variation during the SSW. The two SSWs offered a challenging issue to answer: why tidal amplitudes are enhanced with a delay after the SSW. The reasons for the delay are discussed in accordance with theoretical predictions.

  4. Thermal tides and studies to tune the mechanistic tidal model using UARS observations

    Directory of Open Access Journals (Sweden)

    V. A. Yudin

    1997-09-01

    Full Text Available Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI and Wind Imaging Interferometer (WINDII wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS. There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40°S and 40°N.

  5. Thermal tides and studies to tune the mechanistic tidal model using UARS observations

    Directory of Open Access Journals (Sweden)

    V. A. Yudin

    Full Text Available Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI and Wind Imaging Interferometer (WINDII wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS. There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40°S and 40°N.

  6. Diurnal and Semidiurnal Tides in the Middle Atmosphere over Balasore (21.5°N, 86.9°E).

    Science.gov (United States)

    Sasi, M. N.; Krishna Murthy, B. V.

    1990-09-01

    Using rocket wind data at a tropical station, Balasore (21.5°N, 86.9°E), the diurnal and semidiurnal tidal amplitudes and phases of the zonal and meridional components have been obtained over an altitude range of 20-65 km for equinox, summer and winter seasons. Comparison with the theoretical values revealed some important differences between the two and the implications of these are discussed.

  7. The effect of solar and lunar currents on simultaneous phase path, group path and amplitude measurements

    International Nuclear Information System (INIS)

    Baulch, R.N.E.; Butcher, E.C.

    1984-01-01

    The solar and lunar variations in the phase path, group path and amplitude of a fixed frequency transmission were obtained at the September equinox over a slightly oblique path. The phase of the lunar semi-diurnal tide in the phase path and amplitude were similar, the maxima occurring near 0200 lunar time, whereas the group path had a maximum near 0800 lunar time. These results were compared with other results obtained near the same location. The results suggest a complex situation in the E-region, where the height of the lunar current depends on season, and also suggest that the location and distribution of the solar and lunar currents may be different. (author)

  8. Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet

    Science.gov (United States)

    Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick

    2017-12-01

    The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.

  9. Effects of the Relaxation of Upwelling-Favorable Winds on the Diurnal and Semidiurnal Water Temperature Fluctuations in the Santa Barbara Channel, California

    Science.gov (United States)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2017-10-01

    In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.

  10. Characteristics of Arctic tides at CANDAC-PEARL (80 N, 86 W) and Svalbard (78 N, 16 E) for 2006-2009. Radar observations and comparisons with the model CMAM-DAS

    Energy Technology Data Exchange (ETDEWEB)

    Manson, A.H.; Meek, C.E.; Xu, X. [Saskatchewan Univ., Saskatoon (Canada). Inst. of Space and Atmospheric Studies; Aso, T.; Tsutsumi, M. [National Institute for Polar Research, Tokyo (Japan); Drummond, J.R. [Dalhousie Univ., Halifax (Canada). Physics and Atmospheric Science Dept.; Hall, C.M. [Tromsoe Univ. (Norway). Tromsoe Geophysical Observatory; Hocking, W.K. [Western Onatario Univ., London (Canada). Physics and Astronomy Dept.; Ward, W.E. [New Brunswick Univ., Fredericton (Canada). Physics and Astronomy Dept.

    2011-07-01

    Operation of a Meteor Radar (MWR) at Eureka, Ellesmere Island (80 N, 86 W) began in February 2006: this is the location of the Polar Environmental and Atmospheric Research Laboratory (PEARL), operated by the ''Canadian Network for the Detection of Atmospheric Change'' (CANDAC). The first 36 months of tidal wind data (82-97 km) are here combined with contemporaneous tides from the Meteor Radar (MWR) at Adventdalen, Svalbard (78 N, 16 E), to provide the first significant evidence for interannual variability (IAV) of the High Arctic's diurnal and semidiurnal migrating (MT) and non-migrating tides (NMT). The three-year monthly means for both diurnal (DT) and semi-diurnal (SDT) winds demonstrate significantly different amplitudes and phases at Eureka and Svalbard. Typically the summer-maximizing DT is much larger ({proportional_to}24ms{sup -1} at 97 km) at Eureka, while the Svalbard tide (5-24ms{sup -1} at 97 km) is almost linear (north-south) rather than circular. Interannual variations are smallest in the summer and autumn months. The High Arctic SDT has maxima centred on August/September, followed in size by the winter features; and is much larger at Svalbard (24ms{sup -1} at 97 km, versus 14-18ms{sup -1} in central Canada). Depending on the location, the IAV are largest in spring/winter (Eureka) and summer/autumn (Svalbard). Fitting of wave-numbers for the migrating and nonmigrating tides (MT, NMT) determines dominant tides for each month and height. Existence of NMT is consistent with nonlinear interactions between migrating tides and (quasi) stationary planetary wave (SPW) S =1 (SPW1). For the diurnal oscillation, NMT s = 0 for the east-west (EW) wind component dominates (largest tide) in the late autumn and winter (November-February); and s =+2 is frequently seen in the north-south (NS) wind component for the same months. The semi-diurnal oscillation's NMT s =+1 dominates from March to June/July. There are patches of s =+3 and +1, in

  11. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides

    Science.gov (United States)

    Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean tides upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean tide models.

  12. A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river

    Science.gov (United States)

    Akter, A.; Tanim, A. H.

    2018-03-01

    Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the

  13. A description of the tides in the Eastern North Atlantic

    Science.gov (United States)

    Fanjul, Enrique Alvarez; Gómez, Begoña Pérez; Sánchez-Arévalo, Ignacio Rodríguez

    A description of the Eastern North Atlantic tidal dynamics (in a region spanning from 20°N to 48°N in latitude and from 34°W to 0° in longitude) is obtained by means of new in situ measurements and numerical modelling based on TOPEX/POSEIDON-derived data sets. The main source of measurements is the tide gauge network REDMAR (RED de MAReógrafos de Puertos del Estado), operative since July 1992 and managed by Clima Marítimo (Puertos del Estado). Results derived from the harmonic analysis of the first years of measurements are presented and compared with model results. In order to obtain a global picture of the tides in the region, a large compilation of harmonic constants obtained from other institutes is included. The availability of new TOPEX/POSEIDON-derived harmonic constants data sets provides a chance to include the benefits derived from satellite altimetry in high resolution regional applications of numerical models. Richard Ray's tidal model (Ray et al., 1994), based on a response type tidal analysis of TOPEX/POSEIDON data, was employed within a model of the studied area. The numerical model employed is HAMSOM, a 3-D finite difference code developed both by the Institut für Meereskunde (Hamburg University) and Clima Marítimo. Results from simulations of seven major harmonics are presented, providing a comprehensive view of tidal dynamics, including current information. The results of tidal simulations show good agreement between semidiurnal harmonic components and the values measured by both coastal and pelagic tidal gauges and by current meters. The modelled diurnal constituents show larger relative differences with measurements than semidiurnal harmonics, especially concerning the phase lags. The non-linear transfer of energy from semidiurnal to higher order harmonics, such as M 4 and M 6, was mapped. Those transfers were found to be important only in two areas: the French continental shelf in the Bay of Biscay and the widest part of the African

  14. Seasonal variability of Internal tide energetics in the western Bay of Bengal

    Science.gov (United States)

    Mohanty, S.; Rao, A. D.

    2017-12-01

    The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, seamounts, etc. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the western Bay of Bengal is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution observed data sets are available. The model is initially validated through the spectral estimate of density and the baroclinic velocities. From the estimate, it is found that its peak is associated with the semi-diurnal frequency at all the depths in both observations and model simulations for November-December and March-April. However in August, the estimate is found to be maximum near the inertial frequency at all available depths. EOF analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The phase speed, group speed and wavelength are found to be maximum for post-monsoon season compared to other two seasons. To understand the generation and propagation of internal tides over this region, barotropic-to-baroclinic M2 tidal energy conversion and energy flux are examined. The barotropic-to-baroclinic conversion occurs intensively along the shelf-slope regions and propagate towards the coast. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing

  15. Gravity waves, Tides and Planetary wave characteristics revealed by network of MLT radars over Indian region

    Science.gov (United States)

    Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.

    2016-07-01

    Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 h

  16. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2

    Science.gov (United States)

    Ray, Richard D.

    1999-01-01

    Goddard Ocean Tide model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic tides, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean tide-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period tides; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.

  17. On Measurements of the Tide at Churchill, Hudson Bay

    Science.gov (United States)

    Ray, Richard D.

    2016-01-01

    Since the late 1990s the semi-diurnal tide at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M(sub 2) amplitudes falling from approximately 154 cm in 1998 to 146 cm in 2012 and 142 cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning tide gauge, the fact that there are no other measurements in the region and the possibility that the tide is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the tide in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M(sub 2) that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself.

  18. Progress in Research on Diurnal and Semidiurnal Earth Rotation Change

    Science.gov (United States)

    Xu, Xueqing

    2015-08-01

    We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the last eighties century, as well as the application research on diurnal and semidiurnal polar motion and UT1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement.

  19. Lunar and solar daily variations of ionospheric electron content at Delhi

    International Nuclear Information System (INIS)

    Bhuyan, P.K.; Tyagi, T.R.

    1986-01-01

    Ionospheric electron content measurements obtained at Delhi during the period 1975-1980 have been analysed by the Chapman-Miller method to compute lunar and solar daily variations. The results show that the magnitude of the lunar harmonic components is about one-tenth that of the solar harmonic components. Significant seasonal and solar cycle variations were observed for both the lunar and the solar terms. The lunar semi-diurnal component, the most significant term, can be explained as due to the additional 'fountain' effect caused by the lunar semi-diurnal variation of the electric field at the equatorial region. The lunar semi-diurnal variations were found to have significant oceanic and ionospheric components. (author)

  20. Energetics of global ocean tides from Geosat altimetry

    Science.gov (United States)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  1. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  2. Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data

    Science.gov (United States)

    Ortland, David A.

    2017-04-01

    Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.

  3. The signature of atmospheric tides in sub-daily variations of Earth rotation as unveiled by globally-gridded atmospheric angular momentum functions

    Science.gov (United States)

    Schindelegger, M.; Böhm, J.; Salstein, D. A.; Schuh, H.

    2012-12-01

    Thermally-driven atmospheric tides provide a small but distinct contribution to shortperiod variations of Earth rotation parameters (ERP). The effect of diurnal and semi-diurnal tides, commonly denoted as S1 and S2, respectively, is in the range of 2 - 10 uas for polar motion and 2 - 10 uas for changes in length-of-day (LOD). Even though ocean tides represent a much more dominant driving agent for ERP fluctuations at short time scales, high-frequency atmospheric effects are non-negligible, particularly given the prospective measurement accuracy of space geodetic techniques. However, previous studies, such as Brzezinski et al. (2002), de Viron et al. (2005) or Schindelegger et al. (2011), have been noticeably inconclusive on the exact amplitude and phase values of S1 and S2 atmospheric excitation signals. This study aims at shedding light on the origin of these uncertainties with respect to the axial component of Earth's rotation vector by investigating times series of atmospheric angular momentum (AAM) functions that are given on global grids and computed from three-hourly meteorological data of the European Centre for Medium-Range Weather Forecasts (ECMWF). The signature of diurnal and semi-diurnal atmospheric tides is clearly visible in the gridded axial AAM functions, revealing a distinct spatial and temporal phase difference between pressure and wind tidal constituents of about ± π. It is shown that due to this counterbalance and the explicit axisymmetric spatial structure of S1 and S2, the net effect in sub-diurnal AAM (which is calculated from the global sum of gridded AAM functions) is always a small quantity, particularly sensitive to minor differences between the analysis fields of numerical weather models.

  4. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  5. Ion layers, tides, gravity waves, and electric fields in the upper atmosphere, inferred from Arecibo incoherent scatter radar measurements

    International Nuclear Information System (INIS)

    Morton, Y.T.

    1991-01-01

    This thesis uses data accumulated during 1980-1989 by the Arecibo incoherent scatter radar to study the behavior and physics of ionization irregularities. Low latitude ionization irregularities, known as sporadic-E and intermediate layers, undergo a regular daily descent, convergence, and dumping of ion layers controlled by the neutral tidal wind. A useful way of studying ion layers and their motion is by ion layer trajectory maps which consist of points representing the altitude and time of ionization layers. Two types of maps were used which assigned either a uniform layer intensity or a gray level/pseudo-color to indicate different layer intensities. Important aspects of layer formation are revealed by map analysis. During January, intermediate layers consistently appeared four times per day instead of the normal twice per day pattern. Simulation of ion trajectories based on the ion momentum equation, which includes both Lorentzian and collisional forces, shows that a combination of diurnal, semidiurnal, and six-hour tides is necessary for such a feature to exist, whereas only diurnal and semidiurnal tides are needed to create the normal pattern. The six-hour period tide has not been previously reported. Extra or irregular layers appear frequently in layer trajectory maps, which can be simulated by the addition of gravity waves to the regular tidal wind system. Electric field effects are normally not a factor in low latitude ion layer formation because they are relatively weak and not commonly observed. Layer configurations during a geomagnetic storm, however, indicate that the electric field played an important role in controlling ion motion

  6. Ocean tides for satellite geodesy

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  7. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    Science.gov (United States)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  8. The variability of SE2 tide extracted from TIMED/SABER observations

    Science.gov (United States)

    Li, X.; Wan, W.; Ren, Z.

    2017-12-01

    Based on the temperature observations of the TIMED/SABER in mesosphere/lower thermosphere region (70-110 km altitudes) and at the low latitude and midlatitude (45°S-45°N) from 2002 to 2012, the variability of the nonmigrating tide SE2 with 1 day resolution is analyzed. It is found that the climatological features (large-scale variability) of the semidiurnal nonmigrating tide with zonal wave number 2 (SE2) tide are similar with the results from the previous research works. The SE2 tide manifests mainly at the low-mid latitudes around ±30°. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere tide. SE2 peaks below 110 km mainly present between 100 and 110 km altitude. The tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December, while in the northern one, the semiannual variations with maximum at the equinoxes. Herein, owing to the high-resolution tidal data, we could research the short-term (day-to-day) variations of SE2. We found that the day-to-day variations manifest mainly at between 100 and 110 km altitudes; it increases gradually with latitudes, and it is stronger at the low-mid latitudes; it is relatively slightly stronger around solstices than equinoxes; and it does not present a remarkably interannual variation. The SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases, and the latter ones are more important.

  9. Determination of ocean tides from the first year of TOPEX/POSEIDON altimeter measurements

    Science.gov (United States)

    Ma, X. C.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.

    1994-01-01

    An improved geocentric global ocean tide model has been determined using 1 year of TOPEX/POSEIDON altimeter measurements to provide corrections to the Cartwright and Ray (1991) model (CR91). The corrections were determined on a 3 deg x 3 deg grid using both the harmonic analysis method and the response method. The two approaches produce similar solutions. The effect on the tide solution of simultaneously adjusting radial orbit correction parameters using altimeter measurements was examined. Four semidiurnal (N(sub 2), M(sub 2), S(sub 2) and K(sub 2)), four diurnal (Q(sdub 1), O(sub 1), P(sub 1), and K(sub 1)), and three long-period (S(sub sa), M(sub m), and M(sub f)) constituents, along with the variations at the annual frequency, were included in the harmomnic analysis solution. The observed annual variations represents the first global measurement describing accurate seasonal changes of the ocean during an El Nino year. The corrections to the M(sub 2) constituent have an root mean square (RMS) of 3.6 cm and display a clear banding pattern with regional highs and lows reaching 8 cm. The improved tide model reduces the weighted altimeter crossover residual from 9.8 cm RMS, when the CR91 tide model is used, to 8.2 cm on RMS. Comparison of the improved model to pelagic tidal constants determined from 80 tide gauges gives RMS differences of 2.7 cm for M(sub 2) and 1.7 cm for K(sub 1). Comparable values when the CR91 model is used are 3.9 cm and 2.0 cm, respectively. Examination of TOPEX/POSEIDON sea level anomaly variations using the new tide model further confirms that the tide model has been improved.

  10. Observed tidal currents on the continental shelf off the east coast of India

    Science.gov (United States)

    Jithin, A. K.; Unnikrishnan, A. S.; Fernando, V.; Subeesh, M. P.; Fernandes, R.; Khalap, S.; Narayan, S.; Agarvadekar, Y.; Gaonkar, M.; Tari, P.; Kankonkar, A.; Vernekar, S.

    2017-06-01

    In the present study, we analysed 9-month long data from Acoustic Doppler Current Profilers (ADCP) deployed on the shelf off the east coast of India to study the characteristics of tidal currents in the region. The ADCPs were deployed at about 100-150 m depths off Cuddalore (CD, 12.0°N), Ramayapatnam (RM, 15.0°N), Kakinada (KN, 16.3°N) and South of Gopalpur (SG, 18.6°N). Tidal currents in the region are mainly semidiurnal in nature and dominant constituent is M2. Semimajor axes of barotropic tidal ellipses of M2 is about 1.9 cms-1 in the southernmost ADCP location (off CD) and it is about 4.0 cms-1 in the northernmost ADCP location (off SG), which indicate a northward increase of tidal currents. Baroclinic spectra show high energy at tidal frequencies, which suggests the presence of internal tides on the shelf, particularly in the semidiurnal band. Semidiurnal internal tides of about 8-15 cms-1 are observed at different locations and the magnitude is relatively large on the shelf off SG in the northern part of the shelf, which is primarily due to large barotropic forcing on the north. The semidiurnal internal tides are found to be intensified at the bottom, particularly on the shelf off SG and RM. The computed ratio of slope of internal wave characteristics (c) and topographic slope (γ) indicates that large near-critical regions present surrounding the ADCP locations off SG and RM could be the possible reason of bottom intensification at these two locations. EOF analysis shows that observed semidiurnal internal tides are dominated by the first baroclinic mode, where it accounts for about 70-80% of semidiurnal internal tide variability on the shelf off SG and CD, whereas the contribution of the first mode is relatively small (43-50%) on the shelf off KN and RM. Enhanced small-scale vertical shear is observed at the ADCP locations associated with multimode structure of semidiurnal internal tides. Semidiurnal internal tides show a spring-neap variability on the

  11. Global ocean tide mapping using TOPEX/Poseidon altimetry

    Science.gov (United States)

    Sanchez, Braulio V.; Cartwright, D. E.; Estes, R. H.; Williamson, R. G.; Colombo, O. L.

    1991-01-01

    The investigation's main goals are to produce accurate tidal maps of the main diurnal, semidiurnal, and long-period tidal components in the world's deep oceans. This will be done by the application of statistical estimation techniques to long time series of altimeter data provided by the TOPEX/POSEIDON mission, with additional information provided by satellite tracking data. In the prelaunch phase, we will use in our simulations and preliminary work data supplied by previous oceanographic missions, such as Seasat and Geosat. These results will be of scientific interest in themselves. The investigation will also be concerned with the estimation of new values, and their uncertainties, for tidal currents and for the physical parameters appearing in the Laplace tidal equations, such as bottom friction coefficients and eddy viscosity coefficients. This will be done by incorporating the altimetry-derived charts of vertical tides as boundary conditions in the integration of those equations. The methodology of the tidal representation will include the use of appropriate series expansions such as ocean-basin normal modes and spherical harmonics. The results of the investigation will be space-determined tidal models of coverage and accuracy superior to that of the present numerical models of the ocean tides, with the concomitant benefits to oceanography and associated disciplinary fields.

  12. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    Science.gov (United States)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  13. Shallow-water loading tides in Japan from superconducting gravimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Hoyer, J.L.

    2004-01-01

    energetic constituents in the tide gauge observations are also seen in the gravity observations due to their loading effects on the deformation of the Earth. Even though the shallow-water tides at the Japanese east coast have an amplitude of only a few millimetres. they are still able to Generate a loading...... signal at gravity sites located several hundred kilometres inland. In particular, the S-3, S-4 and S-5 solar tides occur in both gravity and tide gauge observations. It is indicated that in other shelf regions with large shallow water tides, the shallow water loading signals account for a significant...

  14. Galalctic Tides & the Sinusoidal Potential

    Science.gov (United States)

    Bartlett, David F.

    2011-05-01

    The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.

  15. Cross-shelf transport of sub-thermocline nitrate by the internal tide and rapid (3-6 h) incorporation by an inshore macroalga

    Science.gov (United States)

    Ladah, Lydia B.; Filonov, Anatoliy; Lavín, Miguel F.; Leichter, James J.; Zertuche-González, José A.; Pérez-Mayorga, Diana M.

    2012-07-01

    During summer in shallow waters off Baja California, Mexico, the internal tide is a dominant thermal feature of the water column. However, its importance for sub-thermocline nutrient provision to benthic macroalgae is unknown. In order to determine if internal motions provide nutrients to macroalgae in summer, Ulva lactuca was outplanted at inshore stations for short (3 and 6 h) intervals, at the surface, 5 and 10 m depth, and tissue nitrogen content was measured before and after each deployment. Concurrently temperature, currents, and nutrients were measured using moored thermistors, current profilers, CTDs, Niskin bottles, and an in-situ UV absorbance nitrate sensor (ISUS). Discrete pulses of cool, nutrient-rich water were horizontally displaced at least 4 km on the shelf and shoaled more than 20 m depth at the semidiurnal frequency, resulting in more than a 10-fold change in the concentration of nitrate. Inshore, tissue nitrogen of Ulva outplants increased significantly during longer exposures to this cool water. At this site, the semidiurnal signal dominates water column temperature fluctuations from April to November, with summer showing the greatest cooling (up to 5 °C) in a one-hour period. We estimated that 11% of the days of a year show internal waves that would cause a significant change in nutrient availability to macroalgae at 5 m depth. This study supports the hypothesis that nitrate can reach and be rapidly incorporated by inshore macroalgae such as Ulva through transport forced by the internal tide, and that even very short (internal tide provides a significant, yet understudied, high frequency nutrient source to inshore primary producers, particularly in summer.

  16. Tides at the east coast of Lanzarote Island

    Science.gov (United States)

    Benavent, M.; Arnoso, J.; Vélez, E. J.

    2012-04-01

    REDMAR network of Puertos del Estado placed at the end of the same loading bay. Results obtained from the time series analysis at both locations, amplitude and phase of the main diurnal and semi-diurnal tidal waves, are compared with the most recent global ocean tide models, as TPXO7.2, EOT11a, HAMTIDE, FES2004, GOT4.7 and AG2006, and also with the high resolution regional ocean tide model for the Canaries CIAM2 (Arnoso et al., 2006, Benavent, 2011). Comparison of simulated harmonic constant (from global and local ocean tide model) with those obtained from tidal stations is done by means of the direct comparison between amplitudes and phase for each tidal wave and the root mean square (rms) of the differences in the complex plane. Finally the root sum square (rss) of residuals over all harmonic constituents considered is calculated.

  17. Global ocean tide models on the eve of Topex/Poseidon

    Science.gov (United States)

    Ray, Richard D.

    1993-01-01

    Some existing global ocean tide models that can provide tide corrections to Topex/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M2 often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best.

  18. Semidiurnal signal in UT1 due to the influence of tidal gravitation on the triaxial structure of the Earth

    Science.gov (United States)

    Brzeziński, Aleksander; Capitaine, Nicole

    2010-11-01

    The axial component of Earth rotation, which is conventionally expressed by Universal Time (UT1), contains small physical signals with diurnal and subdiurnal periods. This part of the spectrum is dominated by the tidal effects which are regular and predictable. The largest components express the influence of the gravitationally forced ocean tides with diurnal and semidiurnal periods and amplitudes up to 0.02 milliseconds (ms) in UT1 corresponding to an angular displacement of 0.30 milliarcseconds (mas); see Table 8.3 of the IERS Conventions (IERS, 2003). There are also smaller subdiurnal components (amplitudes up to 0.03 mas), designated as “spin libration” by Chao et al. (1991), due to direct influence of the tidal gravitation on those features of the Earth's density distribution which are expressed by the non-zonal terms of the geopotential. These components are not included in the models recommended by the IERS Conventions, in contrast to the corresponding effect in polar motion (ibid., Table 5.1). Here we consider in detail the subdiurnal libration in UT1. We derive an analytical solution for the structural model of the Earth consisting of an elastic mantle and a liquid core which are not coupled to each other. The reference solution for the rigid Earth is computed by using the satellite-determined coefficients of geopotential and the recent developments of the tide generating potential (TGP). We arrived to the conclusion that the set of terms with amplitudes exceeding the truncation level of 0.005 mas consists of 11 semidiurnal harmonics due to the influence of the TGP term u22 on the equatorial flattening of the Earth expressed by the Stokes coefficients C22, S22. There is an excellent agreement between our estimates for the rigid Earth and the amplitudes derived by Wünsch (1991). The only important difference is the term with the tidal code ν2, which seems to be overlooked in the development of Wünsch. Our amplitudes computed for an elastic Earth with

  19. Numerical study of the effect of earth tides on recurring short-term slow slip events

    Science.gov (United States)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2017-12-01

    Short-term slow slip events (SSEs) in the Nankai region are affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The effect of tidal stress on the SSEs is also examined numerically (e.g., Hawthorne and Rubin, 2013). In our previous study (Matsuzawa et al., 2017, JpGU-AGU), we numerically simulated SSEs in the Shikoku region, and reported that tidal stress makes the variance of recurrence intervals of SSEs smaller in relatively isolated SSE regions. However, the reason of such stable recurrence was not clear. In this study, we examine the tidal effect on short-term SSEs based on a flat plate and a realistic plate model (e.g., Matsuzawa et al., 2013, GRL). We adopt a rate- and state-dependent friction law (RS-law) with cutoff velocities as in our previous studies (Matsuzawa et al., 2013). We assume that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. In a flat plate model, the short-term SSE region is a circular patch with the radius of 6 km. In a realistic plate model, the short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we examine the stress perturbation by two different earth tides with the period of semidiurnal (M2) and fortnight (Mf) tide in this study. In the result of a flat plate case, amplitude of SSEs becomes smaller just after the slip at whole simulated area. Recurring SSEs become clear again within one year in the case with tides (M2 or Mf), while the recurrence becomes clear after seven years in the case without tides. Interestingly, the effect of the Mf tide is similar to the case with the M2 tide, even though the amplitude of the Mf tide (0.01 kPa) is two-order smaller than that of the M2 tide. In the realistic plate model of Shikoku, clear recurrence of short-term SSEs is found earlier than the

  20. Variabilities of Low-Latitude Migrating and Nonmigrating Tides in GPS-TEC and TIMED-SABER Temperature During the Sudden Stratospheric Warming Event of 2013

    Science.gov (United States)

    Sridharan, S.

    2017-10-01

    The Global Positioning System deduced total electron content (TEC) data at 15°N (geomagnetic), which is the crest region of equatorial ionization anomaly, are used to study tidal variabilities during the 2013 sudden stratospheric warming (SSW) event. The results from space-time spectral analysis reveal that the amplitudes of migrating diurnal (DW1) and semidiurnal (SW2) tides are larger than those of nonmigrating tides. After the SSW onset, the amplitudes of DW1, SW2, SW1, and DS0 increase. Moreover, they show 16 day variations similar to the periodicity of the high-latitude stratospheric planetary wave (PW), suggesting that the nonmigrating tides (SW1 and DS0) are possibly generated due to nonlinear interaction of migrating tides with PW. Similar spectral analysis on temperature at 10°N obtained from the Sounding of Atmosphere by Broadband Emission Radiometry (SABER) shows that the SW2 enhances at stratospheric heights and the SW2 is more dominant at 80-90 km, but its amplitude decreases around 100 km. The amplitudes of nonmigrating tides become comparable to those of SW2 around 100 km, and their contribution becomes increasingly important at higher heights. This suggests that the nonlinear interaction between migrating tides and PW occurs at low-latitude upper mesospheric heights, as SW2 exhibits 16 day periodicity in SABER temperature at 100 km as observed in TEC. Besides, it is observed that the eastward propagating tides are less dominant than westward propagating tides in both TEC and SABER temperatures.

  1. Internal tides and vertical mixing over the Kerguelen Plateau

    Science.gov (United States)

    Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.

    2008-03-01

    Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.

  2. Sea Level, Land Motion, and the Anomalous Tide at Churchill, Hudson Bay

    Science.gov (United States)

    Ray, R. D.

    2015-12-01

    The importance of the tide gauge at Churchill, Manitoba, cannot be overstated. It is the only permanently operating tide gauge in the central Canadian Arctic, and it sits on a prime spot for monitoring the mantle's rebound from the Laurentide ice loss. Yet interpretation of the sea-level time series at Churchill has long been problematic, going back even to early work by Gutenberg in the 1940s. The long-term relative sea-level rates are inconsistent: approximately -4, -19, -5 ± 1 mm/y for the periods 1940-1970, 1970-1990, 1990-2014 respectively. Annual mean high water (MHW) and mean low water (MLW) reflect these trends until around 1990, after which MLW leveled off and is now nearly unchanging. Slightly later, around 2000, the semidiurnal tides became very anomalous, with falling amplitudes and slightly increasing phase lags. The amplitude of M2 was approximately 154 cm before 2000; it dropped to about 146 cm by 2010 and reached an all-time low of 142 cm in 2014. Satellite altimeter estimates of the tide in this region, although challenging because of seasonal ice cover, show no comparable M2 changes, so the tidal changes must be localized to the near vicinity of the gauge (or to the gauge itself if caused by a malfunction). On the other hand, altimetry confirms the post-1992 Churchill measurements of mean sea level, thanks to the long time series of land motion measurements obtained at GPS station CHUR, which gives a vertical uplift of 10.1 mm/y. Combining satellite altimeter data with the Churchill tide-gauge data gives an implied vertical crustal rate of about 9.0 ± 0.8 mm/y, in reasonable agreement with the GPS. In summary, we have still anomalous MSL measurements at the Churchill gauge for the intermediate 1970-1990 era, and very anomalous tidal measurements since 2000, but we have apparently quite reliable MSL rates since 1990.

  3. Ocean tide models for satellite geodesy and Earth rotation

    Science.gov (United States)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  4. Ocean tides

    Science.gov (United States)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  5. Impact of non-migrating tides on the low latitude ionosphere during a sudden stratospheric warming event in January 2010

    Science.gov (United States)

    McDonald, S. E.; Sassi, F.; Tate, J.; McCormack, J.; Kuhl, D. D.; Drob, D. P.; Metzler, C.; Mannucci, A. J.

    2018-06-01

    The lower atmosphere contributes significantly to the day-to-day variability of the ionosphere, especially during solar minimum conditions. Ionosphere/atmosphere model simulations that incorporate meteorology from data assimilation analysis products can be critically important for elucidating the physical processes that have substantial impact on ionospheric weather. In this study, the NCAR Whole Atmosphere Community Climate Model, extended version with specified dynamics (SD-WACCM-X) is coupled with an ionospheric model (Sami3 is Another Model of the Ionosphere) to study day-to-day variability in the ionosphere during January 2010. Lower atmospheric weather patterns are introduced into the SAMI3/SD-WACCM-X simulations using the 6-h Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period is simulated using the new atmospheric forecast model, the High Altitude Navy Global Environmental Model (HA-NAVGEM), a hybrid 4D-Var prototype data assimilation with the ability to produce meteorological fields at a 3-h cadence. Our study shows that forcing SD-WACCM-X with HA-NAVGEM better resolves the semidiurnal tides and introduces more day-to-day variability into the ionosphere than forcing with NOGAPS-ALPHA. The SAMI3/SD-WACCM-X/HA-NAVGEM simulation also more accurately captures the longitudinal variability associated with non-migrating tides in the equatorial ionization anomaly (EIA) region as compared to total electron content (TEC) maps derived from GPS data. Both the TEC maps and the SAMI3/SD-WACCM-X/HA-NAVGEM simulation show an enhancement in TEC over South America during 17-21 January 2010, which coincides with the commencement of a stratospheric warming event on 19 January 2010. Analysis of the SAMI3/SD-WACCM-X/HA-NAVGEM simulations indicates non-migrating tides (including DW4, DE2 and SW5) played a role during 17-21 January in shifting the phase of the wave-3 pattern in

  6. Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment

    NARCIS (Netherlands)

    Van Maren, D.S.; Gerritsen, H.

    2012-01-01

    The Singapore Strait connects the South China Sea, where tides are dominantly diurnal, to the dominantly semidiurnal Indian Ocean. At this transition, the tidal water level oscillations are observed to be semidiurnal while the tidal current oscillations are mixed, diurnal to fully diurnal. Due to

  7. Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA

    Science.gov (United States)

    Noble, Marlene A.; Burt Jones,; Peter Hamilton,; Xu, Jingping; George Robertson,; Rosenfeld, Leslie; John Largier,

    2009-01-01

    In the summer of 2001, a coastal ocean measurement program in the southeastern portion of San Pedro Bay, CA, was designed and carried out. One aim of the program was to determine the strength and effectiveness of local cross-shelf transport processes. A particular objective was to assess the ability of semidiurnal internal tidal currents to move suspended material a net distance across the shelf. Hence, a dense array of moorings was deployed across the shelf to monitor the transport patterns associated with fluctuations in currents, temperature and salinity. An associated hydrographic program periodically monitored synoptic changes in the spatial patterns of temperature, salinity, nutrients and bacteria. This set of measurements show that a series of energetic internal tides can, but do not always, transport subthermocline water, dissolved and suspended material from the middle of the shelf into the surfzone. Effective cross-shelf transport occurs only when (1) internal tides at the shelf break are strong and (2) subtidal currents flow strongly downcoast. The subtidal downcoast flow causes isotherms to tilt upward toward the coast, which allows energetic, nonlinear internal tidal currents to carry subthermocline waters into the surfzone. During these events, which may last for several days, the transported water remains in the surfzone until the internal tidal current pulses and/or the downcoast subtidal currents disappear. This nonlinear internal tide cross-shelf transport process was capable of carrying water and the associated suspended or dissolved material from the mid-shelf into the surfzone, but there were no observation of transport from the shelf break into the surfzone. Dissolved nutrients and suspended particulates (such as phytoplankton) transported from the mid-shelf into the nearshore region by nonlinear internal tides may contribute to nearshore algal blooms, including harmful algal blooms that occur off local beaches.

  8. Atmospheric tides and periodic variations in the precipitation field

    International Nuclear Information System (INIS)

    Cevolani, G.; Bacci, P.; Bonelli, P.; Isnardi, C.

    1986-01-01

    The analysis of daily precipitations data at many weather stations in Alpes and Po Valley gives evidence of a ''tidal'' influence from luni-solar gravitational fields. The tidal influence does not appear to be strictly constant with time, as the possible results of a modulation effect of luni-solar cycles having similar periods. Time variations of daily precipitation data as a function of some particular cycles show that gravitational tides effect heavy rainfalls more than mean precipitation values

  9. Diurnal and semi-diurnal tidal currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.

    Current meter records from two depths, approximately 1000 m, at three mooring in the deep mid-Arabian Sea were used to study tidal components. Tidal ellipses for the semi-diurnal (M2, S2 and K2) and the diurnal (K1 and P1) tidal constituents have...

  10. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  11. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  12. Global Ocean Tides. Part VIII. The Semidiurnal Luni-Solar Declination Tide (K2), Atlas of Tidal Charts and Maps.

    Science.gov (United States)

    1981-06-01

    cOOOaaaN.4aO.4a~J aaaa.4’asasSSSasasasasaS ~ 5555 SS 55 5 55*5 5 5555a40.44090.490Sa5555 ’tea aCca -Na SSSCCNNO06440 C.4(40(4’ aaa.tNCA .4.4aaaaOOeaO.4NaSNON...8217f SS .4N’S C CN NN N h . 4 N N N N NNM4 4 nnMf - f n ’ f3 ~~~~~~~~~ C C .40.SNC r foo.N CNC’C*.C N C.N oCoNC CN.𔃺 NSCNNNCCC000000toa, .. o.44.NN N

  13. The inverse problem: Ocean tides derived from earth tide observations

    Science.gov (United States)

    Kuo, J. T.

    1978-01-01

    Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.

  14. Possible forcing of global temperature by the oceanic tides

    Science.gov (United States)

    Keeling, Charles D.; Whorf, Timothy P.

    1997-01-01

    An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740

  15. Using barometric time series of the IMS infrasound network for a global analysis of thermally induced atmospheric tides

    Science.gov (United States)

    Hupe, Patrick; Ceranna, Lars; Pilger, Christoph

    2018-04-01

    The International Monitoring System (IMS) has been established to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty and comprises four technologies, one of which is infrasound. When fully established, the IMS infrasound network consists of 60 sites uniformly distributed around the globe. Besides its primary purpose of determining explosions in the atmosphere, the recorded data reveal information on other anthropogenic and natural infrasound sources. Furthermore, the almost continuous multi-year recordings of differential and absolute air pressure allow for analysing the atmospheric conditions. In this paper, spectral analysis tools are applied to derive atmospheric dynamics from barometric time series. Based on the solar atmospheric tides, a methodology for performing geographic and temporal variability analyses is presented, which is supposed to serve for upcoming studies related to atmospheric dynamics. The surplus value of using the IMS infrasound network data for such purposes is demonstrated by comparing the findings on the thermal tides with previous studies and the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2), which represents the solar tides well in its surface pressure fields. Absolute air pressure recordings reveal geographical characteristics of atmospheric tides related to the solar day and even to the lunar day. We therefore claim the chosen methodology of using the IMS infrasound network to be applicable for global and temporal studies on specific atmospheric dynamics. Given the accuracy and high temporal resolution of the barometric data from the IMS infrasound network, interactions with gravity waves and planetary waves can be examined in future for refining the knowledge of atmospheric dynamics, e.g. the origin of tidal harmonics up to 9 cycles per day as found in the barometric data sets. Data assimilation in empirical models of solar tides would be a valuable application of the IMS infrasound

  16. Tides, main lunar phases and babies

    OpenAIRE

    Silveira, Fernando Lang da; UFRGS - Rio Grande do Sul

    2003-01-01

    The mechanisms responsible for the tides are discussed, using mathematics that is accessible to secondary school students; we show that both the Moon and the Sun are responsible for the tidal effects on the oceans. Despite the gravitational pull of the Sun on the Earth being approximately 200 times greater than that of the Moon, solar tidal effects are approximately half those of the lunar effects. We present a study of 104,616 dates of birth, with the intention of identi...

  17. Semidiurnal Temperature Changes Caused by Tidal Front Movements in the Warm Season in Seabed Habitats on the Georges Bank Northern Margin and Their Ecological Implications

    Science.gov (United States)

    Guida, Vincent G.; Valentine, Page C.; Gallea, Leslie B.

    2013-01-01

    Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ∼100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (−2.48°C hr−1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats. PMID:23405129

  18. Semidiurnal temperature changes caused by tidal front movements in the warm season in seabed habitats on the georges bank northern margin and their ecological implications.

    Science.gov (United States)

    Guida, Vincent G; Valentine, Page C; Gallea, Leslie B

    2013-01-01

    Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ∼100 km of the bank margin. The seabed "frontal zone", where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This "frontal boundary zone" was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (-2.48°C hr(-1)) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.

  19. SMLTM simulations of the diurnal tide: comparison with UARS observations

    Directory of Open Access Journals (Sweden)

    R. A. Akmaev

    1997-09-01

    Full Text Available Wind and temperature observations in the mesosphere and lower thermosphere (MLT from the Upper Atmosphere Research Satellite (UARS reveal strong seasonal variations of tides, a dominant component of the MLT dynamics. Simulations with the Spectral mesosphere/lower thermosphere model (SMLTM for equinox and solstice conditions are presented and compared with the observations. The diurnal tide is generated by forcing specified at the model lower boundary and by in situ absorption of solar radiation. The model incorporates realistic parameterizations of physical processes including various dissipation processes important for propagation of tidal waves in the MLT. A discrete multi-component gravity-wave parameterization has been modified to account for seasonal variations of the background temperature. Eddy diffusion is calculated depending on the gravity-wave energy deposition rate and stability of the background flow. It is shown that seasonal variations of the diurnal-tide amplitudes are consistent with observed variations of gravity-wave sources in the lower atmosphere.

  20. Earth Tidal Controls on Basal Dynamics and Hydrology

    Science.gov (United States)

    Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.

    2001-12-01

    We appraise earth tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the earth tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that earth tides exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves earth-tide induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of

  1. Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region.

    Science.gov (United States)

    Frota, Felipe F; Truccolo, Eliane C; Schettini, Carlos A F

    2016-09-01

    A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1) indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds.

  2. Influence of Waves and Tides on Upper Slope Turbidity Currents and their Deposits: An Outcrop and Laboratory Study

    Science.gov (United States)

    Daniller-Varghese, M. S.; Smith, E.; Mohrig, D. C.; Goudge, T. A.; Hassenruck-Gudipati, H. J.; Koo, W. M.; Mason, J.; Swartz, J. M.; Kim, J.

    2017-12-01

    Research on interactions of turbidity currents with waves and tides highlight both their importance and complexity. The Elkton Siltstone at Cape Arago, Oregon, USA, preserves rhythmically bedded deposits that we interpret as the product of tidally modified hyperpycnal flows under the influence of water-surface waves. Evidence for the interpretation of tidal influence is taken from couplet thickness measurements consistent with semidiurnal tides arranged into monthly cycles. These deposits were likely sourced from suspended-sediment laden river plumes; thinner, finer-grained beds represent deposition during flood tide, and thicker, coarser-grained beds represent deposition during ebb tide. Sedimentary structures within the rhythmites change from proximal to distal sections, but both sections preserve combined-flow bedforms within the beds, implying wave influence. Our paleo-topographic reconstruction has the proximal section located immediately down-dip of the shelf slope-break and the distal section located 1.5km further offshore in 125m greater water depth. We present experimental results from wave-influenced turbidity currents calling into question the interpretation that combined-flow bedforms necessarily require deposition at or above paleo-wave base. Turbidity currents composed of quartz silt and very fine sand were released into a 10m long, 1.2m deep tank. Currents ran down a 9-degree ramp with a motor driven wave-maker positioned at the distal end of the tank. The currents interacted with the wave field as they travelled downslope into deeper water. While oscillatory velocities measured within the wave-influenced turbidity currents decreased with distance downslope, the maximum oscillatory velocities measured in the combined-flow currents at depth were five to six times larger than those measured under a wave field without turbidity currents. These results suggest that combined-flow turbidity currents can transmit oscillating-flow signals beneath the

  3. Tides and Decadal Variability

    Science.gov (United States)

    Ray, Richard D.

    2003-01-01

    This paper reviews the mechanisms by which oceanic tides and decadal variability in the oceans are connected. We distinguish between variability caused by tides and variability observed in the tides themselves. Both effects have been detected at some level. The most obvious connection with decadal timescales is through the 18.6-year precession of the moon's orbit plane. This precession gives rise to a small tide of the same period and to 18.6-year modulations in the phase and amplitudes of short-period tides. The 18.6-year "node tide" is very small, no more than 2 cm anywhere, and in sea level data it is dominated by the ocean's natural Variability. Some authors have naively attributed climate variations with periods near 19 years directly to the node tide, but the amplitude of the tide is too small for this mechanism to be operative. The more likely explanation (Loder and Garrett, JGR, 83, 1967-70, 1978) is that the 18.6-y modulations in short-period tides, especially h e principal tide M2, cause variations in ocean mixing, which is then observed in temperature and other climatic indicators. Tidally forced variability has also been proposed by some authors, either in response to occasional (and highly predictable) tidal extremes or as a nonlinear low-frequency oscillation caused by interactions between short-period tides. The former mechanism can produce only short-duration events hardly more significant than normal tidal ranges, but the latter mechanism can in principle induce low-frequency oscillations. The most recent proposal of this type is by Keeling and Whorf, who highlight the 1800-year spectral peak discovered by Bond et al. (1997). But the proposal appears contrived and should be considered, in the words of Munk et al. (2002), "as the most likely among unlikely candidates."

  4. What Causes Tides?

    Science.gov (United States)

    Donovan, Deborah

    2004-01-01

    The phenomenon of tides has a faraway source. This rise and fall of the water level over a period of several hours is a result of the gravitational pull of the Moon and the Sun on Earth's oceans. Tides exhibit predictable cycles on daily, monthly, and yearly scales. The magnitude of the tides is dependent on the position of the Earth and Moon in…

  5. The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons

    Science.gov (United States)

    Simpson, John H.; Burchard, Hans; Fisher, Neil R.; Rippeth, Tom P.

    2002-07-01

    The Liverpool Bay Region of Freshwater Influence in the Irish Sea exhibits strong horizontal gradients which interact with the dominant tidal flow. A 25 h series of measurements of the cycle of turbulent dissipation with the FLY dissipation profiler shows a strong asymmetry between ebb and flood which is associated with a cycle of increasing stratification on the ebb and progressive mixing on the flood which results in vertical homogeneity as high water is approached. At this time strong dissipation extends throughout the water column in contrast to the ebb when there is a near shutdown of dissipation in the upper half of the column. The cycle of stratification and dissipation is closely consistent for the two semi-diurnal tidal cycles observed. We have attempted to simulate this situation, which involves a complex suite of processes including tidal straining and mixing, using a version of the k-ɛ closure scheme in a 1-d dynamical model which is forced by a combination of the observed tidal flow and horizontal temperature and salinity gradients. The latter were measured directly at the end of the observational series but, in order to focus on the cycle of dissipation, the correct reproduction of the temperature and salinity cycle can be assured by a nudging procedure which obliges the model temperature and salinity values to track the observations. With or without this procedure, the model gives a reasonable account of the dissipation and its asymmetric behaviour on ebb and flood although nudging improves the timing of peak dissipation in the upper part of the water column near highwater. The model has also been used to examine the ratio of shear production (P/ɛ) and buoyancy inputs to dissipation (B/ɛ). The variation of these quantities over the tidal cycle confirms the important role of convective motions forced by tidal straining near the end of the flood phase of the tide.

  6. Lunar tides in Loch Ness, Scotland

    OpenAIRE

    Pugh, David T.; Woodworth, Philip L.; Bos, Machiel S.

    2011-01-01

    Measurements have been made of the astronomical tide in Loch Ness, Scotland, which is not directly connected to marine tides. Our measurements of the loch tide are, so far as we know, the first in a European lake where the tide originates primarily from ocean tide loading. Loch Ness is a readily accessible lake and is in a region for which the neighboring ocean tides are large and described well by modern global ocean tide models. The principal tidal constituent, M2, was observed to have an a...

  7. Tides and tsunamis

    Science.gov (United States)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  8. Tides in astronomy and astrophysics

    CERN Document Server

    Mathis, Stéphane; Tokieda, Tadashi

    2013-01-01

    Based on the lecture notes of a school titled ‘Tides in Astronomy and Astrophysics’ that brought together students and researchers, this book focuses on the fundamental theories of tides at different scales of the universe—from tiny satellites to whole galaxies—and on the most recent developments. It also attempts to place the study of tides in a historical perspective. Starting with a general tutorial on tides, the theme of tides is approached in 9 chapters from many directions. They allow non-experts to pick up a physical intuition and a sense of orders of magnitude in the theory of tides. These carefully prepared lecture notes by leaders in the field include many illustrative figures and drawings. Some even offer a variety of simple back-of the-envelope problems.

  9. Explorers Presentation: Explaining the Tides to Children

    OpenAIRE

    Institute, Marine

    2015-01-01

    Explaining the tides to children Presentation includes information about: Orbits of the Earth, Moon and Sun; Moon phases and the lunar cycle; Gravity; Gravity and the tide; Types of tides; The tides and me!; Tide tables; Extra insight

  10. The Diurnal and Semidiurnal Patterns of Rainfall and its Correlation to the Stream Flow Characteristic in the Ciliwung Watershed, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Riawan Edi

    2018-01-01

    Full Text Available Based on the data analysis of 16 years of TMPA dataset, the common patterns of rainfall over the Ciliwung River Basin are diurnal and semidiurnal. Those patterns can be associated by a stationary or moving rainstorm with different magnitude and direction. Based on hydrological model simulations, both the pattern and movement have a significant role to the discharge. At the downstream area, the discharge that triggered by semidiurnal pattern of rainfall can produces higher peak discharge and longer flood duration than diurnal pattern. This result open possibility to improve our prediction on design discharge.

  11. Lunar tides in Loch Ness, Scotland

    Science.gov (United States)

    Pugh, David T.; Woodworth, Philip L.; Bos, Machiel S.

    2011-11-01

    Measurements have been made of the astronomical tide in Loch Ness, Scotland, which is not directly connected to marine tides. Our measurements of the loch tide are, so far as we know, the first in a European lake where the tide originates primarily from ocean tide loading. Loch Ness is a readily accessible lake and is in a region for which the neighboring ocean tides are large and described well by modern global ocean tide models. The principal tidal constituent, M2, was observed to have an amplitude of approximately 1.5 mm, and to be in antiphase, at each end of the loch. These values are in close agreement with the theoretical combined effects of the direct gravitational tide (body tide) and the tilt effects due to ocean tide loading, computed using Green's functions based on conventional elastic-Earth models. By analyzing over long periods for coherent tidal signals, we are able to significantly improve the signal-to-noise ratio in the tilt values compared with values obtained by direct level differencing. Our tilt accuracy of better than 10-8, measured over 35 km, demonstrates Loch Ness as one the world's longest and most accurate tiltmeters. Despite this unprecedented accuracy, Earth tidal models are still at least as accurate as our ability to measure them.

  12. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    International Nuclear Information System (INIS)

    Mentes, Gy.

    2010-01-01

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093±0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  13. On the Specification of Upward-Propagating Tides for ICON Science Investigations

    Science.gov (United States)

    Forbes, Jeffrey M.; Zhang, Xiaoli; Hagan, Maura E.; England, Scott L.; Liu, Guiping; Gasperini, Federico

    2017-10-01

    The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) will provide a physics-based context for the interpretation of ICON measurements. To optimize the realism of the model simulations, ICON wind and temperature measurements near the ˜97 km lower boundary of the TIEGCM will be used to specify the upward-propagating tidal spectrum at this altitude. This will be done by fitting a set of basis functions called Hough Mode Extensions (HMEs) to 27-day mean tidal winds and temperatures between 90 and 105 km altitude and between 12 °S and 42 °N latitude on a day-by-day basis. The current paper assesses the veracity of the HME fitting methodology given the restricted latitude sampling and the UT-longitude sampling afforded by the MIGHTI instrument viewing from the ICON satellite, which will be in a circular 27° inclination orbit. These issues are investigated using the output from a reanalysis-driven global circulation model, which contains realistic variability of the important tidal components, as a mock data set. ICON sampling of the model reveals that the 27-day mean diurnal and semidiurnal tidal components replicate well the 27-day mean tidal components obtained from full synoptic sampling of the model, but the terdiurnal tidal components are not faithfully reproduced. It is also demonstrated that reconstructed tidal components based on HME fitting to the model tides between 12 °S and 42 °N latitude provide good approximations to the major tidal components expected to be encountered during the ICON mission. This is because the constraints provided by fitting both winds and temperatures over the 90-105 km height range are adequate to offset the restricted sampling in latitude. The boundary conditions provided by the methodology described herein will greatly enhance the ability of the TIEGCM to provide a physical framework for interpreting atmosphere-ionosphere coupling in ICON observations

  14. Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations

    Directory of Open Access Journals (Sweden)

    John J. Milledge

    2016-09-01

    Full Text Available In recent years there have been massive inundations of pelagic Sargassum, known as golden tides, on the beaches of the Caribbean, Gulf of Mexico, and West Africa, causing considerable damage to the local economy and environment. Commercial exploration of this biomass for food, fuel, and pharmaceutical products could fund clean-up and offset the economic impact of these golden tides. This paper reviews the potential uses and obstacles for exploitation of pelagic Sargassum. Although Sargassum has considerable potential as a source of biochemicals, feed, food, fertiliser, and fuel, variable and undefined composition together with the possible presence of marine pollutants may make golden tides unsuitable for food, nutraceuticals, and pharmaceuticals and limit their use in feed and fertilisers. Discontinuous and unreliable supply of Sargassum also presents considerable challenges. Low-cost methods of preservation such as solar drying and ensiling may address the problem of discontinuity. The use of processes that can handle a variety of biological and waste feedstocks in addition to Sargassum is a solution to unreliable supply, and anaerobic digestion for the production of biogas is one such process. More research is needed to characterise golden tides and identify and develop commercial products and processes.

  15. Application of the Convolution Formalism to the Ocean Tide Potential: Results from the Gravity and Recovery and Climate Experiment (GRACE)

    Science.gov (United States)

    Desai, S. D.; Yuan, D. -N.

    2006-01-01

    A computationally efficient approach to reducing omission errors in ocean tide potential models is derived and evaluated using data from the Gravity Recovery and Climate Experiment (GRACE) mission. Ocean tide height models are usually explicitly available at a few frequencies, and a smooth unit response is assumed to infer the response across the tidal spectrum. The convolution formalism of Munk and Cartwright (1966) models this response function with a Fourier series. This allows the total ocean tide height, and therefore the total ocean tide potential, to be modeled as a weighted sum of past, present, and future values of the tide-generating potential. Previous applications of the convolution formalism have usually been limited to tide height models, but we extend it to ocean tide potential models. We use luni-solar ephemerides to derive the required tide-generating potential so that the complete spectrum of the ocean tide potential is efficiently represented. In contrast, the traditionally adopted harmonic model of the ocean tide potential requires the explicit sum of the contributions from individual tidal frequencies. It is therefore subject to omission errors from neglected frequencies and is computationally more intensive. Intersatellite range rate data from the GRACE mission are used to compare convolution and harmonic models of the ocean tide potential. The monthly range rate residual variance is smaller by 4-5%, and the daily residual variance is smaller by as much as 15% when using the convolution model than when using a harmonic model that is defined by twice the number of parameters.

  16. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    -level time series from Lagos Argentino and Viedma yields the amplitudes and phases of the lake tides for the four major tidal constituents M2, S2, O1 and K1. The maximum amplitude, corresponding to the semi-diurnal moon tide M2 in Lago Argentino, amounts to 3 mm. For the four lakes under investigation the theoretical amplitudes and phases of seven constituents (Q1, O1, P1, K1, N2, M2 and S2) are modelled accounting for the contributions of both the solid earth's body tides and the ocean tidal loading (Marderwald 2014). Both contributions involve a deformation of the earth surface and of the equipotential surfaces of the gravity field. For the load tide computation the global ocean tide model EOT11a (Savcenko and Bosch, 2012) and the Gutenberg-Bullen A earth model (Farrell, 1972) was applied and the conservation of water volume is taken into account. The comparison of the tidal signal extracted from the lake-level observations in Lagos Argentino and Viedma with the lake tide models indicates a phase shift which is most likely explained by an 1 hour phase lag of the employed global ocean tide model in the region of the highly fragmented Pacific coast. REFERENCES: Farrell, W. E., (1972). Deformation of the Earth by Surface Loads. Rev. Geophy. Space Phy., 10(3):761-797. Ivins, E., James, T., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31 (L24613). Doi:10.1029/2004GL021500. Klemann, V., E. R. Ivins, Z. Martinec, and D. Wolf (2007), Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res., 112, B09405, doi: 10.1029/2006JB004818. Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., Dietrich, R., (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, DOI: 10.1002/2013GL058419. Marderwald ER, 2014. Modelado de las mareas

  17. Near-inertial currents off the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mukherjee, A.; Shankar, D.; Aparna, S.G.; Amol, P.; Fernando, V.; Fernandes, R.; Khalap, S.T.; Satlekar, N.P.; Agarvadekar, Y.; Gaonkar, M.G.; Tari, A.P.; Kankonkar, A.; Vernekar, S.

    .8◦N for the M2 tide (Haren, 2005; Alford et al., 2007) and 14.52◦N and 13.44◦N for the K1 andO1 tides, respectively (Xie et al, 2009; sun et al., 2011; Xie et al, 2011). The critical latitude for the semi-diurnal tide is north of the basin boundary... the southwest monsoon. Continental Shelf Research 11, 1397–1408. Sindhu, M. 2012. Numerical Modeling of Tides and Storm Surges in the Bay of Bengal. Ph.D. Thesis. Goa University, India. Sun, Lu., Maas., Zheng, Quanan., Wang, Dongxiao., Hu, Jianyu., Tai, Chang...

  18. Tides and tidal currents

    NARCIS (Netherlands)

    Roos, A.

    1997-01-01

    Basic phenomena, origin and generation of tides, analysis and prediction of tides, basic equation and types of long waves in one dimension, tidal propagation in one dimension, tidal propagation in two directions, analytical tidal computation, numerical tidal computation.

  19. The pole tide in deep oceans

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  20. Identification of Msf tide amplification using a network of spatially distributed tide gauges

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Mehra, P.; Sivadas, T.K.; Desai, R.G.P.; Srinivas, K.; Thottam, T.; Vijayan, P.R.; Revichandran, C.; Balachandran, K.K.

    . Phys. Maths. Soc. Jpn., 3, 372-380. [17]. Noye, B.J., 1974. Tide-well systems I: Some non-linear effects of the conventional tide-well. J. Marine Res., 32 (2), 129-153. [18]. Picaut, J., and Verstraete, J.M., 1979. Propagation of a 14.7-day wave...

  1. Nature of the observed oscillatory flows in shelf waters of the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Antony, M.K.; Sundar, D.

    of internal waves with frequencies close to semidiurnal period (internal tide) controlling the flow structure. The temperature records at these levels together with the B.T. time series data collected in the vicinity of mooring site supported the presence...

  2. Dynamics of tidal and non-tidal currents along the southwest continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Aruna, C.; Ravichandran, C.; Srinivas, K.; Rasheed, P.A.A.; Lekshmi, S.

    are predominantly mixed, semidiurnal in nature. Motion over any continental shelf is governed by the tide-driven oscillatory flow. In this paper, tidal and non-tidal characteristics of the waters of Southwest continental shelf of India are assessed using...

  3. Tide Predictions, California, 2014, NOAA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The predictions from the web based NOAA Tide Predictions are based upon the latest information available as of the date of the user's request. Tide predictions...

  4. Investigating tides, where does all the water go?

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will aim to complete a project investigating and researching tides. Each student should seek to develop an understanding of what causes tides and why sea levels change between high and low tide. Investigate and become familiar with tides as a natural feature in the local environment. Explore ways in which tides affect the behaviour of plants, animals and people.

  5. Modeling study of the ionospheric responses to the quasi-biennial oscillations of the sun and stratosphere

    Science.gov (United States)

    Wang, Jack C.; Tsai-Lin, Rong; Chang, Loren C.; Wu, Qian; Lin, Charles C. H.; Yue, Jia

    2018-06-01

    The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70-120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Interannual oscillations in solar radiation can also directly drive the variations in the ionosphere with similar periodicities through the photoionization. Many studies have observed the connection between the solar activity and QBO signal in ionospheric features such as total electron content (TEC). In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Migrating tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as with the quasi-biennial variations in solar activity isolated by the Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The numerical experiment results indicate that the ionospheric QBO is mainly driven by the solar quasi-biennial variations during the solar maximum, since the solar quasi-biennial variation amplitude is directly proportionate to the solar cycle. The ionospheric QBO in the model is sensitive to both the stratospheric QBO and solar quasi-biennial variations during the solar minimum, with solar effects still playing a stronger role.

  6. Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR

    Directory of Open Access Journals (Sweden)

    J. Fiedler

    2005-06-01

    Full Text Available From 1997 to 2003, noctilucent clouds (NLC were observed by lidar above the ALOMAR observatory in Northern Norway (69° N during a total of 1880 measurement hours. This data set contains NLC signatures for 640h, covering all local times, even during the highest solar background conditions. After data limitation imposing a threshold value of 4x10-10m-1sr-1 for the volume backscatter coefficient of the NLC particles, a measure for the cloud brightness, local time dependencies of the NLC occurrence frequency, altitude, and brightness were determined. On average, over the 7 years NLC occurred during the whole day and preferably in the early morning hours, with a maximum occurrence frequency of ~40% between 4 and 7 LT. Splitting the data into weak and strong clouds yields almost identical amplitudes of diurnal and semidiurnal variations for the occurrence of weak clouds, whereas the strong clouds are dominated by the diurnal variation. NLC occurrence, altitude, as well as brightness, show a remarkable persistence concerning diurnal and semidiurnal variations from 1997 to 2003, suggesting that NLC above ALOMAR are significantly controlled by atmospheric tides. The observed mean anti-phase behavior between cloud altitude and brightness is attributed to a phase shift between the semidiurnal components by ~6h. Investigation of data for each individual year regarding the prevailing oscillation periods of the NLC parameters showed different phase relationships, leading to a complex variability in the cloud parameters.

  7. New insights into ocean tide loading corrections on tidal gravity data in Canary Islands

    Science.gov (United States)

    Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.

    2009-04-01

    case of M2 and O1 waves at three sites. However, the scatter between oceanic models seen at final residual vectors does not indicate clearly if tidal observations are close to elastic or inelastic body tide model. Finally, after computing misfits of gravity tide observations and ocean tide loading calculations the level of agreement between the five global oceanic models is below 0.2 Gal (1 Gal=10-8ms-2), except for the solar harmonic K1, which reaches a large value that reflects the thermal instability at three sites because the period of K1 is very close to that of S1. None of the five global models seems to give results that are clearly better than the other models.

  8. Observations and Modeling of Thermal Structure in the Lower Atmosphere and the Upward Propagation of Tides into the Thermosphere

    Science.gov (United States)

    Wilson, R. J.; Kahre, M.

    2017-01-01

    Thermal tides are the atmospheric response to diurnally varying thermal forcing resulting from radiative and convective heat transfer from the surface and from aerosol and gaseous heating within the atmosphere. Tides include sun-synchronous (migrating) waves driven in response to solar heating and additional non-migrating waves resulting from longitudinal variations in the distributions of topography, dust aerosol and water ice clouds. The systematic spatial mapping of temperature over 5 Mars years by the Mars Climate Sounder (MCS) has yielded a well-defined climatology of seasonally-varying temperature structures in the lower atmosphere, from 5 to 80 km. Tide theory and Mars global circulation model (MGCM) simulations are a fruitful framework for relating temperature observations to thermal forcing by aerosol fields [1]. The analysis of density and temperature fields derived from MAVEN IUVS and NGIMS observations have revealed the presence of predominantly zonal wave 2 and 3 features at altitudes of 100-170 km that are almost certainly non-migrating tides propagating upward from the lower atmosphere [2,3]. In this presentation we will use the MCS climatology and MGCM simulations to relate the density variations seen by MAVEN with the seasonally varying tide activity in the lower atmosphere. Large amplitude perturbations in density are most sensitive to the tide components with the longest vertical wavelengths in temperature, which are well resolved in MCS observations.

  9. Mapping Hurricane Rita inland storm tide

    Science.gov (United States)

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  10. Ocean tides from Seasat-A

    Science.gov (United States)

    Hendershott, M. C.; Munk, W. H.; Zetler, B. D.

    1974-01-01

    Two procedures for the evaluation of global tides from SEASAT-A altimetry data are elaborated: an empirical method leading to the response functions for a grid of about 500 points from which the tide can be predicted for any point in the oceans, and a dynamic method which consists of iteratively modifying the parameters in a numerical solution to Laplace tide equations. It is assumed that the shape of the received altimeter signal can be interpreted for sea state and that orbit calculations are available so that absolute sea levels can be obtained.

  11. King Tides and Climate Change

    Science.gov (United States)

    The highest predicted high tide of the year at a coastal location can bring unusually high water levels and can cause flooding. Learn about these tides including what they are, when they occur, and what they can mean for the future.

  12. Smal-Scale Spatial Differences in Supply-Side Ecology of Barnacle Larvae Involves a Complex Suite of Factors (Including Surface Tide, Internal Tides And Surface Winds) in Baja California

    Science.gov (United States)

    Valencia, A.; Ladah, L. B.

    2016-02-01

    The objective of this study was to quantify and compare the daily settlement rate of barnacle larvae of Chthamalus spp. at small spatial scales ( 1 km) at three sites with unique geomorphology. Simultaneously, water-column temperature, currents, and coastal winds were measured to detect potential physical transport mechanisms responsible for supply of planktonic larvae to the coast. Autocorrelation artifacts in the environmental and settlement time series were removed with the Autoregressive Integrated Moving Average (ARIMA) and their residuals were used to perform a Principal Component Analysis (PCA). This analysis was carried out to determine the independent modes of variability in the environmental forcing mechanisms that may explain the settlement patterns. We found synchronous settlement pulses occurring throughout the study. Settlement at the wave exposed site was only associated to the wind-forcing mode and not to internal waves, which had not been detected previously and was surprising, considering the strong semidiurnal internal tide at this site. Settlement at both the reef-bounded site and the inside-bay site associated to vertical isotherm displacements, thereby suggesting the importance of internal waves for supply-side ecology at these more southern sites. Our results suggest that a complex suite of factors may interact to result in larval supply at the same site, and that larval supply at nearby sites may be forced by different factors due to differences in geomorphology and/or bathymetry, explaining spatial heterogeneity often detected in larval supply and settlement.

  13. Kilometric Scale Modeling of the North West European Shelf Seas: Exploring the Spatial and Temporal Variability of Internal Tides

    Science.gov (United States)

    Guihou, K.; Polton, J.; Harle, J.; Wakelin, S.; O'Dea, E.; Holt, J.

    2018-01-01

    The North West European Shelf break acts as a barrier to the transport and exchange between the open ocean and the shelf seas. The strong spatial variability of these exchange processes is hard to fully explore using observations, and simulations generally are too coarse to simulate the fine-scale processes over the whole region. In this context, under the FASTNEt program, a new NEMO configuration of the North West European Shelf and Atlantic Margin at 1/60° (˜1.8 km) has been developed, with the objective to better understand and quantify the seasonal and interannual variability of shelf break processes. The capability of this configuration to reproduce the seasonal cycle in SST, the barotropic tide, and fine-resolution temperature profiles is assessed against a basin-scale (1/12°, ˜9 km) configuration and a standard regional configuration (7 km resolution). The seasonal cycle is well reproduced in all configurations though the fine-resolution allows the simulation of smaller scale processes. Time series of temperature at various locations on the shelf show the presence of internal waves with a strong spatiotemporal variability. Spectral analysis of the internal waves reveals peaks at the diurnal, semidiurnal, inertial, and quarter-diurnal bands, which are only realistically reproduced in the new configuration. Tidally induced pycnocline variability is diagnosed in the model and shown to vary with the spring neap cycle with mean displacement amplitudes in excess of 2 m for 30% of the stratified domain. With sufficiently fine resolution, internal tides are shown to be generated at numerous bathymetric features resulting in a complex pycnocline displacement superposition pattern.

  14. Local time variations of the middle atmosphere of Venus: Solar-related structures

    Science.gov (United States)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  15. Future Change to Tide-Influenced Deltas

    Science.gov (United States)

    Nienhuis, Jaap H.; Hoitink, A. J. F. (Ton); Törnqvist, Torbjörn E.

    2018-04-01

    Tides tend to widen deltaic channels and shape delta morphology. Here we present a predictive approach to assess a priori the effect of fluvial discharge and tides on deltaic channels. We show that downstream channel widening can be quantified by the ratio of the tide-driven discharge and the fluvial discharge, along with a second metric representing flow velocities. A test of our new theory on a selection of 72 deltas globally shows good correspondence to a wide range of environments, including wave-dominated deltas, river-dominated deltas, and alluvial estuaries. By quantitatively relating tides and fluvial discharge to delta morphology, we offer a first-order prediction of deltaic change that may be expected from altered delta hydrology. For example, we expect that reduced fluvial discharge in response to dam construction will lead to increased tidal intrusion followed by enhanced tide-driven sediment import into deltas, with implications for navigation and other human needs.

  16. Thermospheric zonal mean winds and tides revealed by CHAMP

    NARCIS (Netherlands)

    Lieberman, R.S.; Akmaev, R.A.; Fuller-Rowell, T.J.; Doornbos, E.

    2013-01-01

    We present direct, global observations of longitudinally averaged CHAMP zonal winds gathered between 2003 and 2007. A diurnal variation dominates the global zonal wind. Westward flows are observed from the early morning through afternoon hours, while eastward flows peak in the evening. A semidiurnal

  17. Seasonal variation of wave activities near the mesopause region observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    Science.gov (United States)

    Lee, Changsup; Kim, Yong Ha; Kim, Jeong-Han; Jee, Geonhwa; Won, Young-In; Wu, Dong L.

    2013-12-01

    We analyzed the neutral wind data at altitudes of 80-100 km obtained from a VHF meteor radar at King Sejong Station (KSS, 62.22°S, 58.78°W), a key location to study wave activities above the stratospheric vortex near the Antarctic Peninsula. The seasonal behavior of the semidiurnal tides is generally consistent with the prediction of Global Scale Wave Model (GSWM02) except in the altitude region above ~96 km. Gravity wave (GW) activities inferred from the neutral wind variances show a seasonal variation very similar to the semidiurnal tide amplitudes, suggesting a strong interaction between gravity waves and the tide. Despite the consistent seasonal variations of the GW wind variances observed at the adjacent Rothera station, the magnitudes of the wind variance obtained at KSS are much larger than those at Rothera, especially during May-September. The enhanced GW activity at KSS is also observed by Aura Microwave Limb Sounder (MLS) from space in its temperature variance. The observed large wind variances at KSS imply that the Antarctic vortex in the stratosphere may act as an effective filter and source for the GWs in the upper atmosphere.

  18. Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data

    Science.gov (United States)

    Vindenes, Håvard; Orvik, Kjell Arild; Søiland, Henrik; Wehde, Henning

    2018-06-01

    North Sea tidal currents are determined by applying harmonic analysis to ship-borne acoustic Doppler current profiler data recorded from 1999 to 2016, covering large areas of the northern North Sea. Direct current measurement data sets of this magnitude are rare in the otherwise well investigated North Sea, and thus it is a valuable asset in studying and expanding our understanding of its tidal currents and circulation in general. The harmonic analysis is applied to a least squares fit of the current observations at a set of knot points. Results from the harmonic analysis compare favorably to tidal parameters estimated from observations from moored instruments. The analysis shows that the tides are characterized by strong semi-diurnal component, with amplitudes of the principal Lunar constituent ranging from 1.6 cm/s in the Skagerrak to 67 cm/s in the Fair Isle Channel. Diurnal tides are found to be approximately one fifth the strength of the predominant semi-diurnal constituent. Output from a regional barotropic tide model compares well to tidal current determined from the harmonic analysis of the Acoustic Doppler Current Profiler data.

  19. The Global S$_1$ Ocean Tide

    Science.gov (United States)

    Ray, Richard D.; Egbert, G. D.

    2003-01-01

    The small S$_1$ ocean tide is caused primarily by diurnal atmospheric pressure loading. Its excitation is therefore unlike any other diurnal tide. The global character of $S-1$ is here determined by numerical modeling and by analysis of Topex/Poseidon satellite altimeter data. The two approaches yield reasonably consistent results, and large ( $ greater than $l\\cm) amplitudes in several regions are further confirmed by comparison with coastal tide gauges. Notwithstanding their excitation differences, S$-1$ and other diurnal tides are found to share several common features, such as relatively large amplitudes in the Arabian Sea, the Sea of Okhotsk, and the Gulf of Alaska. The most noticeable difference is the lack of an S$-1$ Antarctic Kelvin wave. These similarities and differences can be explained in terms of the coherences between near-diurnal oceanic normal modes and the underlying tidal forcings. While gravitational diurnal tidal forces excite primarily a 28-hour Antarctic-Pacific mode, the S$_1$ air tide excites several other near-diurnal modes, none of which has large amplitudes near Antarctica.

  20. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  1. Numerical assessment of factors affecting nonlinear internal waves in the South China Sea

    Science.gov (United States)

    Li, Qiang

    2014-02-01

    Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.

  2. Long-period variations of wind parameters in the mesopause region and the solar cycle dependence

    International Nuclear Information System (INIS)

    Greisiger, K.M.; Schminder, R.; Kuerschner, D.

    1987-01-01

    A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. However, after the years 1973-1974 we found a significant negative correlation with solar activity with an indication of a new change after 1983. We conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control. Recent satellite data of the solar u.v. radiation and the upper stratospheric ozone have shown that the possible variation of the thermal tidal excitation during the solar cycle amounts to only a few per cent. This is, therefore, insufficient to account for the 40-70% variation of the tidal amplitudes. Some other possibilities of explaining this result are discussed. (author)

  3. Precise Comparisons of Bottom-Pressure and Altimetric Ocean Tides

    Science.gov (United States)

    Ray, Richard D.

    2013-01-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets : the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free corenutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  4. Precise comparisons of bottom-pressure and altimetric ocean tides

    Science.gov (United States)

    Ray, R. D.

    2013-09-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  5. Four-peak longitudinal distribution of the equatorial plasma bubbles observed in the topside ionosphere: Possible troposphere tide influence

    Science.gov (United States)

    Sidorova, L. N.; Filippov, S. V.

    2018-03-01

    In this paper we consider an idea of the troposphere tide influence on the character of the longitudinal variations in the distribution of the equatorial plasma bubbles (EPBs) observed in the topside ionosphere. For this purpose, the obtained EPB longitudinal patterns were compared with the thermosphere and ionosphere characteristics having the prominent "wave-like" longitudinal structures with wave number 4, which are uniquely associated with the influence of the troposphere DE3 tides. The characteristics of the equatorial mass density anomaly (EMA), equatorial ionization anomaly (EIA), zonal wind and pre-reversal E × B drift enhancement (PRE) were used for comparison. The equinox seasons during high solar activity were under consideration. It was obtained that the longitudinal patterns of the EMA and zonal wind show the surprising similarity with the EPB distributions (R ≅ 0.8, R ≅ 0.72). On the other hand, the resemblance with the ionosphere characteristics (EIA, PRE) is rather faint (R ≅ 0.37, R ≅ 0.12). It was shown that the thermosphere zonal winds are the most possible transfer mediator of the troposphere DE3 tide influence. The most successful moment for the transfer of the troposphere DE3 tide energy takes place in the beginning of the EPB production, namely, during the seed perturbation development.

  6. What can earth tide measurements tell us about ocean tides or earth structure?

    Science.gov (United States)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  7. Ocean Tide Loading Computation

    Science.gov (United States)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  8. Fortnightly Ocean Tides, Earth Rotation, and Mantle Anelasticity

    Science.gov (United States)

    Ray, Richard; Egbert, Gary

    2012-01-01

    The fortnightly Mf ocean tide is the largest of the long-period tides (periods between 1 week and 18.6 years), but Mf is still very small, generally 2 cm or less. All long-period tides are thought to be near equilibrium with the astronomical tidal potential, with an almost pure zonal structure. However, several lines of evidence point to Mf having a significant dynamic response to forcing. We use a combination of numerical modeling, satellite altimetry, and observations of polar motion to determine the Mf ocean tide and to place constraints on certain global properties, such as angular momentum. Polar motion provides the only constraints on Mf tidal currents. With a model of the Mf ocean tide in hand, we use it to remove the effects of the ocean from estimates of fortnightly variations in length-of-day. The latter is dominated by the earth's body tide, but a small residual allows us to place new constraints on the anelasticity of the earth's mantle. The result gives the first experimental confirmation of theoretical predictions made by Wahr and Bergen in 1986.

  9. Study of the tidal variations in mesospheric temperature at low and mid latitudes from WINDII and potassium lidar observations

    Directory of Open Access Journals (Sweden)

    M. Shepherd

    2004-04-01

    Full Text Available Zonal mean daytime temperatures from the Wind Imaging Interferometer (WINDII on the Upper Atmosphere Research Satellite (UARS and nightly temperatures from a potassium (K lidar are employed in the study of the tidal variations in mesospheric temperature at low and mid latitudes in the Northern Hemisphere. The analysis is applied to observations at 89km height for winter solstice, December to February (DJF, at 55° N, and for May and November at 28° N. The WINDII results are based on observations from 1991 to 1997. The K-lidar observations for DJF at Kühlungsborn (54° N were from 1996–1999, while those for May and November at Tenerife 28° N were from 1999. To avoid possible effects from year-to-year variability in the temperatures observed, as well as differences due to instrument calibration and observation periods, the mean temperature field is removed from the respective data sets, assuming that only tidal and planetary scale perturbations remain in the temperature residuals. The latter are then binned in 0.5h periods and the individual data sets are fitted in a least-mean square sense to 12-h and 8-h harmonics, to infer semidiurnal and terdiurnal tidal parameters. Both the K-lidar and WINDII independently observed a strong semidiurnal tide in November, with amplitudes of 13K and 7.4K, respectively. Good agreement was also found in the tidal parameters derived from the two data sets for DJF and May. It was recognized that insufficient local time coverage of the two separate data sets could lead to an overestimation of the semidiurnal tidal amplitude. A combined ground-based/satellite data set with full diurnal local time coverage was created which was fitted to 24h+12h+8h harmonics and a novel method applied to account for possible differences between the daytime and nighttime means. The results still yielded a strong semidiurnal tide in November at 28° N with an amplitude of 8.8K which is twice the SD amplitude in May and DJF. The

  10. Geodynamic Effects of Ocean Tides: Progress and Problems

    Science.gov (United States)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  11. Impact of sea level rise on tide gate function.

    Science.gov (United States)

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.

  12. Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2017-11-01

    Full Text Available Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD (length of day is −0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.

  13. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to theWandel Sea (NE Greenland)

    DEFF Research Database (Denmark)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Soren

    2017-01-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series...... are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic...... mode of the internal tide with a velocity minimum at similar to 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus...

  14. Statistical selection of tide gauges for Arctic sea-level reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-01-01

    In this paper, we seek an appropriate selection of tide gauges for Arctic Ocean sea-level reconstruction based on a combination of empirical criteria and statistical properties (leverages). Tide gauges provide the only in situ observations of sea level prior to the altimetry era. However, tide...... the "influence" of each Arctic tide gauge on the EOF-based reconstruction through the use of statistical leverage and use this as an indication in selecting appropriate tide gauges, in order to procedurally identify poor-quality data while still including as much data as possible. To accommodate sparse...

  15. Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo

    Directory of Open Access Journals (Sweden)

    N. Christakis

    2009-03-01

    Full Text Available Sporadic E layers (Es follow regular daily patterns in variability and altitude descent, which are determined primarily by the vertical tidal wind shears in the lower thermosphere. In the present study a large set of sporadic E layer incoherent scatter radar (ISR measurements are analyzed. These were made at Arecibo (Geog. Lat. ~18° N; Magnetic Dip ~50° over many years with ISR runs lasting from several hours to several days, covering evenly all seasons. A new methodology is applied, in which both weak and strong layers are clearly traced by using the vertical electron density gradient as a function of altitude and time. Taking a time base equal to the 24-h local day, statistics were obtained on the seasonal behavior of the diurnal and semidiurnal tidal variability and altitude descent patterns of sporadic E at Arecibo. The diurnal tide, most likely the S(1,1 tide with a vertical wavelength around 25 km, controls fully the formation and descent of the metallic Es layers at low altitudes below 110 km. At higher altitudes, there are two prevailing layers formed presumably by vertical wind shears associated mainly with semidiurnal tides. These include: 1 a daytime layer starting at ~130 km around midday and descending down to 105 km by local midnight, and 2 a less frequent and weaker nighttime layer which starts prior to midnight at ~130 km, descending downwards at somewhat faster rate to reach 110 km by sunrise. The diurnal and semidiurnal-like pattern prevails, with some differences, in all seasons. The differences in occurrence, strength and descending speeds between the daytime and nighttime upper layers are not well understood from the present data alone and require further study.

  16. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    Science.gov (United States)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  17. Performance of modern tide gauges: towards mm-level accuracy

    Directory of Open Access Journals (Sweden)

    Belén Martín Míguez

    2012-09-01

    Full Text Available Considerable efforts are being made worldwide to upgrade tide gauge networks using new technologies. Because of the unique location of the Kerguelen Islands, the measurement of sea level there has received particular attention, with up to four systems equipped with modern sensors functioning simultaneously (two pressure tide gauges, a radar tide gauge, and a GPS-equipped buoy. We analysed and compared the sea level data obtained with these systems from 2003 to 2010, together with a time series of tide pole observations. This is the first time that a multi-comparison study with tide gauges has been undertaken over such a long time span and that the stability of modern radar tide gauges has been examined. The multi-comparison enabled us to evaluate the performance of the tide gauges in several frequency ranges, identify errors and estimate their magnitude. The drift of the pressure sensors (up to 8.0 mm/yr was found to be one of the most relevant sources of systematic error. Other sources of difference such as clock drift, scale error and different locations of the instruments were also detected. After correcting the time series of sea level for these errors we estimated an upper bound for the radar instrumental error in field condition at ~0.3 cm.

  18. Bipolar mood cycles and lunar tidal cycles.

    Science.gov (United States)

    Wehr, T A

    2018-04-01

    In 17 patients with rapid cycling bipolar disorder, time-series analyses detected synchronies between mood cycles and three lunar cycles that modulate the amplitude of the moon's semi-diurnal gravimetric tides: the 14.8-day spring-neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies ('supermoons'). The analyses also revealed shifts among 1:2, 1:3, 2:3 and other modes of coupling of mood cycles to the two bi-weekly lunar cycles. These shifts appear to be responses to the conflicting demands of the mood cycles' being entrained simultaneously to two different bi-weekly lunar cycles with slightly different periods. Measurements of circadian rhythms in body temperature suggest a biological mechanism through which transits of one of the moon's semi-diurnal gravimetric tides might have driven the patients' bipolar cycles, by periodically entraining the circadian pacemaker to its 24.84-h rhythm and altering the pacemaker's phase-relationship to sleep in a manner that is known to cause switches from depression to mania.

  19. The killer tides

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.; Bhat, S.R.

    . Various measures adopted to control or contain such harmful events have either proved ineffective or are economically unviable. Red tides generally break out under favourable environmental conditions such as calm, sunny weather and gently breeze or when...

  20. Orthogonal stack of global tide gauge sea level data

    Science.gov (United States)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  1. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  2. The IERS Special Bureau for Tides

    Science.gov (United States)

    Ray, Richard D.; Chao, B. F.; Desai, S. D.

    2002-01-01

    The Global Geophysical Fluids Center of the International Earth Rotation Service (IERS) comprises 8 special bureaus, one of which is the Special Bureau for Tides. Its purpose is to facilitate studies related to tidal effects in earth rotation. To that end it collects various relevant datasets and distributes them, primarily through its website at bowie.gsfc.nasa.gov/ggfc/tides. Example datasets include tabulations of tidal variations in angular momentum and in earth rotation as estimated from numerical ocean tide models and from meteorological reanalysis products. The web site also features an interactive tidal prediction "machine" which generates tidal predictions (e.g., of UT1) from lists of harmonic constants. The Special Bureau relies on the tidal and earth-rotation communities to build and enlarge its datasets; further contributions from this community are most welcome.

  3. Tide-surge interaction in the English Channel

    Directory of Open Access Journals (Sweden)

    D. Idier

    2012-12-01

    Full Text Available The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS. The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms, it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences DSS are analysed. Skew surges appear to be tide-dependent, with negligible values of DSS (<0.05 m over a large portion of the English Channel, although reaching several tens of centimetres in some locations (e.g. the Isle of Wight and Dover Strait.

  4. Lower thermospheric neutral densities determined from Soendre Stroemfjord incoherent scatter radar during LTCS 1

    International Nuclear Information System (INIS)

    Reese, K.W.; Johnson, R.M.; Killeen, T.L.

    1991-01-01

    Ion-neutral collision frequencies determined from measurements obtained by the incoherent scatter radar located at Soendre Stroemfjord, Greenland, have been used to derive lower thermospheric neutral densities during the first Lower Thermosphere Coupling Study (LTCS 1), September 21-26, 1987. Periods of Joule and particle heating which might disturb the E region thermal equilibrium were systematically eliminated. The mean profile of neutral density for the period is in good agreement with the mass spectrometer incoherent scatter 1986 (MSIS-86) model between 92 and 104 km. A tendency to overestimate collision frequencies above 105 km may arise from range-smearing effects. The results of a tidal analysis performed on the neutral density between 92 and 109 km show that the amplitudes of the diurnal and semidiurnal components of the tides are approximately equivalent. The observations are generally in better agreement with the MSIS-86 predictions than with the thermosphere-ionosphere general circulation model (TIGCM) simulation of the LTCS 1 interval. The observed phase of the diurnal component is approximately constant with height above 98 km and is in close agreement with the MSIS-86 model phases; however, the TIGCM diurnal phases are shifted by 6-8 hours to later local times. The phase of the semidiurnal tide is in good agreement with predictions of the MSIS-86 model and the TIGCM simulation of this interval, except near 98 km. The observed semidiurnal phase is also consistent with previous high-latitude results (Kirkwood, 1986). The relative amplitude of the observed semidiurnal oscillation is up to 15% larger than that previously observed at the European Incoherent Scatter facility but is consistent with the amplitudes presented in an earlier study of Millstone Hill measurements (Salah, 1974)

  5. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    Science.gov (United States)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    One hundred sets of mean elements of GEOS-3 computed at 2-day intervals yielded observation equations for the M sub 2 ocean tide from the long periodic variations of the inclination and node of the orbit. The 2nd degree Love number was given the value k sub 2 = 0.30 and the solid tide phase angle was taken to be zero. Combining obtained equations with results for the satellite 1967-92A gives the M sub 2 ocean tide parameter values. Under the same assumption of zero solid tide phase lag, the lunar tidal acceleration was found mostly due to the C sub 22 term in the expansion of the M sub 2 tide with additional small contributions from the 0 sub 1 and N sub 2 tides. Using Lambeck's (1975) estimates for the latter, the obtained acceleration in lunar longitudal in excellent agreement with the most recent determinations from ancient and modern astronomical data.

  6. Nature of a solar cyclicity

    International Nuclear Information System (INIS)

    Romanchuk, P.R.

    1981-01-01

    The paper contains a critical review of works on studying a cyclic character of solar activity. An introduction of cyclic curves with a frequency spectrum is established to be insolvent. The Wolf, Newcomb and Waldmeier approach seems to be useful. Some evidence is given in favour of the author's conception of solar activity ciclicity of a tide nature. It is accounted for a continuous double and single effect of planets, a resonant character of this effect due to which a 10-year period of Jupiter and Saturn is transformed into an 11-year cycle of activity [ru

  7. Tide-surge Interaction Intensified by the Taiwan Strait

    Science.gov (United States)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  8. Sea level reconstruction from satellite altimetry and tide gauge data

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2012-01-01

    Ocean satellite altimetry has provided global sets of sea level data for the last two decades, allowing determination of spatial patterns in global sea level. For reconstructions going back further than this period, tide gauge data can be used as a proxy. We examine different methods of combining...... for better sensitivity analysis with respect to spatial distribution, and tide gauge data are available around the Arctic Ocean, which may be important for a later high-latitude reconstruction....... satellite altimetry and tide gauge data using optimal weighting of tide gauge data, linear regression and EOFs, including automatic quality checks of the tide gauge time series. We attempt to augment the model using various proxies such as climate indices like the NAO and PDO, and investigate alternative...

  9. Dynamic Tides and the Evolution of Stars in Close Binaries

    OpenAIRE

    Willems, B.; Claret, A.

    2004-01-01

    In this talk, we review some recent advances in the theory of dynamic tides in close binaries. We particularly focus on the effects of resonances of dynamic tides with free oscillation modes and on the role of dynamic tides in the comparison of theoretically predicted and observationally inferred apsidal-motion rates.

  10. A fast-response shallow-water tide gauge

    International Nuclear Information System (INIS)

    Cavaleri, L.; Curiotto, S.

    1979-01-01

    The authors describe the characteristics of a fast-response tide gauge suitable for shallow-water conditions. Its time constant is of the order of minutes. Wind waves are filtered better than 99% in the (0/10) s interval. The tide gauge has now been operative for three years on an oceanographic tower in the open sea. (author)

  11. Thermal tides on a hot Jupiter

    Directory of Open Access Journals (Sweden)

    Hsieh H.-F.

    2011-07-01

    Full Text Available Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09, we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b requires further investigation.

  12. Storm Surge and Tide Interaction: A Complete Paradigm

    Science.gov (United States)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  13. Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records

    Directory of Open Access Journals (Sweden)

    Andreas Richter

    2015-08-01

    Full Text Available Based on precise pressure tide gauge observations lake-level records are derived for two sites in Lago Argentino, southern Patagonia, of 2.5 and 1 years of duration. Applying the tools of time series analysis, the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle of 1.2 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. Sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in Lago Argentino are dominated by surface seiches reaching 20 cm in amplitude. Lake tides reach a maximum amplitude of 3 mm. The comparison of the tidal signal extracted from the lake-level observations with a model composed of the contributions of body tide and ocean tidal loading indicates a phase shift of 23° which is most likely explained by an 1 hour phase lag of global ocean tide models in the region of the highly fragmented Pacific coast. The comparison of the obtained results with those of a previous study of Lago Fagnano, Tierra del Fuego, allows to relate differences in the hydrological and hydrodynamic processes between both lakes to morphological properties. This leads to a tentative prediction of the lake-level variability to be expected from other great Patagonian lakes. The presented geodetic results shall serve as a starting point for a detailed limnological investigation of these aquatic ecosystems.

  14. Assessing the vertical structure of baroclinic tidal currents in a global model

    Science.gov (United States)

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  15. Influence analysis of Arctic tide gauges using leverages

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    a calibration period, in this preliminary case Drakkar ocean model data, which are forced using historical tide gauge data from the PSMSL database. The resulting leverage for each tide gauge may indicate that it represents a distinct mode of variability, or that its time series is perturbed in a way......Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... the statistical leverage of each individual gauge. This may be of help in determining appropriate procedures for data preprocessing, of particular importance for the Arctic area as the GIA is hard to constrain and many gauges are located on rivers. We use a model based on empirical orthogonal functions from...

  16. High-resolution tide projections reveal extinction threshold in response to sea-level rise.

    Science.gov (United States)

    Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S

    2017-05-01

    Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential responses of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction. © 2016 John Wiley & Sons Ltd.

  17. Dancing with the Tides: Fluctuations of Coastal Phytoplankton Orchestrated by Different Oscillatory Modes of the Tidal Cycle

    Science.gov (United States)

    Blauw, Anouk N.; Benincà, Elisa; Laane, Remi W. P. M.; Greenwood, Naomi; Huisman, Jef

    2012-01-01

    Population fluctuations are often driven by an interplay between intrinsic population processes and extrinsic environmental forcing. To investigate this interplay, we analyzed fluctuations in coastal phytoplankton concentration in relation to the tidal cycle. Time series of chlorophyll fluorescence, suspended particulate matter (SPM), salinity and temperature were obtained from an automated measuring platform in the southern North Sea, covering 9 years of data at a resolution of 12 to 30 minutes. Wavelet analysis showed that chlorophyll fluctuations were dominated by periodicities of 6 hours 12 min, 12 hours 25 min, 24 hours and 15 days, which correspond to the typical periodicities of tidal current speeds, the semidiurnal tidal cycle, the day-night cycle, and the spring-neap tidal cycle, respectively. During most of the year, chlorophyll and SPM fluctuated in phase with tidal current speed, indicative of alternating periods of sinking and vertical mixing of algal cells and SPM driven by the tidal cycle. Spring blooms slowly built up over several spring-neap tidal cycles, and subsequently expanded in late spring when a strong decline of the SPM concentration during neap tide enabled a temporary “escape” of the chlorophyll concentration from the tidal mixing regime. Our results demonstrate that the tidal cycle is a major determinant of phytoplankton fluctuations at several different time scales. These findings imply that high-resolution monitoring programs are essential to capture the natural variability of phytoplankton in coastal waters. PMID:23166639

  18. The self-consistent dynamic pole tide in non-global oceans

    Science.gov (United States)

    Dickman, S. R.

    1988-01-01

    The dynamic pole tide is determined by solving Laplace tide equations which take into account the presence of continents in oceans, oceanic self-gravitation and loading, and mantle elasticity. Dynamical effects are found to be only mild. It is shown that the dynamical pole tide contributes about one day more to the Chandler period than a static pole tide would, and dissipates wobble energy at a very weak rate. It is noted that, depending on the wobble period predicted for an oceanless elastic earth, mantle anelasticity at low frequencies may nevertheless contribute negligibly to the Chandler period.

  19. Internal tides and deep diel fades in acoustic intensity.

    Science.gov (United States)

    White, Andrew W; Henyey, Frank S; Andrew, Rex K; Mercer, James A; Worcester, Peter F; Dzieciuch, Matthew A; Colosi, John A

    2016-11-01

    A mechanism is presented by which the observed acoustic intensity is made to vary due to changes in the acoustic path that are caused by internal-tide vertical fluid displacements. The position in range and depth of large-scale caustic structure is determined by the background sound-speed profile. Internal tides cause a deformation of the background profile, changing the positions of the caustic structures-which can introduce intensity changes at a distant receiver. Gradual fades in the acoustic intensity occurring over timescales similar to those of the tides were measured during a low-frequency (284-Hz) acoustic scattering experiment in the Philippine Sea in 2009 [White et al., J. Acoust. Soc. Am. 134(4), 3347-3358 (2013)]. Parabolic equation and Hamiltonian ray-tracing calculations of acoustic propagation through a plane-wave internal tide environmental model employing sound-speed profiles taken during the experiment indicate that internal tides could cause significant gradual changes in the received intensity. Furthermore, the calculations demonstrate how large-scale perturbations to the index of refraction can result in variation in the received intensity.

  20. Annual Variation and Global Structures of The DE3 Tide

    International Nuclear Information System (INIS)

    Ze-Yu, Chen; Da-Ren, Lu

    2008-01-01

    The SABER/TIMED temperatures taken in 2002–2006 are used to delineate the tidal signals in the middle and upper atmosphere. Then the Hough mode decomposition is applied with the DE3 tide, and the overall features of the seasonal variations and the complete global structures of the tide are observed. Investigation results show that the tide is most prominent at 110 km with the maximal amplitude of > 9K, and exhibits significant seasonal variation with its maximum amplitude always occurring in July every year. Results from the Hough mode decomposition reveal that the tide is composed primarily of two leading propagating Hough modes, i.e., the (−3,3) and the (−3,4) modes, thus is equatorially trapped. Estimation of the mean amplitude of the Hough modes show that the (−3,3) mode and (−3,4) mode exhibit maxima at 110km and 90 km, respectively. The (−3,3) mode plays a predominant role in shaping the global latitude-height structure of the tide, e.g., the vertical scale of > 50km at the equator, and the annual course. Significant influence of the (−3,4) mode is found below 90km, where the tide exhibits anti-symmetric structure about the equator; meanwhile the tide at northern tropical latitudes exhibits smaller vertical wavelength of about 30 km. (geophysics, astronomy, and astrophysics)

  1. Construction of Green Tide Monitoring System and Research on its Key Techniques

    Science.gov (United States)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  2. Accuracy Assessment of Global Barotropic Ocean Tide Models

    Science.gov (United States)

    2014-08-07

    Altimetry, Venice . Cartwright, D. E. (1999), Tides: A Scientific History , Cambridge Univ. Press, New York. Cartwright, D. E., and R. D. Ray (1990), Oceanic...E. Harrison, and D. Stammer, p. 4, ESA Publication WPP-306, Venice , Italy. Book, J. W., H. Perkins, and M. Wimbush (2009), North Adriatic tides

  3. Detection of red tide events in the Ariake Sound, Japan

    Science.gov (United States)

    Ishizaka, Joji

    2003-05-01

    High resolution SeaWiFS data was used to detect a red tide event occurred in the Ariake Sound, Japan, in winter of 2000 to 2001. The area is small embayment surrounding by tidal flat, and it is known as one of the most productive areas in coast of Japan. The red tide event damaged to seaweed (Nori) culture, and the relation to the reclamation at the Isahaya Bay in the Sound has been discussed. SeaWiFS chlorophyll data showed the red tide started early December 2000, from the Isahaya Bay, although direct relationship to the reclamation was not clear. The red tide persisted to the end of February. Monthly average of SeaWiFS data from May 1998 to December 2001 indicated that the chlorophyll increased twice a year, early summer and fall after the rain. The red tide event was part of the fall bloom which started later and continued longer than other years. Ocean color is useful to detect the red tide; however, it is required to improve the algorithms to accurately estimate chlorophyll in high turbid water and to discriminate toxic flagellates.

  4. Mapping ocean tides with satellites - A computer simulation

    Science.gov (United States)

    Won, I. J.; Kuo, J. T.; Jachens, R. C.

    1978-01-01

    As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.

  5. Never Riding the Tide

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Never Riding the Tide - Seymour Benzer–The Founder of Neurogenetics. K VijayRaghavan Veronica Rodrigues. General Article Volume 13 Issue 10 October 2008 pp 909-915 ...

  6. Extensometric observation of Earth tides and local tectonic processes at the Vyhne station, Slovakia

    Science.gov (United States)

    Brimich, Ladislav; Bednárik, Martin; Bezák, Vladimír; Kohút, Igor; Bán, Dóra; Eper-Pápai, Ildikó; Mentes, Gyula

    2016-06-01

    The Vyhne Tidal Station of the Earth Science Institute of the Slovak Academy of Sciences is located in the former mining gallery of St. Anthony of Padua in the Vyhne valley, Štiavnické vrchy Mts., Central Slovakia. It is equipped with a 20.5 metre long quartz-tube extensometer measuring Earth's tides, and long-term tectonic deformations of the Earth's crust. Data between 2001 and 2015 with some diverse gaps were digitally collected, processed and analysed. The effects of the local conditions, such as structure of the observatory, cavity effect, topography and geological features of the surrounding rocks, were investigated in detail and these effects were taken into consideration during the interpretation of the results of the data analysis. Tidal analysis of the extensometric data between 2005 and 2015 revealed that the measured tidal amplitudes are close to the theoretical values. The tidal transfer of the observatory was also investigated by coherence analysis between the theoretical and the measured extensometric data. The coherence is better than 0.9 both in the diurnal and semidiurnal band. The effect of the free core nutation resonance was also investigated in the case of the K1 and P1 tidal components. Since the K1/O1 ratio was about the theoretical value 0.8, than the P1/O1 was between 1.0 and 1.15 instead of the theoretical value of 0.9. The rate of the long-term strain rate was also investigated and the obtained -0.05 μstr/y shows a good agreement with the strain rate inferred from GPS measurements in the Central European GPS Reference Network.

  7. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    Science.gov (United States)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  8. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  9. Influence of tides on the gravitational field of Jupiter

    International Nuclear Information System (INIS)

    Gavrilov, S.V.; Zharkov, V.N.; Leont'ev, V.V.

    1975-01-01

    The influence of tides on the gravitational field of giant planets is considered quantitatively. The ''gravitational noise'' due to tides can affect the determination of J 8 and J 10 for Jupiter. Tidal sounding of the giant planets is suggested. (author)

  10. First Results From the Ionospheric Extension of WACCM-X During the Deep Solar Minimum Year of 2008

    Science.gov (United States)

    Liu, Jing; Liu, Hanli; Wang, Wenbin; Burns, Alan G.; Wu, Qian; Gan, Quan; Solomon, Stanley C.; Marsh, Daniel R.; Qian, Liying; Lu, Gang; Pedatella, Nicholas M.; McInerney, Joe M.; Russell, James M.; Schreiner, William S.

    2018-02-01

    New ionosphere and electrodynamics modules have been incorporated in the thermosphere and ionosphere eXtension of the Whole Atmosphere Community Climate Model (WACCM-X), in order to self-consistently simulate the coupled atmosphere-ionosphere system. The first specified dynamics WACCM-X v.2.0 results are compared with several data sets, and with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), during the deep solar minimum year. Comparisons with Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite of temperature and zonal wind in the lower thermosphere show that WACCM-X reproduces the seasonal variability of tides remarkably well, including the migrating diurnal and semidiurnal components and the nonmigrating diurnal eastward propagating zonal wavenumber 3 component. There is overall agreement between WACCM-X, TIE-GCM, and vertical drifts observed by the Communication/Navigation Outage Forecast System (C/NOFS) satellite over the magnetic equator, but apparent discrepancies also exist. Both model results are dominated by diurnal variations, while C/NOFS observed vertical plasma drifts exhibit strong temporal variations. The climatological features of ionospheric peak densities and heights (NmF2 and hmF2) from WACCM-X are in general agreement with the results derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data, although the WACCM-X predicted NmF2 values are smaller, and the equatorial ionization anomaly crests are closer to the magnetic equator compared to COSMIC and ionosonde observations. This may result from the excessive mixing in the lower thermosphere due to the gravity wave parameterization. These data-model comparisons demonstrate that WACCM-X can capture the dynamic behavior of the coupled atmosphere and ionosphere in a climatological sense.

  11. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  12. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    Science.gov (United States)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  13. The extent of tidal influence in the Waccamaw River, South Carolina

    Science.gov (United States)

    Benjamin Thepaut; John Shelton; Susan Libes; Paul Conrads; Robert Sheehan

    2016-01-01

    The Waccamaw River Basin is located in the coastal plain and meanders from North Carolina to South Carolina. This tidal black-water river flows parallel to the coast past the cities of Conway and Georgetown, terminating in Winyah Bay. The river is hydrologically connected to the Atlantic Intracoastal Waterway (AIW) and experiences semi-diurnal tides with a range ...

  14. Estimating absolute sea level variations by combining GNSS and Tide gauge data

    Digital Repository Service at National Institute of Oceanography (India)

    Bos, M.S.; Fernandes, R.M.S; Vethamony, P.; Mehra, P.

    Indian tide gauges can be used to estimate sea level rise. To separate relative sea level rise from vertical land motion at the tide gauges, various GNSS stations have been installed in the last years at, or nearby, tide gauges. Using the PSMSL...

  15. Earth tide effects on kinematic/static GPS positioning in Denmark and Greenland

    DEFF Research Database (Denmark)

    Xu, G.C.; Knudsen, Per

    2000-01-01

    A detailed Study of the Earth tide effects on the GPS kinematic/static positioning is presented in this paper by using theoretical Earth tide computation and practical GPS data processing. Tidal effects could reach up to 30 cm in Denmark and Greenland depending on the measuring time...... and the position of reference station. With a baseline less than 80 km, the difference of the Earth tide effects could reach more than 5 mm. So, in precise applications of GPS positioning, the Earth tide effect has to be taken into account even for a relative small local GPS network. Several examples are given...... for demonstrating that the Earth tide effects can be viewed by GPS surveying. They are given through static GPS data static processing, static GPS data kinematic processing, and airborne kinematic GPS data processing. In these cases, the Earth tide effects can be subtracted from the GPS results. The determination...

  16. The self-consistent dynamic pole tide in global oceans

    Science.gov (United States)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  17. STUDY ON THE EFFECTS OF TIDE ON SEDIMENTATION IN ESTUARIES OF THE NIGER DELTA, NIGERIA

    Directory of Open Access Journals (Sweden)

    Charles Chizom Dike

    2012-12-01

    Full Text Available Niger Delta Estuary Nigeria is influenced by tidal currents due to its proximity to the Atlantic Ocean. Tides in the region are mostly semidiurnal, having two high and low water levels each day, with tidal prism ranging from 0.4 to 1.5m. The effects of tidal current reduces with distance inland and are strongest at the inlets with velocity varying from 2.0 to 5.0m/sec. The depth of the Estuary Rivers is controlled by the strength of the tidal currents; areas very close to ocean with stronger tidal effect are very deep; while shallow rivers predominates the hub of the estuary. Tidal current provides the steady supply of energy that moves sediments in and out of the estuaries from the seashore thus determing river bathymetric shapes through modification of existing morphology by eroding or depositing of sediments along the river course, while further sediment deposition is curtailed at the bottom as the estuary gets shallower due to the increasing stirring by waves. Despite all the sediment coming into the estuaries, many canals in the region have remained as open-water bodies, even after some thousand years. This suggests that, the interaction between the tide and the shape of the canal floor helps to regulate long-term sedimentation. However, the Dredged Canals in the Niger Delta estuaries have suffered high siltation rates because of excessive supply of sediments generated by storm/flood waters from upland and disposal of spoils from dredging activities into the water bodies, which causes some imbalance in the estuarine self-cleaning mechanism. Sediment loads entering the mangrove swamp environment are essentially polycentric; suspended fines enter the system both from the sea and the rivers. A mathematical model was formulated to predict and study the behavior of the sea bed levels, tidal heights and currents, in other to understand how they interact with each other. The model was calibrated using data obtained from local field observations

  18. The Effect of Warming Oceans at a Tide Gauge Station

    OpenAIRE

    Bâki Iz H.

    2016-01-01

    This study proposes a new paradigm for assessing thermosteric effects of warming oceans at a tide gauge station. For demonstration, the trend due to the global thermosteric sea level at the Key West, FL tide gauge station was estimated using the tide gauge measurements and the global sea surface temperature anomalies that were represented by yearly distributed lags. A comparison of the estimate with the trend estimate from a descriptive model revealed that 0.7±0.1 mm/y...

  19. NOS CO-OPS Water Level Data, High Low Tide Prediction

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has High Low Tide Predictions from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). The official Tide and Tidal Current...

  20. NOS CO-OPS Water Level Data, Tide Prediction, 60-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has High Low Tide Predictions from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). The official Tide and Tidal Current...

  1. NOS CO-OPS Water Level Data, Tide Prediction, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has High Low Tide Predictions from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). The official Tide and Tidal Current...

  2. Effects of meteorological factors on the temporal distribution of red tides in Tolo Harbour, Hong Kong.

    Science.gov (United States)

    Huang, Jiansheng; Liu, Hao; Yin, Kedong

    2018-01-01

    Red tides represent a major environmental issue in coastal waters globally. However, few studies have examined the relationship between red tides and meteorological factors. Thus, we used a 32-year time-series of frequent red tide events in Tolo Harbour and Channel, to study their relationship with meteorological factors. Most red tides are dominated by dinoflagellates in March, while most diatom red tides in May. Dinoflagellate and diatom red tides respond differently to different meteorological factors. Warming air temperatures in spring favor the generation of dinoflagellate red tides, while precipitation hinders them. The optimum temperature range is approximately 17-23°C and 26-29°C for dinoflagellate and diatom red tides, respectively. Moderate northeasterly winds promote the formation of dinoflagellate red tides. Dinoflagellate red tides are not hindered by cloudy weather and occur in sunlight of varying brightness, whereas diatoms red tides require a certain amount of bright sunlight. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Science.gov (United States)

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  4. The Effect of Barotropic and Baroclinic Tides on Coastal Stratification and Mixing

    Science.gov (United States)

    Suanda, S. H.; Feddersen, F.; Kumar, N.

    2017-12-01

    The effects of barotropic and baroclinic tides on subtidal stratification and vertical mixing are examined with high-resolution, three-dimensional numerical simulations of the Central Californian coastal upwelling region. A base simulation with realistic atmospheric and regional-scale boundary forcing but no tides (NT) is compared to two simulations with the addition of predominantly barotropic local tides (LT) and with combined barotropic and remotely generated, baroclinic tides (WT) with ≈ 100 W m-1 onshore baroclinic energy flux. During a 10 day period of coastal upwelling when the domain volume-averaged temperature is similar in all three simulations, LT has little difference in subtidal temperature and stratification compared to NT. In contrast, the addition of remote baroclinic tides (WT) reduces the subtidal continental shelf stratification up to 50% relative to NT. Idealized simulations to isolate barotropic and baroclinic effects demonstrate that within a parameter space of typical U.S. West Coast continental shelf slopes, barotropic tidal currents, incident energy flux, and subtidal stratification, the dissipating baroclinic tide destroys stratification an order of magnitude faster than barotropic tides. In WT, the modeled vertical temperature diffusivity at the top (base) of the bottom (surface) boundary layer is increased up to 20 times relative to NT. Therefore, the width of the inner-shelf (region of surface and bottom boundary layer overlap) is increased approximately 4 times relative to NT. The change in stratification due to dissipating baroclinic tides is comparable to the magnitude of the observed seasonal cycle of stratification.

  5. Risk in daily newspaper coverage of red tide blooms in Southwest Florida.

    Science.gov (United States)

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G; Kirkpatrick, Barbara; Fleming, Lora E; Hoagland, Porter

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red tide itself in terms of environmental risk, tourism risk, and public health risk. The study found that red tide news coverage is most often framed as an environmental story.

  6. Vertical propagation characteristics and seasonal variability of tidal wind oscillations in the MLT region over Trivandrum (8.5° N, 77° E: first results from SKiYMET Meteor Radar

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    2006-11-01

    Full Text Available Tidal activity in the Mesospheric Lower Thermosphere (MLT region over Trivandrum (8.5° N, 77° E is investigated using the observations from newly installed SKiYMET Meteor Radar. The seasonal variability and vertical propagation characteristics of atmospheric tides in the MLT region are addressed in the present communication. The observations revealed that the diurnal tide is more prominent than the semi/terdiurnal components over this latitude. It is also observed that the amplitudes of meridional components are stronger than that of zonal ones. The amplitude and phase structure shows the vertical propagation of diurnal tides with vertical wavelength of ~25 km. However, the vertical wavelength of the semidiurnal tide showed considerable variations. The vertical propagation characteristics of the terdiurnal tide showed some indications of their generating mechanisms. The observed features of tidal components are compared with Global Scale Wave Model (GSWM02 values and they showed a similar amplitude and phase structure for diurnal tides. Month-to-month variations in the tidal amplitudes have shown significant seasonal variation. The observed seasonal variation is discussed in light of the variation in tidal forcing and dissipation.

  7. Modelling and parameterizing the influence of tides on ice-shelf melt rates

    Science.gov (United States)

    Jourdain, N.; Molines, J. M.; Le Sommer, J.; Mathiot, P.; de Lavergne, C.; Gurvan, M.; Durand, G.

    2017-12-01

    Significant Antarctic ice sheet thinning is observed in several sectors of Antarctica, in particular in the Amundsen Sea sector, where warm circumpolar deep waters affect basal melting. The later has the potential to trigger marine ice sheet instabilities, with an associated potential for rapid sea level rise. It is therefore crucial to simulate and understand the processes associated with ice-shelf melt rates. In particular, the absence of tides representation in ocean models remains a caveat of numerous ocean hindcasts and climate projections. In the Amundsen Sea, tides are relatively weak and the melt-induced circulation is stronger than the tidal circulation. Using a regional 1/12° ocean model of the Amundsen Sea, we nonetheless find that tides can increase melt rates by up to 36% in some ice-shelf cavities. Among the processes that can possibly affect melt rates, the most important is an increased exchange at the ice/ocean interface resulting from the presence of strong tidal currents along the ice drafts. Approximately a third of this effect is compensated by a decrease in thermal forcing along the ice draft, which is related to an enhanced vertical mixing in the ocean interior in presence of tides. Parameterizing the effect of tides is an alternative to the representation of explicit tides in an ocean model, and has the advantage not to require any filtering of ocean model outputs. We therefore explore different ways to parameterize the effects of tides on ice shelf melt. First, we compare several methods to impose tidal velocities along the ice draft. We show that getting a realistic spatial distribution of tidal velocities in important, and can be deduced from the barotropic velocities of a tide model. Then, we explore several aspects of parameterized tidal mixing to reproduce the tide-induced decrease in thermal forcing along the ice drafts.

  8. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Larsen, M.F.

    1991-01-01

    A spectral, time-varying thermospheric general circulation model has been used to study the nonlinear interaction at high latitudes between the tides propagating into the thermosphere from below and the circulation induced by magnetospheric forcing and in situ solar heating. The model is discrete in the vertical with 27 layers spaced by half a scale height. In the horizontal, the fields are expanded in a series of spherical harmonics using a triangular truncation at wave number 31, equivalent to a homogeneous global resolution with a minimum wavelength of 1,270 km. A hypothetical uniform grid point model would require a horizontal spacing of 417 km to describe the same minimum wavelength. In the high-latitude F region the tides affect the dusk vortex of the neutral flow very little, but the dawn vortex is either suppressed or amplified dependent upon the universal time and tidal phase. In the E region neutral flow, both the dusk and dawn vortices are shifted in local time by the tides, again as a function of universal time and tidal phase. At dusk a nonlinear amplification of the sunward winds occurs for certain combination of parameters, and at dawn the winds may be completely suppressed. Below 120 km altitude the magnetospheric forcing creates a single cyclonic vortex which is also sensitive to the high-latitude tidal structure

  9. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  10. Preliminary study on the influence of the tides of planet earth on hydrostatic leveling system

    International Nuclear Information System (INIS)

    He Xiaoye; Xu Shaofeng; Wang Peng

    2012-01-01

    Hydrostatic leveling system, used mainly in survey and alignment technology in particle accelerator and monitoring the tides is introduced in this paper. Based on the theory about the ocean tide and earth tide, we analyze effects of the earth tides on a hydrostatic leveling system. From the data obtained from an HLS, and their F are, and finally we verify the influence of the tides of planet earth. (authors)

  11. Future Nuisance Flooding at Boston Caused by Astronomical Tides Alone

    Science.gov (United States)

    Ray, Richard D.; Foster, Grant

    2016-01-01

    Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring tides, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical tides alone, is presented through year 2050. The accuracy of the tide prediction is improved when several unusual properties of Gulf of Maine tides, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.

  12. High frequency variations of Earth Rotation Parameters from GPS and GLONASS observations.

    Science.gov (United States)

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong

    2015-01-28

    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future.

  13. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    NARCIS (Netherlands)

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we

  14. Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides

    Science.gov (United States)

    2015-01-23

    rates and patterns after tuning. This suggests that the directionality of the tensor scheme may not provide substantial additional benefit compared to...wave drag scheme Model (layers) Res [] Observations RMSE >1 km [cm] RMSE all depths [cm] Jayne and St. Laurent (2001) JSL JSL(1) 1=2 UT- CSR 6:7$ Egbert

  15. The Size of Mars' Fluid Core From Mars k2 Love Number Obtained From Analysis of MGS Doppler Tracking.

    Science.gov (United States)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2002-12-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from analysis of MGS radio tracking. The observed k2 =0.164+-0.016 is large enough to rule out a solid iron core. The inferred core radius Rc (1600kmtides, mantle anelasticity, spin pole nutations and seasonal changes in shape from ice cap ablation/accretion. One critical model feature is the ability to isolate the second degree and m'th order harmonic components: semidiurnal (m=2), diurnal (m=1) and long period (m=0) and solve for independent k2m parameters. Detection of tides depends on finding reliable, long period signatures since short period changes are too small. A crucial tidal signature is a secular drift in spacecraft orbit inclination related to the sun-synchronous spacecraft orbit and which is seen only in the m=2 tide. In order to minimize the effect of along-track changes on a solution for k22, the drag model solves for a daily coefficient and thus effectively minimizes the influence of the along-track residual signature on this solution parameter. The k21 and k22 coefficients primarily affect the orbit node (k21 has an annual variation) where it is strongly mixed with seasonal changes in Mars' even zonal gravity harmonics (J2, J4). The odd gravity harmonics (J3, J5) are detected through seasonal changes in orbit eccentricity where the influences of tides are weak. The observed J3, J5 amplitudes are consistent with estimates of ice cap mass only if the cap thickness increases with latitude and the south cap is significantly larger than the north cap.

  16. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  17. M2, S2, K1 models of the global ocean tide

    Science.gov (United States)

    Parke, M. E.; Hendershott, M. C.

    1979-01-01

    Ocean tidal signals appear in many geophysical measurements. Geophysicists need realistic tidal models to aid in interpretation of their data. Because of the closeness to resonance of dissipationless ocean tides, it is difficult for numerical models to correctly represent the actual open ocean tide. As an approximate solution to this problem, test functions derived by solving Laplace's Tidal Equations with ocean loading and self gravitation are used as a basis for least squares dynamic interpolation of coastal and island tidal data for the constituents M2, S2, and Kl. The resulting representations of the global tide are stable over at least a ?5% variation in the mean depth of the model basin, and they conserve mass. Maps of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each contituent are presented.

  18. Spectral responses of gravel beaches to tidal signals

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C.

    2017-01-01

    Tides have been recognized as a major driving forcing affecting coastal aquifer system, and deterministic modeling has been very effective in elucidating mechanisms caused by tides. However, such modeling does not lend itself to capture embedded information in the signal, and rather focuses on the primary processes. Here, using yearlong data sets measured at beaches in Alaska Prince William Sound, we performed spectral and correlation analyses to identify temporal behavior of pore-water pressure, temperature and salinity. We found that the response of the beach system was characterized by fluctuations of embedded diurnal, semidiurnal, terdiurnal and quarterdiurnal tidal components. Hydrodynamic dispersion of salinity and temperature, and the thermal conductivity greatly affected pore water signals. Spectral analyses revealed a faster dissipation of the semi-diurnal component with respect to the diurnal components. Correlation functions showed that salinity had a relatively short memory of the tidal signal when inland freshwater recharge was large. In contrast, the signature of the tidal signal on pore-water temperature persisted for longer times, up to a week. We also found that heterogeneity greatly affected beach response. The response varied from a simple linear mapping in the frequency domain to complete modulation and masking of the input frequencies.

  19. Ocean tides in GRACE monthly averaged gravity fields

    DEFF Research Database (Denmark)

    Knudsen, Per

    2003-01-01

    The GRACE mission will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more subtle climate signals which GRACE...... aims at. In this analysis the results of Knudsen and Andersen (2002) have been verified using actual post-launch orbit parameter of the GRACE mission. The current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower than 47. The accumulated tidal errors may affect...... the GRACE data up to harmonic degree 60. A study of the revised alias frequencies confirm that the ocean tide errors will not cancel in the GRACE monthly averaged temporal gravity fields. The S-2 and the K-2 terms have alias frequencies much longer than 30 days, so they remain almost unreduced...

  20. Interannual and Intraseasonal Variability of the Diurnal Tide

    Science.gov (United States)

    Riggin, D. M.; Ortland, D. A.; Lieberman, R. S.; Oberheide, J.; Murayama, Y.; Hocking, W. K.; Vincent, R. A.; Reid, I. M.; Kumar, G. K.; Batista, P. P.; Clemesha, B. R.

    2013-12-01

    Temporal variations in the amplitude of the diurnal tide (DT) have been observed by radars with a seasonal dependence that is typically semiannual in the tropics. During some years the wind variation departs from the normal seasonal behavior with anomalously large amplitudes compared to most other years. This anomaly often takes the form of a greatly enhanced boreal spring equinoctal maximum. The boreal spring of 2008 is a example of this behavior. Diurnal amplitudes in the meridional winds are shown in the figure below for the first 6 months of 2008. Note that the diurnal tide undergoes a sharp increase in amplitude up to 80 ms-1 during this event. The characteristics of this event are diagnosed in a variety of global data sets. These include our own physics-based assimilation of SABER temperatures, and gridded analyses from the national weather services (NCAR/NCEP and ECMWF). Tidal amplitude variations are sometimes attributed to nonlinear interaction. However, this type of interaction would be expected to produce non-migrating tides, e.g., westward-2 or standing. SABER data show that the amplitude anomaly is mainly in the migrating DT. The global data sets allow us to explore properties of the anomaly, such as its origin, evolution in time, and associated momentum flux. In addition to this case study, we also investigate the general characteristics of DT interannual variability during the years of the SABER mission (2002-present). Diurnal tide momentum deposition plays a significant role in controlling the zonal mean wind in the mesosphere, We demonstrate its importance in driving the mesospheric semiannual oscillation (MSAO). Diurnal tide wind amplitudes in the meridional component observed at two radar sites, Rarotonga, Cook Islands (22.1°S, 159.8°W), and at Guanacaste, Costa Rica (10.3°N, 85.6°W).

  1. Constraints on Friction, Dilatancy, Diffusivity, and Effective Stress From Low-Frequency Earthquake Rates on the Deep San Andreas Fault

    Science.gov (United States)

    Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David

    2018-01-01

    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.

  2. Subsurface Ocean Tides in Enceladus and Other Icy Moons

    Science.gov (United States)

    Beuthe, M.

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  3. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea

    Science.gov (United States)

    Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping

    2017-06-01

    A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.

  4. Dynamical significance of tides over the Bay of Bengal

    Science.gov (United States)

    Bhagawati, Chirantan; Pandey, Suchita; Dandapat, Sumit; Chakraborty, Arun

    2018-06-01

    Tides play a significant role in the ocean surface circulations and vertical mixing thereby influencing the Sea Surface Temperatures (SST) as well. This, in turn, plays an important role in the global circulation when used as a lower boundary condition in a global atmospheric general circulation model. Therefore in the present study, the dynamics of tides over the Bay of Bengal (BoB) is investigated through numerical simulations using a high resolution (1/12°) Regional Ocean Modeling System (ROMS). Based on statistical analysis it is observed that incorporation of explicit tidal forcing improves the model performance in simulating the basin averaged monthly surface circulation features by 64% compared to the simulation without tides. The model simulates also Mixed Layer Depth (MLD) and SST realistically. The energy exchange between tidal oscillations and eddies leads to redistribution of surface kinetic energy density with a net decrease of 0.012 J m-3 in the western Bay and a net increase of 0.007 J m-3 in the eastern Bay. The tidal forcing also affects the potential energy anomaly and vertical mixing thereby leading to a fall in monthly MLD over the BoB. The mixing due to tides leads to a subsequent reduction in monthly SST and a corresponding reduction in surface heat exchange. These results from the numerical simulation using ROMS reveal that tides have a significant influence over the air-sea heat exchange which is the most important parameter for prediction of Tropical Cyclone frequency and its future variability over the BoB.

  5. TIDE: Lightweight Device Composition for Enhancing Tabletop Environments with Smartphone Applications

    DEFF Research Database (Denmark)

    Sicard, Leo; Tabard, Aurelien; Ramos, Juan David Hincapie

    2013-01-01

    platforms have to be re-developed. At the same time, smartphones are pervasive computers that users carry around and with a large pool of applications. This paper presents TIDE, a lightweight device composition middleware to bring existing smartphone applica- tions onto the tabletop. Through TIDE......, applications running on the smartphone are displayed on the tabletop computer, and users can interact with them through the tabletop’s interactive surface. TIDE contributes to the areas of device compo- sition and tabletops by providing an OS-level middleware that is transparent to the smartphone applications...

  6. Modelling the tides and their impacts on the vertical stratification ...

    African Journals Online (AJOL)

    The Sofala Bank, a wide shelf located along the central coast of Mozambique, hosts tides with high amplitudes. The Regional Ocean Modelling System (ROMS) was used to analyse the tidal currents on the bank and to investigate their effects on the stratification and generation of tidal fronts. During spring tides, barotropic ...

  7. Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry

    Science.gov (United States)

    Bettadpur, Srinivas V.; Eanes, Richard J.

    1994-01-01

    In analogy to the geographical representation of the zeroth-order radial orbit perturbations due to the static geopotential, similar relationships have been derived for radial orbit perturbations due to the ocean tides. At each location these perturbations are seen to be coherent with the tide height variations. The study of this singularity is of obvious importance to the estimation of ocean tides from satellite altimeter data. We derive analytical expressions for the sensitivity of altimeter derived ocean tide models to the ocean tide force model induced errors in the orbits of the altimeter satellite. In particular, we focus on characterizing and quantifying the nonresonant tidal orbit perturbations, which cannot be adjusted into the empirical accelerations or radial perturbation adjustments commonly used during orbit determination and in altimeter data processing. As an illustration of the utility of this technique, we study the differences between a TOPEX/POSEIDON-derived ocean tide model and the Cartwright and Ray 1991 Geosat model. This analysis shows that nearly 60% of the variance of this difference for M(sub 2) can be explained by the Geosat radial orbit eror due to the omission of coefficients from the GEM-T2 background ocean tide model. For O(sub 1), K(sub 1), S(sub 2), and K(sub 2) the orbital effects account for approximately 10 to 40% of the variances of these differences. The utility of this technique to assessment of the ocean tide induced errors in the TOPEX/POSEIDON-derived tide models is also discussed.

  8. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita

    Science.gov (United States)

    Rego, JoãO. L.; Li, Chunyan

    2010-06-01

    This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for tides and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high tide. For low- and high-tide landfalls, nonlinear effects due to tide-surge coupling were constructive and destructive to total storm tide, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. Tide-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, tides, and landfall timings (relative to tide). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 tide and up to 47% with a K1 tide. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of tide (both with a K1 tide). The nonlinear effect was greatest for landfalls at low tide, followed by landfalls at high tide and then by landfalls at midebb or midflood.

  9. Global characteristics of the lunar tidal modulation of the equatorial electrojet derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2012-03-01

    Full Text Available It has been known since many decades that lunar tide has an influence on the strength of the equatorial electrojet (EEJ. There has, however, never been a comprehensive study of the tidal effect on a global scale. Based on the continuous magnetic field measurements by the CHAMP satellite over 10 years it is possible to investigate the various aspects of lunar effects on the EEJ. The EEJ intensity is enhanced around times when the moon is overhead or at the antipode. This effect is particularly strong around noon, shortly after new and full moon. The lunar tide manifests itself as a semi-diurnal wave that precesses through all local times within one lunar month. The largest tidal amplitudes are observed around December solstice and smallest around June solstice. The tidal wave crest lags behind the moon phase. During December this amounts to about 4 days while it is around 2 days during other times of the year. We have not found significant longitudinal variations of the lunar influence on the EEJ. When comparing the average EEJ amplitude at high solar activity with that during periods of solar minimum conditions a solar cycle dependence can be found, but the ratio between tidal amplitude and EEJ intensity stays the same. Actually, tidal signatures standout clearer during times of low solar activity. We suggest that the tidal variations are caused by a current system added to the EEJ rather than by modulating the EEJ. Gravitational forcing of the lower atmosphere by the moon and the sun is assumed to be the driver of an upward propagating tidal wave. The larger tidal amplitudes around December solstice can be related to stratospheric warming events which seem to improve the conditions for upward propagation. The results described here have to large extent been presented as a Julius-Bartels Medal Lecture during the General Assembly 2011 of the European Geosciences Union.

  10. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    Science.gov (United States)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  11. Consortial brown tide - picocyanobacteria blooms in Guantánamo Bay, Cuba.

    Science.gov (United States)

    Hall, Nathan S; Litaker, R Wayne; Kenworthy, W Judson; Vandersea, Mark W; Sunda, William G; Reid, James P; Slone, Daniel H; Butler, Susan

    2018-03-01

    A brown tide bloom of Aureoumbra lagunensis developed in Guantánamo Bay, Cuba during a period of drought in 2013 that followed heavy winds and rainfall from Hurricane Sandy in late October 2012. Based on satellite images and water turbidity measurements, the bloom appeared to initiate in January 2013. The causative species (A. lagunensis) was confirmed by microscopic observation, and pigment and genetic analyses of bloom samples collected on May 28 of that year. During that time, A. lagunensis reached concentrations of 900,000 cells ml -1 (28 ppm by biovolume) in the middle portion of the Bay. Samples could not be collected from the northern (Cuban) half of the Bay because of political considerations. Subsequent sampling of the southern half of the Bay in November 2013, April 2014, and October 2014 showed persistent lower concentrations of A. lagunensis, with dominance shifting to the cyanobacterium Synechococcus (up to 33 ppm in April), an algal group that comprised a minor bloom component on May 28. Thus, unlike the brown tide bloom in Laguna Madre, which lasted 8 years, the bloom in Guantánamo Bay was short-lived, much like recent blooms in the Indian River, Florida. Although hypersaline conditions have been linked to brown tide development in the lagoons of Texas and Florida, observed euhaline conditions in Guantánamo Bay (salinity 35-36) indicate that strong hypersalinity is not a requirement for A. lagunensis bloom formation. Microzooplankton biomass dominated by ciliates was high during the observed peak of the brown tide, and ciliate abundance was high compared to other systems not impacted by brown tide. Preferential grazing by zooplankton on non-brown tide species, as shown in A. lagunensis blooms in Texas and Florida, may have been a factor in the development of the Cuban brown tide bloom. However, subsequent selection of microzooplankton capable of utilizing A. lagunensis as a primary food source may have contributed to the short-lived duration

  12. A technique to circumvent lower density water trapping by tide-wells

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; VijayKumar, K.; Desa, E.S.; Desa, E.; Peshwe, V.B.

    A 3-year study of water density differences inside and outside of a conventional tide-well indicated that the average water density within the well is consistently lower than the external ambient waters. The tide-well at Goa is situated at the mouth...

  13. Titan Ice and Dust Experiment (TIDE): Detection and Analysis of Compounds of Interest to Astrobiology in the Lower Atmosphere and Surface of Titan

    Science.gov (United States)

    Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige

    2004-01-01

    The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.

  14. TideWatch: Fingerprinting the cyclicality of big data workloads

    KAUST Repository

    Williams, Daniel W.

    2014-04-01

    Intrinsic to \\'big data\\' processing workloads (e.g., iterative MapReduce, Pregel, etc.) are cyclical resource utilization patterns that are highly synchronized across different resource types as well as the workers in a cluster. In Infrastructure as a Service settings, cloud providers do not exploit this characteristic to better manage VMs because they view VMs as \\'black boxes.\\' We present TideWatch, a system that automatically identifies cyclicality and similarity in running VMs. TideWatch predicts period lengths of most VMs in Hadoop workloads within 9% of actual iteration boundaries and successfully classifies up to 95% of running VMs as participating in the appropriate Hadoop cluster. Furthermore, we show how TideWatch can be used to improve the timing of VM migrations, reducing both migration time and network impact by over 50% when compared to a random approach. © 2014 IEEE.

  15. Correcting GRACE gravity fields for ocean tide effects

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2002-01-01

    [1] The GRACE mission will be launch in early 2002 and will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more...... tide model if altimetry corrected for inverted barometer effects was used in its derivation. To study the temporal characteristics of the ocean tidal constituents when sampled by GRACE, approximate alias frequencies were derived assuming a sampling of half a sidereal day. Those results show...

  16. Tides and sea-level variability

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Suresh, I.; Sundar, D.

    of the gravitational pull of the Moon and the Sun exerted on the waters of the ocean as the three-body system consisting of the Earth, Moon, and Sun moves in a stable configuration under the influence of the gravitational pull of one another. Tides at any location...

  17. Twenty Years of Progress on Global Ocean Tides: The Impact of Satellite Altimetry

    Science.gov (United States)

    Egbert, Gary; Ray, Richard

    2012-01-01

    At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean tides were properly viewed as a source of noise--tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by tides, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of tides has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period tides; non-linear tides in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal tide conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal tides, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal tides. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the submesoscale with SWOT, which will require correction for internal tides) may bring us full circle, again pushing

  18. High Frequency Variations of Earth Rotation Parameters from GPS and GLONASS Observations

    Directory of Open Access Journals (Sweden)

    Erhu Wei

    2015-01-01

    Full Text Available The Earth’s rotation undergoes changes with the influence of geophysical factors, such as Earth’s surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS, Global Navigation Satellite System (GLONASS, and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas in Polar Motion (PM and 0.5 milli-seconds (ms in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM and hydrological angular momentum (HAM, which needs more detailed analysis with more geophysical data in the future.

  19. On the Temporal Variability of Low-Mode Internal Tides in the Deep Ocean

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2010-01-01

    In situ measurements of internal tides are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal tides detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal tides in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-tide signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal tide signals is critical for observing non-tidal submesoscale phenomena.

  20. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements

    International Nuclear Information System (INIS)

    Martens, C.S.; Kipphut, G.W.; Klump, J.V.

    1980-01-01

    In situ radon-222 flux experiments conducted in benthic chambers in Cape Lookout Bight, a small marine basin on the North Carolina coast, reveal that enhanced chemical transport across the sediment-water interface during summer months is caused by abiogenic bubble tube structures. Transport rates for dissolved radon, methane, and ammonium more than three times greater than those predicted on the basis of molecular diffusion occur when open tubes are maintained by semidiurnal low-tide bubbling

  1. Optical remote sensing of the Gulf of Gabès – relation between turbidity, Secchi depth and total suspended matter

    OpenAIRE

    R. Katlane Essersi; B. Nechad; K. Ruddick; F. Zargouni

    2010-01-01

    Optical remote sensing is used here in the Gulf of Gabès to provide scientific information to support environmental management. The Gulf of Gabès is located in the southern east coast of Tunisia. It is a shallow continental shelf with semi-diurnal tides with average amplitude of 2 m. Industrial activities in this area since the early 1970s may have contributed to the degradation of the biodiversity of the ecosystem with eutrophica...

  2. Exploring Marine Science through the University of Delaware's TIDE camp

    Science.gov (United States)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  3. Atmospheric tides on Neptune

    International Nuclear Information System (INIS)

    Dement'ev, M.S.; Morozhenko, A.V.

    1989-01-01

    The dependence of the equivalent width of the methane absorption band at 619 nm in the Neptune's spectrum upon the Triton's orbital position is discovered. It is assumed that observed changes of the equivalent width of the band and colour index (J - K) (Belton et al., 1981; Brown et al., 1981; Cruikshank, 1978) are due to atmospheric tides (period 2 d .9375) and Neptune's rotation (period 10 h .14)

  4. A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management

    Science.gov (United States)

    Kim, Tae Woo; Yun, Hong Sik

    2017-04-01

    The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).

  5. Evaluation of Ocean Tide Models Used for Jason-2 Altimetry Corrections

    DEFF Research Database (Denmark)

    Fok, H.S.; Baki Iz, H.; Shum, C. K.

    2010-01-01

    It has been more than a decade since the last comprehensive accuracy assessment of global ocean tide models. Here, we conduct an evaluation of the barotropic ocean tide corrections, which were computed using FES2004 and GOT00.2, and other models on the Jason-2 altimetry Geophysical Data Record (G...

  6. Thermal Tides During the 2001 Martian Global-Scale Dust Storm

    Science.gov (United States)

    Guzewich, Scott D.; Wilson, R. John; McConnochie, Timothy H.; Toigo, Anthony D.; Bandfield, Donald J.; Smith, Michael D.

    2014-01-01

    The 2001 (Mars Year 25) global dust storm radically altered the dynamics of the Martian atmosphere. Using observations from the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft and Mars WRF general circulation model simulations, we examine the changes to thermal tides and planetary waves caused by the storm. We find that the extratropical diurnal migrating tide is dramatically enhanced during the storm, particularly in the southern hemisphere, reaching amplitudes of more than 20 K. The tropical diurnal migrating tide is weakened to almost undetectable levels. The diurnal Kelvin waves are also significantly weakened, particularly during the period of global expansion at Ls=200deg-210deg. In contrast, the westward propagating diurnal wavenumber 2 tide strengthens to 4-8 K at altitudes above 30km. The wavenumber 1 stationary wave reaches amplitudes of 10-12 K at 50deg-70degN, far larger than is typically seen during this time of year. The phase of this stationary wave and the enhancement of the diurnal wavenumber 2 tide appear to be responses to the high-altitude westward propagating equatorial wavenumber 1 structure in dust mixing ratio observed during the storm in previous works. This work provides a global picture of dust storm wave dynamics that reveals the coupling between the tropics and high-latitude wave responses. We conclude that the zonal distribution of thermotidal forcing from atmospheric aerosol concentration is as important to understanding the atmospheric wave response as the total global mean aerosol optical depth.

  7. Effects of Long Period Ocean Tides on the Earth's Rotation

    Science.gov (United States)

    Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.

    1996-01-01

    The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.

  8. Mapping nonlinear shallow-water tides: a look at the past and future

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Egbert, G.D.; Erofeeva, S.Y.

    2006-01-01

    advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost's complementary work with satellite altimetry motivates our attempts to merge...... these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M-4 tide over the northwest European Shelf. Future applications of altimetry...

  9. The spatial distribution of dissolved and particulate heavy metals and their response to land-based inputs and tides in a semi-enclosed industrial embayment: Jiaozhou Bay, China.

    Science.gov (United States)

    Wang, Changyou; Liang, Shengkang; Li, Yanbin; Li, Keqiang; Wang, Xiulin

    2015-07-01

    In order to evaluate heavy metal contamination in surface waters in the Jiaozhou Bay (JZB), a typical semi-enclosed bay in the north of China, and to identify the response of heavy metal distribution to terrigenous sources and tides, the land-based discharge flux of dissolved Cu, Pb, Zn and Cd and their particulates, as well as their concentrations, were synchronously surveyed in JZB in flood season and normal season respectively. The survey results showed that the amount of dissolved Cu clearly increased from the estuaries to the offshore waters during the flood season, especially from the Dagu estuary to the mouth of JZB. The same trend was observed for Pb. The isopleths of dissolved Zn during the flood season presented a different pattern in which a clear decrease was observed from the Lianwan, Moshui and Dagu estuaries to the offshore waters. However, the particulate Cu isopleths during the flood season, which had the same pattern as those of particulate Pb, Zn and Cd, showed a clear decrease from the Dagu estuary to the mouth of JZB. The isopleths for dissolved and particulate Cu during the normal season showed a clear decrease from the northeast to the entrance of JZB, and the same trend was observed for Pb, Zn and Cd. Observations based on synchronous investigations of the fluvial fluxes of the selected metals and their average concentrations in JZB showed that these patterns were controlled by the strong external fluvial inputs, especially from the Dagu River. The diurnal change in the Cu, Pb, Zn and Cd concentrations showed a periodicity with a cycle length of approximately 12 h in JZB, which indicates the noticeable impact of the semi-diurnal tide. The weighed average concentration from freshwater inputs calculated for dissolved Cu, Pb, Zn and Cd were higher than their average concentrations in JZB. This indicated that JZB had been contaminated with these metals, whose concentrations were also higher than those found in uncontaminated waters.

  10. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties.

    Science.gov (United States)

    Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit

    2017-06-16

    Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  12. Multi-satellite ocean tide modelling - the K-1 constituent

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    1997-01-01

    All major ocean tide constituents are aliased into signals with periods less than 90 days from TOPEX/POSEIDON altimetry, except the K-1 constituent. The aliased K-1 has a period of 173 days. Consequently, it might be confounded with height variations caused by the semiannual cycle having a period......, where the presence of crossing tracks cannot separate K-1 from the semiannual signal from TOPEX/POSEIDON, the importance of including ERS-1 and GEOSAT observations was demonstrated. A comparison with 29 pelagic and coastal tide gauges in the Southern Ocean south of 50 degrees S gave 5.59 (M-2), 2.27 (S......-2) and 5.04 (K-1) cm RMS agreement for FES95.1 ocean tide model. The same comparison for the best empirical estimated constituents based on TOPEX/POSEIDON + ERS-1 + GEOSAT gave 4.32, 2.21, and 4.29 cm for M-2, S-2 and K-1, respectively....

  13. Tides Stabilize Deltas until Humans Interfere

    Science.gov (United States)

    Hoitink, T.; Zheng Bing, W.; Vermeulen, B.; Huismans, Y.; Kastner, K.

    2017-12-01

    Despite global concerns about river delta degradation caused by extraction of natural resources, sediment retention by reservoirs and sea-level rise, human activity in the world's largest deltas intensifies. In this review, we argue that tides tend to stabilize deltas until humans interfere. Under natural circumstances, delta channels subject to tides are more stable than their fluvial-dominated counterparts. The oscillatory tidal flow counteracts the processes responsible for bank erosion, which explains why unprotected tidal channels migrate only slowly. Peak river discharges attenuate the tides, which creates storage space to accommodate the extra river discharge during extreme events and as a consequence, reduce flood risk. With stronger tides, the river discharge is being distributed more evenly over the various branches in a delta, preventing silting up of smaller channels. Human interference in deltas is massive. Storm surge barriers are constructed, new land is being reclaimed and large-scale sand excavation takes place, to collect building material. Evidence from deltas around the globe shows that in human-controlled deltas the tidal motion often plays a destabilizing role. In channels of the Rhine-Meuse Delta, some 100 scour holes are identified, which relates to the altered tidal motion after completion of a storm surge barrier. Sand mining has led to widespread river bank failures in the tidally-influenced Mekong Delta. The catastrophic flood event in the Gauges-Brahmaputra Delta by Cyclone Aila, which caused the inundation of an embanked polder area for over two years, was preceded by river bank erosion at the mouths of formal tidal channels that were blocked by the embankment. Efforts to predict the developments of degrading deltas are few. Existing delta models are capable of reproducing expanding deltas, which is essentially a matter of simulating the transport of sediment from source in a catchment to the sink in a delta. Processes of soil

  14. Consortial brown tide − picocyanobacteria blooms in Guantánamo Bay, Cuba

    Science.gov (United States)

    Hall, Nathan S; Litaker, R. Wayne; Kenworthy, W. Judson; Vandersea, Mark W.; Sunda, William G.; Reid, James P.; Slone, Daniel H.; Butler, Susan M.

    2018-01-01

    A brown tide bloom of Aureoumbra lagunensis developed in Guantánamo Bay, Cuba during a period of drought in 2013 that followed heavy winds and rainfall from Hurricane Sandy in late October 2012. Based on satellite images and water turbidity measurements, the bloom appeared to initiate in January 2013. The causative species (A. lagunensis) was confirmed by microscopic observation, and pigment and genetic analyses of bloom samples collected on May 28 of that year. During that time, A. lagunensis reached concentrations of 900,000 cells ml−1 (28 ppm by biovolume) in the middle portion of the Bay. Samples could not be collected from the northern (Cuban) half of the Bay because of political considerations. Subsequent sampling of the southern half of the Bay in November 2013, April 2014, and October 2014 showed persistent lower concentrations of A. lagunensis, with dominance shifting to the cyanobacterium Synechococcus (up to 33 ppm in April), an algal group that comprised a minor bloom component on May 28. Thus, unlike the brown tide bloom in Laguna Madre, which lasted 8 years, the bloom in Guantánamo Bay was short-lived, much like recent blooms in the Indian River, Florida. Although hypersaline conditions have been linked to brown tide development in the lagoons of Texas and Florida, observed euhaline conditions in Guantánamo Bay (salinity 35–36) indicate that strong hypersalinity is not a requirement for A. lagunensis bloom formation. Microzooplankton biomass dominated by ciliates was high during the observed peak of the brown tide, and ciliate abundance was high compared to other systems not impacted by brown tide. Preferential grazing by zooplankton on non-brown tide species, as shown in A. lagunensis blooms in Texas and Florida, may have been a factor in the development of the Cuban brown tide bloom. However, subsequent selection of microzooplankton capable of utilizing A. lagunensis as a primary food source may have contributed to the

  15. Development and Use of Tide Models in Alaska Supporting VDatum and Hydrographic Surveying

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2014-03-01

    Full Text Available National Oceanic and Atmospheric Administration’s National Ocean Service uses observations, hydrodynamic models and interpolation techniques to develop many of its products and services. We examine how two projects, computation of tidal datums for vertical datum transformation and the estimation of tidal characteristics for hydrographic surveys, are being developed in Alaska and how they may be more seamlessly integrated. Preliminary VDatum development for Alaska is in progress for the Alaska Panhandle through the setup of a high resolution tide model that will be used to compute spatially varying tidal datums. Tide models such as these can be used for other projects that traditionally rely on estimation of tides in between data locations, such as the planning for hydrographic surveys that need correctors to adjust bathymetry to the chart datum. We therefore also examine how an existing model in western Alaska can be used for better supporting hydrographic survey planning. The results show that integration of tide models with nearshore observations can provide improved information for these correctors and future work will further evaluate this methodology with existing VDatum tide models.

  16. Investigations in Marine Chemistry: Tide Pool Ecology.

    Science.gov (United States)

    Schlenker, Richard M.

    Students investigated the salinity of tide pools at different levels in the intertidal zone. Data are analyzed collectively. Students graphed and discussed data. Included are suggestions for evaluation and further study. (Author)

  17. EFFECTS OF OCEAN TIDE MODELS ON GNSS-ESTIMATED ZTD AND PWV IN TURKEY

    Directory of Open Access Journals (Sweden)

    G. Gurbuz

    2015-12-01

    Full Text Available Global Navigation Satellite System (GNSS observations can precisely estimate the total zenith tropospheric delay (ZTD and precipitable water vapour (PWV for weather prediction and atmospheric research as a continuous and all-weather technique. However, apart from GNSS technique itself, estimations of ZTD and PWV are subject to effects of geophysical models with large uncertainties, particularly imprecise ocean tide models in Turkey. In this paper, GNSS data from Jan. 1st to Dec. 31st of 2014 are processed at 4 co-located GNSS stations (GISM, DIYB, GANM, and ADAN with radiosonde from Turkish Met-Office along with several nearby IGS stations. The GAMIT/GLOBK software has been used to process GNSS data of 30-second sample using the Vienna Mapping Function and 10° elevation cut-off angle. Also tidal and non-tidal atmospheric pressure loadings (ATML at the observation level are also applied in GAMIT/GLOBK. Several widely used ocean tide models are used to evaluate their effects on GNSS-estimated ZTD and PWV estimation, such as IERS recommended FES2004, NAO99b from a barotropic hydrodynamic model, CSR4.0 obtained from TOPEX/Poseidon altimetry with the model FES94.1 as the reference model and GOT00 which is again long wavelength adjustments of FES94.1 using TOPEX/Poseidon data at 0.5 by 0.5 degree grid. The ZTD and PWV computed from radiosonde profile observations are regarded as reference values for the comparison and validation. In the processing phase, five different strategies are taken without ocean tide model and with four aforementioned ocean tide models, respectively, which are used to evaluate ocean tide models effects on GNSS-estimated ZTD and PWV estimation through comparing with co-located Radiosonde. Results showed that ocean tide models have greatly affected the estimation of the ZTD in centimeter level and thus the precipitable water vapour in millimeter level, respectively at stations near coasts. The ocean tide model FES2004 that is

  18. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    Science.gov (United States)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  19. NOAA NCCOS: New England Red Tide Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alexandrium blooms are one of several algal bloom types often called "red tides," but more correctly referred to as Harmful Algal Blooms (HABs). Alexandrium produces...

  20. POET: Planetary Orbital Evolution due to Tides

    Science.gov (United States)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  1. GLOBAL IMPACT OF SOLAR ENERGY, CASE STUDY - GERMANY

    Directory of Open Access Journals (Sweden)

    Gheorghe Caralicea Marculescu

    2014-02-01

    Full Text Available Renewable energy is a socially and politically defined category of energy sources. Renewable energy is generally defined as energy that comes from resources which are continually replenished on a human timescale such as sunlight, wind, rain, tides, waves and geothermal heat. About 16% of global final energy consumption comes from renewable resources, with 10% of all energy from traditional biomass, mainly used for heating, and 3.4% from hydroelectricity. New renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels accounted for another 3% and are growing rapidly. This paper seeks is aimed at presenting the impact solar energy could have on a world level given the finitude, reachability and ever increasing prices of fossil fuels. As a case study we will present the solar energy industry in Germany emphasizing the advantages and disadvantages this form of energy has in this country and worldwide.

  2. Acoustic observations of internal tides and tidal currents in shallow water.

    Science.gov (United States)

    Turgut, Altan; Mignerey, Peter C; Goldstein, David J; Schindall, Jeffrey A

    2013-04-01

    Significant acoustic travel-time variability and frequency shifts of acoustic intensity level curves in broadband signal spectrograms were measured in the East China Sea during the summer of 2008. The broadband pulses (270-330 Hz) were transmitted from a fixed source and received at a bottomed horizontal array, located at the 33 km range. The acoustic intensity level curves of the received signals indicate regular frequency shifts that are well correlated with the measured internal tides. Similarly, regular travel-time shifts of the acoustic mode arrivals correlate well with the barotropic tides and can be explained by tidal currents along the acoustic propagation track. These observations indicate the potential of monitoring internal tides and tidal currents using low-frequency acoustic signals propagating at long ranges.

  3. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    Science.gov (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  4. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  5. Short-term variability on mesozooplankton community in a shallow mixed estuary (Bahía Blanca, Argentina): Influence of tidal cycles and local winds

    Science.gov (United States)

    Menéndez, María C.; Piccolo, María C.; Hoffmeyer, Mónica S.

    2012-10-01

    The short-term dynamics of zooplankton in coastal ecosystems are strongly influenced by physical processes such as tides, riverine runoff and winds. In this study, we investigated the short-term changes of the representative taxa within mesozooplankton in relation to the semidiurnal tidal cycles. Also, we evaluated the influence of local winds on this short-term variability. Sampling was carried out bimonthly from December 2004 to April 2006 in a fixed point located in the inner zone of the Bahía Blanca Estuary, Argentina. Mesozooplankton samples were taken by pumps during 14-h tidal cycles at 3-h intervals, from surface and bottom. Vertical profiles of temperature and salinity as well as water samples to determine suspended particulate matter were acquired at each sampling date. All data concerning winds were obtained from a meteorological station and water level was recorded with a tide gauge. Holoplankton dominated numerically on meroplankton and adventitious fraction. Concerning holoplanktonic abundance, the highest values were attained by the calanoid copepods Acartia tonsa and Eurytemora americana. Meroplankton occurred mainly as barnacle larvae while benthic harpacticoids and Corophium sp. dominated the adventitious component. Semidiurnal tide was the main influence on the A. tonsa variability. However, noticeable differences in the abundance pattern as function of wind intensity were detected. Meroplankton abundance did not show a clear variation along the tidal cycle. Distributional pattern of harpacticoids seemed to be mainly modulated by velocity asymmetries in the tidal currents, in the same way as suspended particulate matter. However, the Corophium sp. distribution indicated probable behavioural responses associated with tides. The obtained results show how variable the mesozooplankton community structure can be over short-term time scales in mesotidal temperate estuaries. This variability should be taken into account for any zooplankton monitoring

  6. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    Science.gov (United States)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  7. Review of Florida Red Tide and Human Health Effects

    Science.gov (United States)

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  8. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    Science.gov (United States)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  9. Measuring storm tide and high-water marks caused by Hurricane Sandy in New York: Chapter 2

    Science.gov (United States)

    Simonson, Amy E.; Behrens, Riley

    2015-01-01

    In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS) deployed a temporary network of storm-tide sensors from Virginia to Maine. During the storm, real-time water levels were available from tide gages and rapid-deployment gages (RDGs). After the storm, USGS scientists retrieved the storm-tide sensors and RDGs and surveyed high-water marks. These data demonstrate that the timing of peak storm surge relative to astronomical tide was extremely important in southeastern New York. For example, along the south shores of New York City and western Suffolk County, the peak storm surge of 6–9 ft generally coincided with the astronomical high tide, which resulted in substantial coastal flooding. In the Peconic Estuary and northern Nassau County, however, the peak storm surge of 9 ft and nearly 12 ft, respectively, nearly coincided with normal low tide, which helped spare these communities from more severe coastal flooding.

  10. THERMAL TIDES IN FLUID EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Arras, Phil; Socrates, Aristotle

    2010-01-01

    Asynchronous rotation and orbital eccentricity lead to time-dependent irradiation of the close-in gas giant exoplanets-the hot Jupiters. This time-dependent surface heating gives rise to fluid motions which propagate throughout the planet. We investigate the ability of this 'thermal tide' to produce a quadrupole moment which can couple to the stellar gravitational tidal force. While previous investigations discussed planets with solid surfaces, here we focus on entirely fluid planets in order to understand gas giants with small cores. The Coriolis force, thermal diffusion, and self-gravity of the perturbations are ignored for simplicity. First, we examine the response to thermal forcing through analytic solutions of the fluid equations which treat the forcing frequency as a small parameter. In the 'equilibrium tide' limit of zero frequency, fluid motion is present but does not induce a quadrupole moment. In the next approximation, finite frequency corrections to the equilibrium tide do lead to a nonzero quadrupole moment, the sign of which torques the planet away from synchronous spin. We then numerically solve the boundary value problem for the thermally forced, linear response of a planet with neutrally stratified interior and a stably stratified envelope. The numerical results find quadrupole moments in agreement with the analytic non-resonant result at a sufficiently long forcing period. Surprisingly, in the range of forcing periods of 1-30 days, the induced quadrupole moments can be far larger than the analytic result due to response of internal gravity waves which propagate in the radiative envelope. We discuss the relevance of our results for the spin, eccentricity, and thermal evolution of hot Jupiters.

  11. Tides and the evolution of planetary habitability.

    Science.gov (United States)

    Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard

    2008-06-01

    Tides raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.

  12. Tides and tidal harmonics at Umbharat, Gujarat

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Swamy, G.N.

    A part of the data on tides recorded at Machiwada near Umbharat, Gulf of Cambay during April 1978 was subjected to harmonic analysis following the Admiralty procedure. The general tidal characteristics and the value of four major harmonic...

  13. Observations of the Mf ocean tide from Geosat altimetry

    Science.gov (United States)

    Cartwright, David E.; Ray, Richard D.

    1990-01-01

    Zonal averages of the 13.66-day Mf tide are derived from one year of Geosat altimetry records. The orbit errors are reduced by 1/revolution corrections taken over long (several day) arcs. The short-period tides are removed using a model previously derived from the same data. The Mf zonal averages indicate definite nonequilibrium character at nearly all latitudes. The imaginary admittances indicate a Q of at least 8; such a value is consistent with a simplified theory of coupled gravitational and vorticity modes and suggests a value for Proudman's 'friction period' about 123 days.

  14. Risk in Daily Newspaper Coverage of Red Tide Blooms in Southwest Florida

    Science.gov (United States)

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter

    2015-01-01

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an…

  15. Impacts of tides on tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea, Japan

    Science.gov (United States)

    Lee, Han Soo; Shimoyama, Tomohisa; Popinet, Stéphane

    2015-10-01

    The impacts of tides on extreme tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea (SIS), Japan, are investigated through numerical experiments. Tsunami experiments are conducted based on five scenarios that consider tides at four different phases, such as flood, high, ebb, and low tides. The probes that were selected arbitrarily in the Bungo and Kii Channels show less significant effects of tides on tsunami heights and the arrival times of the first waves than those that experience large tidal ranges in inner basins and bays of the SIS. For instance, the maximum tsunami height and the arrival time at Toyomaesi differ by more than 0.5 m and nearly 1 h, respectively, depending on the tidal phase. The uncertainties defined in terms of calculated maximum tsunami heights due to tides illustrate that the calculated maximum tsunami heights in the inner SIS with standing tides have much larger uncertainties than those of two channels with propagating tides. Particularly in Harima Nada, the uncertainties due to the impacts of tides are greater than 50% of the tsunami heights without tidal interaction. The results recommend simulate tsunamis together with tides in shallow water environments to reduce the uncertainties involved with tsunami modeling and predictions for tsunami hazards preparedness. This article was corrected on 26 OCT 2015. See the end of the full text for details.

  16. 75 FR 20371 - Certificate of Alternative Compliance for the Offshore Supply Vessel LEBOUEF TIDE

    Science.gov (United States)

    2010-04-19

    ... Compliance for the Offshore Supply Vessel LEBOUEF TIDE AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The... vessel LEBOUEF TIDE as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. [[Page 20372

  17. Tides and seiches in gulfs

    International Nuclear Information System (INIS)

    Pierini, S.

    1981-01-01

    In this paper Garrett's theory of tides in gulfs is extended so that its formalism includes the free oscillations (seiches) of the gulf. The elevation of the free surface zeta and the velocity field u are obtained in a rectangular, one-dimensional gulf opening into an infinite ocean. An application of the results to the Adriatic sea can explain qualitatively the long life of the uninodal seiche of that basin. (author)

  18. Tidal Marshes as Pulsing Systems: New Estimates of Marsh-Carbon Export and Fate

    Science.gov (United States)

    Logozzo, L. A.; Neale, P.; Tzortziou, M.; Nelson, N.; Megonigal, P.

    2016-02-01

    We investigated wetland-estuarine exchanges of dissolved organic carbon (DOC), chromophoric dissolved organic matter (CDOM), dissolved inorganic carbon (DIC), and chlorophyll a (chl a) in the Chesapeake Bay Kirkpatrick wetlands, an ecosystem that is representative of brackish marshes with organic-rich soils in North America. 1 L water samples were collected every hour over multiple semidiurnal tidal cycles (24 h deployments) and the flow was continuously measured every minute over the course of the study. DIC samples were collected and filtered on site. Fluxes were estimated using the measured flow and concentrations of biogeochemical variables (DOC, DIC, and chl a as a measure of algal biomass). aCDOM(300) was used as a proxy for CDOM amount to observe variations over two semidiurnal tidal cycles. Relative to high tide water, low tide water was consistently enriched in DOC, DIC, and CDOM, whereas it was consistently depleted in chl a. Initial estimates of fluxes over the tidal cycle showed net export of DIC and DOC from the marsh, and net import of chl a into the marsh. These results are consistent with DOC flux estimates from previous studies, but our method utilizes high temporal resolution flow measurements, improving flux estimate accuracy. Transect sampling from the marsh into the sub-estuary during ebbing tide indicated a strong negative gradient in a­CDOM­(300) and non-conservative mixing with salinity. The observed gradients in CDOM absorption spectral shape (slope and slope ratios) and the relative changes in the major fluorescence components identified in 3D fluorescence excitation-emission-matrices, indicated strong photochemical degradation in the estuary and a shift from higher to lower molecular-weight organic compounds. The weaker gradients observed for DOC and DIC compared to aCDOM(300) indicate that while microbial degradation does occur, photobleaching is the dominant degradation mechanism for CDOM in the estuary.

  19. Impact of assimilation window length on diurnal features in a Mars atmospheric analysis

    Directory of Open Access Journals (Sweden)

    Yongjing Zhao

    2015-05-01

    Full Text Available Effective simulation of diurnal variability is an important aspect of many geophysical data assimilation systems. For the Martian atmosphere, thermal tides are particularly prominent and contribute much to the Martian atmospheric circulation, dynamics and dust transport. To study the Mars diurnal variability and Mars thermal tides, the Geophysical Fluid Dynamics Laboratory Mars Global Climate Model with the 4D-local ensemble transform Kalman filter (4D-LETKF is used to perform an analysis assimilating spacecraft temperature retrievals. We find that the use of a ‘traditional’ 6-hr assimilation cycle induces spurious forcing of a resonantly enhanced semi-diurnal Kelvin waves represented in both surface pressure and mid-level temperature by forming a wave 4 pattern in the diurnal averaged analysis increment that acts as a ‘topographic’ stationary forcing. Different assimilation window lengths in the 4D-LETKF are introduced to remove the artificially induced resonance. It is found that short assimilation window lengths not only remove the spurious resonance, but also push the migrating semi-diurnal temperature variation at 50 Pa closer to the estimated ‘true’ tides even in the absence of a radiatively active water ice cloud parameterisation. In order to compare the performance of different assimilation window lengths, short-term to mid-range forecasts based on the hour 00 and 12 assimilation are evaluated and compared. Results show that during Northern Hemisphere summer, it is not the assimilation window length, but the radiatively active water ice clouds that influence the model prediction. A ‘diurnal bias correction’ that includes bias correction fields dependent on the local time is shown to effectively reduce the forecast root mean square differences between forecasts and observations, compensate for the absence of water ice cloud parameterisation and enhance Martian atmosphere prediction. The implications of these results for

  20. Red Tide Strands South African Rock Lobsters

    Science.gov (United States)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  1. Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview

    International Nuclear Information System (INIS)

    Kazimirovsky, E.S.

    1989-01-01

    The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control

  2. Observation, Isolation and Characterization of Microalgal Red Tide Agent Dinoflagellates Prorocentrum sp. (Pengamatan, Isolasi dan Karakterisasi Mikroalga Red Tide dari Dinoflagellata Prorocentrum sp

    Directory of Open Access Journals (Sweden)

    Dwi Susilaningsih

    2014-09-01

    Full Text Available Spesies Dinophyte mempunyai habitat dari kutub, perairan tropis, tetapi semakin berlimpah di perairan tropis atau hangat. Dinophyte diduga sebagai penyebab terjadinya "red tide" sehingga nampak berwarna kuning kemerahan di laut ketikan malam hari disebabkan aktivitas bioluminescence.Penelitian ini menggunakan Dinophyte yang diisolasi dari pantai dan sampel air yang diperoleh dari di Prefektur Iwate, Jepang. Tujuan dari penelitian ini adalah untuk mengetahui taksonomi yang menyebabkan blooming. Spesies ini memiliki karakter yang spesifik bernbentuk oval (panjang 20-30 μm dan lebar 1-20 μm, kloroplas berwarna kuning, nukleus yang besar, dua flagel yang berbeda, yang salah satunya disebut flagellum transfer, tidak memiliki selaput tengah yang, ornament sel yang indah "theca"dengan tulang belakang. Berdasarkan hasil squensing pada 18 S rDNA, Dinophyte mempunyai kesamaan dengan strain Prorocentrum MBIC11147 (100%, Di masa yang akan datang penelitian Procentrum sp. bisa menggunakan sebagai model squensing, perilaku pasang mikroalga. Kata kunci: alga, Dinophyte, karakterisasi, isolation, Prorocentrum, red tide Dinophyte species inhabit from polar, temperate to tropical waters, but tend to be more abundant in tropical or warm waters. The Dinophytes is suspected as one of the genera causing red tide in the sea with their yellow-redish colour that make the sea glows in the night because of their bioluminescence activity. In this work, the Dinophyte was isolated from offshore, and water sample collected in Iwate Prefecture, Japan. Purposes of the studies were for understanding the taxonomic features in particular of the dinophytes that usually occur in blooming areas. The species has specific characters, such as oval shape ( 20-30 μm long and 1-20 μm wide, yellow chloroplast, large nucleus, possesses two different flagellas which one of them is specific called transfer flagellum, no middle furrow and beautiful ornament cell covering (theca with spine

  3. Near-surface energy transfers from internal tide beams to smaller vertical scale motions

    Science.gov (United States)

    Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.

    2016-02-01

    Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.

  4. Modelling alongshore flow in a semi-enclosed lagoon strongly forced by tides and waves

    Science.gov (United States)

    Taskjelle, Torbjørn; Barthel, Knut; Christensen, Kai H.; Furaca, Noca; Gammelsrød, Tor; Hoguane, António M.; Nharreluga, Bilardo

    2014-08-01

    Alongshore flows strongly driven by tides and waves is studied in the context of a one-dimensional numerical model. Observations from field surveys performed in a semi-enclosed lagoon (1.7 km×0.2 km) outside Xai-Xai, Mozambique, are used to validate the model results. The model is able to capture most of the observed temporal variability of the current, but sea surface height tends to be overestimated at high tide, especially during high wave events. Inside the lagoon we observed a mainly uni-directional alongshore current, with speeds up to 1 ms-1. The current varies primarily with the tide, being close to zero near low tide, generally increasing during flood and decreasing during ebb. The observations revealed a local minimum in the alongshore flow at high tide, which the model was successful in reproducing. Residence times in the lagoon were calculated to be less than one hour with wave forcing dominating the flushing. At this beach a high number of drowning casualties have occurred, but no connection was found between them and strong current events in a simulation covering the period 2011-2012.

  5. Environmental Chemistry and Chemical Ecology of "Green Tide" Seaweed Blooms.

    Science.gov (United States)

    Van Alstyne, Kathryn L; Nelson, Timothy A; Ridgway, Richard L

    2015-09-01

    Green tides are large growths or accumulations of green seaweeds that have been increasing in magnitude and frequency around the world. Because green tides consist of vast biomasses of algae in a limited area and are often seasonal or episodic, they go through periods of rapid growth in which they take up large amounts of nutrients and dissolved gases and generate bioactive natural products that may be stored in the plants, released into the environment, or broken down during decomposition. As a result of the use and production of inorganic and organic compounds, the algae in these blooms can have detrimental impacts on other organisms. Here, we review some of the effects that green tides have on the chemistry of seawater and the effects of the natural products that they produce. As blooms are developing and expanding, algae in green tides take up inorganic nutrients, such as nitrate and ortho-phosphate, which can limit their availability to other photosynthetic organisms. Their uptake of dissolved inorganic carbon for use in photosynthesis can cause localized spikes in the pH of seawater during the day with concomitant drops in the pH at night when the algae are respiring. Many of the algae that form green-tide blooms produce allelopathic compounds, which are metabolites that affect other species. The best documented allelopathic compounds include dimethylsulfoniopropionate (DMSP), dopamine, and reactive oxygen species (ROS) and their breakdown products. DMSP and dopamine are involved in defenses against herbivores. Dopamine and ROS are released into seawater where they can be allelopathic or toxic to other organisms. Thus, these macroalgal blooms can have harmful effects on nearby organisms by altering concentrations of nutrients and dissolved gas in seawater and by producing and releasing allelopathic or toxic compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved

  6. High tide in the Delta

    International Nuclear Information System (INIS)

    Vellinga, P.

    2008-01-01

    This inaugural speech takes a closer look at the relation of the Netherlands with water and sea. The author pleas for better connections of land and water and better connections of fresh and salt water. The oration discusses the influence of man on the climate, recent discoveries in the field of climate, urgency in the field of energy, opportunities for high tide protection in the Netherlands and plans for filling the new chair [nl

  7. Crustal control of dissipative ocean tides in Enceladus and other icy moons

    Science.gov (United States)

    Beuthe, Mikael

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  8. Verifying the body tide at the Canary Islands using tidal gravimetry observations

    Science.gov (United States)

    Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.; Vieira, R.

    2011-05-01

    Gravity tide records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been analyzed and compared to the theoretical body tide model (DDW) of Dehant el al. (1999). The use of more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published values. Also, the calibration values have been revisited at those sites. Precise ocean tide loading (OTL) corrections based on up-to-date global ocean models and improved regional ocean model have been obtained for the main tidal harmonics O 1, K 1, M 2, S 2. We also point out the importance of using the most accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data series. Finally, the comparison of the tidal observations with the theoretical body tide models has been done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote.

  9. Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements

    Directory of Open Access Journals (Sweden)

    M. A. Geller

    1997-09-01

    Full Text Available This paper uses dissipation values derived from UARS/HRDI observations in a recently published diurnal-tide model. These model structures compare quite well with the UARS/HRDI observations with respect to the annual variation of the diurnal tidal amplitudes and the size of the amplitudes themselves. It is suggested that the annual variation of atmospheric dissipation in the mesosphere-lower thermosphere is a major controlling factor in determining the annual variation of the diurnal tide.

  10. COST Action ES1401 TIDES: a European network on TIme DEpendent Seismology

    Science.gov (United States)

    Morelli, Andrea

    2016-04-01

    Using the full-length records of seismic events and background ambient noise, today seismology is going beyond still-life snapshots of the interior of the Earth, and look into time-dependent changes of its properties. Data availability has grown dramatically with the expansion of seismographic networks and data centers, so as to enable much more detailed and accurate analyses. COST Action ES1401 TIDES (TIme DEpendent Seismology; http://tides-cost.eu) aims at structuring the EU seismological community to enable development of data-intensive, time-dependent techniques for monitoring Earth active processes (e.g., earthquakes, volcanic eruptions, landslides, glacial earthquakes) as well as oil/gas reservoirs. The main structure of TIDES is organised around working groups on: Workflow integration of data and computing resources; Seismic interferometry and ambient noise; Forward problems and High-performance computing applications; Seismic tomography, full waveform inversion and uncertainties; Applications in the natural environment and industry. TIDES is an open network of European laboratories with complementary skills, and is organising a series of events - workshops and advanced training schools - as well as supporting short-duration scientific stays. The first advanced training school was held in Bertinoro (Italy) on June 2015, with attendance of about 100 participants from 20 European countries, was devoted to how to manage and model seismic data with modern tools. The next school, devoted to ambient noise, will be held in 2016 Portugal: the program will be announced at the time of this conference. TIDES will strengthen Europe's role in a critical field for natural hazards and natural resource management.

  11. INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC TIDES

    International Nuclear Information System (INIS)

    Valsecchi, F.; Farr, W. M.; Willems, B.; Rasio, F. A.; Kalogera, V.

    2013-01-01

    Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic tides in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic tides in close binaries. We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the β Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic tides regime by investigating the effects of dynamic tides on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of tides on their orbital evolution

  12. Tidal and subtidal exchange flows at an inlet of the Wadden Sea

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.

    2018-03-01

    Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by tide observations spanned 36 h in the period May 11-12, 2011, while spring tide measurements exceeded 48 h from May 17 to May 19, 2011. Analysis of observations indicate that frictional effects from bathymetry molded tidal flows. Spatial distributions of semidiurnal tidal current amplitude and phase conform to those predicted by an analytical model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.

  13. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    Science.gov (United States)

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.

  14. An Adaptive Neuro-Fuzzy Inference System for Sea Level Prediction Considering Tide-Generating Forces and Oceanic Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Li-Ching Lin Hsien-Kuo Chang

    2008-01-01

    Full Text Available The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model named TGFT-FN (Tide-Generating Forces considering sea surface Temperature and Fuzzy Neuro-network system is applied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang and Lin (2006 that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.

  15. Bottom friction optimization for a better barotropic tide modelling

    Science.gov (United States)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction

  16. Prediction of tides using back-propagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This paper presents an application of the artificial neural network with back-propagation procedures for accurate prediction...

  17. Tidal winds from the mesosphere, lower thermosphere global radar network during the second LTCS campaign: December 1988

    International Nuclear Information System (INIS)

    Manson, A.H.; Meek, C.E.; Avery, S.K.; Fraser, G.J.; Vincent, R.A.; Phillips, A.; Clark, R.R.; Schminder, R.; Kurschner, D.; Kazimirovsky, E.S.

    1991-01-01

    Winds and tides were measured by nine MLT (mesophere, lower thermosphere) radars with locations between 70 degree N and 78 degree S, including an equatorial station at Christmas Island, 2 degree N (Avery et al., 1990). The mean winds were eastward (westward) in the northern (southern) hemisphere mesophere, consistent with midwinter circulations. For the 12-hour (semidiurnal) tide, observations and the model of Forbes and Vial (1989) were in generally good agreement: in both cases northward components were closer to being in phase in the two hemispheres, and winter wavelengths were shorter than those of the midlatitude summer. Major differences were large (small) amplitudes at 70 degree N for model(observations); and poor agreement of equatorial tidal profiles. For the 24-hour (diurnal tide), the radar observations and model of Forbes and Hagan (1988) were in useful agreement in the summer hemisphere. However, the short (long) wavelengths at mid (high) latitudes of the model's winter hemisphere were not observed during LTCS (lower Thermosphere Coupling Study) 2, nor in climatologies for December. Suggestions as to the reason for this disparity are presented

  18. Influence of tides and winds on fishing techniques and strategies in the Mamanguape River Estuary, Paraíba State, NE Brazil.

    Science.gov (United States)

    Bezerra, Dandara M M; Nascimento, Douglas M; Ferreira, Emmanoela N; Rocha, Pollyana D; Mourão, José S

    2012-09-01

    This work was carried out in two small fishing communities, Barra de Mamanguape and Tramataia, Northeastern Brazil. The aim was to study these traditional fishermen's knowledge and perception about tide and wind classifications, as well as their fishing strategies and techniques. Our research methodology involved various techniques: free interviews and semi-structured ones, guided tours and direct observations. The results obtained show the fishermen's classification of the tides according to the phases of the moon: 'breaking tide', 'flushing tide', 'dead tide' and 'big tide' designated technically these last as neap tide and spring tide, respectively. Wind is also an essential factor for the fishermen to make successful catches, and they classify it according to direction: North, South, East, Southeast, Southwest, Northeast and Northwest. The data show that fishermen's knowledge can also be useful in devising plans for management and conservation studies for this estuary.

  19. Are there tides within trees?

    Science.gov (United States)

    Fisahn, Joachim

    2018-01-24

    Tree stem diameters and electrical stem potentials exhibit rhythmic variations with periodicities of 24-25 h. Under free-running conditions of constant light or darkness these rhythms were suggested to be mediated by the lunisolar gravitational force. To further unravel the regulation of tree stem diameter dilatations, many of the published time courses of diameter variations were re-evaluated in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration. This was accomplished by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all instances investigated, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and stem diameter variations when the direction of extension changes. This finding of synchrony documents that the lunisolar tide is a regulator of the tree stem diameter dilatations. Under the described experimental conditions, rhythms in tree stem diameter dilations and electrical stem potentials are controlled by the lunisolar gravitational acceleration. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Study of ocean red tide multi-parameter monitoring technology based on double-wavelength airborne lidar system

    Science.gov (United States)

    Lin, Hong; Wang, Xinming; Liang, Kun

    2010-10-01

    For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.

  1. Integration of coastal inundation modeling from storm tides to individual waves

    Science.gov (United States)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  2. Red tide discolouration and its impact on fisheries

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.

    months. Although the earlier two red tides did not provide any direct evidence of fish mortality, the 1987 one was followed by a substantial fall in fish catch. The prevailing environmental conditions and the probable impact on the fisheries during...

  3. Coastal Improvements for Tide Models: The Impact of ALES Retracker

    Directory of Open Access Journals (Sweden)

    Gaia Piccioni

    2018-05-01

    Full Text Available Since the launch of the first altimetry satellites, ocean tide models have been improved dramatically for deep and shallow waters. However, issues are still found for areas of great interest for climate change investigations: the coastal regions. The purpose of this study is to analyze the influence of the ALES coastal retracker on tide modeling in these regions with respect to a standard open ocean retracker. The approach used to compute the tidal constituents is an updated and along-track version of the Empirical Ocean Tide model developed at DGFI-TUM. The major constituents are derived from a least-square harmonic analysis of sea level residuals based on the FES2014 tide model. The results obtained with ALES are compared with the ones estimated with the standard product. A lower fitting error is found for the ALES solution, especially for distances closer than 20 km from the coast. In comparison with in situ data, the root mean squared error computed with ALES can reach an improvement larger than 2 cm at single locations, with an average impact of over 10% for tidal constituents K 2 , O 1 , and P 1 . For Q 1 , the improvement is over 25%. It was observed that improvements to the root-sum squares are larger for distances closer than 10 km to the coast, independently on the sea state. Finally, the performance of the solutions changes according to the satellite’s flight direction: for tracks approaching land from open ocean root mean square differences larger than 1 cm are found in comparison to tracks going from land to ocean.

  4. Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Unnikrishnan, A.S.

    before the high tide. Application of a simple model shows the observed surge peak distribution at Hiron Point can be explained in terms of phase alteration of tide due to surge and surge modulation by tide. The degree of interaction tends to increase...

  5. ACCURACY ASSESSMENT OF RECENT GLOBAL OCEAN TIDE MODELS AROUND ANTARCTICA

    Directory of Open Access Journals (Sweden)

    J. Lei

    2017-09-01

    Full Text Available Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean tide models around Antarctica is poorer than those in deep oceans. Using tidal measurements from tide gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean tide models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8 is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.

  6. Accuracy Assessment of Recent Global Ocean Tide Models around Antarctica

    Science.gov (United States)

    Lei, J.; Li, F.; Zhang, S.; Ke, H.; Zhang, Q.; Li, W.

    2017-09-01

    Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean tide models around Antarctica is poorer than those in deep oceans. Using tidal measurements from tide gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean tide models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8) is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region) are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.

  7. Tidal and solar cycle effects on the OI 5577 A, NaD and OH(8,3) airglow emissions observed at 23 deg S

    International Nuclear Information System (INIS)

    Takahashi, H.; Sahai, Y.; Batista, P.P.

    1984-01-01

    The upper mesosphere airglow emissions OI 5577, NaD and OH have been observed at Cachoeira Paulista (22.7 deg S; 45.0 deg W) Brazil. Nocturnal variations and their seasonal dependencies in amplitude and phase, and the annual variations of these emissions are presented, analysing the data obtained from 1977 to 1982 during the ascending phase of the last solar cycle. The nocturnal variations of the OI 5577 emission and the OH rotational temperature showed a significant semidiurnal oscillation, with the phase of maximum moving from midnight in January to early morning in June. Semiannual variation of the OI 5577 and NaD emissions with the maximum intensities in April/May and October/November were observed. The OH rotational temperature, however, showed an annual variation, maximum in summer and minimum in winter, while no significant seasonal variation was found in the OH emission intensities. Long-term intensity variations are also presented with the solar sunspot numbers and the 10.7 cm flux. (author)

  8. Review of research in internal-wave and internal-tide deposits of China: Discussion

    Directory of Open Access Journals (Sweden)

    G. Shanmugam

    2014-10-01

    Full Text Available This discussion of a review article by [27], published in the Journal of Palaeogeography (2(1: 56– 65, is aimed at illustrating that interpretations of ten ancient examples in China and one in the central Appalachians (USA as deep-water deposits of internal waves and internal tides are unsustainable. This critical assessment is based on an in-depth evaluation of oceanographic and sedimentologic data on internal waves and internal tides derived from 332 print and online published works during 1838–January 2013, which include empirical data on the physical characteristics of modern internal waves and internal tides from 51 regions of the world’s oceans [108]. In addition, core and outcrop descriptions of deep-water strata from 35 case studies worldwide carried out by the author during 1974–2011, and a selected number of case studies published by other researchers are evaluated for identifying the sedimentological challenges associated with distinguishing types of bottom-current reworked sands in the ancient sedimentary record. The emerging conclusion is that any interpretation of ancient strata as deposits of internal waves and internal tides is premature.

  9. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    Science.gov (United States)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  10. Heat stress of two tropical seagrass species during low tides

    DEFF Research Database (Denmark)

    Pedersen, Ole; Colmer, Timothy D.; Borum, Jens

    2016-01-01

    Seagrasses grow submerged in aerated seawater but often in low O2 sediments. Elevated temperatures and low O2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides, growing with extreme tides and diel temperature amplitudes......), the high temperatures and reduced CO2 would have diminished PN, whereas RD increased (Q10 of 2.0-2.7) above that at 33°C (0.45 and 0.33 μmol O2 m-2 s-1, respectively). During night-time low tides, O2 declined resulting in shoot base anoxia in both species, but incoming water containing c. 20 kPa O2...

  11. River-tide dynamics : Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, J.A.; He, Q.

    2015-01-01

    River-tide dynamics remain poorly understood, in part because conventional harmonic analysis (HA) does not cope effectively with nonstationary signals. To explore nonstationary behavior of river tides and the modulation effects of river discharge, this work analyzes tidal signals in the Yangtze

  12. GOCE++ Dynamical Coastal Topography and tide gauge unification using altimetry and GOCE

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Nielsen, Karina

    Mean Dynamic Topography (MDT) of the ocean along a coastline which contributes/requires reconciling altimetry, tide gauge and vertical land motion. The fundamental use of the MDT computed using altimetry, ocean models or through the use of tide gauges has values of between -2 and +1 meters at different...... processes and physics responsible for sea level changes on various temporal/spatial scales. The study runs from October 2015 to march 2017 and involves elements like: Develop an approach to estimate a consistent DT at tide gauges, coastal areas, and open ocean; Validate the approach in well-surveyed areas......ESA has recently released a study on the potential of ocean levelling as a novel approach to the study of height system unification taking the recent development in geoid accuracy trough GOCE data into account. The suggested investigation involves the use of measurements and modelling to estimate...

  13. High tide, news from a warming world

    International Nuclear Information System (INIS)

    Lynas, M.

    2005-01-01

    While governments debate and scientists test ever-more complicated hypotheses, ordinary people all over the world are starting to notice the effects of global warming. In High Tide, British journalist Mark Lynas visits global hot spots to record people's reactions and sound a clarion call for action. Readers looking for a 'we are the world' approach to climate change may be taken aback by Lynas' flat expression of the uncomfortable truth: 'Every time America votes, the world holds its breath.... Climate change begins and ends in America'. Lynas damns the George W. Bush administration for undermining global efforts such as the Kyoto Protocol as well as actively preventing innovation within the United States that would reduce auto and industrial emissions. But High Tide is not the firs or the best book to do that; instead, its narrative strength is in the riveting stories of how small towns, islands, riverside cities, and rural areas are being slowly destroyed. Gardeners in England will be unable to grow heritage plant species within the next 75 years. The Alaskan permafrost is melting, as temperatures there increase ''ten times faster than in the rest of the world.'' An entire Pacific Island nation--Tuvalu--will soon disappear beneath the rising sea, leaving its people homeless. Lynas visits Alaska, Tuvalu, Peru, China, and the east coast of the United States, documenting the lives, places, and cultures that will be lost in the decades to come. Thankfully, just when hopelessness threatens to overwhelm the reader, High Tide offers a five-step plan to mitigate the most catastrophic effects of global climate change. Every step in the plan involves action by United States citizens and their elected representatives, offering American activists and visionaries a chance to do penance for wrecking parts of the world far from our own driveways

  14. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Science.gov (United States)

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-12-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  15. KARAKTERISTIK HIDRODINAMIKA DI PERAIRAN TELUK AMBON UNTUK MENDUKUNG WISATA SELAM

    Directory of Open Access Journals (Sweden)

    Koko Ondara

    2017-05-01

    Hydrodynamic Module is used to simulate tidal and current patterns that are used as input in the wave spectral module MIKE 21. From the data obtained, the tidal type of Ambon Bay waters is mixed tide prevailing semidiurnal based on Formzahl value 0. 0602 which obtained from the diurnal and semidiurnal major tide component calculation, Mean Sea Level is 124.76 cm, Zo is 148.72 cm and the value of Chart Datum is -23.96 cm. Current speed ranged from 0009-1463 m/s while the significant wave height ranged from 0-0.00279 m. Ambon Bay hydrodynamic conditions are calm and not too volatile, fortunately supportive in marine tourism activities of SS.Aquila site. Keywords: Currents, Hydrodynamics, SS. Aquila, Tides

  16. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Science.gov (United States)

    Chung, Jong-Kyun; Jee, Geonhwa; Lee, Chi-Na

    2011-12-01

    The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13' S, longitude 58° 47' W, corrected geomagnetic latitude 48° S) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the a! nnual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  17. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2011-12-01

    Full Text Available The total electron content (TEC using global positioning system (GPS is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13′ S, longitude 58° 47′ W, corrected geomagnetic latitude 48° S in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February, the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006 to 1.4 TECU (2008-2009. However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August, the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the annual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT. The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  18. Sediment transport and fluid mud layer formation in the macro-tidal Chikugo river estuary during a fortnightly tidal cycle

    Science.gov (United States)

    Azhikodan, Gubash; Yokoyama, Katsuhide

    2018-03-01

    The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.

  19. Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT

    Science.gov (United States)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.

  20. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  1. A review of the green tides in the Yellow Sea, China.

    Science.gov (United States)

    Liu, Xiangqing; Wang, Zongling; Zhang, Xuelei

    2016-08-01

    The recurrent green tide of Ulva prolifera caused serious ecological problems in the Yellow Sea and attached substantial scientific study. The bloom originated in the Subei Shoal area and drifted to the coast of Shandong Province during the period from May to July, driven by a series of physical processes. Here we reviewed advances in the understanding of green tides in the Yellow Sea and elucidate the developmental model of this phenomenon. This knowledge will help resource managers to take reasonable measures to mitigate the impacts to the Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Theory of second order tide forces and gravitational wave experiment

    International Nuclear Information System (INIS)

    Tammelo, R.R.

    1989-01-01

    Theory of tide forces square by vector radius is presented. The mechanism of 10 18 time gravitational wave pressure increase in case of radiation from pulsars and 10 15 time one in case of standard burst of radiation from astrophysical catastrophe is proposed. This leads to secular shifts of longitudinally free receivers by 10 -16 cm during 10 5 s in the first case and by 10 -19 cm during 10 s in the second one. A possibility of increase effect modulation is available. It is indicated that it is possible to construct a device which produces more energy at the expense of square tide forces than at the expense of linear ones. 21 refs

  3. Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation

    Science.gov (United States)

    Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong

    2017-10-01

    A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.

  4. Accuracy assessment of global barotropic ocean tide models

    DEFF Research Database (Denmark)

    Stammer, D.; Ray, R. D.; Andersen, Ole Baltazar

    2014-01-01

    , but testing in those regions is impeded by the paucity of high-quality in situ tide records. Long-wavelength components of models tested by analyzing satellite laser ranging measurements suggest that several models are comparably accurate for use in precise orbit determination, but analyses of GRACE...

  5. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    Science.gov (United States)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  6. Nutrient environment of red tide- infested waters off south-west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, T.; Shaiju, P.; Laluraj, C.M.; Balachandran, K.K.; Nair, M.; George, R.; Nair, K.K.C.; Sahayak, S.; Prabhakaran, M.P.

    /Accepted: 28 August 2007 /Published online: 19 September 2007 # Springer Science + Business Media B.V. 2007 Abstract The bloom-infested waters along the south- west coast of India were assessed to bring about... tides, a natural phenomenon, are now common in many coastal waters. Various factors contribute to red tide formation such as insolation, wind, rain, salinity and nutrient input from land or by upwelling. Nitrogen and phosphorus are involved in phytoplank...

  7. The comparison of heavy metals (Pb and Cd) in the water and sediment during spring and neap tide tidal periods in Popoh Bay, Indonesia

    Science.gov (United States)

    Yona, D.; Febriana, R.; Handayani, M.

    2018-04-01

    This study attempted to investigate different concentration of lead (Pb) dan cadmium (Cd) in the water and sediment during spring and neap tidal periods in the Popoh Bay, Indonesia. Water and sediment samples were taken during spring and neap tides from eight sampling stations in the study area. The result shows higher concentration of Pb than the concentration of Cd in both spring and neap tides due to higher input of Pb from the oil pollution by boat and fisheries activities. Pb concentrations were doubled during neap tide in both water and sediments with the value of 0.51 and 0.28 ml/L in the water during neap and spring tide, respectively; and 0.27 ppm and 0.16 mg/kg in the sediment during neap and spring tide, respectively. On the other hand, Cd concentrations in the water were found in almost similar values between spring and neap tide (0.159 and 0.165 ml/L in spring tide and neap tide, respectively), but in the sediment, the concentration was a little higher during spring tide (0.09 and 0.05 mg/kg during spring and neap tide, respectively). This study shows that water movement during spring and neap tides has significant effect on the distribution of heavy metals.

  8. The transverse dynamics of flow in a tidal channel within a greater strait

    Science.gov (United States)

    Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid

    2018-02-01

    Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.

  9. Acoustic Tomography in the Canary Basin: Meddies and Tides

    Science.gov (United States)

    Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry

    2017-11-01

    An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal tides were measured by the acoustic travel times. The observed internal tides were partly predicted using a recent global model for such tides derived from satellite altimetry.

  10. Amazon water lenses and the influence of the North Brazil Current on the continental shelf

    Science.gov (United States)

    Prestes, Yuri O.; Silva, Alex Costa da; Jeandel, Catherine

    2018-05-01

    The exchange processes on the Amazon continental shelf in northern Brazil are subject to complex interactions that involve forcings derived from distinct sources. The Amazon shelf is a unique and highly dynamic environment in which considerable discharge of freshwater enters the Atlantic Ocean, producing extensive Amazon Water Lenses (AWL). In addition to the presence of the AWL, the shelf is influenced by the semidiurnal oscillations of the tides and the strong North Brazil Current (NBC), a boundary current of the western Atlantic. The present study was based primarily on the influence of the freshwater input and the NBC on the shelf and the Amazon Shelf Break (ASB) off the mouth of the Pará River. For this purpose, hydrographic and hydrodynamic data were obtained by moorings of the AMANDES Project (April-July 2008), located on the Amazon shelf and the ASB. Spectral analysis and the continuous wavelet transform were applied to define tidal (high frequency/short period) and subtidal (low frequency/long period) signals. The results indicated that on both the shelf and the break, the semidiurnal tides are responsible for the residual landward transport and are predominantly across-shelf. Low-frequency motions in the synoptic bands and the AWL are related to spatial changes in the velocity field, mainly on the ASB in the along-shelf direction. The flow of the NBC can be interpreted as an along-shelf low-frequency oscillation capable of altering the spatial configuration of the velocity field, although its influence is perceived only in the absence of the AWL.

  11. Flood Tide Transport of Blue Crab Postlarvae: Limitations in a Lagoonal Estuary

    Science.gov (United States)

    Cudaback, C.; Eggleston, D.

    2005-05-01

    Blue crabs, an important commercial species, spend much of their life in estuaries along the east coast. The larvae spawn at or near the ocean, but the juveniles mature in the lower salinity waters of the estuary. It is generally believed that blue crab postlarvae migrate into near surface waters on flood, possibly cued by increasing salinity, and return to the bottom on ebb. Over several tidal cycles, the postlarvae travel a significant distance up-estuary. This model applies quite well to Chesapeake Bay, which has a strong along-estuary salinity gradient and large tides, but may not apply as well to Pamlico Sound, where circulation and salinity are more wind-driven than tidal. A recently completed study (N. Reyns, PhD), indicates that postlarval blue crabs use flood tides and wind-driven currents to cross Pamlico Sound. This study was based on observations with good spatial coverage, but limited vertical and temporal resolution. We have recently completed a complementary study, sampling crab larvae around the clock at four depths at a single location. Preliminary results from the new study suggest that the crab postlarvae do swim all the way to the surface, on flood only, and that flood currents are strongest slightly below the surface. These observations suggest the utility of flood tide transport in this system. However, near bottom salinity does not seem to be driven by tides; at this point it is unclear what cue might trigger the vertical migration of the postlarvae.

  12. COCONet enhancements to circum-Caribbean tsunami warning, tidal, and sea-level monitoring: update on tide gauge installations

    Science.gov (United States)

    Dausz, K.; Dittmann, S. T.; Feaux, K.; von Hillebrandt-Andrade, C.; Mattioli, G. S.; Normandeau, J.

    2014-12-01

    The Continually Operating Caribbean GPS Observational Network (COCONet) is a National Science Foundation (NSF) funded multi-hazard geodetic and meteorological network distributed throughout the Caribbean, which provides infrastructure and capacity building for a broad range of earth science questions. The network is a multi-national collaboration consisting of 46 newly constructed continuous Global Positioning Systems (cGPS) and 21 refurbished existing GPS stations, all co-located with meteorological sensors. One recommendation of the COCONet working group was to improve the vertical reference frame for long-term sea level monitoring. A COCONet supplement was awarded by the NSF to further address this particular objective through the co-location of GPS and tide gauges. This COCOnet infrastructure, along with the new tide gauges, will have broad scientific implications for hazards mitigation, solid earth, and atmospheric science research. UNAVCO engineers have meet with members of the Caribbean tide gauge community to establish target locations and design station layout. Allocated NSF funds allow for the construction of two complete new tide gauge systems each with two complimentary cGPS. Following the recommendations of NOAA and the sea level monitoring community, the two "new" locales will be Port Royal, Jamaica and Puerto Morelos, Mexico. Both locations had previously existing, but currently non-operational tide gauges. UNAVCO engineers will install a Sutron Radar Level Recorder and a backup pressure sensor tide gauge with GOES satellite telemetry. Tide data will be freely available by the Intergovernmental Oceanographic Commission (www.ioc-sealevelmonitoring.org). The NSF supplement also provided funds for adding cGPS to two additional locations where currently functioning tide gauge systems exist. Proposed locations for this additional infrastructure are Barahona, Dominican Republic and Bocas del Toro, Panama. All four locations will feature two standard

  13. Red tides in the Gulf of Mexico: Where, when, and why?

    Science.gov (United States)

    Walsh, J. J.; Jolliff, J. K.; Darrow, B. P.; Lenes, J. M.; Milroy, S. P.; Remsen, A.; Dieterle, D. A.; Carder, K. L.; Chen, F. R.; Vargo, G. A.; Weisberg, R. H.; Fanning, K. A.; Muller-Karger, F. E.; Shinn, E.; Steidinger, K. A.; Heil, C. A.; Tomas, C. R.; Prospero, J. S.; Lee, T. N.; Kirkpatrick, G. J.; Whitledge, T. E.; Stockwell, D. A.; Villareal, T. A.; Jochens, A. E.; Bontempi, P. S.

    2010-01-01

    [1] Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of ~1 ug chl l–1 of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of ~10 ug chl l–1. The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication. PMID:20411040

  14. Performances of the New Real Time Tsunami Detection Algorithm applied to tide gauges data

    Science.gov (United States)

    Chierici, F.; Embriaco, D.; Morucci, S.

    2017-12-01

    Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection (TDA) based on the real-time tide removal and real-time band-pass filtering of seabed pressure time series acquired by Bottom Pressure Recorders. The TDA algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. In this work we present the performance of the TDA algorithm applied to tide gauge data. We have adapted the new tsunami detection algorithm and the Monte Carlo test methodology to tide gauges. Sea level data acquired by coastal tide gauges in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event generated by Tohoku earthquake on March 11th 2011, using data recorded by several tide gauges scattered all over the Pacific area.

  15. A social marketing approach to implementing evidence-based practice in VHA QUERI: the TIDES depression collaborative care model

    Science.gov (United States)

    2009-01-01

    Abstract Collaborative care models for depression in primary care are effective and cost-effective, but difficult to spread to new sites. Translating Initiatives for Depression into Effective Solutions (TIDES) is an initiative to promote evidence-based collaborative care in the U.S. Veterans Health Administration (VHA). Social marketing applies marketing techniques to promote positive behavior change. Described in this paper, TIDES used a social marketing approach to foster national spread of collaborative care models. TIDES social marketing approach The approach relied on a sequential model of behavior change and explicit attention to audience segmentation. Segments included VHA national leadership, Veterans Integrated Service Network (VISN) regional leadership, facility managers, frontline providers, and veterans. TIDES communications, materials and messages targeted each segment, guided by an overall marketing plan. Results Depression collaborative care based on the TIDES model was adopted by VHA as part of the new Primary Care Mental Health Initiative and associated policies. It is currently in use in more than 50 primary care practices across the United States, and continues to spread, suggesting success for its social marketing-based dissemination strategy. Discussion and conclusion Development, execution and evaluation of the TIDES marketing effort shows that social marketing is a promising approach for promoting implementation of evidence-based interventions in integrated healthcare systems. PMID:19785754

  16. Global ocean tides through assimilation of oceanographic and altimeter satellite data in a hydrodynamic model

    Science.gov (United States)

    Leprovost, Christian; Mazzega, P.; Vincent, P.

    1991-01-01

    Ocean tides must be considered in many scientific disciplines: astronomy, oceanography, geodesy, geophysics, meteorology, and space technologies. Progress in each of these disciplines leads to the need for greater knowledge and more precise predictions of the ocean tide contribution. This is particularly true of satellite altimetry. On one side, the present and future satellite altimetry missions provide and will supply new data that will contribute to the improvement of the present ocean tide solutions. On the other side, tidal corrections included in the Geophysical Data Records must be determined with the maximum possible accuracy. The valuable results obtained with satellite altimeter data thus far have not been penalized by the insufficiencies of the present ocean tide predictions included in the geophysical data records (GDR's) because the oceanic processes investigated have shorter wavelengths than the error field of the tidal predictions, so that the residual errors of the tidal corrections are absorbed in the empirical tilt and bias corrections of the satellite orbit. For future applications to large-scale oceanic phenomena, however, it will no longer be possible to ignore these insufficiencies.

  17. Oceanic geoid and tides derived from GEOS 3 satellite data in the Northwestern Atlantic Ocean

    Science.gov (United States)

    Won, I. J.; Miller, L. S.

    1979-01-01

    Two sets of GEOS 3 altimeter data which fall within about a 2.5-deg width are analyzed for ocean geoid and tides. One set covers a path from Newfoundland to Cuba, and the other a path from Puerto Rico to the North Carolina coast. Forty different analyses using various parameters are performed in order to investigate convergence. Profiles of the geoid and four tides, M2, O1, S2, and K1, are derived along the two strips. While the analyses produced convergent solutions for all 40 cases, the uncertainty caused by the linear orbital bias error of the satellite is too large to claim that the solutions represent the true ocean tides in the area. A spot check of the result with the Mode deep-sea tide gauge data shows poor agreement. A positive conclusion of this study is that despite the uncertain orbital error the oceanic geoid obtained through this analysis can improve significantly the short-wavelength structure over existing spherical harmonic geoid models.

  18. Empirical model of subdaily variations in the Earth rotation from GPS and its stability

    Science.gov (United States)

    Panafidina, N.; Kurdubov, S.; Rothacher, M.

    2012-12-01

    The model recommended by the IERS for these variations at diurnal and semidiurnal periods has been computed from an ocean tide model and comprises 71 terms in polar motion and Universal Time. In the present study we compute an empirical model of variations in the Earth rotation on tidal frequencies from homogeneously re-processed GPS-observations over 1994-2007 available as free daily normal equations. We discuss the reliability of the obtained amplitudes of the ERP variations and compare results from GPS and VLBI data to identify technique-specific problems and instabilities of the empirical tidal models.

  19. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  20. Long-Term Evaluation of Ocean Tidal Variation Models of Polar Motion and UT1

    Science.gov (United States)

    Karbon, Maria; Balidakis, Kyriakos; Belda, Santiago; Nilsson, Tobias; Hagedoorn, Jan; Schuh, Harald

    2018-04-01

    Recent improvements in the development of VLBI (very long baseline interferometry) and other space geodetic techniques such as the global navigation satellite systems (GNSS) require very precise a-priori information of short-period (daily and sub-daily) Earth rotation variations. One significant contribution to Earth rotation is caused by the diurnal and semi-diurnal ocean tides. Within this work, we developed a new model for the short-period ocean tidal variations in Earth rotation, where the ocean tidal angular momentum model and the Earth rotation variation have been setup jointly. Besides the model of the short-period variation of the Earth's rotation parameters (ERP), based on the empirical ocean tide model EOT11a, we developed also ERP models, that are based on the hydrodynamic ocean tide models FES2012 and HAMTIDE. Furthermore, we have assessed the effect of uncertainties in the elastic Earth model on the resulting ERP models. Our proposed alternative ERP model to the IERS 2010 conventional model considers the elastic model PREM and 260 partial tides. The choice of the ocean tide model and the determination of the tidal velocities have been identified as the main uncertainties. However, in the VLBI analysis all models perform on the same level of accuracy. From these findings, we conclude that the models presented here, which are based on a re-examined theoretical description and long-term satellite altimetry observation only, are an alternative for the IERS conventional model but do not improve the geodetic results.

  1. Observed tides at Mumbai High offshore region near the continental shelf break in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Vijaykumar, K.; Mehra, P.; Unnikrishnan, A.S.; Sundar, D.; Desai, R.G.P.

    ) at 15 min sampling interval using four tide gauges deployed from an oil drilling platform of the Oil and Natural Gas Corporation of India. All the four gauges provided identical measurements. The measured tides were harmonically analysed...

  2. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    Science.gov (United States)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  3. TIGA Tide Gauge Data Reprocessing at GFZ

    Science.gov (United States)

    Deng, Zhiguo; Schöne, Tilo; Gendt, Gerd

    2014-05-01

    To analyse the tide gauge measurements for the purpose of global long-term sea level change research a well-defined absolute reference frame is required by oceanographic community. To create such frame the data from a global GNSS network located at or near tide gauges are processed. For analyzing the GNSS data on a preferably continuous basis the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring Working Group (TIGA-WG) is responsible. As one of the TIGA Analysis Centers the German Research Centre for Geosciences (GFZ) is contributing to the IGS TIGA Reprocessing Campaign. The solutions of the TIGA Reprocessing Campaign will also contribute to 2nd IGS Data Reprocessing Campaign with GFZ IGS reprocessing solution. After the first IGS reprocessing finished in 2010 some improvements were implemented into the latest GFZ software version EPOS.P8: reference frame IGb08 based on ITRF2008, antenna calibration igs08.atx, geopotential model (EGM2008), higher-order ionospheric effects, new a priori meteorological model (GPT2), VMF mapping function, and other minor improvements. GPS data of the globally distributed tracking network of 794 stations for the time span from 1994 until end of 2012 are used for the TIGA reprocessing. To handle such large network a new processing strategy is developed and described in detail. In the TIGA reprocessing the GPS@TIGA data are processed in precise point positioning (PPP) mode to clean data using the IGS reprocessing orbit and clock products. To validate the quality of the PPP coordinate results the rates of 80 GPS@TIGA station vertical movement are estimated from the PPP results using Maximum Likelihood Estimation (MLE) method. The rates are compared with the solution of University of LaRochelle Consortium (ULR) (named ULR5). 56 of the 80 stations have a difference of the vertical velocities below 1 mm/yr. The error bars of PPP rates are significant larger than those of ULR5, which indicates large time correlated noise in

  4. Using inquiry-based instruction with Web-based data archives to facilitate conceptual change about tides among preservice teachers

    Science.gov (United States)

    Ucar, Sedat

    The purpose of this mixed methods study was to describe and understand preservice teachers' conceptions of tides and to explore an instructional strategy that might promote the learning of scientific concepts. The participants were preservice teachers in three initial licensure programs. A total of 80 graduate students, in secondary, middle, and early childhood education programs completed a multiple choice assessment of their knowledge of tides-related concepts. Thirty of the 80 participants were interviewed before the instruction. Nineteen of the 30 students who were interviewed also participated in the instruction and were interviewed after the instruction. These 19 students also completed both the pre-test and 18 of them completed the post-test on tides and related content. Data regarding the participants' conceptual understandings of tides were collected before and after the instruction using both qualitative and quantitative data collection methods. A multiple choice pre-test was developed by the researcher. The same test was used before and after the instructional intervention. Structured interviews were conducted with participants before and after instruction. In addition to interviews, participants were asked to write a short journal after instruction. The constant comparative method was used to analyze the qualitative data. Preservice teachers' conceptual understandings of tides were categorized under six different types of conceptual understandings. Before the instruction, all preservice teachers held alternative or alternative fragments as their types of conceptual understandings of tides, and these preservice teachers who held alternative conceptions about tides were likely to indicate that there is one tidal bulge on Earth. They tried to explain this one tidal bulge using various alternative conceptions. After completing an inquiry-based and technology-enhanced instruction of tides, preservice teachers were more likely to hold a scientific conceptual

  5. DIOPS: A PC-Based Wave, Tide and Surf Prediction System

    National Research Council Canada - National Science Library

    Allard, Richard; Dykes, James; Kaihatu, James; Wakeham, Dean

    2005-01-01

    The Distributed Integrated Ocean Prediciton System (DIOPS) is a PC-based wave tide and surf prediction system designed to provide DoD accurate and timely surf predictions for essentially any world-wide location...

  6. Observations of Martian surface winds at the Viking Lander 1 site

    International Nuclear Information System (INIS)

    Murphy, J.R.; Leovy, C.B.; Tillman, J.E.

    1990-01-01

    Partial failure of the wind instrumentation on the Viking Lander 1 (VL1) in the Martian subtropics (22.5 degree N) has limited previous analyses of meteorological data for this site. The authors describe a method for reconstructing surface winds using data from the partially failed sensor and present and analyze a time series of wind, pressure, and temperature at the site covering 350 Mars days (sols). At the beginning of the mission during early summer, winds were controlled by regional topography, but they soon underwent a transition to a regime controlled by the Hadley circulation. Diurnal and semidiurnal wind oscillations and synoptic variations have been analyzed and compared with the corresponding variations at the Viking Lander 2 middle latitude site (48 degree N). Diurnal wind oscillations were controlled primarily by regional topography and boundary layer forcing, although a global mode may have been influencing them during two brief episodes. Semidiurnal wind oscillations were controlled by the westward propagating semidiurnal tide from sol 210 onward. Comparison of the synoptic variations at the two sites suggests that the same eastward propagating wave trains were present at both sites, at least following the first 1977 great dust storm, but discordant inferred zonal wave numbers and phase speeds at the two sites cast doubt on the zonal wave numbers deduced from analyses of combined wind and pressure data, particularly at the VL1 site where the signal to noise ratio of the dominant synoptic waves is relatively small

  7. ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Willems, B.; Deloye, C. J.; Kalogera, V.

    2010-01-01

    We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 M sun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 M sun to 10 5 M sun . The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.

  8. Fluid Core Size of Mars from Detection of the Solar Tide

    Science.gov (United States)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2003-04-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.

  9. Assessment of the effect of three-dimensional mantle density heterogeneity on Earth rotation in tidal frequencies

    Directory of Open Access Journals (Sweden)

    Lanbo Liu

    2016-11-01

    Full Text Available In this paper, we report the assessment of the effect of the three-dimensional (3D density heterogeneity in the mantle on Earth orientation parameters (EOP (i.e., the polar motion, or PM, and the length of day, or LOD in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8 and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the preliminary reference earth model (PREM. Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal are estimated in both PM and LOD. When compared with mass or density perturbations originated on the Earth's surface such as the oceanic and barometric changes, the heterogeneous mantle contributes less than 10% of the total variation in PM and LOD in tidal frequencies. However, this is the gap that has not been explained to close the gap of the observation and modeling in PM and LOD. By computing the PM and LOD caused by 3D heterogeneity of the mantle during the period of continuous space geodetic measurement campaigns (e.g., CONT94 and the contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon in the same period, we got the lump-sum values of PM and LOD. The computed total effects and the observed PM and LOD are generally agree with each other. In another word, the difference of the observed PM and LOD and the model only considering ocean tides, at all tidal frequencies (long periods, diurnals, and semidiurnals contains the contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free Earth rotation may provide useful constraints to construct the reference earth model (REM, which is the next major objective in global

  10. On a rising tide

    International Nuclear Information System (INIS)

    Perera, J.

    1998-01-01

    The world's oceans contain an enormous potential source of energy. What is surprising is how little this potential is exploited. Now however researchers are beginning to make progress in pursuit of a renewable energy that has been elusive. So far two major sites that can sustain tidal power projects have been identified in India: the Gulf of Bombay and the Gulf of Kutch with a mean tidal range of five and seven metres respectively. They have a combined potential of 9700 MW. The environmental impacts of any tidal power scheme will depend mainly on local geography. Local tides changed only slightly as a result of the La Rance barrage, and the environmental impact has been negligible, but other sites could face more serious problems. (author)

  11. Condition of red tide appearance in Wakasa Bay based on Terra, Aqua/MODIS images

    Science.gov (United States)

    Aoyama, Takashi; Oya, Hiroshi

    2006-12-01

    Since June, 2004, studies on triggering factors of the red tide have been carried out in Awara Space Radio Observatory (ASRO), Fukui University of Technology utilizing directly received data of MODIS on the Terra and Aqua satellites which have been acquired in ASRO. Preliminary results of the data analyses for the period from July, 2001 to April, 2005 indicate conditions, for the appearance of the red tide bloom in Wakasa bay as follows: (1) the threshold amount of chlorophyll-a is close to 1.5mg/m 3, (2) the range of sea surface temperature (SST) is limited in a range from 12 to 20 °C and (3) the period of sunlit time in spring is also a significantly sensitive factor. We propose here to utilize MODIS band1 images corresponding to a red band with spatial resolution of 250m together with NDVI (Normalized Difference Vegetation Index) images which has also spatial resolution of 250m, for the confirmation of the red tide. The problem of coincidence between colored region due to SS (Suspended Sediment) and red tide region using only band1 of MODIS, has been solved by using NDVI images in addition to band1 images together as two dimensional diagram.

  12. Estimating decadal variability in sea level from tide gauge records: An application to the North Sea

    NARCIS (Netherlands)

    Frederikse, Thomas; Riva, R.E.M.; Slobbe, Cornelis; Broerse, D.B.T.; Verlaan, Martin

    2016-01-01

    One of the primary observational data sets of sea level is represented by the tide gauge record. We propose a new method to estimate variability on decadal time scales from tide gauge data by using a state space formulation, which couples the direct observations to a predefined state space model by

  13. Estimating decadal variability in sea level from tide gauge records : An application to the North Sea

    NARCIS (Netherlands)

    Frederikse, T.; Riva, R.E.M.; Slobbe, D.C.; Broerse, D.B.T.; Verlaan, M.

    2016-01-01

    One of the primary observational data sets of sea level is represented by the tide gauge record. We propose a new method to estimate variability on decadal time scales from tide gauge data by using a state space formulation, which couples the direct observations to a predefined state space model

  14. Effect of the tide on the diffusion of 3H in the liquid effluent discharged from Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Jie; Zhang Chunlin; Pan Meng

    2006-01-01

    The tide field at the time of liquid effluent discharging from Daya Bay nuclear power station, and the average water speed at the monitoring points in west Daya Bay from the time of discharging to the time of sampling were calculated by ADI (Alternating Direction Implicit) method. By comparing analysis, the difference of 3 H diffusion between spring tide and neap tide (the expansion of 3 H within one day of spring tide is greater than that within one day of neap tide) was found. So, an equivalent diffusion time is introduced to modify the original model, and a better attenuation relation between the average 3 He concentration in west Daya Bay and the time since the liquid 3 H discharging is obtained. (authors)

  15. Rhythms of locomotion expressed by Limulus polyphemus, the American horseshoe crab: I. Synchronization by artificial tides.

    Science.gov (United States)

    Chabot, Christopher C; Skinner, Stephen J; Watson, Winsor H

    2008-08-01

    Limulus polyphemus, the American horseshoe crab, has an endogenous clock that drives circatidal rhythms of locomotor activity. In this study, we examined the ability of artificial tides to entrain the locomotor rhythms of Limulus in the laboratory. In experiments one and two, the activity of 16 individuals of L. polyphemus was monitored with activity boxes and "running wheels." When the crabs were exposed to artificial tides created by changes in water depth, circatidal rhythms were observed in animals exposed to 12.4-h "tidal" cycles of either water depth changes (8 of 8 animals) or inundation (7 of 8 animals). In experiment three, an additional 8 animals were exposed to water depth changes under cyclic conditions of light and dark and then monitored for 10 days with no imposed artificial tides. Most animals (5) clearly synchronized their activity to the imposed artificial tidal cycles, and 3 of these animals showed clear evidence of entrainment after the artificial tides were terminated. Overall, these results demonstrate that the endogenous tidal clock that influences locomotion in Limulus can be entrained by imposed artificial tides. In the laboratory, these tidal cues override the influence of light/dark cycles. In their natural habitat, where both tidal and photoperiod inputs are typically always present, their activity rhythms are likely to be much more complex.

  16. Nutrient and chlorophyll a anomaly in red-tide periods of 2003-2008 in Sishili Bay, China

    Science.gov (United States)

    Hao, Yanju; Tang, Danling; Yu, Long; Xing, Qianguo

    2011-05-01

    Sishili Bay is the most important aquiculture and tourism area for the city of Yantai, China; however, red tides occurred frequently and have caused huge economic losses in this bay in recent years. To gain a better understanding of the local ecological environments in the bay, we conducted this research between 2003 and 2008 to analyze variations in nutrients and chlorophyll (chl- a) during high frequency red tide period (May to September). The results show that the chl- a concentration increased from 2.70 in 2003 to 7.26 mg/m3 in 2008, while the concentration of total inorganic nitrogen (TIN) and silicate (SiO3-Si) increased lineally from 5.18 and 1.45 μmol/L in 2003 to 18.57 and 9.52 μmol/L in 2008, respectively, and the annual phosphate (PO4-P) varied between 0.15 and 0.46 μmol/L. Special attention was given to a red tide in August 2007 occurred when water temperature was high and nutrient concentrations increased sharply because of a heavy rainfall. Overall, the results show the P limitation in Sishili Bay, and reveal that red tides were caused by eutrophication from terrestrial inputs and local warm weather, particularly during rainy periods. Therefore, to control red tide, greater efforts should be made to reduce sewage discharges into Sishili Bay, particularly during rainfall seasons.

  17. High-Resolution Wave Energy Assessment in Shallow Water Accounting for Tides

    Directory of Open Access Journals (Sweden)

    Dina Silva

    2016-09-01

    Full Text Available The wave energy in a shallow water location is evaluated considering the influence of the local tide and wind on the wave propagation. The target is the coastal area just north of the Portuguese city of Peniche, where a wave energy converter operates on the sea bottom. A wave modelling system based on SWAN has been implemented and focused on this coastal environment in a multilevel computational scheme. The first three SWAN computational belonging to this wave prediction system were defined using the spherical coordinates. In the highest resolution computational domain, Cartesian coordinates have been considered, with a resolution of 25 m in both directions. An in-depth analysis of the main characteristics of the environmental matrix has been performed. This is based on the results of eight-year model system simulations (2005–2012. New simulations have been carried out in the last two computational domains with the most relevant wave and wind patterns, considering also the tide effect. The results show that the tide level, together with the wind intensity and direction, may influence to a significant degree the wave characteristics. This especially concerns the wave power in the location where the wave converter operates.

  18. Characterizing the nonlinear internal wave climate in the northeastern South China Sea

    Directory of Open Access Journals (Sweden)

    S. R. Ramp

    2010-09-01

    Full Text Available Four oceanographic moorings were deployed in the South China Sea from April 2005 to June 2006 along a transect extending from the Batanes Province, Philippines in the Luzon Strait to just north of Dong-Sha Island on the Chinese continental slope. The purpose of the array was to observe and track large-amplitude nonlinear internal waves (NIWs from generation to shoaling over the course of one full year. The basin and slope moorings observed velocity, temperature (T and salinity (S at 1–3 min intervals to observe the waves without aliasing. The Luzon mooring observed velocity at 15 min and T and S at 3 min, primarily to resolve the tidal forcing in the strait.

    The observed waves travelled WNW towards 282–288 degrees with little variation. They were predominantly mode-1 waves with orbital velocities exceeding 100 cm s−1 and thermal displacements exceeding 100 m. Consistent with earlier authors, two types of waves were observed: the a-waves arrived diurnally and had a rank-ordered packet structure. The b-waves arrived in between, about an hour later each day similar to the pattern of the semi-diurnal tide. The b-waves were weaker than the a-waves, usually consisted of just one large wave, and were often absent in the deep basin, appearing as NIW only upon reaching the continental slope. The propagation speed of both types of waves was 323±31 cm s−1 in the deep basin and 222±18 cm s−1 over the continental slope. These speeds were 11–20% faster than the theoretical mode-1 wave speeds for the observed stratification, roughly consistent with the additional contribution from the nonlinear wave amplitude. The observed waves were clustered around the time of the spring tide at the presumed generation site in the Luzon Strait, and no waves were observed at neap tide. A remarkable feature was the distinct lack of waves during the winter months, December 2005 through February

  19. Evidence for infragravity wave-tide resonance in deep oceans.

    Science.gov (United States)

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  20. 3-D modelling the electric field due to ocean tidal flow and comparison with observations

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Junge, A.; Utada, H.

    2006-01-01

    The tidal motion of the ocean water through the ambient magnetic field, generates secondary electric field. This motionally induced electric field can be detected in the sea or inland and has a potential for electrical soundings of the Earth. A first goal of the paper is to gain an understanding...... that in some coastal regions the amplitudes of the electric field can reach 100 mV/km and 10 mV/km for M2 and O1 tides respectively. The changes of lithosphere resistance produce detectable changes in the tidal electric signals. We show that our predictions are in a good agreement with observations....... of the global distribution of the electric signal due to tidal ocean flow. We simulate the electric signals for two tidal constituents - lunar semidiurnal (M2) and diurnal (O1) tides. We assume a realistic Earth's conductivity model with a surface thin shell and 1-D mantle underneath. Simulations demonstrate...

  1. Is There a Tectonically Driven Supertidal Cycle?

    Science.gov (United States)

    Green, J. A. M.; Molloy, J. L.; Davies, H. S.; Duarte, J. C.

    2018-04-01

    Earth is 180 Myr into the current supercontinent cycle, and the next supercontinent is predicted to form in 250 Myr. The continuous changes in continental configuration can move the ocean between resonant states, and the semidiurnal tides are currently large compared to the past 252 Myr due to tidal resonance in the Atlantic. This leads to the hypothesis that there is a "supertidal" cycle linked to the supercontinent cycle. Here this is tested using new tectonic predictions for the next 250 Myr as bathymetry in a numerical tidal model. The simulations support the following hypothesis: a new tidal resonance will appear 150 Myr from now, followed by a decreasing tide as the supercontinent forms 100 Myr later. This affects the dissipation of tidal energy in the oceans, with consequences for the evolution of the Earth-Moon system, ocean circulation and climate, and implications for the ocean's capacity of hosting and evolving life.

  2. Changes in the Earth’s Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    Directory of Open Access Journals (Sweden)

    Sung-Ho Na

    2016-12-01

    Full Text Available The atmosphere strongly affects the Earth’s spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i the Earth orientation parameter and ii the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth’s spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth’s pole has been observed. The change in the Earth’s inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  3. Use of nucleoside (tide) analogues in patients with hepatitis B-related acute liver failure

    DEFF Research Database (Denmark)

    Dao, Doan Y; Seremba, Emmanuel; Ajmera, Veeral

    2012-01-01

    The efficacy of nucleoside(tide) analogues (NA) in the treatment of acute liver failure due to hepatitis B virus (HBV-ALF) remains controversial. We determined retrospectively the impact of NAs in a large cohort of patients with HBV-ALF.......The efficacy of nucleoside(tide) analogues (NA) in the treatment of acute liver failure due to hepatitis B virus (HBV-ALF) remains controversial. We determined retrospectively the impact of NAs in a large cohort of patients with HBV-ALF....

  4. Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters.

    Science.gov (United States)

    Lai, Zhigang; Yin, Kedong

    2014-01-01

    Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Monitoring storm tide and flooding from Hurricane Matthew along the Atlantic coast of the United States, October 2016

    Science.gov (United States)

    Frantz, Eric R.; Byrne,, Michael L.; Caldwell, Andral W.; Harden, Stephen L.

    2017-11-02

    IntroductionHurricane Matthew moved adjacent to the coasts of Florida, Georgia, South Carolina, and North Carolina. The hurricane made landfall once near McClellanville, South Carolina, on October 8, 2016, as a Category 1 hurricane on the Saffir-Simpson Hurricane Wind Scale. The U.S. Geological Survey (USGS) deployed a temporary monitoring network of storm-tide sensors at 284 sites along the Atlantic coast from Florida to North Carolina to record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Matthew. Storm tide, as defined by the National Oceanic and Atmospheric Administration, is the water-level rise generated by a combination of storm surge and astronomical tide during a coastal storm.The deployment for Hurricane Matthew was the largest deployment of storm-tide sensors in USGS history and was completed as part of a coordinated Federal emergency response as outlined by the Stafford Act (Public Law 92–288, 42 U.S.C. 5121–5207) under a directed mission assignment by the Federal Emergency Management Agency. In total, 543 high-water marks (HWMs) also were collected after Hurricane Matthew, and this was the second largest HWM recovery effort in USGS history after Hurricane Sandy in 2012.During the hurricane, real-time water-level data collected at temporary rapid deployment gages (RDGs) and long-term USGS streamgage stations were relayed immediately for display on the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#MatthewOctober2016). These data provided emergency managers and responders with critical information for tracking flood-effected areas and directing assistance to effected communities. Data collected from this hurricane can be used to calibrate and evaluate the performance of storm-tide models for maximum and incremental water level and flood extent, and the site-specific effects of storm tide on natural and anthropogenic features of the environment.

  6. Human responses to Florida red tides: policy awareness and adherence to local fertilizer ordinances.

    Science.gov (United States)

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret; Fleming, Lora E; Scheller, Karen; Reich, Andrew; Hitchcock, Gary; Kirkpatrick, Gary; Ullmann, Steven; Hoagland, Porter

    2014-09-15

    To mitigate the damages of natural hazards, policy responses can be beneficial only if they are effective. Using a self-administered survey approach, this paper focuses on the adherence to local fertilizer ordinances (i.e., county or municipal rules regulating the application of fertilizer to private lawns or facilities such as golf courses) implemented in jurisdictions along the Southwest Florida coast in response to hazardous blooms of Florida red tides (Karenia brevis). These ordinances play a role in the context of evolving programs of water pollution control at federal, state, water basin, and local levels. With respect to policy effectiveness, while the strength of physical linkages is of critical importance, the extent to which humans affected are aware of and adhere to the relevant rules, is equally critical. We sought to understand the public's depth of understanding about the rationales for local fertilizer ordinances. Respondents in Sarasota, Florida, were asked about their fertilizer practices in an area that has experienced several major blooms of Florida red tides over the past two decades. A highly educated, older population of 305 residents and "snowbirds" reported relatively little knowledge about a local fertilizer ordinance, its purpose, or whether it would change the frequency, size, or duration of red tides. This finding held true even among subpopulations that were expected to have more interest in or to be more knowledgeable about harmful algal blooms. In the face of uncertain science and environmental outcomes, and with individual motivations at odds with evolving public policies, the effectiveness of local community efforts to decrease the impacts of red tides may be compromised. Targeted social-science research on human perceptions about the risks of Florida red tides and education about the rationales for potential policy responses are warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. On the role of tides and strong wind events in promoting summer primary production in the Barents Sea

    Science.gov (United States)

    Le Fouest, Vincent; Postlethwaite, Clare; Morales Maqueda, Miguel Angel; Bélanger, Simon; Babin, Marcel

    2011-11-01

    Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s -1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=10 12 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.

  8. Effect of internal tides in the distribution and abundance of microzooplankton in Todos Santos Bay (Ensenada, B.C.)

    Science.gov (United States)

    Valencia, A.; Ibañez Tejero, L.; Ladah, L. B.; Sanchez Velasco, L.; Barton, E. D.

    2016-02-01

    Microzooplankton trophically connects phytoplankton and zooplanktonic adults. Their distribution and abundance can be directly related to the inherent physical processes in the marine environment. In coastal waters, the distribution and transport of zooplankton, including microzooplankton, can be influenced by high frequency effects such as internal tides. To date, most of the work on planktonic organisms and their interaction with the internal tide has been focused on a few species, such as barnacles, bryozoans and crabs. The aim of this study was to determine the effect of internal tide on the vertical distribution and abundance of microzooplankton, with an emphasis on copepod nauplii, during the evolution of the internal tide in a summer period of strong thermal stratification. Samples were obtained by vertical plankton net (150 micron mesh) hauls at three depth strata (surface, mid-water and bottom in 25 m depth), independently, with a sampling frequency of every hour. The internal tide was detected by rapid changes in temperature and currents observed with thermistor chains and a bottom-mounted upward looking ADCP. Preliminary results shows a strong mode-1 baroclinic tidal signal. The highest abundance of copepod nauplii and microzooplankton biomass occurred at depth, associated with a strong tidal current. The abundance of copepod nauplii and the abundance of microzooplankton biomass in the surface and intermediate strata showed strong vertical displacements between both strata. Data suggest the vertical distribution of microzooplankton can be dependent on the internal tide.

  9. Oceanic Geoid and Tides Obtained from GEOS-3 Satellite Data in the Northwestern Atlantic Ocean

    Science.gov (United States)

    Won, I. J.; Miller, L. S.

    1978-01-01

    Two sets of GEO-3 altimeter data which fall within about a 2.5 degree width are analyzed for ocean geoid and tides. One set covers a linear path from Newfoundland to Cuba and the other from Puerto Rico to the North Carolina coast. Forty different analyses using various parameters are performed in order to investigate convergence. Profiles of the geoid and four tides, M sub 2 O sub 1, S sub 2, and K sub 1, are obtained along the two strips. The results demonstrate convergent solutions for all forty cases and show, within expectation, fair agreement with those obtained from the MODE deep-sea tide gauge. It is also shown that the oceanic geoid obtained through this analysis can potentially improve the short wavelength structure over existing geoid models.

  10. Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow.

    Science.gov (United States)

    Kim, Chang-Sin; Cho, Yang-Ki; Choi, Byoung-Ju; Jung, Kyung Tae; You, Sung Hyup

    2013-03-15

    A multi-nested prediction system for the Yellow Sea using drifter trajectory simulations was developed to predict the movements of an oil spill after the MV Hebei Spirit accident. The speeds of the oil spill trajectories predicted by the model without tidal forcing were substantially faster than the observations; however, predictions taking into account the tides, including both tidal cycle and subtidal periods, were satisfactorily improved. Subtidal flow in the simulation without tides was stronger than in that with tides because of reduced frictional effects. Friction induced by tidal stress decelerated the southward subtidal flows driven by northwesterly winter winds along the Korean coast of the Yellow Sea. These results strongly suggest that in order to produce accurate predictions of oil spill trajectories, simulations must include tidal effects, such as variations within a tidal cycle and advections over longer time scales in tide-dominated areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. RETAID DI PERAIRAN PESISIR BARAT TABLASUPA KABUPATEN JAYAPURA, PAPUA (Red-tide at Western Coast of Tablasupa, Jayapura, Papua

    Directory of Open Access Journals (Sweden)

    Suwarno Hadisusanto

    2010-11-01

    Full Text Available ABSTRAK Retaid (red-tide adalah fenomena alam yang sering terjadi baik di perairan laut dan tawar. Fenomena ini menunjukkan perubahan warna dari biru laut menjadi merah, coklat, kuning bahkan putih susu. Penelitian ini bertujuan untuk mengetahui potensi terjadinya retaid di perairan Tablasupa, Jayapura, Papua. Pencuplikan plankton dilakukan pada tanggal 8-10 Agustus 2007 di dua lokasi dengan empat ulangan waktu (pagi, siang, sore dan malanr. Hasil analisis laboratorium menunjukkan adanya 18 genus tetapi hanya dua genus yang berpotensi menimbulkan retaid yaitu Ceratium dan Chaetoceros. Kemungkinan kecil terjadinya retaid di perairan Tablasupa karena kemelimpahan fitoplankton cukup rendah.   ABSTRACT Red-tide is natural fenomenon and can be raised at marine and fresh-waters. This fenomenon was visualized by color changes from dark-blue to become redess, browness, yellowish and milkess. The objectives to find red-tide potentially at Tablasupa west coast, Jayapura, Papua. The sample was collected on August 8-10st, 2007, at two locations and four replicated. The results there were 18 genera and two red-tide potential genera was Ceratium dan Chaetoceros. There will no red-tide in Tablasupa because low abundance of phytoplankton.

  12. Estimating aquifer properties from the water level response to Earth tides.

    Science.gov (United States)

    Cutillo, Paula A; Bredehoeft, John D

    2011-01-01

    Water level fluctuations induced by tidal strains can be analyzed to estimate the elastic properties, porosity, and transmissivity of the surrounding aquifer material. We review underutilized methods for estimating aquifer properties from the confined response to earth tides. The earth tide analyses are applied to an open well penetrating a confined carbonate aquifer. The resulting range of elastic and hydraulic aquifer properties are in general agreement with that determined by other investigators for the area of the well. The analyses indicate that passive monitoring data from wells completed in sufficiently stiff, low porosity formations can provide useful information on the properties of the surrounding formation. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  13. Water level fluctuations due to earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    J At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 percent of the total discharge, which was 0.94 1/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  14. Water-level fluctuations due to Earth tides in a well pumping from slightly fractured crystalline rock

    International Nuclear Information System (INIS)

    Marine, I.W.

    1975-01-01

    At the Savannah River plant of the Atomic Energy Commission near Aiken, South Carolina, there are three distinct groundwater systems: the coastal plain sediments, the crystalline metamorphic rocks, and a buried Triassic basin. The coastal plain sediments include several Cretaceous and Tertiary granular aquifers and aquicludes, the total thickness being about 305 m. Below these sediments, water occurs in small fractures in crystalline metamorphic rock (hornblende schist and gneiss with lesser amounts of quartzite). Water level fluctuations due to earth tides are recorded in the crystalline metamorphic rock system and in the coastal plain sediments. No water level fluctuations due to earth tides have been observed in wells in the Triassic rock because of the very low permeability. The water level fluctuations due to earth tides in the crystalline rock are about 10 cm, and those in the sediments are about 1.8 cm. The use of water level fluctuations due to earth tides to calculate porosity appears to present practical difficulties both in the crystalline metamorphic rock system and in the coastal plain sediments. In a 1-yr pumping test on a well in the crystalline metamorphic rock the flow was controlled to within 0.1 per cent of the total discharge, which was 0.94 l/s. The water level fluctuations due to earth tides in the pumping well were 10 cm, the same as when this well was not being pumped. (U.S.)

  15. Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017

    Science.gov (United States)

    Bacopoulos, Peter

    2017-10-01

    An historical storm population is developed for the St. Johns River, located in northeast Florida-US east coast, via extreme value assessment of an 89-year-long record of hourly water-level data. Storm surge extrema and the corresponding (independent) storm systems are extracted from the historical record as well as the linear and nonlinear trends of mean sea level. Peaks-over-threshold analysis reveals the top 16 most-impactful (storm surge) systems in the general return-period range of 1-100 years. Hurricane Matthew (2016) broke the record with a new absolute maximum water level of 1.56 m, although the peak surge occurred during slack tide level (0.00 m). Hurricanes and tropical systems contribute to return periods of 10-100 years with water levels in the approximate range of 1.3-1.55 m. Extratropical systems and nor'easters contribute to the historical storm population (in the general return-period range of 1-10 years) and are capable of producing extreme storm surges (in the approximate range of 1.15-1.3 m) on par with those generated by hurricanes and tropical systems. The highest astronomical tide is 1.02 m, which by evaluation of the historical record can contribute as much as 94% to the total storm-tide water level. Statically, a hypothetical scenario of Hurricane Matthew's peak surge coinciding with the highest astronomical tide would yield an overall storm-tide water level of 2.58 m, corresponding to an approximate 1000-year return period by historical comparison. Sea-level trends (linear and nonlinear) impact water-level return periods and constitute additional risk hazard for coastal engineering designs.

  16. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Piccioni, Gaia

    in the Arctic Ocean for DTU10MSS and DTU13MSS.A new reference surface for off-shore vertical referencing is introduced. This is called the DTU15LAT.The surface is derived from the DTU15MSS and the DTU10 Global ocean tide to give a 19 year Lowest Astronomical Tide referenced to either the Mean sea surface...

  17. Estimates of vertical land motion along the southwestern coasts of Turkey from coastal altimetry and tide gauge data

    DEFF Research Database (Denmark)

    Yildiz, Hasan; Andersen, Ole Baltazar; Simav, Mehmet

    2013-01-01

    The differences between coastal altimetry and sea level time series of tide gauges in between March 1993 and December 2009 are used to estimate the rates of vertical land motion at three tide gauge locations along the southwestern coasts of Turkey. The CTOH/LEGOS along-track coastal altimetry...... retrieves altimetric sea level anomalies closer to the coast than the standard along-track altimetry products. However, the use of altimetry very close to the coast is not found to improve the results. On the contrary, the gridded and interpolated AVISO merged product exhibits the best agreement with tide...... the Aegean Sea) shows no significant vertical land motion. The results are compared and assessed with three independent geophysical vertical land motion estimates like from GPS. The GIA effect in the region is negligible. The VLM estimates from altimetry and tide gauge data are in good agreement both...

  18. Comparison of calculated energy flux of internal tides with microstructure measurements

    Directory of Open Access Journals (Sweden)

    Saeed Falahat

    2014-10-01

    Full Text Available Vertical mixing caused by breaking of internal tides plays a major role in maintaining the deep-ocean stratification. This study compares observations of dissipation from microstructure measurements to calculations of the vertical energy flux from barotropic to internal tides, taking into account the temporal variation due to the spring-neap tidal cycle. The dissipation data originate from two surveys in the Brazil Basin Tracer Release Experiment (BBTRE, and one over the LArval Dispersal along the Deep East Pacific Rise (LADDER3, supplemented with a few stations above the North-Atlantic Ridge (GRAVILUCK and in the western Pacific (IZU. A good correlation is found between logarithmic values of energy flux and local dissipation in BBTRE, suggesting that the theory is able to predict energy fluxes. For the LADDER3, the local dissipation is much smaller than the calculated energy flux, which is very likely due to the different topographic features of BBTRE and LADDER3. The East Pacific Rise consists of a few isolated seamounts, so that most of the internal wave energy can radiate away from the generation site, whereas the Brazil Basin is characterised by extended rough bathymetry, leading to a more local dissipation. The results from all four field surveys support the general conclusion that the fraction of the internal-tide energy flux that is dissipated locally is very different in different regions.

  19. Ocean tides and quasi-stationary departures from the marine geoid investigation

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. O.

    1973-01-01

    The detection of tides and/or currents through the analysis of data generated in connection with the Ocean Geoid Determination Investigation is presented. A discussion of the detailed objectives and approach are included.

  20. Characterization of middle Eocene tide-influenced delta: a study ...

    Indian Academy of Sciences (India)

    42

    Running Title: Eocene tide-influenced delta in South Cambay Basin. Manuscript. Click here to view linked References. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 .... systematic documentation of the facies types to establish the depositional environment of the .... Hazad Member consists of a number of sandstone units separated by intervening ...

  1. A social marketing approach to implementing evidence-based practice in VHA QUERI: the TIDES depression collaborative care model.

    Science.gov (United States)

    Luck, Jeff; Hagigi, Fred; Parker, Louise E; Yano, Elizabeth M; Rubenstein, Lisa V; Kirchner, JoAnn E

    2009-09-28

    Collaborative care models for depression in primary care are effective and cost-effective, but difficult to spread to new sites. Translating Initiatives for Depression into Effective Solutions (TIDES) is an initiative to promote evidence-based collaborative care in the U.S. Veterans Health Administration (VHA). Social marketing applies marketing techniques to promote positive behavior change. Described in this paper, TIDES used a social marketing approach to foster national spread of collaborative care models. The approach relied on a sequential model of behavior change and explicit attention to audience segmentation. Segments included VHA national leadership, Veterans Integrated Service Network (VISN) regional leadership, facility managers, frontline providers, and veterans. TIDES communications, materials and messages targeted each segment, guided by an overall marketing plan. Depression collaborative care based on the TIDES model was adopted by VHA as part of the new Primary Care Mental Health Initiative and associated policies. It is currently in use in more than 50 primary care practices across the United States, and continues to spread, suggesting success for its social marketing-based dissemination strategy. Development, execution and evaluation of the TIDES marketing effort shows that social marketing is a promising approach for promoting implementation of evidence-based interventions in integrated healthcare systems.

  2. The oceanic tides in the South Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. Genco

    Full Text Available The finite element ocean tide model of Le Provost and Vincent (1986 has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski's solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.

  3. Numerical Simulation of Internal Waves in the Andaman Sea

    Science.gov (United States)

    Mohanty, Sachiko; Devendra Rao, Ambarukhana

    2017-04-01

    The interactions of barotropic tides with irregular bottom topography generate internal waves with high amplitude known as large-amplitude internal waves (LAIW) in the Andaman Sea. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. These waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing, biogeochemical processes, etc. over the shelf-slope region. In the present study, energetics analysis of M2 internal tides over the Andaman Sea is carried out in detail by using a three-dimensional MIT general circulation ocean model (MITgcm). In-situ observations of temperature, conductivity and currents with high temporal resolution are used to validate the model simulations. From the spectral energy estimate of density, it is found that the peak estimate is associated with the semi-diurnal frequency at all the depths in both observations and model simulations. The baroclinic velocity characteristics, suggests that a multi-mode features of baroclinic tides are present at the buoy location. To understand the generation and propagation of internal tides over this region, energy flux and barotropic-to-baroclinic M2 tidal energy conversion rates are examined. The model simulation suggests that the internal tide is generated at multiple sites and propagate off of their respective generation sources. Most of the energy propagation in the Andaman Sea follows the 1000m isobath. The maximum horizontal kinetic energy follows the energy flux pattern over the domain and the available potential energy is found to be maximum in the north of the Andaman Sea.

  4. Determining slack tide with a GPS receiver on an anchored buoy

    Science.gov (United States)

    Valk, M.; Savenije, H. H. G.; Tiberius, C. C. J. M.; Luxemburg, W. M. J.

    2014-07-01

    In this paper we present a novel method to determine the time of occurrence of tidal slack with a GPS receiver mounted on an anchored buoy commonly used to delineate shipping lanes in estuaries and tidal channels. Slack tide occurs when the tide changes direction from ebb to flood flow or from flood to ebb. The determination of this point in time is not only useful for shipping and salvaging, it is also important information for calibrating tidal models, for determining the maximum salt intrusion and for the further refinement of the theory on tidal propagation. The accuracy of the timing is well within 10 min and the method - able to operate in real time - is relatively cheap and easy to implement on a permanent basis or in short field campaigns.

  5. Galileo and Descartes on Copernicanism and the cause of the tides.

    Science.gov (United States)

    Schmaltz, Tad M

    2015-06-01

    Galileo and Descartes were on the front lines of the defense of Copernicanism against theological objections that took on special importance during the seventeenth century. Galileo attempted to overcome opposition to Copernicanism within the Catholic Church by offering a demonstration of this theory that appeals to the fact that the double motion of the earth is necessary as a cause of the tides. It turns out, however, that the details of Galileo's tidal theory compromise his demonstration. Far from attempting to provide a demonstration of the earth's motion, Descartes ultimately argued that his system is compatible with the determination of the Church that the earth is at rest. Nonetheless, Descartes's account of the cause of the tides creates difficulty for this argument. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  7. How Tidal Forces Cause Ocean Tides in the Equilibrium Theory

    Science.gov (United States)

    Ng, Chiu-king

    2015-01-01

    We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.

  8. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing o......-gauges and altimetry data. Furthermore, we prove that the geodetic reference ellipsoid WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  9. Zero drift and solid Earth tide extracted from relative gravimetric data with principal component analysis

    OpenAIRE

    Hongjuan Yu; Jinyun Guo; Jiulong Li; Dapeng Mu; Qiaoli Kong

    2015-01-01

    Zero drift and solid Earth tide corrections to static relative gravimetric data cannot be ignored. In this paper, a new principal component analysis (PCA) algorithm is presented to extract the zero drift and the solid Earth tide, as signals, from static relative gravimetric data assuming that the components contained in the relative gravimetric data are uncorrelated. Static relative gravity observations from Aug. 15 to Aug. 23, 2014 are used as statistical variables to separate the signal and...

  10. Mixing processes at the subsurface layer in the Amundsen Sea shelf region

    Science.gov (United States)

    Mojica, J.; Djoumna, G.; Francis, D. K.; Holland, D.

    2017-12-01

    In the Amundsen Sea shelf region, mixing processes promote an upward transport of diapycnal fluxes of heat and salt from the subsurface to the surface mixing layer. Here we estimate the diapycnal mixing rates on the Amundsen shelf from a multi-year mooring cluster and five research cruises. By applying fine-scale parameterizations, the mixing rates obtained were higher near the southern end of Pine Island glacier front and exceeded 10-2 m2s-1. The eddy diffusivity increased near the critical latitude (74o 28' S) for semi-diurnal M2 tides, which coincided with near-critical topography on the shelf. This condition favored the generation of internal waves of M2 frequency. The semi-diurnal dynamic enhanced the mixing that potentially affected the heat budget and the circulation of the modified Circumpolar Deep Water. This can be observed in the characteristics of water exchange both below the ice shelves and between the continental shelf and the ice shelf cavities. The location of the critical latitude and critical topography provided favorable conditions for the generation of internal waves. KEYWORDS: Mixing processes, diapycnal fluxes, critical latitude, Circumpolar Deep Water.

  11. Love numbers for the long-period tides estimated by VLBI

    Science.gov (United States)

    Krásná, Hana; Böhm, Johannes; Haas, Rüdiger; Schuh, Harald

    2013-04-01

    Love and Shida numbers are proportionality factors characterizing the deformation of the anelastic Earth which arises as a response to external forces from the Moon and Sun. The increasing precision and quality of the Very Long Baseline Interferometry (VLBI) measurements allow determining those parameters. In particular, the long history of the VLBI data enables the estimation of Love and Shida numbers at the low frequencies of the tidal waves including the periods from 14 days to 18.6 years. In this study we analyse 27 years of VLBI measurements (1984.0 - 2011.0) following the recent IERS Conventions 2010. In several global solutions, we estimate the complex Love and Shida numbers of the solid Earth tides for the main long-period tidal waves. Furthermore, we determine the Love and Shida numbers of the rotational deformation due to polar motion, the so-called pole tide. We also focus on station displacement where still some deficiencies in the long-period signal modelling can be seen.

  12. Fortnightly atmospheric tides forced by spring and neap tides in coastal waters.

    Science.gov (United States)

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Miyao, Yasuyuki

    2015-05-18

    The influence of sea surface temperature (SST) on atmospheric processes over the open ocean has been well documented. However, atmospheric responses to SST in coastal waters are poorly understood. Oceanic stratification (and consequently, SST) in coastal waters largely depends on the fortnightly spring-neap tidal cycle, because of variations in vertical tidal mixing. Here we investigate how changes in SST during the fortnightly tidal cycle affect the lower-level atmosphere over the Seto Inland Sea, Japan. We use a combination of in situ measurements, satellite observations and a regional atmospheric model. We find that the SST in summer shows cool (warm) anomalies over most of the inland sea during spring (neap) tides. Additionally, surface air temperature is positively correlated with the SST as it varies during the fortnightly tidal cycle. Moreover, the fortnightly spring-neap cycle also influences the surface wind speed because the atmospheric boundary layer becomes stabilized or destabilized in response to the difference between air temperature and SST.

  13. Global Structures and Multi-Temporal Variabilities of MLT Migrating Diurnal Tide

    International Nuclear Information System (INIS)

    Ze-Yu, Chen; Da-Ren, Lu

    2008-01-01

    Migrating diurnal tide in the MLT region is examined by the application of Hough mode decomposition with the tide delineated from the SABER/TIMED temperatures over 2002-2006. The decomposition results show that in the height range 60-100 km, the (1, 1) mode is the most predominant among eight leading Hough modes including four propagating and four trapped modes. It exhibits a sustained maximum at 97 km and significant semi-annual oscillation. Additionally, a novel feature of inter-annual variation with period of about two years is clearly seen in the (1, 1) mode, e.g., repeated maxima are seen at the March equinox of 2002, 2004 and 2006, respectively. This feature is further manifested by the tidal amplitudes in the height range 70-100 km in the height-time cross-section at the equator. It is likely of the QBO as the height range just coincides to where the zonal mean zonal winds derived by using the UARS data exhibiting the QBO. The other results show that the (1, 2) mode is important at < 80km exhibiting comparable amplitude to that of the (1, 1) mode, and in particular the nearly anti-correlation with the (1, 1) mode. The tide at about 85 km is suggested of rather complex as the four trapped modes exhibit maximum at these heights, which indicates the presence of local excitations or sources at below

  14. Mapping tide-water glacier dynamics in east Greenland using landsat data

    Science.gov (United States)

    Dwyer, John L.

    1995-01-01

    Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.

  15. A review of vertical coupling in the Atmosphere-Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity

    Czech Academy of Sciences Publication Activity Database

    Yigit, E.; Koucká Knížová, Petra; Georgieva, K.; Ward, W.

    2016-01-01

    Roč. 141, April (2016), s. 1-12 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GA15-24688S; GA MŠk(CZ) LG13042 Institutional support: RVO:68378289 Keywords : atmosphere–ionosphere * vertical coupling * gravity waves * tides * space weather * solar activity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.326, year: 2016 http://www.sciencedirect.com/science/article/pii/S1364682616300426

  16. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  17. Validation of the Lanzarote Tide Gauges system designed at the Royal Observatory of Belgium

    Science.gov (United States)

    van Ruymbeke, Michel; Dumont, Philippe; Seknik, Matej

    2017-04-01

    A series of tide gauges was set-up in a very favorable site located inside a lava tube plunging in the Atlantic ocean. The damping of waves motion is dramaticaly large, allowing to observe very tight modulations of the sea level. The gauges are based on the EDAS interface connected to a capacitor variying with the level of the sea . Filtering is gained by counting of frequency modulated signal during a one minute interval The scale factor is defined by comparizon of the output signals of sensors and reading the water level at different time. We evaluate the performance of our design by analysing the long series of records at disposal. The analysis is based on a stacking approach to extract components for periodicities existing in the spectrum of sea tides . Concordance of the results between the three gauges recording simultaneously the same signal confirms applicability of our design in such environment. After de-tiding application, the residuals signals are correlated to various physical parameters which could contribute to the understanding of the involved geophysical process.

  18. Lunar Core and Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  19. Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2015-02-01

    Full Text Available By using the accelerometer measurements from CHAMP and GRACE satellites, the tidal signatures of the thermospheric mass density and zonal wind at midlatitudes have been analyzed in this study. The results show that the mass density and zonal wind at southern midlatitudes are dominated by a longitudinal wave-1 pattern. The most prominent tidal components in mass density and zonal wind are the diurnal tides D0 and DW2 and the semidiurnal tides SW1 and SW3. This is consistent with the tidal signatures in the F region electron density at midlatitudes as reported by Xiong and Lühr (2014. These same tidal components are observed both in the thermospheric and ionospheric quantities, supporting a mechanism that the non-migrating tides in the upper atmosphere are excited in situ by ion–neutral interactions at midlatitudes, consistent with the modeling results of Jones Jr. et al. (2013. We regard the thermospheric dynamics as the main driver for the electron density tidal structures. An example is the in-phase variation of D0 between electron density and mass density in both hemispheres. Further research including coupled atmospheric models is probably needed for explaining the similarities and differences between thermospheric and ionospheric tidal signals at midlatitudes.

  20. [Ecology of Glossina palpalis VANDERPLANK, 1949 (Diptera: Glossinidae) in mangrove area of Guinea: influence of tides on tsetse densities].

    Science.gov (United States)

    Kagbadouno, S M; Salou, E; Rayaisse, J B; Courtin, F; Sanon, A; Solano, P; Camara, M

    2016-05-01

    The mangrove area on the Guinea littoral constitutes a favourable habitat for transmission of Trypanosoma brucei gambiens, the parasite causing sleeping sickness also called Human African Trypanosmosis (HAT), due the simultaneous presence of the vector (tsetse flies) and the human hosts. In order to assess the influence of the sea tides on the densities of Glossina palpalis gambiensis (Gpg), major vector of HAT in the mangrove, entomological surveys were performed using two transects, according to tides coefficient (great and small) and tide daily fluctuations (high and low). On each transect, 12 biconical traps were deployed through the mangrove to the continent. In total, up to 612 Gpg were caught, giving a density of 2.13 flies/trap/day (f/t/d). Highest captures were recorded during small tides and more tsetse were caught during the dry season than in the wet season. There were significant differences between captures when considering the different biotopes, and highest tsetse densities were recorded at the junction of the river and the channel of the mangrove (6.17±5.24); and in the channels of mangrove (3.50±3.76), during high tides of small coefficients. The results of this study may be used to improve vector control methods.

  1. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  2. Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China

    Science.gov (United States)

    Dai, Peng; Zhang, Jisheng; Zheng, Jinhai

    2017-12-01

    The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.

  3. Molluscs production associated to lunar-tide cycle: a case study in Paraíba State under ethnoecology viewpoint

    Directory of Open Access Journals (Sweden)

    Alves Rômulo RN

    2006-06-01

    Full Text Available Abstract Molluscs have been for a long time a very important food resource for humans. Therefore, oysters, clams, and mussels are highly required at seafood markets. Like any commercial food, it is necessary that molluscs present good quality standards, concerning some criteria such as amount of meat and appearance. In bivalves, condition index or fattening index is considered a satisfactory method for estimating the amount of meat related to the shell cavity. Molluscs gatherers of Paraíba State coast, northeastern Brazil, state that molluscan meat production increases during spring tide (designated by them as maré de lançamento in opposition to the meat decrease which happens during neap tide (maré de quebramento (they are designated technically in Portuguese as maré de sizígia and maré de quadratura, respectively. Weperformed a survey on the production of unha-de-velho or 'oldman'snail' (Tagelus plebeius caught by molluscs gatherers in the estuary of River Paraíba do Norte, by observing locally their work, applying questionnaires, searching for a possible scientific relation of that molluscs condition to the gatherers empirical statement. Thus, we estimatedthe molluscs condition index through the method of solids percentage determination. We studied their work and the molluscs condition index during a full lunar-tide cycle. Determinations were carried out between 2nd September and 20th October, 1998, through 20 catches performed to obtain condition index from 400 bivalves. We observed that several biotic and abiotic ecological factors, namely reproduction cycle, biochemical components variations, animal size, and even parasitism, may affect the animal condition index. Despite this aspect, our present results confirmed a high overlapping (80% of the condition index curve with lunar-tide cycle, in agreement with the gatherers statement. Although we recognize the need for formulating and testing other hypotheses, we consider a priori that

  4. Phytoplankton absorption and pigment adaptation of a red tide in the ...

    African Journals Online (AJOL)

    Phytoplankton absorption and pigment characteristics of a red tide were investigated in coastal waters of the southern Benguela. Diagnostic indices indicated that dinoflagellates were the dominant phytoplankton group, with diatoms and small flagellates being of secondary importance. Very high biomass was observed ...

  5. Bottom Pressure Tides Along a Line in the Southeast Atlantic Ocean and Comparisons with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Byrne, Deidre A.

    2010-01-01

    Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for nontidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.

  6. Integrating Non-Tidal Sea Level data from altimetry and tide gauges for coastal sea level prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2012-01-01

    The main objective of this paper is to integrate Non-Tidal Sea Level (NSL) from the joint TOPEX, Jason-1 and Jason-2 satellite altimetry with tide gauge data at the west and north coast of the United Kingdom for coastal sea level prediction. The temporal correlation coefficient between altimetric...... NSLs and tide gauge data reaches a maximum higher than 90% for each gauge. The results show that the multivariate regression approach can efficiently integrate the two types of data in the coastal waters of the area. The Multivariate Regression Model is established by integrating the along-track NSL...... from the joint TOPEX/Jason-1/Jason-2 altimeters with that from eleven tide gauges. The model results give a maximum hindcast skill of 0.95, which means maximum 95% of NSL variance can be explained by the model. The minimum Root Mean Square Error (RMSe) between altimetric observations and model...

  7. Adaption of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide.

    Science.gov (United States)

    Ge, Changzi; Yu, Xiru; Kan, Manman; Qu, Chunfeng

    2017-12-15

    The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (V pH ), Chl a content, ratio of (Chl a content)/(Chl b content) (R chla/chlb ), SOD activity of U. pertusa (A SOD ) and contamination concentration is [Formula: see text] (pcontamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    2004-06-01

    Full Text Available Comparisons are made between climatological dynamic fields obtained from ground-based (GB and space-based (SB instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI instrument on the Upper Atmosphere Research Satellite (UARS. The GB data originate from meteor radars at Obninsk, (55° N, 37° E, Shigaraki (35° N, 136° E and Jakarta (6° S, 107° E and MF spaced-antenna radars at Hawaii (22° N, 160° W, Christmas I. (2° N, 158° W and Adelaide (35° S, 138° E. We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data

  9. Tides and Modern Geodesy

    Science.gov (United States)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    In modem high-precision geodesy, and especially in modem space geodesy, every measurement that one makes contains tidal signals. Generally these signals are considered noise and must somehow be eliminated. The stringent requirements of the latest space geodetic missions place severe demands on tidal models. On the other hand, these missions provide the strongest data for improving tidal models. In particular, TOPEX/POSEIDON altimetry and LAGEOS laser ranging have improved models to such an extent that new geophysical information about the ocean and the solid Earth are coming to light. Presumably GRACE intersatellite ranging data will also add to this information. This paper discusses several of these new geophysical results, with special emphasis given to the dissipation of tidal energy. Strong constraints have recently been placed on the partitioning of energy dissipation among the ocean, atmosphere, and solid earth and between the deep and shallow ocean. The dissipation in deep water is associated with internal tides and has potentially important implications for understanding the ocean's thermohaline circulation.

  10. Internal tide transformation across a continental slope off Cape Sines, Portugal

    Science.gov (United States)

    Small, Justin

    2002-04-01

    During the INTIFANTE 99 experiment in July 1999, observations were made of a prominent internal undular bore off Cape Sines, Portugal. The feature was always present and dominant in a collection of synthetic aperture radar (SAR) images of the area covering the period before, during and after the trial. During the trial, rapid dissemination of SAR data to the survey ship enabled assessment of the progression of the feature, and the consequent planning of a survey of the bore coincident with a new SAR image. Large amplitude internal waves of 50 m amplitude in 250 m water depth, and 40 m in 100 m depth, were observed. The images show that the position of the feature is linked to the phase of the tide, suggesting an internal tide origin. The individual packets of internal waves contain up to seven waves with wavelengths in the range of 500-1500 m, and successive packets are separated by internal tide distances of typically 16-20 km, suggesting phase speeds of 0.35-0.45 m s -1. The internal waves were coherent over crest lengths of between 15 and 70 km, the longer wavefronts being due to the merging of packets. This paper uses the SAR data to detail the transformation of the wave packet as it passes across the continental slope and approaches the coast. The generation sites for the feature are discussed and reasons for its unusually large amplitude are hypothesised. It is concluded that generation at critical slopes of the bathymetry and non-linear interactions are the likely explanations for the large amplitudes.

  11. Turning the tide : tidal power in the UK

    OpenAIRE

    Sustainable Development Commission

    2007-01-01

    Contents: Turning the tide : tidal power in the UK -- Executive summary -- Tidal power in the UK : research report 1 : UK tidal resource assessment -- Tidal power in the UK : research report 2 : tidal technologies overview -- Tidal power in the UK : research report 3 : Severn barrage proposals -- Tidal power in the UK : research report 4 : Severn non-barrage options -- Tidal power in the UK : research report 5 : UK case studies. Summarised in the Welsh language version of the executive ...

  12. Data Assimilation Modeling of the Barotropic Tides in the Korea/Tsushima Strait

    National Research Council Canada - National Science Library

    Book, Jeffrey W; Pistek, Pavel; Perkins, Henry; Thompson, Keith R; Teague, William J

    2004-01-01

    During 1999-2000, 13 bottom-mounted acoustic Doppler current profilers (ADCPs) and 12 wave/tide gauges were deployed along two lines across the Korea/Tsushima Strait, providing long-term measurements of currents and bottom pressure...

  13. Why the 18.6 year tide cannot explain the change of sign observed in j2

    Directory of Open Access Journals (Sweden)

    F. Deleflie

    2003-01-01

    Full Text Available Recent studies show a change, starting in 1998, in the behavior of the variation of the dynamical flattening of the Earth (J2, supposed to be constant (secular, and mainly due to the post glacial rebound effect. In this paper, we study to what extent this behavior can be correlated or not with the 18.6 year tide: with more than twenty years of tracking data on LAGEOS-1, that is to say more than a period of 18.6 years, this effect can now be separated from the secular variation. We use our theory of mean orbital motion, dedicated to studies of the long period effects on the orbital motion. We build one single arc of LAGEOS-1 from 1980 to 2002, which provides a continuous description of the orbital parameters. This is the great originality of our approach. We focus our attention on the ascending node of LAGEOS-1, and we show that the change observed in j2 cannot be attributed to a statistical error due to a correlation, in short arcs results, between the secular variation of J2 and the 18.6 year tide. The proof is based on the adjustment of amplitudes and phases of the long period tides, and on the shape of the residuals.Key words. secular variation of J2, 18.6 year tide, mean orbital motione

  14. Sea level differences between Topex/Poseidon altimetry and tide gauges: observed trends and vertical land motions

    Science.gov (United States)

    Lombard, A.; Dominh, K.; Cazenave, A.; Calmant, S.; Cretaux, J.

    2002-12-01

    Nine year-long (1993-2001) sea level difference time series have been constructed by comparing sea level recorded by tide gauges and Topex/Poseidon altimetry. Although the primary goal of such an analysis is to define a sub network of good quality tide gauges for calibration of satellite altimetry systems, in particular Jason-1. The difference time series displaying large positive or negative trends may give evidence of vertical land motion at the tide gauge site. We have analyzed 98 tide gauge records from the UHSLC. Among them, 42 sites mainly located on open ocean islands, give very good agreement (better than 2 mm/year) with Topex/Poseidon-derived sea level trends. 22 other sites, mainly located along the continental coastlines of the Pacific Ocean, present sea level trends differing by more than 5 mm/year with Topex/Poseidon. Many of these sites are located in active tectonic areas (either in the vicinity of subduction zones or in active volcanic areas), where vertical land motions (either transient or long-term) are expected. For example, this is the case at Kushimoto, Ofunato, Kushiro (Japan), Kodiak Island and Yakutat (Alaska), La Libertad, Callao, Caldera (western south America), and Rabaul (western Pacific). When possible, we compare these observed trends in sea level differences with GPS and/or DORIS observations.

  15. The descendants of the first quasars in the BlueTides simulation

    Science.gov (United States)

    Tenneti, Ananth; Di Matteo, Tiziana; Croft, Rupert; Garcia, ThomasJae; Feng, Yu

    2018-02-01

    Supermassive blackholes with masses of a billion solar masses or more are known to exist up to z = 7. However, the present-day environments of the descendants of first quasars are not well understood and it is not known if they live in massive galaxy clusters or more isolated galaxies at z = 0. We use a dark matter-only realization (BTMassTracer) of the BlueTides cosmological hydrodynamic simulation to study the halo properties of the descendants of the most massive black holes at z = 8. We find that the descendants of the quasars with most massive black holes are not amongst the most massive haloes. They reside in haloes of with group-like (˜1014 M⊙) masses, while the most massive haloes in the simulations are rich clusters with masses ˜1015 M⊙. At z = 0, the distribution of halo masses of these quasar descendants is similar to that of the descendants of least massive black holes, which indicates that they are likely to exist in similar environments. By tracing back to the z = 8 progenitors of the most massive (cluster sized) haloes at z = 0; we find that their most likely black hole mass is less than 107 M⊙; they are clearly not amongst the most massive black holes. For haloes above 1015 M⊙, there is only 20 per cent probability that their z = 8 progenitors hosted a black hole with mass above 107 M⊙.

  16. Do the earth tides have an influence on short-term variations in radon concentration?

    International Nuclear Information System (INIS)

    Barnet, I.; Prochazka, J.; Skalsky, L.

    1997-01-01

    The short term (diurnal) indoor radon variations are often explained as a result of temperature and air pressure changes inside a dwelling (the so-called stack effect). The observations of indoor and soil gas radon variations related to the temperature and pressure variations in a test dwelling at Lipova, Northern Bohemia, have not proved the expected correlation between the radon and climatic parameters. The stack effect was clearly observed at the beginning of the four week cycles, when the indoor temperature growth was obvious. However, the indoor radon variations were of the same range or higher than at the beginning of the cycles during the whole week cycles, even when the temperature changes were of the 1-3 o C range. A theory is therefore presented, supported by the known fluctuations of the groundwater level caused by the Earth tides, and the widely observed free air radon variations. According to this theory, the Earth tides lead to the compression of the aquifers and synchronous rise of the groundwater level, which displaces the soil gas with radon into the atmosphere or dwellings. The Earth tide components were calculated for the studied locality and time intervals. The very good phase fit of the amplitudes of gravity variations, vertical and volume strain and vertical displacement with the indoor radon variations was found. This agreement leads to the conclusion that the Earth tides can be considered as one of the causes of the indoor radon variations. This conclusion is also supported by the observations of the radon variations in the underground unventilated spaces under constant temperature and air pressure conditions. (Author)

  17. Data logger database - Physical and biological effects of fish-friendly tide gates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this one-time stand-alone study is to evaluate how effective "fish-friendly" or self-regulating tide gates (SRTs) are at increasing connectivity for...

  18. Estimating decadal variability in sea level from tide gauge records: An application to the North Sea

    OpenAIRE

    Frederikse, Thomas; Riva, R.E.M.; Slobbe, Cornelis; Broerse, D.B.T.; Verlaan, Martin

    2016-01-01

    One of the primary observational data sets of sea level is represented by the tide gauge record. We propose a new method to estimate variability on decadal time scales from tide gauge data by using a state space formulation, which couples the direct observations to a predefined state space model by using a Kalman filter. The model consists of a time-varying trend and seasonal cycle, and variability induced by several physical processes, such as wind, atmospheric pressure changes and teleconne...

  19. Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial

    DEFF Research Database (Denmark)

    Punthakee, Z; Bosch, J; Dagenais, G

    2012-01-01

    AIMS/OBJECTIVE: Conflicting data regarding cardiovascular effects of thiazolidinediones (TZDs) and extra-skeletal effects of vitamin D supported the need for a definitive trial. The Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) trial aimed to assess the effects of TZDs (rosiglit......AIMS/OBJECTIVE: Conflicting data regarding cardiovascular effects of thiazolidinediones (TZDs) and extra-skeletal effects of vitamin D supported the need for a definitive trial. The Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) trial aimed to assess the effects of TZDs...

  20. Interaction of tide and salinity barrier: Limitation of numerical model

    Directory of Open Access Journals (Sweden)

    Suphat Vongvisessomjai1

    2008-07-01

    Full Text Available Nowadays, the study of interaction of the tide and the salinity barrier in an estuarine area is usually accomplished vianumerical modeling, due to the speed and convenience of modern computers. However, numerical models provide littleinsight with respect to the fundamental physical mechanisms involved. In this study, it is found that all existing numericalmodels work satisfactorily when the barrier is located at some distance far from upstream and downstream boundary conditions.Results are considerably underestimate reality when the barrier is located near the downstream boundary, usually theriver mouth. Meanwhile, this analytical model provides satisfactory output for all scenarios. The main problem of thenumerical model is that the effects of barrier construction in creation of reflected tide are neglected when specifying thedownstream boundary conditions; the use of the boundary condition before construction of the barrier which are significantlydifferent from those after the barrier construction would result in an error outputs. Future numerical models shouldattempt to account for this deficiency; otherwise, using this analytical model is another choice.

  1. Assessment of the effect of three-dimensional mantle density heterogeneity on earth rotation in tidal frequencies.

    Science.gov (United States)

    Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia

    2016-11-01

    In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference Earth Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the earth's surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free earth rotation may provide useful constraints to construct the Reference Earth Model (REM), which is the next major objective in global geophysics research beyond PREM.

  2. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida

    Science.gov (United States)

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied.An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem.A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the time

  3. Astronomical High Tide Line, Geographic NAD83, NWRC (1995) [hightide_line_NWRC_1995

    Data.gov (United States)

    Louisiana Geographic Information Center — The astronomical high tide line was compiled from National Wetlands Inventory (NWI) 1:24,000-scale habitat maps that were photo-interpreted from color-infrared...

  4. The enhanced nodal equilibrium ocean tide and polar motion

    Science.gov (United States)

    Sanchez, B. V.

    1979-01-01

    The tidal response of the ocean to long period forcing functions was investigated. The results indicate the possibility of excitation of a wobble component with the amplitude and frequency indicated by the data. An enhancement function for the equilibrium tide was postulated in the form of an expansion in zonal harmonics and the coefficients of such an expansion were estimated so as to obtain polar motion components of the required magnitude.

  5. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish.

    Science.gov (United States)

    Le Luherne, Emilie; Le Pape, Olivier; Murillo, Laurence; Randon, Marine; Lebot, Clément; Réveillac, Elodie

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  6. Field measurements of bottom boundary layer and suspend particle materials on Jyoban coast in Japan

    International Nuclear Information System (INIS)

    Yagi, Hiroshi; Sugimatsu, Kouichi; Nishi, Yoshihiro; Kawamata, Shigeru; Nakayama, Akiyoshi; Udagawa, Toru; Suzuki, Akira

    2013-01-01

    To understand the characteristics of the bottom boundary layer (BBL), movements of suspended particle material (SPM) and its related radionuclide transport on Jyoban coast, the continuous monitoring of bottom environments using the mooring system and the intensive field survey of BBL with FRA-TRIPOD were performed. The observation results have shown the fundamental characteristics of BBL (vertical distributions of velocities and bottom roughness, etc.) and bottom turbidity variations. The turbidity at the shallow water depth (30 m) was strongly influenced by waves and turbid water generated on rough wave conditions was transported by the coastal currents with the several days period. Turbidities at the deeper depths (80 m and 130 m) were affected by semidiurnal internal tides. (author)

  7. Influence of tides and winds on fishing techniques and strategies in the Mamanguape River Estuary, Paraíba State, NE Brazil

    Directory of Open Access Journals (Sweden)

    Dandara M.M. Bezerra

    2012-09-01

    Full Text Available This work was carried out in two small fishing communities, Barra de Mamanguape and Tramataia, Northeastern Brazil. The aim was to study these traditional fishermen's knowledge and perception about tide and wind classifications, as well as their fishing strategies and techniques. Our research methodology involved various techniques: free interviews and semi-structured ones, guided tours and direct observations. The results obtained show the fishermen's classification of the tides according to the phases of the moon: 'breaking tide', 'flushing tide', 'dead tide' and 'big tide' designated technically these last as neap tide and spring tide, respectively. Wind is also an essential factor for the fishermen to make successful catches, and they classify it according to direction: North, South, East, Southeast, Southwest, Northeast and Northwest. The data show that fishermen's knowledge can also be useful in devising plans for management and conservation studies for this estuary.Este trabalho foi desenvolvido junto a duas comunidades de pescadores artesanais: Barra de Mamanguape e Tramataia, Nordeste do Brasil. O objetivo foi estudar o conhecimento e a percepção dos pescadores artesanais sobre a classificação das marés e dos ventos bem como as técnicas e estratégias de pesca. A metodologia empregada envolveu várias técnicas: entrevistas livres, entrevistas semiestruturadas, turnês guiadas e observação direta. Os resultados obtidos junto aos pescadores mostraram a classificação das marés de acordo com as fases lunares em: 'maré de quebramento', 'maré de lançamento', 'maré morta' e 'maré grande', designadas tecnicamente estas últimas como maré de quadratura e maré de sizígia, respectivamente. O vento é também um fator essencial no sucesso da pescaria, eles o classificam de acordo com a direção: Norte, Sul, Leste, Sudeste, Sudoeste, Nordeste, Noroeste. Os dados obtidos nesta pesquisa mostraram que o conhecimento dos pescadores

  8. Three-Dimensional Dynamics of Baroclinic Tides Over a Seamount

    Science.gov (United States)

    Vlasenko, Vasiliy; Stashchuk, Nataliya; Nimmo-Smith, W. Alex M.

    2018-02-01

    The Massachusetts Institute of Technology general circulation model is used for the analysis of baroclinic tides over Anton Dohrn Seamount (ADS), in the North Atlantic. The model output is validated against in situ data collected during the 136th cruise of the RRS "James Cook" in May-June 2016. The observational data set includes velocity time series recorded at two moorings as well as temperature, salinity, and velocity profiles collected at 22 hydrological stations. Synthesis of observational and model data enabled the reconstruction of the details of baroclinic tidal dynamics over ADS. It was found that the baroclinic tidal waves are generated in the form of tidal beams radiating from the ADS periphery to its center, focusing tidal energy in a surface layer over the seamount's summit. This energy focusing enhances subsurface water mixing and the local generation of internal waves. The tidal beams interacting with the seasonal pycnocline generate short-scale internal waves radiating from the ADS center. An important ecological outcome from this study concerns the pattern of residual currents generated by tides. The rectified flows over ADS have the form of a pair of dipoles, cyclonic and anticyclonic eddies located at the seamount's periphery. These eddies are potentially an important factor in local larvae dispersion and their escape from ADS.

  9. A time series approach to the correction for atmosphere effects and the significance of a semi-diurnal variation in corrected intensities of secondary cosmic ray neutrons and mesons (NM64 and MT64)

    International Nuclear Information System (INIS)

    Huijsmans, D.P.

    1982-01-01

    The aim of this research was to distinguish as accurately as possible between two mechanisms behind a half-daily variation in detected numbers of neutrons and mesons in the secondary cosmic ray particles at sea level. These two mechanisms are due to air pressure variations at sea level and affect the number of primary particles with a certain arrival direction. The distribution among arrival directions in the ecliptic plane varies if a gradient exists in the guiding centre density of primaries in directions perpendicular to the neutral sheet. Chapter 2 is devoted to the calculation of a physically and statistically justifiable determination of the barometric coefficient for neutron measurements and air pressures. Chapter 3 deals with the estimation of atmospheric correction coefficients for the elimination of the influence of changing atmospheric conditions on the number of detected mesons. For mesons the variation of total mass, and also the variations in mass-distribution along the trajectory of the mesons are important. After correction for atmospheric variations using the resulting atmospheric correction coefficients from chapter 2 and 3, the influence of the structure of the interplanetary magnetic field near the earth is examined in chapter 4. 0inally, in chapter 5, a power spectral analysis of variations in corrected intensities of neutrons and mesons is carried out. Such an analysis distinguishes the variance of a time series into contributions within small frequency intervals. From the power spectra of variations on a yearly basis, a statistically fundamented judgement can be given as to the significance of the semi-diurnal variation during the different phases of the solar magnetic activity cycle. (Auth.)

  10. Influence of topography on tide propagation and amplification in semi-enclosed basins

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, Henk M.

    2011-01-01

    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having

  11. Influence of topography on tide propagation and amplification in semi-enclosed basins

    NARCIS (Netherlands)

    Roos, P.C.; Schuttelaars, H.M.

    2010-01-01

    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having

  12. Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach

    Directory of Open Access Journals (Sweden)

    G. Manno

    2017-09-01

    Full Text Available In recent decades in the Mediterranean Sea, high anthropic pressure from increasing economic and touristic development has affected several coastal areas. Today the erosion phenomena threaten human activities and existing structures, and interdisciplinary studies are needed to better understand actual coastal dynamics. Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS, in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence. To improve the assessment of the wave run-up uncertainty, a spectral numerical model was used to propagate waves from deep to intermediate water and a Boussinesq-type model for intermediate water up to the swash zone. Tide effects on the uncertainty of shoreline position were evaluated using data collected by a nearby tide gauge. The proposed methodology was applied to an unprotected, dissipative Sicilian beach far from harbors and subjected to intense human activities over the last 20 years. The results show wave run-up and tide errors ranging from 0.12 to 4.5 m and from 1.20 to 1.39 m, respectively.

  13. Sea level during storm surges as seen in tide-gauge records along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sundar, D.; Shankar, D.; Shetye, S.R.

    and crossed the north Orissa coast later that day; it weakened and moved westward subsequent to landfall. Sea-level variations due to surges triggered by storm winds form a noise superimposed on the highly periodic tides, which have astronomical origins.... In the next section we describe the analysis used to 1326 CURRENT SCIENCE, VOL. 77, NO. 10, 25 NOVEMBER 1999 COMPUTATIONAL ENGINEERING SCIENCE Figure 1b. Astronomical tide and dehyphenminustided sea level during Event 1. The dark blue vertical lines...

  14. Rising Tide II: Do Black Students Benefit as Grad Rates Increase?

    Science.gov (United States)

    Nichols, Andrew Howard; Eberle-Sudré, Kimberlee; Welch, Meredith

    2016-01-01

    "Rising Tide II: Do Black Students Benefit as Grad Rates Increase?" looks at a decade of graduation rates for African American students at four-year, public institutions that improved student success during the past decade. It shows that while a majority (almost 70 percent) of institutions we examined improved graduation rates for black…

  15. Artificial radioactivity in tide washed pastures in south west Scotland

    International Nuclear Information System (INIS)

    McKay, W.A.; Bonnett, P.J.P.; Barr, H.M.; Howorth, J.M.

    1991-01-01

    A study has been carried out to determine the impact of Sellafield discharges on the levels of radioactivity in tide washed pastures in south west Scotland. The likely areas of tidal inundations along the Nith, Urr, Dee, Fleet and Cree (including nearby Bladnoch) rivers were assessed using maps and aerials photographs. These were then visited and gamma radiation measurements taken at regular intervals to enable the external dose from anthropogenic nuclides to be estimated. A further survey followed where soil cores were taken from the areas on each river where the external dose appeared highest and analysed for a range of artificial radionuclides. The levels of 137 Cs, 134 Cs, 238 Pu, 239+240 Pu and 241 Am found, although small, were clearly in excess of the background from other sources. A habit survey was carried out to provide site specific information of tide washed pasture usage, which, with the spatial radionuclide data was used to estimate doses to appropriate critical groups. The maximum annual dose calculated to arise was 60 μSv which is less than 6% of the ICRP principal dose limit of 1 mSv. (author)

  16. Effect of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1

    Science.gov (United States)

    Scherneck, Hans-Georg; Haas, Rüdiger

    We show the influence of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1 (PMU) on the daily and subdaily timescale. So called ‘virtual PMU variations’ due to modelling errors of ocean tide loading are predicted for geodetic Very Long Baseline Interferometry (VLBI) networks. This leads to errors of subdaily determination of PMU. The predicted effects are confirmed by the analysis of geodetic VLBI observations.

  17. Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872-2012

    Directory of Open Access Journals (Sweden)

    Gaia Galassi

    2015-03-01

    Full Text Available We have analyzed tide gauge data from the Adriatic Sea in order to assess the secular sea-level trend, its acceleration and the existence of possible cyclic variation. Analyzing the sea-level stack of all Adriatic tide gauges, we have obtained a trend of (1.25±0.04 mm yr-1, in agreement with that observed for the last century in the Mediterranean Sea, and an acceleration that is negligibile compared to the average global values. By means of the Ensemble Empirical Mode Decomposition technique, we have evidenced an energetic oscillation with a period of ∼20 years that we relate with the recurrence of opposite phases in the Atlantic Multi–decadal Oscillation and North Atlantic Oscillation indices. We suggest that anomalously high sea-level values observed at all the Adriatic tide gauges during 2010 and 2011 can be explained by the rising phase of this 20 years cycle.

  18. Source properties of the 1998 July 17 Papua New Guinea tsunami based on tide gauge records

    Science.gov (United States)

    Heidarzadeh, Mohammad; Satake, Kenji

    2015-07-01

    We analysed four newly retrieved tide gauge records of the 1998 July 17 Papua New Guinea (PNG) tsunami to study statistical and spectral properties of this tsunami. The four tide gauge records were from Lombrum (PNG), Rabaul (PNG), Malakal Island (Palau) and Yap Island (State of Yap) stations located 600-1450 km from the source. The tsunami registered a maximum trough-to-crest wave height of 3-9 cm at these gauges. Spectral analysis showed two dominant peaks at period bands of 2-4 and 6-20 min with a clear separation at the period of ˜5 min. We interpreted these peak periods as belonging to the landslide and earthquake sources of the PNG tsunami, respectively. Analysis of the tsunami waveforms revealed 12-17 min delay in landslide generation compared to the origin time of the main shock. Numerical simulations including this delay fairly reproduced the observed tide gauge records. This is the first direct evidence of the delayed landslide source of the 1998 PNG tsunami which was previously indirectly estimated from acoustic T-phase records.

  19. Fish and logger summaries - Physical and biological effects of fish-friendly tide gates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this one-time stand-alone study is to evaluate how effective "fish-friendly" or self-regulating tide gates (SRTs) are at increasing connectivity for...

  20. Numerical modelling of tides and tidal currents in the Gulf of Kutch

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    An application of a two-dimensional tidal model to study the tidal regime in the Gulf of Kutch is made. This is with a view to synthesise various information on tides and currents that are available in the Gulf. A comparison of surface elevations...

  1. THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM, SUPPRESSES GROWTH OF MIXED NATURAL PHYTOPLANKTON

    Science.gov (United States)

    Alexandrium monilatum is a large, chain-forming, autotrophic dinoflagellate associated with red-tides and fish kills along the US Gulf of Mexico coast. When cultured inocula of A. monilatum were added to nutrient-amended seawater samples, growth rates and biomass yields of the na...

  2. A Stylistic Analysis of the Dialogues in Pirates of the Caribbean: On Strange Tides%A Stylistic Analysis of the Dialogues in Pirates of the Caribbean:On Strange Tides

    Institute of Scientific and Technical Information of China (English)

    李冯茹

    2017-01-01

    Dialogues in classical films are always the concentrated scripts studied by scholars. This thesis performs a stylistic analysis of dialogues from Pirates of the Caribbean: On Strange Tides at the levels of phonology, lexicon, syntax, semantics and pragmatics to make a good attempt in the application of stylistic analysis.

  3. Evidences of Seasonal Variation in Altimetry Derived Ocean Tides in the Subarctic Ocean

    Directory of Open Access Journals (Sweden)

    Hok Sum Fok

    2013-01-01

    Full Text Available While the barotropic ocean tides in the deep ocean are well modeled to ~2 cm RMS, accurate tidal prediction in the ice-covered polar oceans and near coastal regions remain elusive. A notable reason is that the most accurate satellite altimeters (TOPEX/Jason-1/-2, whose orbits are optimized to minimize the tidal aliasing effect, have spatial coverage limited to largely outside of the polar ocean. Here, we update the assessment of tidal models using 7 contemporary global and regional models, and show that the altimetry sea surface height (SSH anomaly residual after tidal correction is 9 - 12 cm RMS in the Subarctic Ocean. We then address the hypothesis whether plausible evidence of variable tidal signals exist in the seasonally ice-covered Subarctic Ocean, where the sea ice cover is undergoing rapid thinning. We first found a difference in variance reduction for multi-mission altimeter SSH anomaly residuals during the summer and winter seasons, with the residual during winter season 15 - 30% larger than that during the summer season. Experimental seasonal ocean tide solutions derived from satellite altimetry reveals that the recovered winter and summer tidal constituents generally differ by a few cm in amplitude and tens of degrees in phase. Relatively larger seasonal tidal patterns, in particular for M2, S2 and K1 tides, have been identified in the Chukchi Sea study region near eastern Siberia, coincident with the seasonal presence and movement of sea ice.

  4. Seasonal and daily fluctuation of diatoms during spring tide periods in Kerkennah Islands

    Directory of Open Access Journals (Sweden)

    Mounir Ben brahim

    2015-06-01

    Full Text Available Objective: To study seasonal and the daily distribution of diatoms in the three tidal periods (flood, slack and ebb period during the spring tide. Methods: Water samples were taken and environmental variables were measured three times in each tidal period during 10 days of spring tide. Sampling was done in 2007 in Cercina station located in the western coast of Kerkennah (34°41'27'' N; 11°07'45'' E (Southern Tunisia. Results: Nutrients showed significant variation between seasons, increasing in spring and decreasing noticeably in autumn and winter. About 36 diatom species were found. Results revealed a remarkable abundance increase in spring and summer. Irregular differences in diatom abundances were revealed over the tidal periods, with the highest rates being detected during the flood and the ebb period, while the abundance rate was lowest during the slack period. This could presumably be attributed to the increase of nutrient supply of suspended particulate matter during water motion. The results revealed a correlation between diatom abundance and temperature, NO2 - , NO3 - , Si(OH4 and PO4 3 . Temperature seemed to be the most important factors which may influence the distribution and diatom abundance. Conclusions: Tide has various effects on the nutrients status and diatoms community (in terms of species composition, succession and abundance between different tidal periods. Fluctuation of diatoms was correlated with changes in the circulation of water bodies and changes in nutrient regime.

  5. Influence of internal tides on Antarctic Bottom Water propagation through abyssal channels

    Science.gov (United States)

    Morozov, Eugene

    2010-05-01

    Antarctic Bottom Water (AABW) propagates in the Atlantic Ocean from the Weddell Sea to the north through narrow passages in submarine ridges. Submarine ridges are regions of strong internal tide generation in the ocean that causes mixing and eventually AABW loses its distinguishing properties such as low temperature and salinity. The Vema Fracture Zone (11 N) and Romanche Fracture Zone (equator) in the Mid-Atlantic Ridge (MAR) are pathways for AABW to the Northeast Atlantic. The deep basin of the Northeast Atlantic (Canary Basin and Gambia Abyssal Plain) are filled with the bottom water propagating through the Vema FZ rather than through the equatorial fracture zones because strong internal tides and mixing over the slopes of the MAR near the equator cause warming of AABW and decrease of its density. Further propagation of AABW through the Kane Gap is low. Recent field measurements in the fracture zones confirm this concept based on modeling results. Results of recent cruises are presented.

  6. Dynamic and Regression Modeling of Ocean Variability in the Tide-Gauge Record at Seasonal and Longer Periods

    Science.gov (United States)

    Hill, Emma M.; Ponte, Rui M.; Davis, James L.

    2007-01-01

    Comparison of monthly mean tide-gauge time series to corresponding model time series based on a static inverted barometer (IB) for pressure-driven fluctuations and a ocean general circulation model (OM) reveals that the combined model successfully reproduces seasonal and interannual changes in relative sea level at many stations. Removal of the OM and IB from the tide-gauge record produces residual time series with a mean global variance reduction of 53%. The OM is mis-scaled for certain regions, and 68% of the residual time series contain a significant seasonal variability after removal of the OM and IB from the tide-gauge data. Including OM admittance parameters and seasonal coefficients in a regression model for each station, with IB also removed, produces residual time series with mean global variance reduction of 71%. Examination of the regional improvement in variance caused by scaling the OM, including seasonal terms, or both, indicates weakness in the model at predicting sea-level variation for constricted ocean regions. The model is particularly effective at reproducing sea-level variation for stations in North America, Europe, and Japan. The RMS residual for many stations in these areas is 25-35 mm. The production of "cleaner" tide-gauge time series, with oceanographic variability removed, is important for future analysis of nonsecular and regionally differing sea-level variations. Understanding the ocean model's strengths and weaknesses will allow for future improvements of the model.

  7. Severe fish mortality associated with 'red tide' observed in the sea off Cochin

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; George, M; Narvekar, P.V.; Jayakumar, D.A.; Shailaja, M; Sardessai, S.; Sarma, V.V.S.S.; Shenoy, D.M; Naik, H.; Maheswaran, P.A.; KrishnaKumari, L.; Rajesh, G.; Sudhir, A.K.; Binu, M

    Severe fish mortality associated with the "red tide" phenomenon caused by Noctiluca blooms was observed in the sea off Cochin, Kerala, India at depths less than 40 m. The dead fish, almost entirely comprised of the threadfin bream (Nemipterus...

  8. Landslide movement in southwest Colorado triggered by atmospheric tides

    Science.gov (United States)

    Schulz, W.H.; Kean, J.W.; Wang, G.

    2009-01-01

    Landslides are among the most hazardous of geological processes, causing thousands of casualties and damage on the order of billions of dollars annually. The movement of most landslides occurs along a discrete shear surface, and is triggered by a reduction in the frictional strength of the surface. Infiltration of water into the landslide from rainfall and snowmelt and ground motion from earthquakes are generally implicated in lowering the frictional strength of this surface. However, solid-Earth and ocean tides have recently been shown to trigger shear sliding in other processes, such as earthquakes and glacial motion. Here we use observations and numerical modelling to show that a similar processatmospheric tidescan trigger movement in an ongoing landslide. The Slumgullion landslide, located in the SanJuan Mountains of Colorado, shows daily movement, primarily during diurnal low tides of the atmosphere. According to our model, the tidal changes in air pressure cause air and water in the sediment pores to flow vertically, altering the frictional stress of the shear surface; upward fluid flow during periods of atmospheric low pressure is most conducive to sliding. We suggest that tidally modulated changes in shear strength may also affect the stability of other landslides, and that the rapid pressure variations associated with some fast-moving storm systems could trigger a similar response. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  9. Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    1997-09-01

    Full Text Available Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3-h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.

  10. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    Science.gov (United States)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  11. Sepsis in Africa: practical steps to stem the tide | Otu | Pan African ...

    African Journals Online (AJOL)

    Sepsis in Africa: practical steps to stem the tide. Akaninyene Otu, James Elston, Emmanuel Nsutebu. Abstract. Pan African Medical Journal 2015; 21. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL.

  12. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    Science.gov (United States)

    2012-05-31

    paper aooo not violate: any Oisclosur~,;·of trade• secrets or suggestions of outside individuals on::oncams whiCh have· beE !n communicated 1.o...fully three- dimensional global ocean circulation model, we will provide an internal tide capability everywhere, and allow nested models to include

  13. Forcing mechanisms and hydrodynamics in Loch Linnhe, a dynamically wide Scottish estuary

    Science.gov (United States)

    Rabe, Berit; Hindson, Jennifer

    2017-09-01

    Hydrodynamic conditions in Loch Linnhe, a dynamifcally wide estuary on the west coast of Scotland, are primarily influenced by wind forcing, freshwater input, and tides. Winds in the region are orographically steered along the axis of the estuary due to surrounding mountains. A large rainfall catchment area results in a large freshwater inflow into Loch Linnhe which in turn produces low salinity waters at the head of the estuary. This, combined with a connection to the open sea with coastal salinities, leads to salinity gradients in the horizontal and vertical. Even though a range of observational programmes have focussed on Loch Linnhe, the literature still lacks an evaluation of its physical dynamics. Here we present a first description of the hydrodynamics in Loch Linnhe based on observations. Wind stress predominantly influences the surface layer, especially at low frequencies and with a stronger influence than tides during neap tides. The buoyancy-driven flow due to the large river runoff influences the circulation independent of wind stress. Seasonal (spring, autumn) and interannual (2011, 2012) variability of water masses occur especially in the surface layer. Tides are dominated by the semi-diurnal constituent M2 with tidal ellipses aligned in the along-estuary direction and a stronger influence during spring tides compared to wind. An evaluation of dimensionless numbers reveal laterally and vertically sheared exchange flows. Compared to other Scottish estuaries Loch Linnhe is wide enough to be influenced by the Earth's rotation and demonstrates an enhanced freshwater outflow along its north-western coast as the freshwater is diverted to the right in the direction of the flow. These observed patterns are important for the sustainable environmental management of this socio-economically valuable region, e.g. through their relevance to aquaculture pathogen transmission patterns. A thorough understanding of the dynamics of the system is essential for a

  14. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence

    Science.gov (United States)

    Hu, Hao; Wei, Taoyuan; Yang, Zhongyong; Hackney, Christopher R.; Parsons, Daniel R.

    2018-05-01

    It has long been highlighted that important feedbacks exist between river bed morphology, sediment transport and the turbulent flow field and that these feedbacks change in response to forcing mechanisms. However, our current understanding of bedform dynamics is largely based on studies of steady flow environments and cohesionless bed conditions. Few investigations have been made under rapidly changing flows. Here, we examine flow and sediment dynamics over low-angle dunes in unsteady flows in the Changjiang (Yangtze) Estuary, China. Topography, flow and sediment data were collected over a reach ca 1.8 km long through a semi-diurnal tidal cycle in a moderate tide of flood season. The results show that: (1) roughness length derived from the upper flow changes little with the flow reversing and displays the same value on both the ebb and flood tide. Moreover, the variability of individual bedform features plays an important role in roughness length variation. (2) Shear stress over the crest of low-angle dunes roughly represents the total spatially averaged stress over dunes in this study area, which has significant implications for advancing numerical models. (3) Changes in morphology, flow and sediment dynamics over dunes through time reveal how low-angle dunes evolve within a tidal cycle. (4) The clockwise hysteresis loops between flow dynamics and bedform features (height and aspect ratio) are also observed. The combination of suspended sediment transport and bedload transport on dune transformation and migration attributes to the clockwise hysteresis. The specific sediment composition of the riverbed, in some extent, affects the mechanism of sediment transport related to the exchange between suspended sediment and riverbed, but further investigation is needed to figure out the mechanism behind this for extended series of tides, such as spring/neap tide and tides in flooding and dry season.

  15. On the choice of orbits for an altimetric satellite to study ocean circulation and tides

    Science.gov (United States)

    Parke, Michael E.; Stewart, Robert H.; Farless, David L.; Cartwright, David E.

    1987-01-01

    The choice of an orbit for satellite altimetric studies of the ocean's circulation and tides requires an understanding of the orbital characteristics that influence the accuracy of the satellite's measurements of sea level and the temporal and spatial distribution of the measurements. The orbital characteristics that influence accurate calculations of the satellite's position as a function of time are examined, and the pattern of ground tracks laid down on the ocean's surface as a function of the satellite's altitude and inclination is studied. The results are used to examine the aliases in the measurements of surface geostrophic currents and tides. Finally, these considerations are used to specify possible orbits that may be useful for the upcoming Topex/Poseidon mission.

  16. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    Science.gov (United States)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  17. Changes in phytoplankton composition in response to tides, wind-induced mixing conditions, and freshwater outflows in an urbanised estuarine complex.

    Science.gov (United States)

    Moser, G A O; Ciotti, A M; Giannini, M F C; Tonini, R T; Harari, J

    2012-02-01

    Recent reports have shown an increase in potentially harmful phytoplankton in Santos bay (Southeastern Brazilian Coast), located in a highly urbanised estuarine complex. Prediction of blooms is, thus, essential but the phytoplankton community structure in very dynamic regions is difficult to determine. In the present work, we discriminate bloom forming microphytoplankton dominance and their relationship to physical and meteorological variables to look for patterns observed in different tides and seasons. Comparing 8 distinct situations, we found five scenarios of dominance that could be related to winds, tides and rainfall: i) Surfers, diatoms occurring during high surf zone energies; ii) Sinkers, represented by larger celled diatoms during spring tide, after periods of high precipitation rates; iii) Opportunistic mixers, composed of chain forming diatoms with small or elongate cells occurring during neap tides; iv) Local mixers, microplanktonic diatoms and dinoflagellates which occurred throughout the 298 sampling stations; and v) Mixotrophic dinoflagellates, after intense estuarine discharges. Results suggest alterations in the temporal patterns for some bloom-forming species, while others appeared in abundances above safe limits for public health. This approach can also illustrate possible impacts of changes in freshwater discharge in highly urbanised estuaries.

  18. Suffocating phytoplankton, suffocating waters - red tides and anoxia

    Directory of Open Access Journals (Sweden)

    Grant Colborne Pitcher

    2016-09-01

    Full Text Available The dynamics of O2 depletion in exceptional dinoflagellate blooms, often referred to as red tides or harmful algal blooms (HABs, was investigated in St Helena Bay in the southern Benguela upwelling system in 2013. The transition to bloom decay and anoxia was examined through determination of O2-based productivity and respiration rates. Changes in O2 concentrations in relation to bloom metabolism were tracked by fast response optical sensors following incubation of red tide waters in large volume light-and-dark polycarbonate carboys. Concurrent measurements of nutrients and nutrient uptake rates served to assess the role of nutrient stressors in community metabolism and bloom mortality. The estimates of community productivity and respiration are among the highest values recorded. Nutrient concentrations were found to be low and were unlikely to meet the demands of the bloom as dictated by the rates of nutrient uptake. Ratios of community respiration to gross production were particularly high ranging from 0.6 – 0.73 and are considered to be a function of the inherently high cellular respiration rates of dinoflagellates. Nighttime community respiration was shown to be capable of removing as much as 17.34 ml O2 l-1 from surface waters. These exceptional rates of O2 utilization are likely in some cases to exceed the rate of O2 replenishment via air-water exchange thereby leading overnight to conditions of anoxia. These conditions of nighttime anoxia and nutrient starvation are likely triggers of cell death and bloom mortality further fueling the microbial foodweb and consumption of O2.

  19. Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges

    Science.gov (United States)

    Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.

    2018-04-01

    The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

  20. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera

    Science.gov (United States)

    Sweet, M. J.; Brown, B. E.; Dunne, R. P.; Singleton, I.; Bulling, M.

    2017-09-01

    Shifts in the microbiome of the intertidal coral Coelastrea aspera (formally known as Goniastrea aspera) from Phuket, Thailand, were noted over the course of a 4-d period of spring tides. During this time, corals were naturally exposed to high temperatures, intense solar radiation, sub-aerial exposure and tidally induced water fluxes. Analysis of the 16S microbiome highlighted that the corals harbored both `core or stable' communities and those which appeared to be more `transient or sporadic.' Only relatively few microbial associates were classified as core microbes; the majority were transient or sporadic. Such transient associates were likely to have been governed by tidally induced variations in mucus thickness and water fluxes. Here we report strong shifts in the bacterial community of C. aspera over a short temporal scale. However, we also show significant differences in the timing of shifts between the two age groups of corals studied. More rapid changes (within 2 d of sub-aerial exposure) occurred within the 4-yr-old colonies, but a slightly delayed response was observed in the 10-yr-old colonies, whereby the microbial associates only changed after 4 d. We hypothesize that these shifts are age related and could be influenced by the observed baseline differences in the microbiome of the 4- and 10-yr-old corals, bacteria-bacteria interactions, and/or host energetics.

  1. Green and golden seaweed tides on the rise.

    Science.gov (United States)

    Smetacek, Victor; Zingone, Adriana

    2013-12-05

    Sudden beaching of huge seaweed masses smother the coastline and form rotting piles on the shore. The number of reports of these events in previously unaffected areas has increased worldwide in recent years. These 'seaweed tides' can harm tourism-based economies, smother aquaculture operations or disrupt traditional artisanal fisheries. Coastal eutrophication is the obvious, ultimate explanation for the increase in seaweed biomass, but the proximate processes that are responsible for individual beaching events are complex and require dedicated study to develop effective mitigation strategies. Harvesting the macroalgae, a valuable raw material, before they beach could well be developed into an effective solution.

  2. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  3. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios.

    Science.gov (United States)

    Gao, Guang; Clare, Anthony S; Rose, Craig; Caldwell, Gary S

    2017-01-15

    The incidence and severity of extraordinary macroalgae blooms (green tides) are increasing. Here, climate change (ocean warming and acidification) impacts on life history and biochemical responses of a causative green tide species, Ulva rigida, were investigated under combinations of pH (7.95, 7.55, corresponding to lower and higher pCO 2 ), temperature (14, 18°C) and nitrate availability (6 and 150μmolL -1 ). The higher temperature accelerated the onset and magnitude of gamete settlement. Any two factor combination promoted germination and accelerated growth in young plants. The higher temperature increased reproduction, which increased further in combination with elevated pCO 2 or nitrate. Reproductive success was highest (64.4±5.1%) when the upper limits of all three variables were combined. Biochemically, more protein and lipid but less carbohydrate were synthesized under higher temperature and nitrate conditions. These results suggest that climate change may cause more severe green tides, particularly when eutrophication cannot be effectively controlled. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Software Test Description (STD) for the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides)

    National Research Council Canada - National Science Library

    Posey, Pamela

    2002-01-01

    The purpose of this Software Test Description (STD) is to establish formal test cases to be used by personnel tasked with the installation and verification of the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides...

  5. Combined tide and storm influence on facies sedimentation of miocene Miri Formation, Sarawak

    International Nuclear Information System (INIS)

    Yuniarta Ulfa; Nasiman Sapari; Zuhar Zahir Tuan Harith

    2011-01-01

    This study was conducted on the sedimentary rocks belonging to the Miri Formation (Middle - Late Miocene). The primary objective of the present study is to provide additional interpretation on the stratigraphy of the Miri Formation in the Miri Field based on the new information gathered from new outcrops in the area. Five outcrops were examined in detail on sedimentology and stratigraphy. Based on lithology, sedimentary structures, bedding geometry and traces fossil, the sediments of the Miri Formation were grouped into fourteen lithofacies. Influence of tide and storm during the depositional processes of the formation were indicated by the group of two main facies associations which are: (i) tide-dominated estuary; and (ii) wave-and-storm dominated facies associations. The tide-dominated estuary system of the Miri Formation are includes variety of sub environments: estuary mouth or tidal channel and sand bars (characterized by trough cross-stratified sandstone with mud drapes facies), estuary channel or upper flow regime of sand flat (characterized by parallel stratified sandstone with mud-laminas facies), mixed-tidal flat (characterized by wavy and flaser bedded sandstone facies), and mud-tidal flat (characterized by rhythmic stratified sandstone-mudstone and lenticular bedding facies). The wave-and-storm dominated varied from lower to middle shore face (characterized by hummocky cross-stratified sandstone and rhythmic parallel stratified sandstone and laminated siltstone facies), upper shore face (characterized by swaley cross-stratified sandstone), lower shore face inter bedded to bioturbated sandstone and siltstone facies), and offshore transitional (characterized by bioturbated sandstone and mudstone inter bedding with parallel to hummocky cross-stratified sandstone facies). (author)

  6. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    Science.gov (United States)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  8. A protocol for measuring spatial variables in soft-sediment tide pools

    Directory of Open Access Journals (Sweden)

    Marina R. Brenha-Nunes

    2016-01-01

    Full Text Available ABSTRACT We present a protocol for measuring spatial variables in large (>50 m2 soft-sediment tide pool. Secondarily, we present the fish capture efficiency of a sampling protocol that based on such spatial variables to calculate relative abundances. The area of the pool is estimated by summing areas of basic geometric forms; the depth, by taken representative measurements of the depth variability of each pool's sector, previously determined according to its perimeter; and the volume, by considering the pool as a prism. These procedures were a trade-off between the acquisition of reliable estimates and the minimization of both the cost of operating and the time spent in field. The fish sampling protocol is based on two con secutive stages: 1 two people search for fishes under structures (e.g., rocks and litters on the pool and capture them with hand seines; 2 these structures are removed and then a beach-seine is hauled over the whole pool. Our method is cheaper than others and fast to operate considering the time in low tides. The method to sample fish is quite efficient resulting in a capture efficiency of 89%.

  9. Optimizing the Performance of Solo Duck Wave Energy Converter in Tide

    Directory of Open Access Journals (Sweden)

    Jinming Wu

    2017-02-01

    Full Text Available The high efficiency performance of the Edinburgh Duck wave energy converter (WEC in 2D regular wave tests makes it a promising wave energy conversion scheme. A solo Duck WEC will be able to apply the point absorber effect to further enhance its performance. Since released degree of freedom will decrease the efficiency, a Duck WEC with fixed pitching axis will be a better option. However, for fixed supported WECs, tide is a non-ignorable consideration. In this paper, a movable mass method is utilized in the whole tidal range to not only balance the Duck to appropriate beak angles, but also follow the variation of hydrodynamic coefficients to keep cancelling the reactance of the system impedance so that complex conjugate control can be realized to optimize the power capture performance of the Duck WEC in tide. Results show that the beak angle should be adjusted to as large a value as possible so that the response amplitude of the Duck at maximum relative capture width will be reasonable small, and the lowest weight of the movable mass is found when its designed position locates at the center of the Duck profile.

  10. Effect of Lunar Phases, Tides, and Wind Speed on the Abundance of Diptera Calliphoridae in a Mangrove Swamp.

    Science.gov (United States)

    Batista-da-Silva, J A

    2014-02-01

    Abiotic factors, such as lunar phases and tides, have a significant effect on insect development. Reproduction and immature development are usually interlinked to these abiotic factors. The tide is at its highest levels at full moon or new moon, hindering the feeding of the immature or causing their drowning. The oviposition by adult females is also compromised on these days because much of the available food is submerged. Another important abiotic factor is the wind, which displaces odoriferous particles in the air. Wind speed and direction are important elements to indicate potential sources of food for insects. I report on the effects of lunar phases, tides, and wind speed on the Calliphoridae fauna in mangrove swamps. The different species collected were identified, and the predominant species in the area were quantified. A total of 1,710 flies were collected over a 1-year period. Six Calliphoridae flies, Chloroprocta idioidea (Robineau-Desvoidy), Chrysomya megacephala (Fabricius), Chrysomya albiceps (Wiedemann), Chrysomya putoria (Wiedemann), Cochliomyia macellaria (Fabricius), and Lucilia eximia (Wiedemann) were collected. Data indicated that lunar phases have a significant effect on the abundance of C. albiceps (r = 0.39, p tides also affected the abundance of C. putoria (r = 0.40, p < 0.00), C. macellaria (r = 0.41, p < 0.00), and C. idioidea (r = 0.31, p < 0.04). The wind speed, however, did not affect these species.

  11. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    Science.gov (United States)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.

  12. Influence of mantle anelasticity on the phase and amplitude of earth tides

    Science.gov (United States)

    Bodri, B.; Pedersen, G. P. H.

    1980-05-01

    The effect of the anelasticity of the mantle on the phase and amplitude of earth tides is calculated for recent models of the internal structure of the earth and its rheological characteristics. The anelastic properties of the mantle are modeled by the Maxwell and Knopoff-Lomnitz rheological bodies. For numerical calculations two different methods of solution are used. Results indicate that the effect of mantle anelasticity on tidal amplitudes is practically zero. For both types of rheological models the phase shifts of the functions characterizing solid tides are small, none of them exceeding values of some minutes of arc. These phase shifts have a very weak dependence on the variation of attenuation and viscosity within the mantle. The present study is closely related to an important problem: what proportion of the observed tidal friction arises not in the ocean but is due to the anelasticity of the mantle. The results suggest that dissipation by solid friction at present is an insignificant, almost negligible component of tidal energy sink.

  13. The impact of future sea-level rise on the global tides

    Science.gov (United States)

    Pickering, M. D.; Horsburgh, K. J.; Blundell, J. R.; Hirschi, J. J.-M.; Nicholls, R. J.; Verlaan, M.; Wells, N. C.

    2017-06-01

    Tides are a key component in coastal extreme water levels. Possible changes in the tides caused by mean sea-level rise (SLR) are therefore of importance in the analysis of coastal flooding, as well as many other applications. We investigate the effect of future SLR on the tides globally using a fully global forward tidal model: OTISmpi. Statistical comparisons of the modelled and observed tidal solutions demonstrate the skill of the refined model setup with no reliance on data assimilation. We simulate the response of the four primary tidal constituents to various SLR scenarios. Particular attention is paid to future changes at the largest 136 coastal cities, where changes in water level would have the greatest impact. Spatially uniform SLR scenarios ranging from 0.5 to 10 m with fixed coastlines show that the tidal amplitudes in shelf seas globally respond strongly to SLR with spatially coherent areas of increase and decrease. Changes in the M2 and S2 constituents occur globally in most shelf seas, whereas changes in K1 and O1 are confined to Asian shelves. With higher SLR tidal changes are often not proportional to the SLR imposed and larger portions of mean high water (MHW) changes are above proportional. Changes in MHW exceed ±10% of the SLR at 10% of coastal cities. SLR scenarios allowing for coastal recession tend increasingly to result in a reduction in tidal range. The fact that the fixed and recession shoreline scenarios result mainly in changes of opposing sign is explained by the effect of the perturbations on the natural period of oscillation of the basin. Our results suggest that coastal management strategies could influence the sign of the tidal amplitude change. The effect of a spatially varying SLR, in this case fingerprints of the initial elastic response to ice mass loss, modestly alters the tidal response with the largest differences at high latitudes.

  14. The Yermak Pass Branch: A Major Pathway for the Atlantic Water North of Svalbard?

    Science.gov (United States)

    Koenig, Zoé; Provost, Christine; Sennéchael, Nathalie; Garric, Gilles; Gascard, Jean-Claude

    2017-12-01

    An upward-looking Acoustic Doppler Current Profiler deployed from July 2007 to September 2008 in the Yermak Pass, north of Svalbard, gathered velocity data from 570 m up to 90 m at a location covered by sea ice 10 months out of 12. Barotropic diurnal and semidiurnal tides are the dominant signals in the velocity (more than 70% of the velocity variance). In winter, baroclinic eddies at periods between 5 and 15 days and pulses of 1-2 month periodicity are observed in the Atlantic Water layer and are associated with a shoaling of the pycnocline. Mercator-Ocean global operational model with daily and 1/12° spatial resolution is shown to have skills in representing low-frequency velocity variations (>1 month) in the West Spitsbergen Current and in the Yermak Pass. Model outputs suggest that the Yermak Pass Branch has had a robust winter pattern over the last 10 years, carrying on average 31% of the Atlantic Water volume transport of the West Spitsbergen Current (36% in autumn/winter). However, those figures have to be considered with caution as the model neither simulates tides nor fully resolves eddies and ignores residual mean currents that could be significant.

  15. The circulation of the lower Capibaribe Estuary (Brazil and its implications for the transport of scalars

    Directory of Open Access Journals (Sweden)

    Carlos Augusto França Schettini

    Full Text Available Abstract The Capibaribe Estuary is a water body that crosses the Recife Metropolitan Area (RMA, one of the largest population centers in Brazil, and causes large pollutant loads and poor water quality. The fresh water inflow of wastewater from the RMA can account for three times the volume of the river discharge during the low discharge period. This article assesses the hydrodynamics and potential transport of particulate and dissolved scalars in this estuary. A field experiment was conducted to record the water level, current velocity, salinity, temperature and suspended particulate matter (SPM contents during a full semi-diurnal tidal cycle. This experiment was performed during low river discharge and spring tide conditions. The estuary showed a partially mixed circulation pattern. The residual transport of water and salt were up estuary, while the SPM residual transport was down estuary. The former were understood as the effect of the residual circulation around the islands, while the latter was interpreted as a morphological factor inducing greater resuspension during the ebb, despite the symmetrical ebb and flood currents. This mechanism may transport SPM to the inner shelf, even under tide-dominated conditions when the opposite would be expected.

  16. Tides in the Mandovi and Zuari estuaries, Goa, west coast of India

    Indian Academy of Sciences (India)

    Mandovi and Zuari are two estuaries located in Goa,west coast of India.Variation of water level in the estuaries was monitored for a month at 13 locations using tide-poles during March –April 2003.Analysis of this data has provided for the first time,characteristics of how tidal constituents vary in the narrow and shallow ...

  17. Tenofovir disoproxil fumarate monotherapy for nucleos(tide analogue-naïve and nucleos(tide analogue-experienced chronic hepatitis B patients

    Directory of Open Access Journals (Sweden)

    Sang Kyung Jung

    2015-03-01

    Full Text Available Background/AimsThis study investigated the antiviral effects of tenofovir disoproxil fumarate (TDF monotherapy in nucleos(tide analogue (NA-naive and NA-experienced chronic hepatitis B (CHB patients.MethodsCHB patients treated with TDF monotherapy (300 mg/day for ≥12 weeks between December 2012 and July 2014 at a single center were retrospectively enrolled. Clinical, biochemical, and virological parameters were assessed every 12 weeks.ResultsIn total, 136 patients (median age 49 years, 96 males, 94 HBeAg positive, and 51 with liver cirrhosis were included. Sixty-two patients were nucleos(tide (NA-naïve, and 74 patients had prior NA therapy (NA-exp group, and 31 patients in the NA-exp group had lamivudine (LAM-resistance (LAM-R group. The baseline serum hepatitis B virus (HBV DNA level was 4.9±2.3 log IU/mL (mean±SD, and was higher in the NA-naïve group than in the NA-exp and LAM-R groups (5.9±2.0 log IU/mL vs 3.9±2.0 log IU/mL vs 4.2±1.7 log IU/mL, P<0.01. The complete virological response (CVR rate at week 48 in the NA-naïve group (71.4% did not differ significantly from those in the NA-exp (71.3% and LAM-R (66.1% groups. In multivariate analysis, baseline serum HBV DNA was the only predictive factor for a CVR at week 48 (hazard ratio, 0.809; 95% confidence interval, 0.729-0.898, while the CVR rate did not differ with the NA experience.ConclusionsTDF monotherapy was effective for CHB treatment irrespective of prior NA treatment or LAM resistance. Baseline serum HBV DNA was the independent predictive factor for a CVR.

  18. The 2004 Indian Ocean tsunami: Description of the event and estimation of length of the tsunami source region based on data from Indian tide gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Neetu, S.; Shankar, D.; Shenoi, S.S.C.; Shetye, S.R.; Sundar, D.

    . Column 2 gives the arrival time (AT, UTC), column 3 the amplitude of the first wave (residual) (FW, cm), and column 4 the maximum amplitude over the tide (residual) (Max, cm). Other acronyms are as follows: FW, first wave; HT, high tide; LT, low tide...) [4]. Station AT FW Max Remarks Gauge type Interval Paradip 0330 89 215 FW just after HT, max just before LT(also MWL) PT 6 Visakhapatnam 0340 65 159 FW around HT, max close to LT (also MWL) FT 5 Chennai 0335 64 190 FW around HT...

  19. Restoration and recovery of hurricane-damaged mangroves using the knickpoint retreat effect and tides as dredging tools.

    Science.gov (United States)

    Bashan, Yoav; Moreno, Manuel; Salazar, Bernardo G; Alvarez, Leonardo

    2013-02-15

    In 2001, a hurricane moved a large sand dune, blocking the sole outlet channel of a mangrove. In the absence of daily tidal flow, the two ponds containing the mangrove vegetation evaporated, the secondary drainage channels were lost, and a salt crust formed on the bed of the ponds. The mangrove lost most of its trees and the remaining suffered from osmotic shock that led to defoliation. Restoration involved creating a knickpoint retreat (waterfall retreat effect) and tidal flow as a dredging mechanism to restore the outlet and form secondary channels in the ponds. During a very low tide, we deepened the mouth of the outlet channel by 1 m below high tide level to form a small waterfall when high tides receded. During successive tides, this one-step knickpoint deteriorated and formed a series of low rapids. With a steep gradient, the rapids retreated upstream into the ponds, first reopening the outlet channel and then carving new secondary channels in the pond mud flat. The excavation process of the outlet channel was repeated three times and was sufficient to effectively improve the hydrology of the entire pond system; allowing adequate flooding and draining of the mangrove ponds. Hydrology analysis tested by the Engelund-Hansen sediment transport formula established that the output of sediment from the ecosystem is greater than the input of sand into the mangroves. This is keeping the main channel continuously open. After eight years, tidal flow continues to keep the channels open; the salt crust has disappeared; the trees have recovered, and a large area of new vegetation has emerged. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK

    Science.gov (United States)

    Pye, K.; Blott, S. J.

    2008-12-01

    Monitoring of frontal dune erosion and accretion on the Sefton coast in northwest England over the past 50 years has revealed significant spatial and temporal variations. Previous work has shown that the spatial variations primarily reflect longshore differences in beach and nearshore morphology, energy regime and sediment budget, but the causes of temporal variations have not previously been studied in detail. This paper presents the results of work carried out to test the hypothesis that a major cause of temporal variation is changes in the frequency and magnitude of storms, surges and resulting high tides. Dune toe erosion/accretion records dating from 1958 have been compared with tide gauge records at Liverpool and Heysham. Relatively high dune erosion rates at Formby Point 1958-1968 were associated with a relatively large number of storm tides. Slower erosion at Formby, and relatively rapid accretion in areas to the north and south, occurred during the 1970's and 1980's when there were relatively few major storm tides. After 1990 rates of dune erosion at Formby increased again, and dunes to the north and south experienced slower accretion. During this period high storm tides have been more frequent, and the annual number of hours with water levels above the critical level for dune erosion has increased significantly. An increase in the rate of mean sea-level rise at both Liverpool and Heysham is evident since 1990, but we conclude that this factor is of less importance than the occurrence of extreme high tides and wave action associated with storms. The incidence of extreme high tides shows an identifiable relationship with the lunar nodal tidal cycle, but the evidence indicates that meteorological forcing has also had a significant effect. Storms and surges in the eastern Irish Sea are associated with Atlantic depressions whose direction and rate of movement have a strong influence on wind speeds, wave energy and the height of surge tides. However