WorldWideScience

Sample records for solar radio flux

  1. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  2. Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux

    International Nuclear Information System (INIS)

    Donnelly, R.F.

    1982-01-01

    The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component

  3. Changed Relation between Solar 10.7-cm Radio Flux and some ...

    Indian Academy of Sciences (India)

    The time series of monthly average values of sunspot numbers SSN, 10.7 cm flux ... This radio emission comes from the higher part of the chromosphere and .... work elements on the solar surface on one hand and spots on the other hand ... size, their magnetic fields were less composite and characterized by the greater life-.

  4. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    Science.gov (United States)

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  5. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    Science.gov (United States)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  6. Relation between gamma-ray emission, radio bursts, and proton fluxes from solar flares

    International Nuclear Information System (INIS)

    Fomichev, V.V.; Chertok, I.M.

    1985-01-01

    Data on solar gamma-ray flares, including 24 flares with gamma-ray lines, recorded up to June 1982, are analyzed. It is shown that from the point of view of radio emission the differences between flares with and without gamma-ray lines has a purely quantitative character: the former are accompanied by the most intense microwave bursts. Meter type II bursts are not a distinctive feature of flares with gamma-ray lines. Pulsed flares, regardless of the presence or absence of gamma-ray lines, are not accompanied by significant proton fluxes at the earth. On the whole, contrary to the popular opinion in the literature, flares with gamma-ray lines do not display a deficit of proton flux in interplanetary space in comparison with similar flares without gamma-ray lines. The results of quantitative diagnostics of proton flares based on radio bursts are not at variance with the presence of flares without detectable gamma-ray emission in lines but with a pronounced increase in the proton flux at the earth. 23 references

  7. Solar radio proxies for improved satellite orbit prediction

    Science.gov (United States)

    Yaya, Philippe; Hecker, Louis; Dudok de Wit, Thierry; Fèvre, Clémence Le; Bruinsma, Sean

    2017-12-01

    Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV) flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model) performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.

  8. Solar radio proxies for improved satellite orbit prediction

    Directory of Open Access Journals (Sweden)

    Yaya Philippe

    2017-01-01

    Full Text Available Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model performs better with (past and predicted values of the 30 cm radio flux than with the 10.7 flux.

  9. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    Science.gov (United States)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  10. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  11. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  12. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Vilmer, Nicole, E-mail: eoin.carley@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-12-10

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  13. Characteristic studies on solar x-ray flares and solar radio bursts during descending phases of solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Bhattacharya, J.; De, B.K.; Guha, A.

    2014-01-01

    In this paper, a comparative study between the solar X-ray flares and solar radio bursts in terms of their duration and energy has been done. This has been done by analyzing the data in a statistical way covering the descending phase of the 22nd and 23rd solar cycles. It has been observed that the most probable value of duration of both solar X-ray flares and solar radio bursts remain same for a particular cycle. There is a slight variation in the most probable value of duration in going from 22nd cycle to 23rd cycle in the case of both kinds of events. This small variation may be due to the variation of polar field. A low correlation has been observed between energy fluxes in solar X-ray flares and in solar radio bursts. This has been attributed to the non symmetric contribution of energy to the solar radio and X-ray band controlled by solar magnetic field

  14. Quantitative comparisons of type 3 radio burst intensity and fast electron flux at 1 AU

    Science.gov (United States)

    Fitzenreiter, R. J.; Evans, L. G.; Lin, R. P.

    1975-01-01

    The flux of fast solar electrons and the intensity of the type 111 radio emission generated by these particles were compared at one AU. Two regimes were found in the generation of type 111 radiation: one where the radio intensity is linearly proportional to the electron flux, and another, which occurs above a threshold electron flux, where the radio intensity is approximately proportional to the 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism.

  15. Quantitative comparisons of type 3 radio burst intensity and fast electron flux at 1 AU

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Evans, L.G.; Lin, R.P.

    1975-09-01

    The flux of fast solar electrons and the intensity of the type-III radio emission generated by these particles were compared at one AU. Two regimes were found in the generation of type-III radiation: one, where the radio intensity is linearly proportional to the electron flux, and another, which occurs above a threshold electron flux, where the radio intensity is approximately proportional to the 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism

  16. Quantitative comparisons of type III radio burst intensity and fast electron flux at 1 AU

    Science.gov (United States)

    Fitzenreiter, R. J.; Evans, L. G.; Lin, R. P.

    1976-01-01

    We compare the flux of fast solar electrons and the intensity of the type III radio emission generated by these particles at 1 AU. We find that there are two regimes in the generation of type III radiation: one where the radio intensity is linearly proportional to the electron flux, and the second regime, which occurs above a threshold electron flux, where the radio intensity is proportional to the approximately 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism.

  17. Introduction to solar radio astronomy and radio physics

    International Nuclear Information System (INIS)

    Krueger, A.

    1979-01-01

    A systematic summary is presented of the work done during the last thirty years in the field of solar radio astronomy from the standpoint of general solar physics. Instrumental aspects, observations and theory are covered. A brief introduction is given to the matter consisting of the history of solar radio astronomy and some fundamentals of astronomy and solar physics are outlined. Some topics of the instrumental background of solar radio astronomy and the main results of observations are presented. The elements of a theoretical interpretation of solar radio observations are reported and a synthesis of both observation and theory contributing to a general picture of solar and solar-terrestrial physics is outlined. (C.F./Auth)

  18. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  19. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  20. Periodicities observed on solar flux index (F10.7) during geomagnetic disturbances

    Science.gov (United States)

    Adhikari, B.; Narayan, C.; Chhatkuli, D. N.

    2017-12-01

    Solar activities change within the period of 11 years. Sometimes the greatest event occurs in the period of solar maxima and the lowest activity occurs in the period of solar minimum. During the time period of solar activity sunspots number will vary. A 10.7 cm solar flux measurement is a determination of the strength of solar radio emission. The solar flux index is more often used for the prediction and monitoring of the solar activity. This study mainly focused on the variation on solar flux index and amount of electromagnetic wave in the atmosphere. Both seasonal and yearly variation on solar F10.7 index. We also analyzed the dataset obatained from riometer.Both instruments show seasonal and yearly variations. We also observed the solar cycle dependence on solar flux index and found a strong dependence on solar activity. Results also show that solar intensities higher during the rising phase of solar cycle. We also observed periodicities on solar flux index using wavelet analysis. Through this analysis, it was found that the power intensities of solar flux index show a high spectral variability.

  1. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Solar radio bursts and their relation of coronal magnetic structures

    International Nuclear Information System (INIS)

    Kattenberg, A.

    1981-01-01

    Following a general introduction, chapters II and III describe a model for coronal flux tubes. The model tube is a cylindrically symmetric localized force free current, that is embedded in a potential field. In both chapters the growth rates and sizes of the kink mode instability are calculated by solving the linearized equation of motion. In chapters IV and V, observations of solar Type-I radio bursts are presented and analysed. The observations were gathered with the 60-channel radio spectrograph in Dwingeloo. Chapters VI, VII, VIII, IX and X are concerned with observations of solar microwave bursts. The observations, with high time resolution (0.1 s) and high one-dimensional angular resolution (max. 4'') were made with the Westerbork Synthesis Radio Telescope. (Auth.)

  3. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  4. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Xu, Guirong [Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205 (China)

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  5. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  6. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  7. The effect of solar radio bursts on the GNSS radio occultation signals

    Science.gov (United States)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian

    2013-09-01

    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  8. Variability of the Lyman alpha flux with solar activity

    International Nuclear Information System (INIS)

    Lean, J.L.; Skumanich, A.

    1983-01-01

    A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10 11 photons/cm 2 /s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10 11 photons/cm 2 /s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error

  9. Ionospheric Caustics in Solar Radio Observations

    Science.gov (United States)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  10. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    Science.gov (United States)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III

  11. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  12. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  13. Origin of solar radio waves

    International Nuclear Information System (INIS)

    Olmr, J.

    1977-01-01

    Solar radiowave radiation amounts to about 10 -7 of the total solar radiation. The solar atmosphere emits radiation of different wavelengths from a fraction of nanometer to kilometer waves. The solar radiowaves are of thermal origin and except for neutral hydrogen emission and solid body radio emission their emission always results from free electrons. The radiowave radiation active components were classified in several types, such as noise storms, flashes, flares, continuum, and flashes lasting for several minutes. The respective types are discussed and their origins shown. The mechanisms are described permitting the formation of radio waves of nonthermal origin, i.e., plasma oscillations, gyromagnetic emission, synchrotron and Cherenkov radiations. (J.P.)

  14. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  15. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  16. Predicting radio fluxes of extrasolar planets (Griessmeier+, 2007)

    NARCIS (Netherlands)

    Griessmeier, J.M.; Zarka, P.; Spreeuw, H.

    2007-01-01

    Expected radio emission from presently known exoplanets. For each of the currently known exoplanets, we list its estimated magnetic moment, maximum radio emission frequency, plasma frequency in the ambient stellar wind, and radio fluxes according to three different models. (1 data file).

  17. Solar radio observations and interpretations

    International Nuclear Information System (INIS)

    Rosenberg, H.

    1976-01-01

    The recent solar radio observations related to flares are reviewed for the frequency range of a few kilohertz to several gigahertz. The analysis of the radio data leads to boundary conditions on the acceleration processes which are responsible for the fast particles which cause radio emission. The role and cause of plasma turbulence at the plasma-frequency and at much lower frequencies is discussed in relation to the acceleration processes and the radio emission mechanisms for the various radio bursts. (author)

  18. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  19. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  20. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  1. First Colombian Solar Radio Interferometer: current stage

    Science.gov (United States)

    Guevara Gómez, J. C.; Martínez Oliveros, J. C.; Calvo-Mozo, B.

    2017-10-01

    Solar radio astronomy is a fast developing research field in Colombia. Here, we present the scientific goals, specifications and current state of the First Colombian Solar Radio Interferometer consisting of two log-periodic antennas covering a frequency bandwidth op to 800 MHz. We describe the importance and benefits of its development to the radioastronomy in Latin America and its impact on the scientific community and general public.

  2. Solar Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  3. Gnevyshev peaks in solar radio emissions at different frequencies

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2009-04-01

    Full Text Available Sunspots have a major 11-year cycle, but the years near the sunspot maximum show two or more peaks called GP (Gnevyshev Peaks. In this communication, it was examined whether these peaks in sunspots are reflected in other parameters such as Lyman-α (the chromospheric emission 121.6 nm, radio emissions 242–15 400 MHz emanating from altitude levels 2000–12 000 km, the low latitude (+45° to −45° solar open magnetic flux and the coronal green line emission (Fe XIV, 530.3 nm. In the different solar cycles 20–23, the similarity extended at least upto the level of 609 MHz, but in cycle 22, the highest level was of 242 MHz. The extension to the higher level in cycle 22 does not seem to be related to the cycle strength Rz(max, or to the cycle length.

  4. RADIO EMISSION FROM ACCELERATION SITES OF SOLAR FLARES

    International Nuclear Information System (INIS)

    Li Yixuan; Fleishman, Gregory D.

    2009-01-01

    This Letter takes up the question of what radio emission is produced by electrons at the very acceleration site of a solar flare. Specifically, we calculate incoherent radio emission produced within two competing acceleration models-stochastic acceleration by cascading MHD turbulence and regular acceleration in collapsing magnetic traps. Our analysis clearly demonstrates that radio emission from acceleration sites (1) has sufficiently strong intensity to be observed by currently available radio instruments, and (2) has spectra and light curves that are distinctly different in these two competing models, which makes them observationally distinguishable. In particular, we suggest that some of the narrowband microwave and decimeter continuum bursts may be a signature of the stochastic acceleration in solar flares.

  5. Automated solar radio burst detection on radio spectrum: a review of ...

    African Journals Online (AJOL)

    By doing manual detection, human effort and error become the issues when the solar astronomer needs the fast and accurate result. Recently, the success of various techniques in image processing to identify solar radio burst automatically was presented. This paper reviews previous technique in image processing.

  6. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  7. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  8. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  9. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  10. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    International Nuclear Information System (INIS)

    Duffin, R T; White, S M; Ray, P S; Kaiser, M L

    2015-01-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena. (paper)

  11. Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

    Science.gov (United States)

    Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.

    2016-04-01

    Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather

  12. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  13. Identification of radio emission from the Io flux tube

    International Nuclear Information System (INIS)

    Riddle, A.C.

    1983-01-01

    Many theories and observations suggest that Jovian decametric radio emission is generated in flux tubes that pass close to Io's orbit. However, comparison of theory and observation is hindered by lack of knowledge as to which specific flux tube is responsible for a particular emission. In this note, emission from the instantaneous Io flux tube is identified. This makes possible a mapping of emissions onto the causative flux tubes for a significant range of Jovian longitudes (240 0 --360 0 )

  14. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Astr. (2000) 21, 439–444. Remote Sensing of the Heliospheric Solar Wind using Radio. Astronomy Methods and Numerical Simulations. S. Ananthakrishnan, National Center for Radio Astrophysics, Tata Institute of. Fundamental Research, Pune, India. Abstract. The ground-based radio astronomy method of interplanetary.

  15. Solar radio observations in support of Skylab A

    Science.gov (United States)

    Gotwols, B. L.

    1974-01-01

    The solar radio spectra were recorded in real time, both on film and magnetic tape, during the period from November 1972 to February 1974. A catalogue of the observations is given for the frequency range 565-1000 MHz and includes descriptions of the bursts, intensity scales, and pertinent remarks. Some theoretical considerations resulting from the research are given. Equipment modified for the experiment is described and the text of the final report which summarizes the research on type IV solar radio bursts is included.

  16. Geomagnetic storm related to intense solar radio burst type II and III ...

    African Journals Online (AJOL)

    The strong energetic particles ejected during sun's activity will propagate towards earth and contribute to solar radio bursts. These solar radio bursts can be detected using CALLISTO system. The open website of the NASA provides us the data including CALLISTO, TESIS, solar monitor, SOHO and space weather. The type ...

  17. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  18. Updated determination of the solar neutrino fluxes from solar neutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Bergström, Johannes [Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Gonzalez-Garcia, M. C. [Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA) (Spain); C.N. Yang Institute for Theoretical Physics,State University of New York at Stony Brook, Stony Brook, NY 11794-3840 (United States); Maltoni, Michele [Instituto de Física Teórica UAM/CSIC,Calle de Nicolás Cabrera 13-15, Universidad Autónoma de Madrid,Cantoblanco, E-28049 Madrid (Spain); Peña-Garay, Carlos [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de Valencia,Calle Catedrático José Beltrán, 2, E-46090 Paterna, Valencia (Spain); Serenelli, Aldo M. [Institut de Ciencies de l’Espai (ICE-CSIC/IEEC),Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Valls (Spain); Song, Ningqiang [C.N. Yang Institute for Theoretical Physics,State University of New York at Stony Brook, Stony Brook, NY 11794-3840 (United States)

    2016-03-18

    We present an update of the determination of the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian analysis we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. We then use these results to compare the description provided by different Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with equivalent statistical agreement. We also argue that even with the present experimental precision the solar neutrino data have the potential to improve the accuracy of the solar model predictions.

  19. Production of fine structures in type III solar radio bursts due to turbulent density profiles

    International Nuclear Information System (INIS)

    Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo

    2014-01-01

    Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f p to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f p and 2 f p radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f p than 2 f p emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f p radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f p radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.

  20. Solar energetic particles and radio burst emission

    Czech Academy of Sciences Publication Activity Database

    Miteva, R.; Samwel, S. W.; Krupař, Vratislav

    2017-01-01

    Roč. 7 (2017), č. článku A37. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : solar energetic particles * solar radio burst emission * solar cycle Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/ articles /swsc/abs/2017/01/swsc170028/swsc170028.html

  1. Faraday rotation fluctuations of MESSENGER radio signals through the equatorial lower corona near solar minimum

    Science.gov (United States)

    Wexler, D. B.; Jensen, E. A.; Hollweg, J. V.; Heiles, C.; Efimov, A. I.; Vierinen, J.; Coster, A. J.

    2017-02-01

    Faraday rotation (FR) of transcoronal radio transmissions from spacecraft near superior conjunction enables study of the temporal variations in coronal plasma density, velocity, and magnetic field. The MESSENGER spacecraft 8.4 GHz radio, transmitting through the corona with closest line-of-sight approach 1.63-1.89 solar radii and near-equatorial heliolatitudes, was recorded soon after the deep solar minimum of solar cycle 23. During egress from superior conjunction, FR gradually decreased, and an overlay of wave-like FR fluctuations (FRFs) with periods of hundreds to thousands of seconds was found. The FRF power spectrum was characterized by a power law relation, with the baseline spectral index being -2.64. A transient power increase showed relative flattening of the spectrum and bands of enhanced spectral power at 3.3 mHz and 6.1 mHz. Our results confirm the presence of coronal FRF similar to those described previously at greater solar offset. Interpreted as Alfvén waves crossing the line of sight radially near the proximate point, low-frequency FRF convey an energy flux density higher than that of the background solar wind kinetic energy, but only a fraction of that required to accelerate the solar wind. Even so, this fraction is quite variable and potentially escalates to energetically significant values with relatively modest changes in estimated magnetic field strength and electron concentration. Given the uncertainties in these key parameters, as well as in solar wind properties close to the Sun at low heliolatitudes, we cannot yet confidently assign the quantitative role for Alfvén wave energy from this region in driving the slow solar wind.

  2. LOFAR tied-array imaging of Type III solar radio bursts

    NARCIS (Netherlands)

    Morosan, D.E.; et al., [Unknown; Hessels, J.W.T.; Markoff, S.

    2014-01-01

    Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio

  3. LOFAR tied-array imaging of Type III solar radio bursts

    NARCIS (Netherlands)

    Morosan, D.E.; Gallagher, P.T.; Zucca, P.; Fallows, R.; Carley, E.P.; Mann, G.; Bisi, M.M.; Kerdraon, A.; Avruch, I.M.; Bentum, Marinus Jan; Bernardi, G.; Best, P.; Bonafede, A.; Bregman, J.; Breitling, F.

    2014-01-01

    Context: The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio

  4. Physics of the Solar Active Regions from Radio Observations

    Science.gov (United States)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  5. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  6. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  7. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  8. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    Science.gov (United States)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  9. THE RISE AND FALL OF OPEN SOLAR FLUX DURING THE CURRENT GRAND SOLAR MAXIMUM

    International Nuclear Information System (INIS)

    Lockwood, M.; Rouillard, A. P.; Finch, I. D.

    2009-01-01

    We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed V SW , the interplanetary magnetic field strength B, and the open solar flux F S . Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using V SW , F S , or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.

  10. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    Science.gov (United States)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  11. First solar radio spectrometer deployed in Scotland, UK

    Science.gov (United States)

    Monstein, Christian

    2012-10-01

    A new Callisto solar radio spectrometer system has recently been installed and set into operation at Acre Road Observatory, a facility of University of Glasgow, Scotland UK. There has been an Observatory associated with Glasgow University since 1757, and they presently occupy two different sites. The main observatory ('Acre Road') is close to the Garscube Estate on the outskirts of the city of Glasgow. The outstation ('Cochno', housing the big 20 inch Grubb Parsons telescope) is located farther out at a darker site in the Kilpatrick Hills. The Acre Road Observatory comprises teaching and research labs, a workshop, the main dome housing the 16 inch Meade, the solar dome, presently housing the 12 inch Meade, a transit house containing the transit telescope, a 3m HI radio telescope and a 408 MHz pulsar telescope. They also have 10 and 8 inch Meade telescopes and several 5 inch Celestron instruments. There is a small planetarium beneath the solar dome. The new Callisto instrument is mainly foreseen for scientific solar burst observations as well as for student projects and for 'bad-weather' outreach activities.

  12. The effects of variability on the number-flux-density relationship for radio sources

    International Nuclear Information System (INIS)

    Schuch, N.J.

    1981-01-01

    It has been known for some time that the number-flux-density relationship for radio sources requires a population of sources whose properties evolve with cosmological epoch, at least in models where the redshifts are all taken to be cosmological. In particular, the surveys made at metre wavelengths show, for bright sources, a slope of the log N -log S curve which is steeper than the value -1.5 expected in a static, non-evolving Euclidean universe. Here, N is the number of radio sources brighter than flux density S. Expansion without evolution in conventional geometrical models predicts slopes flatter than -1.5. If the radio survey is carried out at higher frequencies (typically 2.7 or 5 GHz - 11 or 6 cm wavelength), the slope of the log N -log S curve is steeper than -1.5 but not so steep as the slopes found for the low-frequency surveys. Many of the sources found in high-frequency surveys have radio spectra with relatively higher flux-densities in the centimetre range; these sources are frequently variable at high frequencies, with time-scales from a month or two upwards. Some possible effects of the variations on the observed counts of radio sources are considered. (author)

  13. Solar system radio astronomy at low frequencies

    International Nuclear Information System (INIS)

    Desch, M.D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period. 23 references

  14. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    Science.gov (United States)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  15. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  16. AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Feng, S. W.; Chen, Y.; Song, H. Q.; Wang, B.; Kong, X. L., E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China)

    2016-08-10

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.

  17. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  18. Solar neutrino flux at keV energies

    Science.gov (United States)

    Vitagliano, Edoardo; Redondo, Javier; Raffelt, Georg

    2017-12-01

    We calculate the solar neutrino and antineutrino flux in the keV energy range. The dominant thermal source processes are photo production (γ e→ e νbar nu), bremsstrahlung (e+Ze→ Ze+e+νbar nu), plasmon decay (γ→νbar nu), and νbar nu emission in free-bound and bound-bound transitions of partially ionized elements heavier than hydrogen and helium. These latter processes dominate in the energy range of a few keV and thus carry information about the solar metallicity. To calculate their rate we use libraries of monochromatic photon radiative opacities in analogy to a previous calculation of solar axion emission. Our overall flux spectrum and many details differ significantly from previous works. While this low-energy flux is not measurable with present-day technology, it could become a significant background for future direct searches for keV-mass sterile neutrino dark matter.

  19. Advances in solar radio astronomy

    Science.gov (United States)

    Kundu, M. R.

    1982-01-01

    The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.

  20. Modeling the Solar Convective Dynamo and Emerging Flux

    Science.gov (United States)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  1. The relation between radio flux density and ionizing ultra-violet flux for HII regions and supernova remnants in the Large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2003-01-01

    Full Text Available We present a comparison between the Parkes radio surveys (Filipović et al 1995 and Vacuum Ultra-Violet (VUV surveys (Smith et al. 1987 of the Large Magellanic Clouds (LMC. We have found 72 sources in common in the LMC which are known HII regions (52 and supernova remnants (SNRs (19. Some of these radio sources are associated with two or more UV stellar associations. A comparison of the radio flux densities and ionizing UV flux for HII regions shows a very good correlation, as expected from theory. Many of the Magellanic Clouds (MCs SNRs are embedded in HII regions, so there is also a relation between radio and UV which we attribute to the surrounding HII regions.

  2. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao

    2016-01-01

    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  3. Numerical simulation of nonlinear beam-plasma interaction for the application to solar radio burst

    International Nuclear Information System (INIS)

    Takakura, T.

    1981-01-01

    By the use of semi-analytical method the numerical simulations for the nonlinear scattering of axially symmetric plasma waves into plasma waves and radio waves have been made. The initial electron beam has a finite length and one-dimensional velocity distribution of power law. Induced back-scattering of plasma waves by thermal ions is strong even for a solar electron stream of rather low flux, say 2x10 11 cm -2 above 5 keV at fsub(p) of 40 MHz, which is enough to emit the observed type III bursts as the second harmonic. The ratio between the energy densities of plasma waves and thermal electrons (nkT) is of the order of 10 -6 , which may be a few orders lower than the threshold value for a caviton collapse of the plasma waves to occur. The second harmonic radio emission as attributed to the coalescence of two plasma waves, i.e. one excited by electron beam and one back-scattered by ions, is several orders higher than the fundamental radio emission caused by the scattering of plasma waves by thermal ions. (Auth.)

  4. On the Reflection in the Solar Radio Emission of Processes in the Chromosphere and the lower Corona preceded CMEs Registration

    Science.gov (United States)

    Durasova, M. S.; Tikhomirov, Yu. V.; Fridman, V. M.; Sheiner, O. A.

    The phenomena preceding the Coronal Mass Ejections (CMEs) and observed in the radio-frequency band represent a lot of sporadic components of the emission, that cover the wide frequency range. The study of these phenomena composes the new, prevailing for the last ten years direction. This is caused by the fact that solar radioastronomy possesses the developed network of observant tools, by the sensitive methods of observations. It makes possible in a number of cases to obtain information from the layers of solar atmosphere, inaccessible for the studies by other methods of observations. The purpose of this work is analysis of information about the CMEs preceding radio-events and their dynamics in the centimeter and decimeter radio emission in 1998. We use the data of the worldwide network of solar observatories in the radio-frequency band, the data about the CMEs phenomena and the characteristics are taken from Internet: http://sdaw.gsfc.nasa.gov./CME_list}. From great number of the CMEs we select only such, before which there were no more recorded events in the time interval of 8 hours, and before which sporadic radio emission was observed on 2-hours interval. The selection of this interval was caused by available study about the mean lifetime of precursors before CMEs and powerful flares, as a rule, accompanying CMEs, in the optical, X-ray and radio emissions. It constitutes, on the average, about 30 min. The total volume of data composed 68 analyzed events of CMEs in 1998. The analysis of the spectral- temporary characteristics of sporadic radio emission in the dependence on the CMEs parameters is carried out. The nature of processes at the stage of formation and initial propagation of CMEs, such as floating up of new magnetic fluxes, the development of instabilities, the characteristic scales of phenomena, that have an effect upon the observed radio emission is analyzed. The work is carried out with the support of Russian Fund of Basic Research (grant 03

  5. Electron heat flux instabilities in the solar wind

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.; Forslund, D.W.; Montgomery, M.D.

    1975-01-01

    There are at least three plasma instabilities associated with the electron heat flux in the solar wind. This letter reports the study of the unstable fast magnetosonic, Alfven and whistler modes via a computer code which solves the full electromagnetic, linear, Vlasov dispersion relation. Linear theory demonstrates that both the magnetosonic and Alfven instabilities are candidates for turbulent limitation of the heat flux in the solar wind at 1 A.U

  6. Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves instruments: radio flux density variations with frequency

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Kontar, E. P.; Cecconi, B.; Hoang, S.; Krupařová, Oksana; Souček, Jan; Reid, H.; Zaslavsky, A.

    2014-01-01

    Roč. 289, č. 8 (2014), s. 3121-3135 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GAP209/12/2394; GA ČR GP13-37174P; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : solar radio emissions * plasma radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014 http://link.springer.com/article/10.1007%2Fs11207-014-0522-x

  7. Full PIC simulations of solar radio emission

    Science.gov (United States)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  8. The Relationship Between Solar Radio and Hard X-Ray Emission

    Science.gov (United States)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  9. Saturn radio emission and the solar wind - Voyager-2 studies

    International Nuclear Information System (INIS)

    Desch, M.D.; Rucker, H.O.; Observatorium Lustbuhel, Graz, Austria)

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field. 10 references

  10. Observation of solar wind with radio-star scintillation

    International Nuclear Information System (INIS)

    Watanabe, Takashi

    1974-01-01

    Large solar flares occurred in groups in early August 1972, and many interesting phenomena were observed. The solar wind condition during this period, obtained by scintillation observation, is reviewed. The velocity of solar wind has been determined from the observation of interplanetary space scintillation at Toyokawa, Fujigamine and Sugadaira. Four to ten radio wave sources were observed for ten minutes at each southing every day. Strong earth magnetic storm and the Forbush decrease of cosmic ray were observed during the period from August 3rd to 7th. Pioneer 9 observed a solar wind having the maximum velocity as high as 1,100 km/sec, and HEOS-II observed a solar wind having the velocity close to 2,000 km/sec. On the other hand, according to the scintillation of 3C-48 and 3C-144, the velocity of solar wind passing in the interplanetary space on the westside of the earth was only 300 to 400 km/sec. Therefore it is considered that the condition of solar wind on the east side of the earth differs from that on the west side of the earth. Pioneer 9 observed the pass of a shock wave on August 9th. With all radio wave sources, high velocity solar wind was observed and Pioneer 6 positioned on the west side of the earth also observed it. The thickness of this shock wave is at least 0.3 AU. Discussion is made on the cause for the difference between the asymmetric shock wave in the direction of south-west and symmetrical shock wave. The former may be blast wave, and the latter may be piston driven shock wave and the like. (Iwakiri, K.)

  11. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  12. `Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics

    Science.gov (United States)

    Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.

    2015-07-01

    We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.

  13. Gradient pattern analysis of short solar radio bursts

    Czech Academy of Sciences Publication Activity Database

    Rosa, R. R.; Karlický, Marian; Veronese, T.B.; Vijaykumar, N. L.; Sawant, H. S.; Borgazzi, A. I.; Dantas, M. S.; Barbosa, E. M. B.; Sych, R.A.; Mendes, O.

    2008-01-01

    Roč. 42, č. 5 (2008), s. 844-851 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar radio bursts * stochastic processes * wavelets Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.860, year: 2008

  14. Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.

    Science.gov (United States)

    Huang, G-H; Lin, C-H; Lee, L C

    2017-08-25

    Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.

  15. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  16. Study on radiation flux of the receiver with a parabolic solar concentrator system

    International Nuclear Information System (INIS)

    Mao, Qianjun; Shuai, Yong; Yuan, Yuan

    2014-01-01

    Highlights: • The idea of integral dish and multi-dishes in a parabolic solar collector has been proposed. • The impacts of three factors of the receiver have been investigated. • The radiation flux distribution can benefit from a large system error. - Abstract: The solar receiver plays a key role in the performance of a solar dish electric generator. Its radiation flux distribution can directly affect the efficiency of the parabolic solar concentrator system. In this paper, radiation flux distribution of the receiver is simulated successfully using MCRT method. The impacts of incident solar irradiation, aspect ratio (the ratio of the receiver height to the receiver diameter), and system error on the radiation flux of the receiver are investigated. The parameters are studied in the following ranges: incident solar irradiation from 100 to 1100 W/m 2 , receiver aspect ratio from 0.5 to 1.5, and the system error from 0 to 10 mrad. A non-dimensional parameter Θ is defined to represent the ratio of radiation flux to incident solar irradiation. The results show that the maximum of Θ is about 200 in simulation conditions. The aspect ratio and system error have a significant impact on the radiation flux. The optimal receiver aspect ratio is 1.5 at a constant incident solar irradiation, and the maximum of radiation flux increases with decreasing system error, however, the radiation flux distribution can benefit from a large system error. Meanwhile, effects of integral dish and multi-dishes on the radiation flux distribution have been investigated. The results show that the accuracy of two cases can be ignored within the same parameters

  17. ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, J.; Bizzocchi, L.; Grossi, M.; Messias, H.; Fernandes, C. A. C. [Observatorio Astronomico de Lisboa, Faculdade de Ciencias, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Ibar, E.; Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Simpson, C. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Chapman, S.; Gonzalez-Solares, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Rottgering, H. [Leiden Observatory, Leiden University, Oort Gebouw, P.O. Box 9513, 2300 RA Leiden (Netherlands); Norris, R. P. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Dunlop, J.; Best, P. [SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Pforr, J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Vaccari, M. [Department of Astronomy, University of Padova, vicolo Osservatorio 3, 35122 Padova (Italy); Seymour, N. [Mullard Space Science Laboratory, UCL, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Farrah, D. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Huang, J.-S., E-mail: jafonso@oal.ul.pt [Department of Astrophysics, Oxford University, Keble Road, Oxford OX1 3RH (United Kingdom); and others

    2011-12-20

    Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610 MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.

  18. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  19. Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others

    2017-07-01

    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.

  20. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    Science.gov (United States)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  1. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...

  2. A road map to solar neutrino fluxe, neutrino oscillation parameters, and tests for new physics

    CERN Document Server

    Bahcall, J N; Bahcall, John N.; Peña-Garay, Carlos

    2003-01-01

    We analyze all available solar and related reactor neutrino experiments, as well as simulated future ^7Be, p-p, pep, and ^8B solar neutrino experiments. We treat all solar neutrino fluxes as free parameters subject to the condition that the total luminosity represented by the neutrinos equals the observed solar luminosity (the `luminosity constraint'). Existing experiments show that the p-p solar neutrino flux is 1.01 + - 0.02 (1 sigma) times the flux predicted by the BP00 standard solar model; the ^7Be neutrino flux is 0.97^{+0.28}_{-0.54} the predicted flux; and the ^8B flux is 1.01 + - 0.06 the predicted flux. The oscillation parameters are: Delta m^2 = 7.3^{+0.4}_{-0.6} 10^{-5} eV^2 and tan^2 theta_{12} = 0.42^{+0.08}_{-0.06}. We evaluate how accurate future experiments must be to determine more precisely neutrino oscillation parameters and solar neutrino fluxes, and to elucidate the transition from vacuum-dominated to matter-dominated oscillations. A future ^7Be nu-e scattering experiment accurate to + -...

  3. The Solar-flux Third Granulation Signature

    Science.gov (United States)

    Gray, David F.; Oostra, Benjamin

    2018-01-01

    The velocity shifts of spectral lines as a function of line strength, so-called the third signature of granulation, are investigated using three published solar-flux atlases. We use flux atlases because we wish to treat the Sun as a star, against which stellar observations can be compared and judged. The atlases are critiqued and compared to the lower-resolution observations taken with the Elginfield stellar spectrograph. Third-signature plots are constructed for the 6020–6340 Å region. No dependence on excitation potential or wavelength is found over this wavelength span. The shape of the plots from the three solar atlases is essentially the same, with rms line-core velocity differences of 30–35 m s‑1. High-resolution atlas data are degraded to the level of the Elginfield spectrograph and compared to direct observations taken with that spectrograph. The line-core velocities show good agreement, with rms differences of 38 m s‑1. A new standard curve is derived and compared with the previously published one. Only small differences in shape are found, but a significant (+97 m s‑1) change in the zero point is indicated. The bisector of the Fe I 6253 line is mapped onto the third-signature plots and flux deficits are derived, which measure the granule/lane flux imbalance. The lower spectral resolution lowers the flux deficit area slightly and moves the peak of the deficit 0.3–0.5 km s‑1 toward higher velocities. These differences, while significant, are not large compared to measurement errors for stellar data.

  4. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  5. Fluctuation analysis of solar radio bursts associated with geoeffective X-class flares

    Czech Academy of Sciences Publication Activity Database

    Veronese, T.B.; Rosa, R. R.; Bolzan, M.J.A.; Fernandes, F. C. R.; Sawant, H. S.; Karlický, Marian

    2011-01-01

    Roč. 73, 11-12 (2011), s. 1311-1316 ISSN 1364-6826 Institutional research plan: CEZ:AV0Z10030501 Keywords : decimetric solar radio bursts * solar flares * detrended fluctuation analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.596, year: 2011

  6. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  7. Correlation of Solar X-ray Flux and SID Modified VLF Signal Strength

    Science.gov (United States)

    2015-03-26

    Motivation ...……………………………………………………………………1-1 Background …………………………………………………………………….1-1 Research Objectives ……………………………………………………………1-3 II...SOLAR X-RAY FLUX AND SID MODIFIED VLF SIGNAL STRENGTH I. Introduction 1.1 Motivation The ionosphere greatly influences long wave radio...accomplished by a research group from Cambridge in the late 1940s. The group recorded the 16 kHz signal of the transmitter in Rugby , England, with the call

  8. Fast solar electrons, interplanetary plasma and km-wave type-III radio bursts observed from the IMP-6 spacecraft

    International Nuclear Information System (INIS)

    Alvarez, H.; Lin, R.P.

    1975-01-01

    IMP-6 spacecraft observations of low frequency radio emission, fast electrons, and solar wind plasma are used to examine the dynamics of the fast electron streams which generate solar type-III radio bursts. Of twenty solar electron events observed between April 1971 and August 1972, four were found to be amenable to detailed analysis. Observations of the direction of arrival of the radio emission at different frequencies were combined with the solar wind density and velocity measurements at 1 AU to define an Archimedean spiral trajectory for the radio burst exciter. The propagation characteristics of the exciter and of the fast electrons observed at 1 AU were then compared. It is found that: (1) the fast electrons excite the radio emission at the second harmonic; (2) the total distance travelled by the electrons was between 30 and 70% longer than the length of the smooth spiral defined by the radio observations; (3) this additional distance travelled is the result of scattering of the electrons in the interplanetary medium; (4) the observations are consistent with negligible true energy loss by the fast electrons.(Auth.)

  9. Observation of solar radio bursts using swept-frequency radiospectrograph in 20 - 40 MHz band

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Oya, Hiroshi.

    1987-01-01

    A new station for the observation of solar decametric radio bursts has been developed at Miyagi Vocational Training College in Tsukidate, Miyagi, Japan. Using the swept frequency radiospectrograph covering a frequency range from 20 MHz to 40 MHz within 200 msec, with bandwidth of 30 kHz, the radio outbursts from the sun have been currently monitored with colored dynamic spectrum display. After July 1982, successful observations provide the data which include all types of solar radio bursts such as type I, II, III, IV and V in the decametric wavelength range. In addition to these typical radio bursts, rising tone bursts with fast drift rate followed by strong type III bursts and a series of bursts repeating rising and falling tone bursts with slow drift rate have been observed. (author)

  10. Lunar radionuclide records of average solar-cosmic-ray fluxes over the last ten million years

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1980-01-01

    Because changes in solar activity can modify the fluxes of cosmic-ray particles in the solar system, the nature of the galactic and solar cosmic rays and their interactions with matter are described and used to study the ancient sun. The use of cosmogenic nuclides in meteorites and lunar samples as detectors of past cosmic-ray variations are discussed. Meteorite records of the history of the galactic cosmic rays are reviewed. The fluxes of solar protons over various time periods as determined from lunar radionuclide data are presented and examined. The intensities of solar protons emitted during 1954 to 1964 (11-year solar cycle number 19) were much larger than those for 1965 to 1975 (solar cycle 20). Average solar-proton fluxes determined for the last one to ten million years from lunar 26 Al and 53 Mn data show little variation and are similar to the fluxes for recent solar cycles. Lunar activities of 14 C (and preliminary results for 81 Kr) indicate that the average fluxes of solar protons over the last 10 4 (and 10 5 ) years are several times larger than those for the last 10 6 to 10 7 years; however, cross-section measurements and other work are needed to confirm these flux variations

  11. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  12. Performance characterization of the SERI High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Bingham, C. (Solar Energy Research Inst., Golden, CO (United States)); O' Gallagher, J.; Winston, R.; Sagie, D. (Univ. of Chicago, IL (United States))

    1991-12-01

    This paper describes a unique, new solar furnace at the Solar Energy Research Institute (SERI) that can generate a wide range of flux concentrations to support research in areas including materials processing, high-temperature detoxification and high-flux optics. The furnace is unique in that it uses a flat, tracking heliostat along with a long focal length-to-diameter (f/D) primary concentrator in an off-axis configuration. The experiments are located inside a building completely outside the beam between the heliostat and primary concentrator. The long f/D ratio of the primary concentrator was designed to take advantage of a nonimaging secondary concentrator to significantly increase the flux concentration capabilities of the system. Results are reported for both the single-stage and two-stage configurations. (orig.).

  13. Studying the Formation and Evolution of Eruptive Solar Magnetic Flux Ropes

    Science.gov (United States)

    Linton, M.

    2017-12-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics. This work is funded by the NASA Living with a Star program.

  14. An explanation of the radio flux mystery of HD 192163 and empirical models for WN stars

    International Nuclear Information System (INIS)

    Nugis, T.

    1982-01-01

    The radio flux value of the star HD 192163 (WN6) measured by Dickel et al. (1980) imposes strong restrictions on the possible mass outflow region models of this star. Dickel et al. (1980) and also Barlow et al. (1980) suggested that the wind terminal velocity has not been reached in the IR emission region. But when taking into account the line spectrum data, it appears that the wind velocity must be comparatively close to the star already nearly constant. So it is necessary to search for some other explanation. The author has found that at reasonable values of density, electron and core (star) temperatures it is possible that helium becomes neutral at a comparatively large distance from the star and then the radio flux is mainly due to the f-f radiation of H + and N + . In the case of such an ionization structure there are no restrictions on the outflow velocity being already constant close to the star. Therefore it is now possible to explain the radio and IR fluxes as well as the line spectrum data of HD 192163. (Auth.)

  15. Infrared and radio emission from S0 galaxies

    International Nuclear Information System (INIS)

    Bally, J.; Thronson, H.A. Jr.

    1989-01-01

    Far-IR data are presented on 74 early-type S0 galaxies that were selected on the basis of the availability of radio-continuum measurements. Most of the galaxies are detected at IR wavelengths with IRAS, indicating the presence of a cold interstellar medium (ISM) in these galaxies. The mass of gas in these systems is estimated to lie in the range of 10 to the 7th to 10 to the 10th solar. The most massive ISM in some S0s approaches that found in some spirals. The brighter IR-emitting galaxies all lie close to a relationship established for gas-rich spiral galaxies. None of these galaxies have large ratio fluxes, suggesting that strong nuclear radio sources or extended radio lobes and jets are absent or suppressed. Strong radio emission is found among those galaxies that are either faint or not detected at IR wavelengths. The absence of an ISM suggests that these galaxies are of an earlier type that those that have large IR fluxes. 38 references

  16. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  17. INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA

    International Nuclear Information System (INIS)

    Connick, David E.; Smith, Charles W.; Schwadron, Nathan A.

    2011-01-01

    We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr -1 at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr -1 for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

  18. Solar wind heat flux regulation by the whistler instability

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.

    1977-01-01

    This paper studies the role of the whistler instability in the regulation of the solar wind heat flux near 1 AU. A comparison of linear and second-order theory with experimental results provides strong evidence that the whistler may at times contribute to the limitation of this heat flux

  19. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Soumitra; Nandy, Dibyendu [Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata (India)

    2016-11-20

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  20. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    International Nuclear Information System (INIS)

    Hazra, Soumitra; Nandy, Dibyendu

    2016-01-01

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  1. Solar radio emissions: 2D full PIC simulations

    Science.gov (United States)

    Pierre, H.; Sgattoni, A.; Briand, C.; Amiranoff, F.; Riconda, C.

    2016-12-01

    Solar radio emissions are electromagnetic waves observed at the local plasma frequency and/or at twice the plasma frequency. To describe their origin a multi-stage model has been proposed by Ginzburg & Zhelezniakov (1958) and further developed by several authors, which consider a succession of non-linear three-wave interaction processes. Electron beams accelerated by solar flares travel in the interplanetary plasma and provide the free energy for the development of plasma instabilities. The model describes how part of the free energy of these beams can be transformed in a succession of plasma waves and eventually into electromagnetic waves. Following the work of Thurgood & Tsiklauri (2015) we performed several 2D Particle In Cell simulations. The simulations follow the entire set of processes from the electron beam propagation in the background plasma to the generation of the electromagnetic waves in particular the 2ωp emission, including the excitation of the low frequency waves. As suggested by Thurgood & Tsiklauri (2015) it is possible to identify regimes where the radiation emission can be directly linked to the electron beams. Our attention was devoted to estimate the conversion efficiency from electron kinetic energy to the em energy, and the growth rate of the several processes which can be identified. We studied the emission angles of the 2ωpradiation and compared them with the theoretical predictions of Willes et. al. (1995). We also show the role played by some numerical parameters i.e. the size and shape of the simulation box. This work is the first step to prepare laser-plasma experiments. V. L. Ginzburg, V. V. Zhelezniakov On the Possible Mechanisms of Sporadic Solar Radio Emission (Radiation in an Isotropic Plasma) Soviet Astronomy, Vol. 2, p.653 (1958) J. O. Thurgood and D. Tsiklauri Self-consistent particle-in-cell simulations of funda- mental and harmonic plasma radio emission mechanisms. Astronomy & Astrophysics 584, A83 (2015). A. Willes, P

  2. The application of coronal scattering measurements to solar radio bursts

    International Nuclear Information System (INIS)

    Bradford, H.M.

    1980-01-01

    The interpretation of ground based observations of solar 'plasma frequency' radio bursts has been hampered in the past by an insufficient knowledge of coronal scattering by density inhomogeneities close to the Sun. Calculations based on measuurements of the angular broadening of natural radio sources, and Woo's 1975 measurement of the angular broadening of the telemetry carrier by Helios I near occultation (Woo, 1978), indicate that plasma frequency solar bursts should undergo considerable scattering, at least near the maximum of the sunspot cycle. The calculated displacements of the apparent positions of the bursts are about equal to the observed displacements which have been attributed to the bursts occurring in dense streamers. In order to obtain more scattering data close to the Sun, interferometer measurements of the angular broadening of spacecraft signals are planned, and the important contribution which could be made with large dishes is discussed. (Auth.)

  3. Measurement of the North-South asymmetry in the solar proton albedo neutron flux

    International Nuclear Information System (INIS)

    Ifedili, S.O.

    1979-01-01

    The solar proton albedo neutron flux in the range 10 -2 --10 7 eV measured by a neutron detector on board the Ogo 6 satellite was examined for north-south asymmetry. For the solar proton event of December 19, 1969, the S/N ratio of the solar proton albedo neutron rate at geomagnetic latitude lambda>70 0 was 1.61 +- 0.27 during the event, while for the November 2, 1969, event at 40 0 0 and altitudes ranging from 700 km to 800 km the solar proton albedo neutron rate was 0.40 +- 0.10 count/s in the north and 0.00 +- 0.10 count/s in the south. During the solar proton event of December 18, 1969, the N/S ratio of the solar proton albedo neutron rate at lambda>70 0 was 1.00 +- 0.26. The results are consistent with the expected N-S asymmetry in the solar proton flux. An interplanetary proton anisotropy with the interplanetary magnetic field polarity away from the sun corresponded to larger fluxes of solar proton albedo neutrons at the north polar cap than at the south, while an interplanetary proton anisotropy with the interplanetary magnetic field polarity toward the sun corresponded to larger fluxes of solar proton albedo neutrons at the south polar cap than at the north. This evidence favors the direct access of solar protons to the earth's polar caps via the merged interplanetary and geomagnetic field lines

  4. Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal

    Science.gov (United States)

    Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko

    2017-04-01

    In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.

  5. Solar Magnetic Atmospheric Effects on Global Helioseismic ...

    Indian Academy of Sciences (India)

    provide priceless diagnostic tools in the search for hidden aspects of the solar interior ... The overall structure of the helioseismic frequency spectrum, see Figure 1, has not .... 10.7 cm radio flux were used as a proxy of the solar surface activity. All the ..... According to their predictions, at least B = 5 × 105 G field strength is.

  6. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  7. Quantitative relationship between VLF phase deviations and 1-8 A solar X-ray fluxes during solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Y; Murata, H; Sato, T [Hyogo Coll. Of Medicine (Japan). Dept. of Physics

    1977-07-01

    An attempt is made to investigate the quantitative relationship between VLF phase deviations in SPA (sudden phase anomalies) events and associated solar X-ray fluxes in the 1 to 8 A band during solar flares. The phase deviations (..delta..phi) of the 18.6 kHz VLF wave transmitted from NLK, USA are used in this analysis which were recorded at Nishinomiya, Japan during the period June 1974 to May 1975. The solar X-ray fluxes (F/sub 0/) in the 1 to 8 A band are estimated from fsub(min) variations using the empirical expression given by Sato (J.Geomag.Geoelectr.;27: 95(1975)), because no observed data were available on the 1 to 8 a X-ray fluxes during the period of the VLF observation. The result shows that the normalized phase variation, ..delta..phi/coschisub(min), where chisub(min) represents the minimum solar zenith angle on the VLF propagation path, increases with increasing logF/sub 0/. A theoretical explanation for this is presented assuming that enhanced ionizations produced in the lower ionosphere by a monochromatic solar X-ray emission are responsible for the VLF phase deviations. Also it is found that a threshold X-ray flux to produce a detectable SPA effect is approximately 1.5 x 10/sup -3/ cm/sup -2/ sec/sup -1/ in the 1 to 8 a band.

  8. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-01-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible

  9. DETECTING GRAVITY MODES IN THE SOLAR {sup 8} B NEUTRINO FLUX

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Turck-Chièze, Sylvaine, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: sylvaine.turck-chieze@cea.fr [CEA/IRFU/Service d' Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France)

    2014-09-10

    The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the {sup 8} B neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order 2, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than 5.8 × 10{sup –4}. This study clearly shows that due to their high sensitivity to the temperature, the {sup 8} B neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the {sup 8} B neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

  10. Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes

    Science.gov (United States)

    2016-12-30

    Ropes James Chen Beam Physics Branch Plasma Physics Division December 30, 2016 Approved for public release; distribution is unlimited. i REPORT...pressure gradient force combine to balance the major radial hoop force. The macroscopic forces on the flux ropes and onset conditions are quantified...Solar physics theory 67-4989-07 Quasi-Static Evolution, Catastrophe, and “Failed” Eruption of Solar Flux Ropes James Chen1 Plasma Physics Division

  11. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  12. Frequency dependent characteristics of solar impulsive radio bursts

    International Nuclear Information System (INIS)

    Das, T.K.; Das Gupta, M.K.

    1983-01-01

    An investigation was made of the impulsive radio bursts observed in the frequency range 0.245 to 35 GHz. Important results obtained are: (i) Simple type 1 bursts with intensities 0 to 10 f.u. and simple type 2 bursts with intensities 10 to 500 f.u. are predominant in the frequency ranges 1.415 to 4.995 GHz and 4.995 to 8.8 GHz, respectively; (ii) With maxima around 2.7 GHz and 4 GHz for the first and second types respectively, the durations of the radio bursts decrease gradually both towards lower and higher frequencies; (iii) As regards occurrences, the first type dominates in the southern solar hemisphere peaking around 8.8 GHz, whereas the second type favours the north with no well-defined maximum in any frequency; (iv) Both types prefer the eastern hemisphere, the peak occurrences being around 8.8 GHz and 5 GHz for the two successive types, respectively; (c) The spectra of impulsive radio bursts are generally of the inverted U-type with the maximum emission intensity between 5 and 15 GHz. (author)

  13. EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts

    Science.gov (United States)

    Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.

    2017-06-01

    Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).

  14. Aperture synthesis observations of solar and stellar radio emission

    International Nuclear Information System (INIS)

    Bastian, T.S.

    1987-01-01

    The work presented in this thesis relied upon the radio astronomical instrument, The Very Large Array. The thesis is divided into three major sections. In the first the author applied maximum entropy-type image reconstruction techniques, using both single dish and iterferometer data, to generate full disk images of the Sun at a wavelength λ ∼ 21 cm. Using a set of six such images obtained during the Sun's decline from sunspot maximum to minimum, he has noted a number of previously unreported phenomena. Among these: (1) a systematic decrease in quiet Sun's brightness temperature as it declined to minimum; (2) a systematic decrease in the Sun's radius at 21 cm; (3) evidence for the evolution of polar coronal holes during the course of the solar cycle. The observed variation, though not noted previously at radio wavelengths, is entirely consistent with white light K coronagraph data. The results reported here explain the conflicting nature of a number of past observations. In the second section of the thesis, he presents the results of a long term survey of magnetic cataclysmic variables (CVs). Cataclysmic variables are close binary systems which contain a white dwarf accreting mass from a late-type secondary, typically a dwarf of spectral type, G, K, or M. The survey resulted in the detection of two out of the eighteen systems observed. In the third section of the thesis, he presents new results on flare stars in the solar neighborhood and in the Pleiades. He has successfully employed the technique of dynamic spectroscopy to constrain the mechanisms(s) for radio flaring on other stars. The second part of section three is devoted to a search for radio emission from flare stars in the Pleiades which was motivated by the evolutionary questions raised by flare stars and the Pleiades lower main sequence

  15. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    Science.gov (United States)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  16. Bayesian modeling and prediction of solar particles flux

    International Nuclear Information System (INIS)

    Dedecius, Kamil; Kalova, Jana

    2010-01-01

    An autoregression model was developed based on the Bayesian approach. Considering the solar wind non-homogeneity, the idea was applied of combining the pure autoregressive properties of the model with expert knowledge based on a similar behaviour of the various phenomena related to the flux properties. Examples of such situations include the hardening of the X-ray spectrum, which is often followed by coronal mass ejection and a significant increase in the particles flux intensity

  17. On the secular decrease of radio emission flux densities of the supernova remnants of Cassiopeia A and Taurus A at frequency 927 MHz

    International Nuclear Information System (INIS)

    Vinyajkin, E.N.; Razin, V.A.

    1979-01-01

    Relative measurements of the radio emission flux densities of the supernova remnants of Cassiopeia A and Taurus A were made at the frequency 927 MHz to investigate the secular decrease of their intensity. Experiments were fulfilled in October-December 1977 at the 10-meter radio telescope of the radioastronomical station Staraya Pustyn' (NIRFI). The radio galaxied of Cygnus A, Virgo A and Orion Nebula were taken as the comparison sources. The comparison of the data obtained with the results of absolute measurements carried out in October 1962 permits to state that during 15 years the radio emission flux density of Cassiopeia A decreased by (14.2+-0.6)% (the average annual decrease amounts to (0.95+-O.04)%) and the radio emission flux density of Taurus A decreased by (2.7+-0.1)% (the annual decrease is (0.18+-0.01)%)

  18. Extreme fluxes in solar energetic particle events: Methodological and physical limitations

    International Nuclear Information System (INIS)

    Miroshnichenko, L.I.; Nymmik, R.A.

    2014-01-01

    In this study, all available data on the largest solar proton events (SPEs), or extreme solar energetic particle (SEP) events, for the period from 1561 up to now are analyzed. Under consideration are the observational, methodological and physical problems of energy-spectrum presentation for SEP fluxes (fluences) near the Earth's orbit. Special attention is paid to the study of the distribution function for extreme fluences of SEPs by their sizes. The authors present advances in at least three aspects: 1) a form of the distribution function that was previously obtained from the data for three cycles of solar activity has been completely confirmed by the data for 41 solar cycles; 2) early estimates of extremely large fluences in the past have been critically revised, and their values were found to be overestimated; and 3) extremely large SEP fluxes are shown to obey a probabilistic distribution, so the concept of an “upper limit flux” does not carry any strict physical sense although it serves as an important empirical restriction. SEP fluxes may only be characterized by the relative probabilities of their appearance, and there is a sharp break in the spectrum in the range of large fluences (or low probabilities). It is emphasized that modern observational data and methods of investigation do not allow, for the present, the precise resolution of the problem of the spectrum break or the estimation of the maximum potentialities of solar accelerator(s). This limitation considerably restricts the extrapolation of the obtained results to the past and future for application to the epochs with different levels of solar activity. - Highlights: • All available data on the largest solar proton events (SPEs) are analyzed. • Distribution function obtained for 3 last cycles is confirmed for 41 solar cycles. • Estimates of extremely large fluences in the past are found to be overestimated. • Extremely large SEP fluxes are shown to obey a probabilistic distribution.

  19. Radio wave propagation in the inhomogeneous magnetic field of the solar corona

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.; Zlotnik, E.Ya.

    1977-01-01

    Various types of linear coupling between ordinary and extra-ordinary waves in the coronal plasma with the inhomogeneous magnetic field and the effect of this phenomenon upon the polarization characteristics of solar radio emission are considered. A qualitative analysis of the wave equation indicates that in a rarefied plasma the coupling effects can be displayed in a sufficiently weak magnetic field or at the angles between the magnetic field and the direction of wave propagation close enough to zero or π/2. The wave coupling parameter are found for these three cases. The radio wave propagation through the region with a quasi-transverse magnetic field and through the neutral current sheet is discussed more in detail. A qualitative picture of coupling in such a layer is supported by a numerical solution of the ''quasi-isotropic approximation'' equations. The role of the coupling effects in formation of polarization characteristics of different components of solar radio emission has been investigated. For cm wave range, the polarization is essentially dependent on the conditions in the region of the transverse magnetic field

  20. Formation and dynamics of a solar eruptive flux tube

    Science.gov (United States)

    Inoue, Satoshi; Kusano, Kanya; Büchner, Jörg; Skála, Jan

    2018-01-01

    Solar eruptions are well-known drivers of extreme space weather, which can greatly disturb the Earth's magnetosphere and ionosphere. The triggering process and initial dynamics of these eruptions are still an area of intense study. Here we perform a magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the dynamics of a solar eruption in a real magnetic environment. In our simulation, we confirmed that tether-cutting reconnection occurring locally above the polarity inversion line creates a twisted flux tube, which is lifted into a toroidal unstable area where it loses equilibrium, destroying the force-free state, and driving the eruption. Consequently, a more highly twisted flux tube is built up during this initial phase, which can be further accelerated even when it returns to a stable area. We suggest that a nonlinear positive feedback process between the flux tube evolution and reconnection is the key to ensure this extra acceleration.

  1. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  2. Flux density measurements of radio sources at 2.14 millimeter wavelength

    International Nuclear Information System (INIS)

    Cogdell, J.R.; Davis, J.H.; Ulrich, B.T.; Wills, B.J.

    1975-01-01

    Flux densities of galactic and extragalactic sources, and planetary temperatures, have been measured at 2.14 mm wavelength (140 GHz). Results are presented for OJ 287; the galactic sources DR 21, W3, and Orion A; the extragalactic sources PKS 0106plus-or-minus01, 3C 84, 3C 120, BL Lac, 3C 216, 3C 273, 3C 279, and NGC 4151; and the Sun, Venus, Mars, and Jupiter. Also presented is the first measurement of the 2.14-mm temperature of Uranus. The spectra of some of these sources are discussed. The flux density scale was calibrated absolutely. The measurements were made with a new continuum receiver on the 4.88-m radio telescope of The University of Texas

  3. Forecast of solar proton flux profiles for well-connected events

    Science.gov (United States)

    Ji, Eun-Young; Moon, Yong-Jae; Park, Jinhye

    2014-12-01

    We have developed a forecast model of solar proton flux profiles (> 10 MeV channel) for well-connected events. Among 136 solar proton events (SPEs) from 1986 to 2006, we select 49 well-connected ones that are all associated with single X-ray flares stronger than M1 class and start to increase within 4 h after their X-ray peak times. These events show rapid increments in proton flux. By comparing several empirical functions, we select a modified Weibull curve function to approximate a SPE flux profile. The parameters (peak flux, rise time, and decay time) of this function are determined by the relationship between X-ray flare parameters (peak flux, impulsive time, and emission measure) and SPE parameters. For 49 well-connected SPEs, the linear correlation coefficient between the predicted and the observed proton peak fluxes is 0.65 with the RMS error of 0.55 log10(pfu). In addition, we determine another forecast model based on flare and coronal mass ejection (CME) parameters using 22 SPEs. The used CME parameters are linear speed and angular width. As a result, we find that the linear correlation coefficient between the predicted and the observed proton peak fluxes is 0.83 with the RMS error of 0.35 log10(pfu). From the relationship between error of model and CME acceleration, we find that CME acceleration is an important factor for predicting proton flux profiles.

  4. Development of solar flares and features of the fine structure of solar radio emission

    Science.gov (United States)

    Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.

    2017-11-01

    The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.

  5. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  6. Exploring the Flux Tube Paradigm in Solar-like Convection Zones

    Science.gov (United States)

    Weber, Maria A.; Nelson, Nicholas; Browning, Matthew

    2017-08-01

    In the solar context, important insight into the flux emergence process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized flux tubes. Global-scale dynamo models are only now beginning to capture some aspects of flux emergence. In certain regimes, these simulations self-consistently generate magnetic flux structures that rise buoyantly through the computational domain. How similar are these dynamo-generated, rising flux structures to traditional flux tube models? The work we present here is a step toward addressing this question. We utilize the thin flux tube (TFT) approximation to simply model the evolution of flux tubes in a global, three-dimensional geometry. The TFTs are embedded in convective flows taken from a global dynamo simulation of a rapidly rotating Sun within which buoyant flux structures arise naturally from wreaths of magnetism. The initial conditions of the TFTs are informed by rising flux structures identified in the dynamo simulation. We compare the trajectories of the dynamo-generated flux loops with those computed through the TFT approach. We also assess the nature of the relevant forces acting on both sets of flux structures, such as buoyancy, the Coriolis force, and external forces imparted by the surrounding convection. To achieve the fast <15 day rise of the buoyant flux structures, we must suppress the large retrograde flow established inside the TFTs which occurs due to a strong conservation of angular momentum as they move outward. This tendency is common in flux tube models in solar-like convection zones, but is not present to the same degree in the dynamo-generated flux loops. We discuss the mechanisms that may be responsible for suppressing the axial flow inside the flux tube, and consider the implications this has regarding the role of the Coriolis force in explaining sunspot latitudes and the observed Joy’s Law trend of active regions. Our work aims to provide constraints, and possible

  7. Structures of interplanetary magnetic flux ropes and comparison with their solar sources

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Department of Space Science/CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Dasgupta, B.; Khare, A.; Webb, G. M., E-mail: qh0001@uah.edu, E-mail: qiu@physics.montana.edu [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2014-09-20

    Whether a magnetic flux rope is pre-existing or formed in situ in the Sun's atmosphere, there is little doubt that magnetic reconnection is essential to release the flux rope during its ejection. During this process, the question remains: how does magnetic reconnection change the flux-rope structure? In this work, we continue with the original study of Qiu et al. by using a larger sample of flare-coronal mass ejection (CME)-interplanetary CME (ICME) events to compare properties of ICME/magnetic cloud (MC) flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of the helicity of the solar source region judged from the geometry of post-flare loops. Remarkably, we find that about half of the 18 magnetic flux ropes, most of them associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, up to ≳ 5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linearly force-free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

  8. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  9. Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Hinteregger, H.E.

    1980-01-01

    Measurements of the solar flux in the Schumann-Runge continuum (1350-1750 A) by the Atmosphere Explorer satellites reveal a strong dependence on solar activity. Solar intensities over the rising phase of cycle 21, increase by more than a factor of two at the shorter wavelengths (1350 A), with a smaller change (approx.10%) at 1750 A. A significant 27 day variability is found to exist superimposed on the solar cycle variation. Because radiation in this portion of the spectum is important to the lower thermosphere in the photodissociation of 0 2 and the production of 0( 1 D), we use the unattenuated Schumann-Runge continuum dissociation frequency as a parameter to illustrate the magnitude and temporal characteristics of this variation. The values of this parameter, J/sub infinity/(0 2 )/sub SR/, range from 1.5 x 10 -6 s -1 for April 23, 1974, to 2.8 x 10 -6 s -1 for February 19, 1979. In studies of oxygen in the lower thermosphere, it is therefore necessary to use solar spectral intensities representative of the actual conditions for which the calculations are made. Both the J/sub infinity/(0 2 )/sub SR/ parameter and the solar flux at various wavelengths over the 1350 to 1750 A range can be expressed in terms of the F10.7 index to a reasonable approximation

  10. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  11. A theory of solar type III radio bursts

    International Nuclear Information System (INIS)

    Goldstein, M.L.; Smith, R.A.

    1979-01-01

    A theory of type III bursts is reviewed. Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes. (Auth.)

  12. A low-frequency radio survey of the planets with RAE 2

    Science.gov (United States)

    Kaiser, M. L.

    1977-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer 2 (RAE 2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025-13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE 2.

  13. A low-frequency radio survey of the planets with RAE-2

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1976-08-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2

  14. A low-frequency radio survey of the planets with RAE-2

    Science.gov (United States)

    Kaiser, M. L.

    1976-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2.

  15. A low-frequency radio survey of the planets with RAE 2

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1977-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer 2 (RAE 29) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025--13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE 2

  16. On the presence of fictitious solar neutrino flux variations in radiochemical experiments

    International Nuclear Information System (INIS)

    Vladimirskii, B.M.; Bruns, A.V.

    2004-01-01

    The currently available data on solar neutrino flux variation in radiochemical experiments and Cherenkov measurements have so far defied a simple interpretation. Some of the results concerning these variations are indicative of their relationship to processes on the solar surface. It may well be that a poorly understood, uncontrollable factor correlating with solar activity indices affects the neutrino flux measurements. This factor is assumed to modulate the detection efficiency on different detectors in different ways. To test this assumption, we have analyzed all available radiochemical measurements obtained with the Brookhaven (1970-1994, 108 runs), GALLEX (1991-1997, 65 runs), and SAGE (1989-2000, 80 runs) detectors for possible instability of the detection efficiency. We consider the heliophysical situation at the final stage of the run, the last 7-27 days, when the products of the neutrino reaction with the target material had already been accumulated. All of the main results obtained previously by other authors were found to be reproduced for chlorine-argon measurements. The neutrino flux anticorrelates with the sunspot numbers only for an odd solar cycle. A similar behavior is observed for the critical frequencies of the E-ionosphere. The neutrino flux probably correlates with the A p magnetic activity index only for an even solar cycle. The predominance of a certain sign of the radial interplanetary magnetic field (IMF) in the last 14 (or 7) days of the run has the strongest effect on the recorded neutrino flux. The effect changes sign when the polarity of the general solar magnetic field is reversed and is most pronounced for the shortest runs (less than 50 days). The dependence of the flux on IMF polarity completely disappears if the corresponding index is taken for the first rather than the last days of the run. The IMF effect on the recorded neutrino flux was also found for short runs in the gallium-germanium experiment, but this effect for a given

  17. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    International Nuclear Information System (INIS)

    Nautiyal, C.M.; Rao, M.N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed

  18. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)

    Science.gov (United States)

    Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.

    2018-05-01

    Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.

  19. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    Science.gov (United States)

    Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-06-01

    Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.type="synopsis">type="main">Plain Language SummaryThere is growing interest in being able to predict the evolution in solar conditions on a better basis than past experience, which is necessarily limited. Two of the key features of the solar magnetic cycle are that the polar fields reverse just after the peak of each sunspot cycle and that the polar field that has accumulated by the time of each sunspot minimum is a good

  20. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.

    2017-12-01

    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  1. High-flux solar photon processes: Opportunities for applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  2. A Solar Stationary Type IV Radio Burst and Its Radiation Mechanism

    Science.gov (United States)

    Liu, Hongyu; Chen, Yao; Cho, Kyungsuk; Feng, Shiwei; Vasanth, Veluchamy; Koval, Artem; Du, Guohui; Wu, Zhao; Li, Chuanyang

    2018-04-01

    A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (TB) of this burst is extremely high, over 10^{11} K at 150 MHz and over 108 K in general. The degree of circular polarization (q) is between -60% ˜ -100%, which means that it is highly left-handed circularly polarized. The flux-frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly -3 ˜ -4 throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.

  3. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  4. 7Be(p, γ)8B and the high-energy solar neutrino flux

    International Nuclear Information System (INIS)

    Csoto, A.

    1997-01-01

    Despite thirty years of extensive experimental and theoretical work, the predicted solar neutrino flux is still in sharp disagreement with measurements. The solar neutrino measurements strongly suggest that the problem cannot be solved within the standard electroweak and astrophysical theories. Thus, the solar neutrino problem constitutes the strongest evidence for physics beyond the Standard Model. Whatever the solution of the solar neutrino problem turns out to be, it is of paramount importance that the input parameters of the underlying electroweak and solar theories rest upon solid ground. The most uncertain nuclear input parameter in standard solar models is the low-energy 7 Be(p, γ) 8 B radiative capture cross section. This reaction produces 8 B in the Sun, whose β + decay is the main source of the high-energy solar neutrinos. Here, the importance of the 7 Be(p, γ) 8 B reaction in predicting the high energy solar neutrino flux is discussed. The author presents a microscopic eight-body model and a potential model for the calculation of the 7 Be(p, γ) 8 B cross section

  5. Southern hemisphere solar radio heliograph

    Science.gov (United States)

    Sawant, H. S.; Fernandes, F. C. R.; Neri, J. A. C. F.; Cecatto, J. R.; Faria, C.; Stephany, S.; Rosa, R. R.; Andrade, M. C.; Ludke, E.; Subramanian, K. R.; Ramesh, R.; Sundrarajan, M. S.; Sankararaman, M. R.; Ananthakrishnan, S.; Swarup, G.; Boas, J. W. V.; Botti, L. C. L.; Moron, C. E.; Saito, J. H.; Karlický, M.

    2002-12-01

    The Brazilian Decimetric Array (BDA) is being developed at National Institute for Space Research (INPE) as an international collaborative program. Initially, the BDA will operate in the tuneable frequency range of 1.2-1.7 GHz. The initial planned baseline for BDA 'T' array is 256×144 m and will be extended to 2.2×1.1 km. In this paper, we present the results of developments concerning the prototype of BDA (PBDA). The PBDA will initially operate in the frequency range of 1.2-1.7 GHz, with a five-antenna array, using 4-meter parabolic dishes with altitude and azimuth mountings and complete tracking capability. The spatial resolution for solar images with the PBDA will be about 3.5 arc-minutes leading to a sensitivity of ≍2×104 mJy/beam for an integration time of 1 sec. The array will be installed at -22°41'19" latitude and 45°0'22" W longitude and it is under operation between 9 and 21 UT for continuous solar flux monitoring. Details of the PBDA system are presented.

  6. Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?

    International Nuclear Information System (INIS)

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.; Bame, S.J.; Luhmann, J.G.; Smith, E.J.

    1989-01-01

    Electron heat flux dropout events have been observed in the solar wind using the ISEE 3 plasma electron data set. These events manifest themselves as dropouts of the solar wind halo electrons which are normally found streaming outward along the local magnetic field. These dropouts leave nearly isotropic distributions of solar wind halo electrons, and consequently, the heat flux in these events is reduced to near the observational noise level. We have examined ISEE 3 data from shortly after launch (August 16, 1978) through the end of 1978 and identified 25 such events ranging in duration from 20 min to over 11 hours. Comparison with the ISEE 3 magnetometer data indicates that these intervals nearly always occur in conjunction with large rotations of the interplanetary magnetic field. Statistical analyses of the plasma and magnetic field data for the 25 dropout intervals indicate that heat flux dropouts generally occur in association with high plasma densities low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. A second set of 25 intervals chosen specifically to lie at large field rotations, but at times at which not heat flux dropouts were observed, do not show these characteristic plalsma variations. This suggests that the dropout intervals comprise a unique set of events. Since the hot halo electrons normally found streaming outward from the Sun along the interplanetary magnetic field (the solar wind electron heat flux) are a result of direct magnetic connection to the hot solar corona, heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the Sun and instead are connected to the outer heliosphere at both ends

  7. A trigger mechanism for the emerging flux model of solar flares

    International Nuclear Information System (INIS)

    Tur, T.J.; Priest, E.R.

    1978-01-01

    The energetics of a current sheet that forms between newly emerging flux and an ambient field are considered. As more and more flux emerges, so the sheet rises in the solar atmosphere. The various contributions to the thermal energy balance in the sheet approximated and the resulting equation solved for the internal temperature of the sheet. It is found that, for certain choices of the ambient magnetic field strength and velocity, the internal temperature increases until, when the sheet reaches some critical height, no neighbouring equilibrium state exists. The temperature than increases rapidly, seeking a hotter branch of the solution curve. During this dynamic heating the threshold temperature for the onset of plasma microinstabilities may be attained. It is suggested that this may be a suitable trigger mechanism for the recently proposed 'emerging flux' model of a solar flare. (Auth.)

  8. A twisted flux-tube model for solar prominences. I. General properties

    International Nuclear Information System (INIS)

    Priest, E.R.; Hood, A.W.; Anzer, U.

    1989-01-01

    It is proposed that a solar prominence consists of cool plasma supported in a large-scale curved and twisted magnetic flux tube. As long as the flux tube is untwisted, its curvature is concave toward the solar surface, and so it cannot support dense plasma against gravity. However, when it is twisted sufficiently, individual field lines may acquire a convex curvature near their summits and so provide support. Cool plasma then naturally tends to accumulate in such field line dips either by injection from below or by thermal condensation. As the tube is twisted up further or reconnection takes place below the prominence, one finds a transition from normal to inverse polarity. When the flux tube becomes too long or is twisted too much, it loses stability and its true magnetic geometry as an erupting prominence is revealed more clearly. 56 refs

  9. Sources of the Radio Background Considered

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; /KIPAC, Menlo Park /Stanford U.; Stawarz, L.; /KIPAC, Menlo Park /Stanford U. /Jagiellonian U., Astron. Observ.; Lawrence, A.; /Edinburgh U., Inst. Astron. /KIPAC, Menlo Park /Stanford U.; Petrosian, V.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2011-08-22

    We investigate possible origins of the extragalactic radio background reported by the ARCADE 2 collaboration. The surface brightness of the background is several times higher than that which would result from currently observed radio sources. We consider contributions to the background from diffuse synchrotron emission from clusters and the intergalactic medium, previously unrecognized flux from low surface brightness regions of radio sources, and faint point sources below the flux limit of existing surveys. By examining radio source counts available in the literature, we conclude that most of the radio background is produced by radio point sources that dominate at sub {mu}Jy fluxes. We show that a truly diffuse background produced by elections far from galaxies is ruled out because such energetic electrons would overproduce the observed X-ray/{gamma}-ray background through inverse Compton scattering of the other photon fields. Unrecognized flux from low surface brightness regions of extended radio sources, or moderate flux sources missed entirely by radio source count surveys, cannot explain the bulk of the observed background, but may contribute as much as 10%. We consider both radio supernovae and radio quiet quasars as candidate sources for the background, and show that both fail to produce it at the observed level because of insufficient number of objects and total flux, although radio quiet quasars contribute at the level of at least a few percent. We conclude that the most important population for production of the background is likely ordinary starforming galaxies above redshift 1 characterized by an evolving radio far-infrared correlation, which increases toward the radio loud with redshift.

  10. Variations of the core luminosity and solar neutrino fluxes

    Science.gov (United States)

    Grandpierre, Attila

    The aim of the present work is to analyze the geological and astrophysical data as well as presenting theoretical considerations indicating the presence of dynamic processes present in the solar core. The dynamic solar model (DSM) is suggested to take into account the presence of cyclic variations in the temperature of the solar core. Comparing the results of calculations of the CO2 content, albedo and solar evolutionary luminosity changes with the empirically determined global earthly temperatures, and taking into account climatic models, I determined the relation between the earthly temperature and solar luminosity. These results indicate to the observed maximum of 10o change on the global terrestrial surface temperature a related solar luminosity change around 4-5 % on a ten million years timescale, which is the timescale of heat diffusion from the solar core to the surface. The related solar core temperature changes are around 1 % only. At the same time, the cyclic luminosity changes of the solar core are shielded effectively by the outer zones since the radiation diffusion takes more than 105 years to reach the solar surface. The measurements of the solar neutrino fluxes with Kamiokande 1987-1995 showed variations higher than 40 % around the average, at the Super-Kamiokande the size of the apparent scatter decreased to 13 %. This latter scatter, if would be related completely to stochastic variations of the central temperature, would indicate a smaller than 1 % change. Fourier and wavelet analysis of the solar neutrino fluxes indicate only a marginally significant period around 200 days (Haubold, 1998). Helioseismic measurements are known to be very constraining. Actually, Castellani et al. (1999) remarked that the different solar models lead to slightly different sound speeds, and the different methods of regularization yield slightly different sound speeds, too. Therefore, they doubled the found parameter variations, and were really conservative assuming

  11. Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements

    Science.gov (United States)

    Landt, J. A.

    1974-01-01

    The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.

  12. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  13. Solar rotation effects on the thermospheres of Mars and Earth.

    Science.gov (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G

    2006-06-02

    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  14. Magnetic flux density in the heliosphere through several solar cycles

    Energy Technology Data Exchange (ETDEWEB)

    Erdős, G. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Balogh, A., E-mail: erdos.geza@wigner.mta.hu [The Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

    2014-01-20

    We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3-5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, B{sub R} , were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of B{sub R} to such an extent that the determination of the unsigned, open solar magnetic flux density from the average (|B{sub R} |) is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

  15. Inverse identification of intensity distributions from multiple flux maps in concentrating solar applications

    International Nuclear Information System (INIS)

    Erickson, Ben; Petrasch, Jörg

    2012-01-01

    Radiative flux measurements at the focal plane of solar concentrators are typically performed using digital cameras in conjunction with Lambertian targets. To accurately predict flux distributions on arbitrary receiver geometries directional information about the radiation is required. Currently, the directional characteristics of solar concentrating systems are predicted via ray tracing simulations. No direct experimental technique to determine intensities of concentrating solar systems is available. In the current paper, multiple parallel flux measurements at varying distances from the focal plane together with a linear inverse method and Tikhonov regularization are used to identify the directional and spatial intensity distribution at the solution plane. The directional binning feature of an in-house Monte Carlo ray tracing program is used to provide a reference solution. The method has been successfully applied to two-dimensional concentrators, namely parabolic troughs and elliptical troughs using forward Monte Carlo ray tracing simulations that provide the flux maps as well as consistent, associated intensity distribution for validation. In the two-dimensional case, intensity distributions obtained from the inverse method approach the Monte Carlo forward solution. In contrast, the method has not been successful for three dimensional and circular symmetric concentrator geometries.

  16. The detectability of radio emission from exoplanets

    Science.gov (United States)

    Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.

    2018-05-01

    Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.

  17. The solar eruption of 13 May 2005: EISCAT and MERLIN observations of a coronal radio burst

    Directory of Open Access Journals (Sweden)

    R. A. Jones

    2006-09-01

    Full Text Available We report results from EISCAT and MERLIN observations of radio scintillation during a solar eruptive event in May 2005. Anomalous increases in signal strength detected at sites more than 2000 km apart are shown to arise from the detection of a strong coronal radio burst in the distant off-axis response of the MERLIN and EISCAT antennas. These observations show that EISCAT is capable of detecting the signatures of explosive events in the solar atmosphere with a high degree of time resolution. We further suggest that the highly time-structured variation in signal strength caused by distant off-axis detection of a powerful coronal radio signal could provide an explanation for previously unexplained anomalies in EISCAT IPS observations, as well as being a potential source of errors in active observations using radar codes with a completion time longer than the time-variation of the coronal signal.

  18. Compact radio sources

    International Nuclear Information System (INIS)

    Altschuler, D.R.

    1975-01-01

    Eighty-seven compact radio sources were monitored between 1971 and 1974 with the National Radio Astronomy Observatory interferometer. Both flux density and polarization were measured at intervals of about one month at wavelengths of 3.7 and 11.1 cms. Forty-four sources showed definite variability in their total and/or polarized flux density. The variations in polarization were of a shorter time scale than the corresponding flux density variations. Some of the qualitative features of an expanding source model were observed. The data suggest that some form of injection of relativistic electrons is taking place. The absence of significant depolarization in the variable sources indicates that only a small fraction of the mass of the radio outburst is in the form of non-relativistic plasma. Some of the objects observed belong to the BL-Lacertal class. It is shown that this class is very inhomogeneous in its radio properties. For the violently variable BL-Lacertal type objects the spectrum, flux variations and polarization data strongly suggest that these are very young objects

  19. On the detection of magnetospheric radio bursts from Uranus and Neptune

    International Nuclear Information System (INIS)

    Kennel, C.F.; Maggs, J.E.

    1975-11-01

    Earth, Jupiter, and Saturn are sources of intense but sporadic bursts of electromagnetic radiation or magnetospheric radio bursts (MRB). The similarity of the differential power flux spectra of the MRB from all three planets is examined. The intensity of the MRB is scaled for the solar wind power input into a planetary magnetosphere. The possibility of detecting MRB from Uranus and Neptune is considered

  20. Ground-based solar radio observations of the August 1972 events

    International Nuclear Information System (INIS)

    Bhonsle, R.V.; Degaonkar, S.S.; Alurkar, S.K.

    1976-01-01

    Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplantary space. It appears that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. (Auth.)

  1. Measurement of solar neutrinos flux in Russian-American gallium experiment SAGE for half 22-years cycle of solar activity

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Veretenkin, E.P.; Vermul, V.M.

    2002-01-01

    The results of measuring the solar neutrino capture on the metallic gallium in the Russian-American experiment SAGE for the period slightly exceeding the half of the 22-year cycle of solar activity, are presented. The results of new measurements since April 1998 are quoted and the analysis of all the measurements, performed by years, months and two-year periods, beginning since 1990 are also presented. Simple analysis of the SAGE results together with the results of other solar neutrino experiments leads to estimating the value of the flux of the pp-neutrinos, reaching the Earth without change in their around, equal to (4.6 ± 1.2) x 10 10 neutrino/(cm 2 s). The value of the flux of the pp-neutrinos, originating in the Sun thermonuclear reactions, is equal to (7.6 ± 2.0) x 10 10 neutrino/(cm 2 s), which agrees well with the standard solar model (5.95 ± 0.6) x 10 10 neutrino/(cm 2 s) [ru

  2. The Local Time Dependence of the Anisotropic Solar Cosmic Ray Flux

    National Research Council Canada - National Science Library

    Smart, D. F

    2003-01-01

    The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude...

  3. Radio observations and the mass flow rate of αCyg (A2Ia)

    International Nuclear Information System (INIS)

    Wolf, B.; Stahl, O.; Altenhoff, W.J.

    1981-01-01

    From the free-free excess at 10μ Barlow and Cohen (1977) derived a mass loss rate of 6.9 x 10 -7 solar masses yr -1 for αCyg. They predicted a 10 GHz radio flux of 2.2 mJy. On the other hand Praderie et al. (1980) derived a considerable lower mass loss rate of 1.1 x 10 -8 -8 solar masses yr -1 from a curve of growth analysis of the envelope ultraviolet FeII-lines of αCyg. Radio observations are desirable to make a decision about these discrepant results. Therefore the authors observed αCyg at 15 GHz with the 100 m telescope of the MPIfR at Effelsberg. The observations are discussed together with recent VLA data of Abbott et al. (1980). (Auth.)

  4. The solar wind control of electron fluxes in geostationary orbit during magnetic storms

    International Nuclear Information System (INIS)

    Popov, G.V.; Degtyarev, V.I.; Sheshukov, S.S.; Chudnenko, S.E.

    1999-01-01

    The dynamics of electron fluxes (with energies from 30 to 1360 keV) in geostationary orbit during magnetic storms was investigated on the basis of LANL spacecraft 1976-059 and 1977-007 data. Thirty-seven magnetic storms with distinct onsets from the time interval July 1976-December 1978 were used in the analysis. A treatment of experimental data involved the moving averaging and the overlapping epoch method. The smoothed component of electron fluxes represents mainly trapped electrons and shows their strong dependence on the solar wind velocity. The time lag between a smoothed electron flux and the solar wind velocity increases with electron energy reflecting dynamics of the inner magnetosphere filling with trapped energetic electrons originating from substorm injection regions located not far outside geostationary orbit

  5. Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-09-01

    We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.

  6. Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22-year solar cycle

    International Nuclear Information System (INIS)

    Abdurashitov, J.N.; Veretenkin, E.P.; Vermul, V.M.; Gavrin, V.N.; Girin, S.V.; Gorbachev, V.V.; Gurkina, P.P.; Zatsepin, G.T.; Ibragimova, T.V.; Kalikhov, A.V.; Knodel, T.V.; Mirmov, I.N.; Khairnasov, N.G.; Shikhin, A.A.; Yants, V.E.; Bowles, T.J.; Teasdale, W.A.; Nico, J.S.; Wilkerson, J.F.; Cleveland, B.T.

    2002-01-01

    We present measurements of the solar neutrino capture rate on metallic gallium in the Soviet-American gallium experiment (SAGE) over a period of slightly more than half the 22-year solar cycle. A combined analysis of 92 runs over the twelve-year period from January 1990 until December 2001 yields a capture rate of 70.8 +5.3 -5.2 (stat) +3.7 -3.2 (sys) SNU for solar neutrinos with energies above 0.233 MeV. This value is slightly more than half the rate predicted by the standard solar model, 130 SNU. We present the results of new runs since April 1998 and analyze all runs combined by years, months, and bimonthly periods beginning in 1990. A simple analysis of the SAGE results together with the results of other solar neutrino experiments gives an estimate of (4.6 ± 1.2) x 10 10 neutrinos cm -2 s -1 for the flux of the electron pp neutrinos that reach the Earth without changing their flavor. The flux of the pp neutrinos produced in thermonuclear reactions in the Sun is estimated to be (7.6 ± 2.0) x 10 10 neutrinos cm -2 s -1 , in agreement with the value of (5.95 ± 0.06) x 10 10 neutrinos cm -2 s -1 predicted by the standard solar model

  7. RADIO VARIABILITY IN SEYFERT NUCLEI

    International Nuclear Information System (INIS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-01-01

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  8. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  9. New results and techniques in space radio astronomy.

    Science.gov (United States)

    Alexander, J. K.

    1971-01-01

    The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.

  10. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    Science.gov (United States)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  11. Nimbus-7 Solar and Earth Flux Data in Native Binary Format

    Data.gov (United States)

    National Aeronautics and Space Administration — The NIMBUS7_ERB_SEFDT data set is the Solar and Earth Flux Data Tape (SEFDT) generated from Nimbus-7 Earth Radiation Budget (ERB) instrument data. The main purpose...

  12. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  13. Variation of the Solar Microwave Spectrum in the Last Half Century

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi; Saito, Masao [National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, 181-8588 (Japan); Iwai, Kazumasa [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Chikusa-ku, Nagoya, 464-8601 (Japan); Asai, Ayumi [Kwasan and Hida Observatories, Kyoto University, Sakyo-ku, Kyoto, 606-8502 (Japan); Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Minamidani, Tetsuhiro, E-mail: masumi.shimojo@nao.ac.jp [Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo, 181-8588 (Japan)

    2017-10-10

    The total solar fluxes at 1, 2, 3.75, and 9.4 GHz were observed continuously from 1957 to 1994 at Toyokawa, Japan, and from 1994 until now at Nobeyama, Japan, with the current Nobeyama Radio Polarimeters. We examined the multi-frequency and long-term data sets, and found that not only the microwave solar flux but also its monthly standard deviation indicate the long-term variation of solar activity. Furthermore, we found that the microwave spectra at the solar minima of Cycles 20–24 agree with each other. These results show that the average atmospheric structure above the upper chromosphere in the quiet-Sun has not varied for half a century, and suggest that the energy input for atmospheric heating from the sub-photosphere to the corona have not changed in the quiet-Sun despite significantly differing strengths of magnetic activity in the last five solar cycles.

  14. Space Weather Action Plan Solar Radio Burst Phase 1 Benchmarks and the Steps to Phase 2

    Science.gov (United States)

    Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Love, J. J.; Pierson, J.

    2017-12-01

    Solar radio bursts, when at the right frequency and when strong enough, can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The benchmark team has developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks, the basis used to derive them, and the limitations of that work. We will also discuss the work that needs to be done to complete the phase 2 benchmarks.

  15. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  16. Observation of solar radio bursts of type II and III at kilometer wavelengths from Prognoz-8 during STIP Interval XII

    International Nuclear Information System (INIS)

    Pinter, S.; Kecskemety, K.; Kudela, K.

    1982-04-01

    Type II and type III radio events were observed at low frequencies (2.16 MHz to 114 kHz) by the Prognoz-8 satellite during the period of STIP Interval XII in April and May, 1981, respectively. This review covers briefly a chronology of the sub-megahertz radio events, and where possible their association with both groundbased radio observations and solar flare. (author)

  17. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    Energy Technology Data Exchange (ETDEWEB)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen [Department of Astronomy, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125 (United States); Güdel, Manuel [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Rupen, Michael, E-mail: jrv@astro.caltech.edu [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2014-06-20

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  18. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    International Nuclear Information System (INIS)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen; Güdel, Manuel; Rupen, Michael

    2014-01-01

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  19. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    Science.gov (United States)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  20. Resonators for magnetohydrodynamic waves in the solar corona: The effect of modulation of radio emission

    International Nuclear Information System (INIS)

    Zaitsev, V.V.; Stepanov, A.V.

    1982-01-01

    It is shown that the existence of a minimum of the Alfven speed in the corona at a height of approx.1R/sub sun/ follows from the characteristics of type II radio bursts. The region of a reduced Alfven speed is a resonator for a fast magnetosonic (FMS) waves. The eigenmodes of the resonator are determined. The period of the fundamental mode has the order of several minutes. In the resonator FMS waves can be excited at the Cherenkov resonance by streams of energetic ions. Modulations of metal solar radio emission with a period of several minutes is explained by the effect of the propagation of radio waves through an oscillating magnetohydrodynamic (MHD) resonator

  1. Developing a forecast model of solar proton flux profiles for well-connected events

    Science.gov (United States)

    Ji, E. Y.; Moon, Y. J.; Park, J.

    2014-12-01

    We have developed a forecast model of solar proton flux profile (> 10 MeV channel) for well-connected events. Among 136 solar proton events (SPEs) from 1986 to 2006, we select 49 well-connected ones that are all associated with single X-ray flares stronger than M1 class and start to increase within four hours after their X-ray peak times. These events show rapid increments in proton flux. By comparing several empirical functions, we select a modified Weibull curve function to approximate a SPE flux profile, which is similar to the particle injection rate. The parameters (peak value, rise time and decay time) of this function are determined by the relationship between X-ray flare parameters (peak flux, impulsive time, and emission measure) and SPE parameters. For 49 well-connected SPEs, the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.65 with the RMS error of 0.55 pfu in the log10. In addition, we have developed another forecast model based on flare and CME parameters using 22 SPEs. The used CME parameters are linear speed and angular width. As a result, we find that the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.83 with the RMS error of 0.35 pfu in the log10. From the relationship between the model error and CME acceleration, we find that CME acceleration is also an important factor for predicting proton flux profiles.

  2. Heat flux dropouts in the solar wind and Coulomb scattering effects

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Ogilvie, K.W.

    1992-01-01

    Measurements of solar wind electrons at ISEE 3 located 0.01 AU upstream from the Earth indicate periods of time when the flux of antisunward suprathermal electrons decreases suddenly, leaving the velocity distribution nearly isotropic and causing the solar wind heat flux to drop. These heat flux dropouts (HFDs) are usually found in regions of increased plasma density and decreased electron temperature, and they are associated with sector boundaries. It has been suggested that HFDs may be due either to disconnection from the Sun of the magnetic flux tube in which they are found, or to enhanced Coulomb scattering of halo electrons in transit from the Sun to the Earth. Using the vector electron spectrometer on ISEE 1, the authors have found eight intervals of greatly reduced heat flux which appear to be associated with HFDs at ISEE 3. Five of the eight events were delayed by an appropriate convection time and had approximately the same duration as the corresponding ISEE 3 event. Velocity distributions during HFDs at ISEE 1 show that the depletion of halo electrons traveling away from the Sun is most pronounced in the 100-eV range, while there is essentially no depletion in the 1-keV range, and that in four cases the magnitude of the halo depletion and its upper velocity limit both depend on the density increase in the HFD. These results are shown to be in agreement with the υ -3 dependence of the Coulomb collision frequency. Thus the authors conclude that Coulomb scattering effects play a substantial role in at least some heat flux dropout events

  3. A study of north-south asymmetry of interplanetary magnetic field plasma and some solar indices throughout four solar cycles

    International Nuclear Information System (INIS)

    El-Borie, M A; Bishara, A A; Abdel-halim, A A; El-Monier, S Y

    2017-01-01

    We provide a long epoch study of a set of solar and plasma parameters (sunspot number Rz, total solar irradiance TSI, solar radio flux SF, solar wind speed V , ion density n, dynamic pressure n V 2 , and ion temperature T) covering a temporal range of several decades corresponding to almost four solar cycles. Such data have been organized accordingly with the interplanetary magnetic field (IMF) polarity, i.e. away (A) if the azimuthal component of the IMF points away from the Sun and T if it points towards, to examine the N-S asymmetries between the northern and southern hemispheres. Our results displayed the sign of the N-S asymmetry in solar activity depends on the solar magnetic polarity state (qA>0 or qA<0). The solar flux component of toward field vector was larger in magnitude than those of away field vector during the negative polarity epochs (1986-88 and 2001-08). In addition, the solar wind speeds (SWS) are faster by about 22.11±4.5 km/s for away polarity days than for toward polarity days during the qA<0 epoch (2001-08), where the IMF points away from the Sun. Moreover, during solar cycles 21 st and 24 th the solar plasma is more dense, hotter, and faster south of the HCS. (paper)

  4. Atlas of fine structures of dynamic spectra of solar type IV-dm and some type II radio bursts

    International Nuclear Information System (INIS)

    Slottje, C.

    1982-01-01

    The author presents an atlas of spectral fine structures of solar radio bursts of types IV and II around 1 m wavelength, as obtained with a multichannel spectrograph at Dwingeloo. The structures form largely a collection of observations of these events during late 1968 through 1974, thus covering almost entirely the declining branch of solar cycle 20. The spectrograph has an extra enhanced contrast output with properties quite different from those of the commonly used swept frequency spectrographs. The corresponding instrumental characteristics and effects are discussed. A classification of fine structures and an analysis of their statistical properties and of those of the pertinent radio events are also given. (Auth.)

  5. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    Science.gov (United States)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  6. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  7. RADIO PROPERTIES OF THE BAT AGNs: THE FIR–RADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Miller, Neal, E-mail: klsmith@astro.umd.edu [Department of Mathematics and Physics, Stevenson University, Stevenson, MD 21117 (United States)

    2016-12-01

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.

  8. Recent results of zebra patterns in solar radio bursts

    International Nuclear Information System (INIS)

    Chernov, Gennady P.

    2010-01-01

    This review covers the most recent experimental results and theoretical research on zebra patterns (ZPs) in solar radio bursts. The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years. All new properties are considered in light of both what was known earlier and new theoretical models. Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves 'highlight' the levels of double plasma resonance (DPR). A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type III-like bursts. The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts. The additional injection of fast particles filled the loss-cone (breaking the loss-cone distribution), and the generation of the continuum was quenched at these moments. The maximum absorptive effect occurs at the DPR levels. The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source. Thus, the DPR model helps to understand several aspects of unusual elements of ZPs. However, the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field. Three new theories of ZPs are examined. The formation of eigenmodes of transparency and opacity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism. Two other models (nonlinear periodic space - charge waves and scattering of fast protons on ion-sound harmonics) could happen in large radio bursts. (invited reviews)

  9. Fibre structure of decametric type II radio bursts as a manifestation of emission propagation effects in a disturbed near-solar plasma

    Directory of Open Access Journals (Sweden)

    A. N. Afanasiev

    2009-10-01

    Full Text Available This paper addresses the fine structure of solar decametric type II radio bursts in the form of drifting narrowband fibres on the dynamic spectrum. Observations show that this structure appears in those events where there is a coronal mass ejection (CME traveling in the near-solar space ahead of the shock wave responsible for the radio burst. The diversity in observed morphology of fibres and values of their parameters implies that the fibres may be caused by different formation mechanisms. The burst emission propagates through extremely inhomogeneous plasma of the CME, so one possible mechanism can be related to radio propagation effects. I suggest that the fibres in some events represent traces of radio emission caustics, which are formed due to regular refraction of radio waves on the large-scale inhomogeneous structure of the CME front. To support this hypothesis, I have modeled the propagation of radio waves through inhomogeneous plasma of the CME, taking into consideration the presence of electron density fluctuations in it. The calculations, which are based on the Monte Carlo technique, indicate that, in particular, the emission of the fibres should be harmonic. Moreover, the mechanism under consideration suggests that in solar observations from two different points in space, the observed sets of fibres can be shifted in frequency with respect to one another or can have a different structure. This potentially can be used for identifying fibres caused by the propagation effects.

  10. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  11. Magnetic Flux Cancellation as the Origin of Solar Quiet-region Pre-jet Minifilaments

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-01

    We investigate the origin of 10 solar quiet-region pre-jet minifilaments , using EUV images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) and magnetograms from the SDO Helioseismic and Magnetic Imager (HMI). We recently found that quiet-region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancellation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancellation between minority-polarity and majority-polarity flux patches. In each of 10 pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10%–40% from before to after the minifilament appears. For our 10 events, the minifilaments exist for periods ranging from 1.5 hr to 2 days before erupting to make a jet. Apparently, the flux cancellation builds a highly sheared field that runs above and traces the neutral line, and the cool transition region plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancellation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus, our observations strongly support that quiet-region magnetic flux cancellation results in both the formation of the pre-jet minifilament and its jet-driving eruption.

  12. Flux and transformation of the solar wind energy in the magnetosheath of the magnetosphere

    International Nuclear Information System (INIS)

    Pudovkin, M.I.; Semenov, V.S.

    1986-01-01

    Energy flux, incoming from the solar wind to the Earth magnetosphere is calculated. It is shown that Poynting vector flux, incoming to the reconnection area is generated mainly in the transitional area between the departed shock wave front and magnetopause in the result of the retardation of the solar wind and partial transformation of its kinetic energy into magnetic one. In this case the energy transformation coefficient depends on the interplanetary magnetic field intensity. Solar wind energy gets into the area of magnetic field reconnection at the magnetopause mainly in two forms: electromagnetic and thermal energy. In the course of reconnection process magnetic energy converts into kinetic energy of the accelerated plasma mass movement and subsequently turns (in a high-latitude boundary layer) into electromagnetic energy, incoming directly to magnetosphere tail

  13. Fibre structure of decametric type II radio bursts as a manifestation of emission propagation effects in a disturbed near-solar plasma

    OpenAIRE

    A. N. Afanasiev

    2009-01-01

    This paper addresses the fine structure of solar decametric type II radio bursts in the form of drifting narrowband fibres on the dynamic spectrum. Observations show that this structure appears in those events where there is a coronal mass ejection (CME) traveling in the near-solar space ahead of the shock wave responsible for the radio burst. The diversity in observed morphology of fibres and values of their parameters implies that the fibres may be caused by different formation mechanisms. ...

  14. An Alternative Interpretation of the Relationship between the Inferred Open Solar Flux and the Interplanetary Magnetic Field

    Science.gov (United States)

    Riley, Pete

    2007-01-01

    Photospheric observations at the Wilcox Solar Observatory (WSO) represent an uninterrupted data set of 32 years and are therefore unique for modeling variations in the magnetic structure of the corona and inner heliosphere over three solar cycles. For many years, modelers have applied a latitudinal correction factor to these data, believing that it provided a better estimate of the line-of-sight magnetic field. Its application was defended by arguing that the computed open flux matched observations of the interplanetary magnetic field (IMF) significantly better than the original WSO correction factor. However, no physically based argument could be made for its use. In this Letter we explore the implications of using the constant correction factor on the value and variation of the computed open solar flux and its relationship to the measured IMF. We find that it does not match the measured IMF at 1 AU except at and surrounding solar minimum. However, we argue that interplanetary coronal mass ejections (ICMEs) may provide sufficient additional magnetic flux to the extent that a remarkably good match is found between the sum of the computed open flux and inferred ICME flux and the measured flux at 1 AU. If further substantiated, the implications of this interpretation may be significant, including a better understanding of the structure and strength of the coronal field and I N providing constraints for theories of field line transport in the corona, the modulation of galactic cosmic rays, and even possibly terrestrial climate effects.

  15. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  16. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  17. Engineering and erection of a 300kW high-flux solar simulator

    Science.gov (United States)

    Wieghardt, Kai; Laaber, Dmitrij; Hilger, Patrick; Dohmen, Volkmar; Funken, Karl-Heinz; Hoffschmidt, Bernhard

    2017-06-01

    German Aerospace Center (DLR) is currently constructing a new high-flux solar simulator synlight which shall be commissioned in late 2016. The new facility will provide three separately operated experimental spaces with expected radiant powers of about 300kW / 240kW / 240kW respectively. synlight was presented to the public for the first time at SolarPACES 2015 [1]. Its engineering and erection is running according to plan. The current presentation reports about the engineering and the ongoing erection of the novel facility, and gives an outlook on its new level of possibilities for solar testing and qualification.

  18. Formation of field-twisting flux tubes on the magnetopause and solar wind particle entry into the magnetosphere

    International Nuclear Information System (INIS)

    Sato, T.; Shimada, T.; Tanaka, M.; Hayashi, T.; Watanabe, K.

    1986-01-01

    A global interaction between the solar wind with a southward interplanetary magnetic field (IMF) and the magnetosphere is studied using a semi-global simulation model. A magnetic flux tube in which field lines are twisted is created as a result of repeated reconnection between the IMF and the outermost earth-rooted magnetic field near the equatorial plane and propagates to higher latitudes. When crossing the polar cusp, the flux tube penetrates into the magnetosphere reiterating reconnection with the earth-rooted higher latitude magnetic field, whereby solar wind particles are freely brought inside the magnetosphere. The flux tube structure has similarities in many aspects to the flux transfer events (FTEs) observed near the dayside magnetopause

  19. Radio emission, cosmic ray electrons, and the production of γ-rays in the galaxy

    International Nuclear Information System (INIS)

    Webber, W.R.; Simpson, G.A.; Cane, H.V.

    1980-01-01

    Using a perspective based on new radio data, we have reexamined the traditional derivation of the interstellar electron spectrum using the galactic nonthermal radio spectrum. The radio spectrum derived in the polar directions is now used as a base for this derivation rather than the anticenter spectrum. The interstellar electron spectrum between 70 and 1200 MeV is found to have an exponent -2.14 +- 0.06, steeper than previously determined, and leading to electron fluxes at low energies up to a factor of 10 larger than previously predicted. The electron spectrum below approx.20 MeV measured at Earth is used along with solar modulation arguments to suggest that this interstellar electron spectrum flattens to an exponent of -1.6 +- 0.1 between 5 and 70 MeV. We then use radio maps to predict the γ-ray fluxes produced by the bremsstrahlung process to be expected from these electrons. Using the radio maps, we fiest define L/sub eff/, the effective path length for radio emission in various directions, to predict the effective path length for γ-ray emission. The spectral shapes of γ-rays predicted when the contribution from π 0 decay is included, show little evidence of a pion-decay bump and agree well with those observed, indicating that large changes in the cosmic-ray electron to proton ratio from that observed locally are unlikely along a line of sight. The differences in the predicted and observed γ-ray intensities in the galactic plane are small. However, in the polar direction, the predicted γ-ray flux using the radio data is approx.6 times larger than that actually observed. This is indicative of the fact that the radio emissivity is considerably thicker than the γ-ray emissivity disk, and the cosmic-ray electron population extends beyond the gaseous disk of the Galaxy. This technique of estimating the γ-ray intensity using the radio data is compared with the usual technique which employs estimates of the column density of hydrogen

  20. 10 Years of Student Questions about the Sun and Solar Physics: Preparing Graduate Students to Work with Parker Solar Probe Data

    Science.gov (United States)

    Gross, N. A.; Hughes, W. J.; Wiltberger, M. J.

    2017-12-01

    The NSF funded CISM Space Weather Summer School is designed for graduate students who are just starting in space physics. It provides comprehensive conceptual background to the field. Insights about student understanding and learning from this summer school can provide valuable information to graduate instructors and graduate student mentors. During the school, students are invited to submit questions at the end of the lecture component each day. The lecturers then take the time to respond to these questions. We have collected over 4000 student questions over the last 15 years. A significant portion of the summer school schedule is devoted to solar physics and solar observations, and the questions submitted reflect this. As researchers prepare to work with graduate students who will analyze the data from the Parker Solar Probe, they should be aware of the sorts of questions these students will have as they start in the field. Some student questions are simply about definitions: - What is a facula/prominence/ribbon structure/arcade? - What is a Type 3 radio burst? - How is a solar flare defined? How is it different from a CME/energetic particle event? - What is the difference between "soft" and "hard" X-rays?Other student questions involve associations and correlations. - Why are solar flares associated with CME's? - Are all magnetic active regions associated with sunspots? - How does a prominence eruption compare to a CME? - Why do energetic particles follow the magnetic field lines but the solar wind does not? - Why are radio burst (F10.7 flux) associated with solar flares (EUV Flux)?Others can be topics of current research. - What is the source of the slow solar wind? - Why is there a double peak in the sunspot number the solar maximum? - Why is the corona hotter than the solar surface. What is the mechanism of coronal heating? The goal of this paper is to identify and categorize these questions for the community so that graduate educators can be aware of them

  1. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  2. Automatic solar image motion measurements. [electronic disk flux monitoring

    Science.gov (United States)

    Colgate, S. A.; Moore, E. P.

    1975-01-01

    The solar seeing image motion has been monitored electronically and absolutely with a 25 cm telescope at three sites along the ridge at the southern end of the Magdalena Mountains west of Socorro, New Mexico. The uncorrelated component of the variations of the optical flux from two points at opposite limbs of the solar disk was continually monitored in 3 frequencies centered at 0.3, 3 and 30 Hz. The frequency band of maximum signal centered at 3 Hz showed the average absolute value of image motion to be somewhat less than 2sec. The observer estimates of combined blurring and image motion were well correlated with electronically measured image motion, but the observer estimates gave a factor 2 larger value.

  3. Stimulation of auroral kilometric radiation by type III solar radio bursts

    International Nuclear Information System (INIS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers

  4. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  5. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  6. North-South asymmetry of interplanetary plasma and solar parameters

    International Nuclear Information System (INIS)

    El-Borie, M. A.

    2001-01-01

    Data of interplanetary plasma (field magnitude, solar wind speed, ion plasma density and temperature) and solar parameters (sunspot number, solar radio flux, and geomagnetic index) over the period 1965-1991, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). The dependence of N-S asymmetry of field magnitude (B) upon the interplanetary solar polarities is statistically insignificant. There is no clear indication for the presence of N-S asymmetry in the grand-average field magnitude over the solar cycles. During the period 1981-89 (qA<0; negative solar polarity state), the solar plasma was more dense and cooler south of the HCS than north of it. The solar flux component of toward field vector is larger in magnitude than those of away field vector during the qA<0 epoch, and no asymmetry observed in the qA<0 epoch. Furthermore, the sign of the N-S asymmetry in the solar activity depends positively upon the solar polarity state. In addition, it was studied the N-S asymmetry of solar parameters near the HCS, throughout the periods of northern and southern hemispheres were more active than the other. Some asymmetries (with respect to the HCS) in plasma parameters existed during the periods of southern hemisphere predominance

  7. Forecast daily indices of solar activity, F10.7, using support vector regression method

    International Nuclear Information System (INIS)

    Huang Cong; Liu Dandan; Wang Jingsong

    2009-01-01

    The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network. (research paper)

  8. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  9. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  10. Radio and infrared observations of (almost) one hundred non-Seyfert Markarian galaxies

    Science.gov (United States)

    Dressel, Linda L.

    1987-01-01

    The 13 cm flux densities of 96 non-Seyfert Markarian galaxies were measured at Arecibo Observatory. Far infrared flux densities have been published for 78 of these galaxies in the IRAS catalog. The radio, infrared, and optical fluxes of these galaxies and of a magnitude limited sample of normal galaxies were compared to clarify the nature of the radio emission in Markarian galaxies. It was found that Markarian galaxies of a given apparent magnitude and Hubble type generally have radio fluxes several times higher that the fluxes typical of normal galaxies of the same magnitude and type. Remarkably, the ratio of radio flux to far infrared flux is nearly the same for most of these starburst galaxies and for normal spiral disks. However, the compact and peculiar Markarian galaxies consistently have about 60% more radio flux per unit infrared flux than the other Markarian galaxies and the normal spirals. It is not clear whether this difference reflects a difference in the evolution of the starbursts in these galaxies or whether there is excess radio emission of nonstellar origin.

  11. VLA radio observations of AR Scorpii

    Science.gov (United States)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gänsicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-03-01

    Aims: AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. Methods: We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 h orbital period in each band. Results: We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarf's spin period (also known as the "beat" period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase 0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching 30% at an orbital phase 0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf. A table of the flux time series is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A66

  12. Low-Frequency Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  13. 3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-05-01

    3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.

  14. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    Science.gov (United States)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  15. Large-scale Flow and Transport of Magnetic Flux in the Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Horizontal large-scale velocity field describes horizontal displacement of the photospheric magnetic flux in zonal and meridian directions. The flow systems of solar plasma, constructed according to the velocity field, create the large-scale cellular-like patterns with up-flow in the center and the down-flow on the ...

  16. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shangbin; Zhang Hongqi, E-mail: yangshb@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  17. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Yang Shangbin; Zhang Hongqi

    2012-01-01

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  18. Measurement Technique in Radio Frequency Interference (RFI) Study for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Roslan Umar; Roslan Umar; Nor Hazmin Sabri; Zainol Abidin Ibrahim; Zamri Zainal Abidin; Asyaari Muhamad

    2015-01-01

    In this paper, we will review our method in making measurements of radio frequency interference (RFI) in order to investigate the sereneness of interference in selected radio interference in Malaysia and Thailand. The selected site are University of Malaya (UM), Universiti Pendidikan Sultan Idris (UPSI), Ubon (UB) and Chiang Mai (CM). The major RFI affecting radio astronomical windows below 1 GHz are electronic equipment system specifically radio navigation between 73.1 MHz and 75.2 MHz, radio broadcasting (151 MHz, 151.8 MHz and 152 MHz), aeronautical navigation (245.5 MHz, 248.7 MHz and 249 MHz and also fixed mobile at 605 MHz, 608.3 MHz, 612.2 MHz, 613.3 MHz. It is obviously showed that all sites within this region are free from interference between 320MHz and 330 MHz and is the best specific region to be considered for solar burst monitoring. We also investigate the effect of RFI on discovery of solar burst. (author)

  19. Monitoring solar energetic particles with an armada of European spacecraft and the new automated SEPF (Solar Energetic Proton Fluxes) Tool

    Science.gov (United States)

    Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.

    2012-01-01

    Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level ( 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) has developed and validated a novel method to obtain flux spectra from SREM count rates. Using this method and by conducting detailed scientific studies we have showed in

  20. Three-dimensional Langmuir wave instabilities in type III solar radio bursts

    International Nuclear Information System (INIS)

    Bardwell, S.; Goldman, M.V.

    1976-01-01

    Assuming that type III solar radio bursts are associated with electron streams moving at about c/3, Langmuir waves should be strongly excited. We have studied all of the Langmuir-wave linear parametric instabilities excited in cylindrical symmetry by an electron-stream--driven Langmuir wave-pump propagating along the stream axis. Included in this unified homogeneous treatment are induced backscattering off ions, the oscillating two-stream instability, and a new ''stimulated modulational instability,'' previously unconsidered in this context. Near a few solar radii, the latter two deposit Langmuir wave energy into a forward-scattering cone about the stream axis. It is concluded that the linear stage of the forward-scattering instabilities involves transfer of energy to Langmuir waves which remain in resonance with the stream, and therefore probably do not prevent rapid depletion of the electron stream due to quasilinear plateau formation at these distances from the Sun

  1. The radio-γ-ray connection in Fermi blazars

    Science.gov (United States)

    Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L.; Bonnoli, G.

    2011-05-01

    We study the correlation between the γ-ray flux (Fγ), averaged over the first 11 months of the Fermi survey and integrated above 100 MeV, and the radio flux density (Fr at 20 GHz) of Fermi sources associated with a radio counterpart in the 20-GHz Australia Telescope Compact Array (AT20G) survey. Considering the blazars detected in both bands, the correlation is highly significant and has the form Fγ∝F0.85±0.04r, similar to BL Lacertae objects and flat-spectrum radio quasars. However, only a small fraction (˜1/15) of the AT20G radio sources with flat radio spectra are detected by Fermi. To understand if this correlation is real, we examine the selection effects introduced by the flux limits of both the radio and the γ-ray surveys, and the importance of variability of the γ-ray flux. After accounting for these effects, we find that the radio-γ-ray flux correlation is real, but its slope is steeper than the observed one, that is, Fγ∝Fδr with δ in the range 1.25-1.5. The observed Fγ-Fr correlation and the fraction of radio sources detected by Fermi are reproduced assuming a long-term γ-ray flux variability, following a lognormal probability distribution with standard deviation σ≥ 0.5 (corresponding to Fγ varying by at least a factor of 3). Such a variability is compatible, even if not necessarily equal, with what is observed when comparing, for the sources in common, the EGRET and the Fermi γ-ray fluxes (even if the Fermi fluxes are averaged over ˜1 yr). Another indication of variability is the non-detection of 12 out of 66 EGRET blazars by Fermi, despite its higher sensitivity. We also study the strong linear correlation between the γ-ray and the radio luminosity of the 144 AT20G-Fermi associations with known redshift and show, through partial correlation analysis, that it is statistically robust. Two possible implications of these correlations are discussed: the contribution of blazars to the extragalactic γ-ray background and the prediction

  2. The upper limit of the solar antineutrino flux according to the LSD array data

    International Nuclear Information System (INIS)

    Al'etta, M.; Antonioli, P.; Badino, D.

    1997-01-01

    The analysis of the experimental data obtained at the LSD liquid scintillation detector is carried out with the aim of searching the possible flux of electron antineutrinos from Sun. The most strong at present upper limit for the electron antineutrino flux of solar origin is determined: ≤ 1.0 x 10 5 cm -2 x s -1 (the reliability level of 90%)

  3. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.

  4. Sporadic radio emission connected with a definite manifestation of solar activity in the near Earth space

    Science.gov (United States)

    Dudnic, A. V.; Zaljubovski, I. I.; Kartashev, V. M.; Shmatko, E. S.

    1985-01-01

    Sporadic radio emission of near Earth space at the frequency of 38 MHz is shown to appear in the event of a rapid development of instabilities in the ionospheric plasma. The instabilities are generated due to primary ionospheric disturbances occurring under the influence of solar chromospheric flares.

  5. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  6. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  7. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    International Nuclear Information System (INIS)

    De la Luz, V.

    2016-01-01

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H − . In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H − , and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  8. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Chakrapani, Prithi, E-mail: navdeep.k.panesar@nasa.gov [Hunter College High School, New York, NY (United States)

    2016-11-20

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  9. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    Science.gov (United States)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  10. Momentum flux of the solar wind near planetary magnetospheres: a comparative study

    International Nuclear Information System (INIS)

    Perez de Tejada, H.

    1985-01-01

    A study of the velocity profiles of the shocked solar wind exterior to the magnetospheres of the Earth, Mars and Venus is presented. A characteristic difference exists between the conditions present in planets with and without a strong intrinsic magnetic field. In a strongly magnetized planet (as it is the case in the earth), the velocity of the solar wind near the magnetopause remains nearly constant along directions normal to that boundary. In weakly magnetized planets (Venus, Mars), on the other hand, the velocity profile near the magnetopause/ionopause exhibits a transverse gradient which implies decreased values of the momentum flux of the solar wind in those regions. The implications of the different behavior of the shocked solar wind are discussed in connection with the nature of the interaction process that takes place in each case. (author)

  11. Software used with the flux mapper at the solar parabolic dish test site

    Science.gov (United States)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  12. Tracking Solar Type II Bursts with Space Based Radio Interferometers

    Science.gov (United States)

    Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.

    2018-06-01

    The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year

  13. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  14. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    Science.gov (United States)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  15. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  16. Pair-Matching of Radio-Loud and Radio-Quiet AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Kozieł-Wierzbowska, Dorota [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Stasińska, Grażyna [LUTH, Observatoire de Paris, Centre National de la Recherche Scientifique, Université Paris Diderot, Meudon (France); Vale Asari, Natalia [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Sikora, Marek [Nicolaus Copernicus Astronomical Center, Warsaw (Poland); Goettems, Elisa [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Wójtowicz, Anna, E-mail: dorota.koziel@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Krakow (Poland)

    2017-11-07

    Active galactic nuclei (AGNs) are known to cover an extremely broad range of radio luminosities and the spread of their radio-loudness is very large at any value of the Eddington ratio. This implies very diverse jet production efficiencies which can result from the spread of the black hole spins and magnetic fluxes. Magnetic fluxes can be developed stochastically in the innermost zones of accretion discs, or can be advected to the central regions prior to the AGN phase. In the latter case there could be systematic differences between the properties of galaxies hosting radio-loud (RL) and radio-quiet (RQ) AGNs. In the former case the differences should be negligible for objects having the same Eddington ratio. To study the problem we decided to conduct a comparison study of host galaxy properties of RL and RQ AGNs. In this study we selected type II AGNs from SDSS spectroscopic catalogs. Our RL AGN sample consists of the AGNs appearing in the Best and Heckman (2012) catalog of radio galaxies. To compare RL and RQ galaxies that have the same AGN parameters we matched the galaxies in black hole mass, Eddington ratio and redshift. We compared several properties of the host galaxies in these two groups of objects like galaxy mass, color, concentration index, line widths, morphological type and interaction signatures. We found that in the studied group RL AGNs are preferentially hosted by elliptical galaxies while RQ ones are hosted by galaxies of later type. We also found that the fraction of interacting galaxies is the same in both groups of AGNs. These results suggest that the magnetic flux in RL AGNs is advected to the nucleus prior to the AGN phase.

  17. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  18. Radio variability of the blazar AO 0235 + 164

    International Nuclear Information System (INIS)

    O'dell, S.L.; Dennison, B.; Broderick, J.J.; Altschuler, D.R.; Condon, J.J.; Payne, H.E.; Mitchell, K.J.

    1988-01-01

    The high-redshift blazar A0 0235 + 164 exhibits flux-density variations which are primarily of the less common variety in which low-frequency flux-density variations track the high-frequency variations but are delayed and of smaller amplitude. Observational results based on five years of monitoring are presented which are correlated over at least a factor of 50 frequency range in the sense expected for an expanding synchrotron component: outbursts propagating toward lower frequencies with diminishing amplitudes. A simple, semiempirical jet model is developed which accounts reasonably well for the radio properties of the object. The predictions of the model are compared with observations, examining the radio flux-density histories, the radio spectral evolution, the radio structure, and evidence for relativistic bulk motion. 59 references

  19. LOOKING FOR A PULSE: A SEARCH FOR ROTATIONALLY MODULATED RADIO EMISSION FROM THE HOT JUPITER, {tau} BOOeTIS b

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, G.; Bourke, S. [Cahill Center for Astrophysics, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Sirothia, S. K.; Ishwara-Chandra, C. H. [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Pune University Campus, Pune 411007 (India); Antonova, A. [Department of Astronomy, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Doyle, J. G. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Hartman, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Golden, A. [Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2013-01-01

    Hot Jupiters have been proposed as a likely population of low-frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter {tau} Booetis b, consisting of 40 hr carefully scheduled to maximize coverage of the planet's 79.5 hr orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3{sigma} upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either (1) the magnetic dipole moment of {tau} Booetis b is insufficient to generate the surface field strengths of >50 G required for detection at 150 MHz or (2) Earth lies outside the beaming pattern of the radio emission from the planet.

  20. Why fast solar wind originates from slowly expanding coronal flux tubes

    International Nuclear Information System (INIS)

    Wang, Y.M.; Sheeley, N.R. Jr.

    1991-01-01

    Empirical studies indicate that the solar wind speed at earth is inversely correlated with the divergence rate of the coronal magnetic field. It is shown that this result is consistent with simple wind acceleration models involving Alfven waves, provided that the wave energy flux at the coronal base is taken to be roughly constant within open field regions. 9 refs

  1. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, V. [Conacyt—SCiESMEX, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, México (Mexico)

    2016-07-10

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H{sup −}. In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H{sup −}, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  2. Wave disturbances in the solar corona: radio observations at 24.5-25.5 MHz

    International Nuclear Information System (INIS)

    Kobrin, M.M.; Snegriev, S.D.

    1984-01-01

    We present an analysis of observations of fluctuations in the integrated flux of radio emission from the ''quiet'' sun. The observations were made on the UTR-2 radiotelescope, simultaneously at 11 frequencies in the range 24.5-25.5 MHz. Control observations of Taurus were made in order to allow for the effects of the earth's ionosphere. We measured the phase dependences between oscillations in the radio emission intensity which looked like wave trains. From these measurements we found that for periods of about 10 min we always observed disturbances propagating from the lower levels of the corona to the upper levels. The frequency drift in the trains is observed to be about 10 -3 MHz/sec, corresponding to a disturbance velocity of about 100 km/sec. This may be associated with the propagation of magnetosonic waves. Our estimates show that the observed effects cannot be explained by a bremsstrahlung mechanism: We need to rely on plasma mechanisms in order to explain how the radio emission is generated

  3. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    Science.gov (United States)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  4. Possibilities for application of solar electricity in Macedonia

    International Nuclear Information System (INIS)

    Ristov, M.; Peshevski, V.; Kocev, K.

    1996-01-01

    In this paper solar global irradiation in R. Macedonia is estimated and some favorable fields for photovoltaic application are emphasized. By means of Angstrom's equation and using solar hour duration data for seven locations, mean daily horizontal surface solar energy is calculated. Obtained average value on whole territory is 4,2 kWh/m 2 day. On fixed tilt active surface (β=35 0 ) solar flux would be increased approximately 15%. Possible fields for photovoltaic systems applications are: rural electrification, water pumping in mountain areas and supplying of Tv and radio relay station. In case of small village standard electrification, due to inevitable distribution network over sizing, the price of electricity is around 2,5 $/kWh. If photovoltaic system is used for the same purpose, the electricity would amount 35 c/kWh. (author). 7 refs., 4 tabs., 1 ill

  5. Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences

    Science.gov (United States)

    Niino, Yuu

    2018-05-01

    We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.

  6. Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary

    Directory of Open Access Journals (Sweden)

    R. Modolo

    2006-12-01

    Full Text Available The solar wind plasma interaction with the Martian exosphere is investigated by means of 3-D multi-species hybrid simulations. The influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary is examined by comparing two simulations describing the two extreme states of the solar cycle. The hybrid formalism allows a kinetic description of each ions species and a fluid description of electrons. The ionization processes (photoionization, electron impact and charge exchange are included self-consistently in the model where the production rate is computed locally, separately for each ionization act and for each neutral species. The results of simulations are in a reasonable agreement with the observations made by Phobos 2 and Mars Global Surveyor spacecraft. The position of the bow shock and the magnetic pile-up boundary is weakly dependent of the solar EUV flux. The motional electric field creates strong asymmetries for the two plasma boundaries.

  7. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    Science.gov (United States)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  8. Three-Wave Resonance Modulation and Fine Structures in the Solar Short Centimeter Wave Bursts

    Institute of Scientific and Technical Information of China (English)

    王德焴; 吴洪敖; 秦至海

    1994-01-01

    A theoretical model is presented. We propose that when the radiation of solar radio bursts propagates outward as a pump wave through the conora, the three-wave resonance interaction would occur if the radio emission interacts with the MHD wave and scattering wave in the conora. This process induces a nonlinear modulation in the emission flux S. The statistical relations between the repetition rates R and S and between the modulation amplitude △S and S, observed from 1.36cm, 2cm and 3.2cm solar radio bursts could be well interpreted by this model under the conditions of imperfect matching and k2≠0. The appreciable difference in the modulation periods among the 2cm, 3.2cm and 1.36cm waves might be caused by the differences in the MHD waves joining in the modulation. Several theoretical expectations have been made from this model, which may be inspected in further observation.

  9. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  10. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    International Nuclear Information System (INIS)

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.

    1981-01-01

    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17 0 to +7 0 . Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20 0 to near 90 0 . We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49 2 for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/

  11. Fiber fine structure during solar type IV radio bursts: Observations and theory of radiation in presence of localized whistler turbulence

    International Nuclear Information System (INIS)

    Bernold, T.E.X.; Treumann, R.A.

    1983-01-01

    Observations with a digital spectrometer within the frequency band between 250 and 273 MHz of fiber fine structures during the type IV solar radio burst of 1978 October 1 are presented and analyzed. The results are summarized in histograms. Typical values for drift rates are in the range between -2.3 and -9.9 MHz s -1 . Frequency intervals between absorption and emission within the spectrum were measured to be within 0.9 and 2.7 MHz. Several types of spectra are discussed. A theoretical interpretation is based upon the model of a population of electrons trapped within a magnetic-mirror loop-configuration. It is shown that the fiber emission can be explained assuming an interaction between spatially localized strong whistler turbulence (solitons) and a broad-band Langmuir wave spectrum. Estimates using the observed flux values indicate that a fiber is composed of some 10 11 --10 14 solitons occupying a volume of about 10 5 --10 8 km 3 . Ducting of whistler solitons in low-density magnetic loops provides a plausible explanation for coherent behavior during the lifetime of an individual fiber. The magnetic field strength is found to be 6.2< or =B< or =35 gauss at the radio source and 15.3< or =B< or =76 gauss at the lower hybrid wave level respectively. The quasi-periodicity of the fiber occurrence is interpreted as periodically switched-on soliton production

  12. Generation of type III solar radio bursts: the role of induced scattering of plasma waves by ions

    International Nuclear Information System (INIS)

    Levin, B.N.; Lerner, A.M.; Rapoport, V.O.

    1984-01-01

    The plasma waves in type III solar radio-burst sources might have a spectrum which can explain why, in the quasilinear burst generation model, nonlinear scattering of the waves by ions is so weak. The agent exciting a burst would travel through the corona at velocities limited to a definite range

  13. Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility

    International Nuclear Information System (INIS)

    Li Zhigang; Tang Dawei; Du Jinglong; Li Tie

    2011-01-01

    Uniform heater temperature and high optical-thermal efficiency are crucial for the reliable and economical operation of a Solar Dish/Stirling engine facility. The Monte-Carlo ray-tracing method is utilized to predict the radiation flux distributions of the concentrator-receiver system. The ray-tracing method is first validated by experiment, then the radiation flux profiles on the solar receiver surface for faceted real concentrator and ideal paraboloidal concentrator, irradiated by Xe-arc lamps and real sun, for different aperture positions and receiver shapes are analyzed, respectively. The resulted radiation flux profiles are subsequently transferred to a CFD code as boundary conditions to numerically simulate the fluid flow and conjugate heat transfer in the receiver cavity by coupling the radiation, natural convection and heat conduction together, and the CFD method is also validated through experiment. The results indicate that a faceted concentrator in combination with a solar simulator composed of 12 Xe-arc lamps is advantageous to drive the solar Stirling engine for all-weather indoor tests. Based on the simulation results, a solar receiver-Stirling heater configuration is designed to achieve a considerably uniform temperature distribution on the heater head tubes while maintaining a high efficiency of 60.7%. - Highlights: → Radiation flux in Dish/Stirling system is analyzed by validated ray-tracing method. → Temperature field on the solar receiver is analyzed by a validated CFD method. → Effects of Xe-arc lamp solar simulator and faceted real concentrator are analyzed. → Effects of different receiver positions and receiver shapes are investigated. → A Stirling heater configuration is presented with uniform temperature field.

  14. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  15. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  16. The effect of Arctic sea-ice extent on the absorbed (net solar flux at the surface, based on ISCCP-D2 cloud data for 1983–2007

    Directory of Open Access Journals (Sweden)

    C. Matsoukas

    2010-01-01

    Full Text Available We estimate the effect of the Arctic sea ice on the absorbed (net solar flux using a radiative transfer model. Ice and cloud input data to the model come from satellite observations, processed by the International Satellite Cloud Climatology Project (ISCCP and span the period July 1983–June 2007. The sea-ice effect on the solar radiation fluctuates seasonally with the solar flux and decreases interannually in synchronisation with the decreasing sea-ice extent. A disappearance of the Arctic ice cap during the sunlit period of the year would radically reduce the local albedo and cause an annually averaged 19.7 W m−2 increase in absorbed solar flux at the Arctic Ocean surface, or equivalently an annually averaged 0.55 W m−2 increase on the planetary scale. In the clear-sky scenario these numbers increase to 34.9 and 0.97 W m−2, respectively. A meltdown only in September, with all other months unaffected, increases the Arctic annually averaged solar absorption by 0.32 W m−2. We examined the net solar flux trends for the Arctic Ocean and found that the areas absorbing the solar flux more rapidly are the North Chukchi and Kara Seas, Baffin and Hudson Bays, and Davis Strait. The sensitivity of the Arctic absorbed solar flux on sea-ice extent and cloud amount was assessed. Although sea ice and cloud affect jointly the solar flux, we found little evidence of strong non-linearities.

  17. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  18. Probabilistic model for fluences and peak fluxes of solar energetic particles

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    The model is intended for calculating the probability for solar energetic particles (SEP), i.e., protons and Z=2-28 ions, to have an effect on hardware and on biological and other objects in the space. The model describes the probability for the ≥10 MeV/nucleon SEP fluences and peak fluxes to occur in the near-Earth space beyond the Earth magnetosphere under varying solar activity. The physical prerequisites of the model are as follows. The occurrence of SEP is a probabilistic process. The mean SEP occurrence frequency is a power-law function of solar activity (sunspot number). The SEP size (taken to be the ≥30 MeV proton fluence size) distribution is a power-law function within a 10 5 -10 11 proton/cm 2 range. The SEP event particle energy spectra are described by a common function whose parameters are distributed log-normally. The SEP mean composition is energy-dependent and suffers fluctuations described by log-normal functions in separate events

  19. Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data

    International Nuclear Information System (INIS)

    Arpesella, C.; Di Pietro, G.; Monzani, M. E.; Back, H. O.; Hardy, S.; Joyce, M.; Manecki, S.; Raghavan, R. S.; Rountree, D.; Vogelaar, R. B.; Balata, M.; Di Credico, A.; Gazzana, S.; Korga, G.; Laubenstein, M.; Orsini, M.; Papp, L.; Razeto, A.; Tartaglia, R.; Bellini, G.

    2008-01-01

    We report the direct measurement of the 7 Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7 Be neutrinos is 49±3 stat ±4 syst counts/(day·100 ton). The hypothesis of no oscillation for 7 Be solar neutrinos is inconsistent with our measurement at the 4σ C.L. Our result is the first direct measurement of the survival probability for solar ν e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7 Be, pp, and CNO solar ν e , and the limit on the effective neutrino magnetic moment using solar neutrinos

  20. Spectral Index Properties of millijansky Radio Sources in ATLAS

    Science.gov (United States)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  1. A semi-analytical computation of the theoretical uncertainties of the solar neutrino flux

    DEFF Research Database (Denmark)

    Jorgensen, Andreas C. S.; Christensen-Dalsgaard, Jorgen

    2017-01-01

    We present a comparison between Monte Carlo simulations and a semi-analytical approach that reproduces the theoretical probability distribution functions of the solar neutrino fluxes, stemming from the pp, pep, hep, Be-7, B-8, N-13, O-15 and F-17 source reactions. We obtain good agreement between...

  2. Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

    Science.gov (United States)

    Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.

    2017-09-01

    We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.

  3. A search for radio emission from exoplanets around evolved stars

    Science.gov (United States)

    O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.

    2018-04-01

    The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.

  4. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  5. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  6. Radio science investigations with Voyager

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Tyler, G.L.; Croft, T.A.

    1977-01-01

    The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations. (Auth.)

  7. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    Science.gov (United States)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15-2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  8. Effects of the 2017 Solar Eclipse on HF Radio Propagation and the D-Region Ionosphere: Citizen Science Investigation

    Science.gov (United States)

    Fry, C. D.; Adams, M.; Gallagher, D. L.; Habash Krause, L.; Rawlins, L.; Suggs, R. M.; Anderson, S. C.

    2017-12-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. The Amateur Radio community has developed several automated receiving and reporting networks that draw from widely-distributed, automated and manual radio stations to build a near-real time, global picture of changing radio propagation conditions. We used these networks and employed HF radio propagation modeling in our investigation. A Ham Radio Science Citizen Investigation (HamSCI) collaboration with the American Radio Relay League (ARRL) ensured that many thousands of amateur radio operators would be "on the air" communicating on eclipse day, promising an extremely large quantity of data would be collected. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Our expectations were the D-Region ionosphere would be most impacted by the eclipse, enabling over-the-horizon radio propagation on lower HF frequencies (3.5 and 7 MHz) that are typically closed during the middle of the day. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.

  9. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Bochníček, Josef; Hejda, Pavel

    2007-01-01

    Roč. 69, č. 9 (2007), s. 1095-1109 ISSN 1364-6826 R&D Projects: GA AV ČR IAA3042401 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z30120515 Keywords : Arctic Oscillation * Solar cycle * 10.7 cm radio flux * Sea level pressure * Principal component analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.566, year: 2007

  10. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  11. Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2004-04-01

    Full Text Available Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near-Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field's radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days, for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000 model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the

  12. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  13. Study on electron fluxes with Esub(e)=40-500 keV in quiet periods of solar activity by means of correlation and spectral analysis technique

    International Nuclear Information System (INIS)

    Zel'dovich, M.A.; Trebukhovskaya, G.A.

    1982-01-01

    Background fluxes of low-energy electrons (Esub(e)=40-500 keV), observed in the interplanetary space in the absence of solar cosmic ray flares using the ''Prognoz-3'' artificial satellite during 1973-1974, are under study. Fluctuation power spectra and correlation functions of simultaneous series of fluxes of above electrons, galactic cosmic rays are calculated along with some parameters characterizing solar activity and interplanetary medium state. The mentioned analysis points to possible solar origin of background low-energy electron fluxes

  14. Solar Prominences Embedded in Flux Ropes: Morphological Features and Dynamics from 3D MHD Simulations

    Science.gov (United States)

    Terradas, J.; Soler, R.; Luna, M.; Oliver, R.; Ballester, J. L.; Wright, A. N.

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov & Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin-Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh-Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  15. Propagation of interplanetary shock waves by observations of type II solar radio bursts on IMP-6

    International Nuclear Information System (INIS)

    Chertok, I.M.; Fomichev, V.V.

    1976-01-01

    A new interpretation of the low frequency type II solar radio bursts of 30 June 1971, and 7-8 August 1972 observed with IMP-6 satellite (Malitson, H.H., Fainberg, J. and Stone, R.G., 1973, Astrophys. Lett., vol. 14, 111; Astrophys. J., vol. 183, L35) is suggested. The analysis is carried out for two models of the electron density distribution in the interplanetary medium taking into account that N approximately 3.5 cm -3 at a distance of 1 a.u. It is assumed that the frequency of the radio emission corresponds to the average electron density behind the shock front which exceeds the undisturbed electron density by the factor of 3. The radio data indicate essential deceleration of the shock waves during propagation from the Sun up to 1 a.u. The characteristics of the shock waves obtained from the type II bursts agree with the results of the in situ observations. (author)

  16. An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Eastwood, J. P.; Krupařová, Oksana; Santolík, Ondřej; Souček, Jan; Magdalenic, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Oliveros, J.C.M.; Bale, S. D.

    2016-01-01

    Roč. 823, č. 1 (2016) ISSN 2041-8205 R&D Projects: GA ČR GJ16-16050Y; GA ČR(CZ) GAP209/12/2394; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : solar -terrestrial relations * coronal mass ejections (CMEs) * radio radiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.522, year: 2016 http://iopscience.iop.org/article/10.3847/2041-8205/823/1/L5/meta

  17. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.-S.; Kim, R.-S. [Korea Astronomy and Space Science Institute, Whaamdong, Yooseong-ku, Daejeon, 305-348 (Korea, Republic of); Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S., E-mail: kscho@kasi.re.kr [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  18. Modeling of Local Magnetic Field Enhancements within Solar Flux Ropes

    OpenAIRE

    Romashets, E; Vandas, M; Poedts, Stefaan

    2010-01-01

    To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant alpha) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coinci...

  19. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    Science.gov (United States)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  20. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    Science.gov (United States)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  1. Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

    Science.gov (United States)

    Kim, Myeong Joon; Park, Kyung Sun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Rok Soon; Cho, Kyungsuk; Choi, Kyu-Cheol; Kim, Jaehun

    2017-12-01

    Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker ( 7.4 nT) than that of MCs ( 10.6 nT). Also, the average duration time and expansion speed of SMFRs are 2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of 10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

  2. Radio observations of the fine structure inside a post-CME current sheet

    International Nuclear Information System (INIS)

    Gao Guan-Nan; Wang Min; Lin Jun; Kliem Berhard; Wu Ning; Tan Cheng-Ming; Su Yang

    2014-01-01

    A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on 2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated white-light, Hα, extreme ultraviolet light, and soft and hard X-rays were also studied. (mini-volume: solar radiophysics — recent results on observations and theories)

  3. Future mission studies: Forecasting solar flux directly from its chaotic time series

    Science.gov (United States)

    Ashrafi, S.

    1991-01-01

    The mathematical structure of the programs written to construct a nonlinear predictive model to forecast solar flux directly from its time series without reference to any underlying solar physics is presented. This method and the programs are written so that one could apply the same technique to forecast other chaotic time series, such as geomagnetic data, attitude and orbit data, and even financial indexes and stock market data. Perhaps the most important application of this technique to flight dynamics is to model Goddard Trajectory Determination System (GTDS) output of residues between observed position of spacecraft and calculated position with no drag (drag flag = off). This would result in a new model of drag working directly from observed data.

  4. The Study of Radio Flux Density Variations of the Quasar OJ 287 by the Wavelet and the Singular Spectrum Methods

    Directory of Open Access Journals (Sweden)

    Donskykh Ganna

    2016-06-01

    Full Text Available Flux density variations of the extragalactic radio source OJ 287 are studied by applying the wavelet and the singular spectrum methods to the long-term monitoring data at 14.5, 8.0 and 4.8 GHz acquired at the University of Michigan Radio Astronomy Observatory during 40 years. This monitoring significantly supplements the episodic VLBI data. The wavelet analysis at all three frequencies revealed the presence of quasiperiods within the intervals 6.0–7.4 and 1.2–1.8 years. The singular spectrum analysis revealed the presence of quasiperiods within the intervals 6–10 and 1.6–4.0 years. For each quasiperiod the time interval of its existence was determined.

  5. Sudden f/sub min/ enhancements and sudden cosmic noise absorptions associated with solar X-ray flares

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T [Hyogo Coll. of Medicine, Hyogo (Japan). Dept. of Physics

    1975-01-01

    Sudden fsub(min) enhancements (SFsub(m)E's) and sudden cosmic noise absorptions (SCNA's) associated with increments of X-ray fluxes during solar flares are studied on the basis of X-ray flux data measured by SOLRAD 9 and 10 satellites. Some statistical analyses on SFsub(m)E's observed at five observatories in Japan, corresponding to increased X-ray fluxes in the 1-8 A band are made for 50 solar flare events during the period January 1972 to December 1973, and value of fsub(min) is expressed as functions of cos x(x; solar zenith angle) and 1-8 A band X-ray flux. Similar study is also made for SCNA's observed by 30 MHz riometer at Hiraiso for 15 great solar flare events during the same period, together with 27.6 MHz riometer data reported by Schwentek (1973) and 18 MHz data published by Deshpande and Mitra (1972b). It is found that fsub(min) value (MHz) and SCNA value (L, dB) of a radio wave with frequency f(MHz) are related to X-ray flux (F/sub 0/, erg cm/sup -2/ sec/sup -1/) in the 1-8 A band and to cos x, by following approximate expressions, fsub(min)(MHz)=10F/sub 0/sup(1/4) cossup(1/2) x, and L(dB)=4.37x10/sup 3/f/sup -2/F/sub 0/sup(1/2) cos x, respectively. Blackout seems to occur for F/sub 0/ values causing fsub(min)'s greater than about 5 MHz. It is shown that these expressions can be derived from a brief theoretical calculation of radio wave absorption in the lower ionosphere. Also it is suggested that threshold X-ray fluxes in the 1-8 A band which may produce a minimum SFsub(m)E (2 MHz), blackout and minimum SCNA (0.27-0.36 dB for 30 MHz noise) are 1.6x10/sup -3/, 6.2x10/sup -2/ and (3-8) x 10/sup -3/ erg cm/sup -2/ sec/sup -1/, respectively, for cos x=1.

  6. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  7. Formation of Cool and Warm Jets by Magnetic Flux Emerging from the Solar Chromosphere to Transition Region

    Science.gov (United States)

    Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei

    2018-01-01

    In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.

  8. Design of an axial-flux permanent magnet machine for a solar-powered electric vehicle

    NARCIS (Netherlands)

    Friedrich, L.A.J.; Bastiaens, K.; Gysen, B.L.J.; Krop, D.C.J.; Lomonova, E.A.

    2018-01-01

    This paper concerns the design optimization of two axial-flux permanent magnet (AFPM) machines, aimed to be used as a direct drive in-wheel motor for the propulsion of a solar-powered electric vehicle. The internal stator twin external rotor AFPM machine topology having either a distributed or

  9. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Science.gov (United States)

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  10. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  11. SOLAR PROMINENCES EMBEDDED IN FLUX ROPES: MORPHOLOGICAL FEATURES AND DYNAMICS FROM 3D MHD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M. [Instituto de Astrofsíca de Canarias, E-38205 La Laguna, Tenerife (Spain); Wright, A. N., E-mail: jaume.terradas@uib.es [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov and Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin–Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh–Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  12. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  13. Optical design of a high radiative flux solar furnace for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Riveros-Rosas, D.; Perez-Rabago, C.A.; Arancibia-Bulnes, C.A.; Jaramillo, O.A.; Estrada, C.A. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Av. Xochicalco s/n, A.P. 34, Temixco, 62580 Morelos (Mexico); Herrera-Vazquez, J.; Vazquez-Montiel, S.; Granados-Agustin, F. [Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro 1, Tonantzintla, A.P. 216, 72000 Puebla (Mexico); Sanchez-Gonzalez, M. [Centro Nacional de Energias Renovables, Calle Somera 7-9, 28026 Madrid (Spain)

    2010-05-15

    In the present work, the optical design of a new high radiative flux solar furnace is described. Several optical configurations for the concentrator of the system have been considered. Ray tracing simulations were carried out in order to determine the concentrated radiative flux distributions in the focal zone of the system, for comparing the different proposals. The best configuration was chosen in terms of maximum peak concentration, but also in terms of economical and other practical considerations. It consists of an arrangement of 409 first surface spherical facets with hexagonal shape, mounted on a spherical frame. The individual orientation of the facets is corrected in order to compensate for aberrations. The design considers an intercepted power of 30 kW and a target peak concentration above 10,000 suns. The effect of optical errors was also considered in the simulations. (author)

  14. Flux pinning characteristics in cylindrical niobium samples used for superconducting radio frequency cavity fabrication

    Science.gov (United States)

    Dhavale, Asavari S.; Dhakal, Pashupati; Polyanskii, Anatolii A.; Ciovati, Gianluigi

    2012-06-01

    We present the results from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low-temperature baking as they are typically applied to SRF cavities. The magnetization data are analyzed using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples, favorable to lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  15. Simulation study of solar plasma eruptions caused by interactions between emerging flux and coronal arcade fields

    International Nuclear Information System (INIS)

    Kaneko, Takafumi; Yokoyama, Takaaki

    2014-01-01

    We investigate the triggering mechanisms of plasma eruptions in the solar atmosphere due to interactions between emerging flux and coronal arcade fields by using two-dimensional MHD simulations. We perform parameter surveys with respect to arcade field height, magnetic field strength, and emerging flux location. Our results show that two possible mechanisms exist, and which mechanism is dominant depends mostly on emerging flux location. One mechanism appears when the location of emerging flux is close to the polarity inversion line (PIL) of an arcade field. This mechanism requires reconnection between the emerging flux and the arcade field, as pointed out by previous studies. The other mechanism appears when the location of emerging flux is around the edge of an arcade field. This mechanism does not require reconnection between the emerging flux and the arcade field but does demand reconnection in the arcade field above the PIL. Furthermore, we found that the eruptive condition for this mechanism can be represented by a simple formula.

  16. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  17. Surveys of radio sources at 5 GHz

    International Nuclear Information System (INIS)

    Pauliny-Toth, I.I.K.

    1977-01-01

    A number of surveys have been carried out at a frequency of 5 GHz at the National Radio Astronomy Observatory (NRAO) and at the Max-Planck-Institut fuer Radioastronomy (MPIFR) with the aim of determining the number-flux density relation for the sources detected and also of obtaining their radio spectra and optical identifications. The surveys fall into two categories: first, the strong source (S) surveys which are intended in due course to cover the whole northern sky and to be complete above a flux density of about 0.6 Jy; second, surveys of limited areas of sky down to lower levels of the flux density. (Auth.)

  18. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  19. TRACKING THE SOLAR CYCLE THROUGH IBEX OBSERVATIONS OF ENERGETIC NEUTRAL ATOM FLUX VARIATIONS AT THE HELIOSPHERIC POLES

    Energy Technology Data Exchange (ETDEWEB)

    Reisenfeld, D. B.; Janzen, P. H. [University of Montana, Missoula, MT 59812 (United States); Bzowski, M., E-mail: dan.reisenfeld@umontana.edu, E-mail: paul.janzen@umontana.edu, E-mail: bzowski@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, (CBK PAN), Bartycka 18A, 00-716, Warsaw (Poland); and others

    2016-12-20

    With seven years of Interstellar Boundary Explorer ( IBEX ) observations, from 2009 to 2015, we can now trace the time evolution of heliospheric energetic neutral atoms (ENAs) through over half a solar cycle. At the north and south ecliptic poles, the spacecraft attitude allows for continuous coverage of the ENA flux; thus, signal from these regions has much higher statistical accuracy and time resolution than anywhere else in the sky. By comparing the solar wind dynamic pressure measured at 1 au with the heliosheath plasma pressure derived from the observed ENA fluxes, we show that the heliosheath pressure measured at the poles correlates well with the solar cycle. The analysis requires time-shifting the ENA measurements to account for the travel time out and back from the heliosheath, which allows us to estimate the scale size of the heliosphere in the polar directions. We arrive at an estimated distance to the center of the ENA source region in the north of 220 au and in the south a distance of 190 au. We also find a good correlation between the solar cycle and the ENA energy spectra at the poles. In particular, the ENA flux for the highest IBEX energy channel (4.3 keV) is quite closely correlated with the areas of the polar coronal holes, in both the north and south, consistent with the notion that polar ENAs at this energy originate from pickup ions of the very high speed wind (∼700 km s{sup −1}) that emanates from polar coronal holes.

  20. Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves instruments: goniopolarimetric properties and radio source locations

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Cecconi, B.; Krupařová, Oksana

    2014-01-01

    Roč. 289, č. 12 (2014), s. 4633-4652 ISSN 0038-0938 R&D Projects: GA ČR GP13-37174P; GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : plasma radiation * solar radio emissions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014 http://link.springer.com/article/10.1007%2Fs11207-014-0601-z

  1. Finite element analysis of heating a non-mixed liquid with non-uniform solar flux through semi-transparent medium

    International Nuclear Information System (INIS)

    Safdari, Y.B.; Sirivatch Shimpalee

    2000-01-01

    It has been shown in an application [1-3), in a solar flux heating of a liquid through a semi-transparent medium, that the far side of the medium receiving solar radiation achieves a higher temperature than the side receiving radiation. In this work, a two-dimensional transient finite element analysis of concentrated solo flux heating of a non-mixed liquid through a semi-transparent medium (such as glass) is carried out. The radiation heat flux is provided by a paraboloidal concentrator which focuses a non-uniform flux on the receiver. Realistic boundary conditions are considered to analyse the heat transfer problem to study the transient temperature distribution in the medium. The effects of a non-mixed liquid and a non-uniform flux show dramatic differences between the present work and the previous works [1-31. A non-mixed liquid causes greater temperature difference in the glass in both radial and axial direction than a mixed liquid used in the previous analysis. Therminol-55 is used as heated liquid for lower flux case, and sodium is used for high flux. The effect of the conductivity difference between the two liquids is studied. Results show that in the case of Therminol-55, the temperature of the liquid-side glass is much higher than that of the sodium case. The temperature distribution will be used to analyse the thermal stresses in the glass to see if fracture will occurs [4) in the glass. (Author)

  2. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    Science.gov (United States)

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  3. Possibility of detecting magnetospheric radio bursts from Uranus and Neptune

    International Nuclear Information System (INIS)

    Kennel, C.F.; Maggs, J.E.

    1976-01-01

    It is known that Earth, Jupiter and Saturn are sources of intense sporadic bursts of electromagnetic radiation, known as magnetospheric radio bursts. These bursts are here described. It is thought that the similarities in the power flux spectra, together with the burst occurrence patterns, suggest a common physical origin for these bursts in all three planets. The common mechanism may be noise amplification by field aligned currents, since it has been shown that the Earth's MRBs are associated with bright auroral arcs that involve intense field aligned currents. Such currents result from the interaction of the solar wind with the magnetosphere and should be a general feature of the interaction between the solar wind and planetary magnetospheres. If MRBs are produced by solar wind-magnetosphere interaction their total radiated power might scale with the solar wind input into the magnetosphere, and it has been suggested that the frequency of emission scales with the polar magnetic field strength of a planet. The intensity of MRBs is here scaled to the solar wind input and the frequency of emission to the polar field strength with a view to estimating the possibility of detecting MRBs from Uranus and Neptune. It is found that scaling of MRB power to the solar wind-magnetosphere dissipation power is probably a reasonable hypothesis. It is suggested that detection of MRB bursts from Uranus and Neptune might be a reasonable radioastronomy objective on future missions to the outer Solar System. (U.K.)

  4. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  5. Solar irridiance variations and solar activity

    International Nuclear Information System (INIS)

    Willson, R.C.

    1982-01-01

    A mean value for the 1 AU total solar irradiance of 1368.2 W/m 2 and a downward trend of 0.05% per year were derived from measurements by the Active Cavity Radiometer Irradiance Monitor (ACRIM) experiment on the Solar Maximum Mission during 1980. Distinct temporary solar irradiance decreases associated with solar activity maxima were observed with a series of nine dips from April to October recurring at fairly regular intervals averaging 24 days. The decreases correlate inversely with sunspot area, 2800-MHz flux, and Zurich sunspot number. Dominant periods common to the irradiance and sunspot area power spectra link the irradiance decreases to sunspot flux deficit in solar active regions. Evidence of significant total irradiance modulation by facular flux excess is cited. A persistent radiative cycle of active regions consistent with the ACRIM irradiance results and the morphology of solar active regions was found. The pattern of regularly recurrent active region maxima between April and October suggests an asymmetry in solar activity generation during this period

  6. Solar-terrestrial disturbances in June-September 1982, 5

    International Nuclear Information System (INIS)

    Ondoh, Tadanori

    1985-01-01

    The x-ray detector on the SMS-GOES satellite observed 77 solar x-ray flares (1 - 8A) with flux above 10 -5 W/m 2 in June, 1982, and 33 SIDs with importance above 2 were observed in Hiraiso, Japan. However, the geomagnetic storm with Dst above 100 nT did not occur at that time since most solar flares occurred near the east rim of the sun. These solar active regions lasted for 5 solar rotations, then, the great geomagnetic storms with Dst above 100 nT occurred on July 13 - 15, September 5 - 7 and September 21 - 23, 1982. These geomagnetic storms were preceded by the solar flares of importance above 2B occurred in the central part of the solar disc. From September 26 to 27, 1982, a great geomagnetic storm which was not accompanied by solar flare occurred. This paper summarized the studies on solar-terrestrial events from June to September, 1982, made by the space physics and aeronomy groups of the Radio Research Laboratories, Japan. The solar flares occurred on July 12, September 4 and 19, 1982, the geomagnetic storms corresponding to them, the cosmic ray storms observed on July 13 - 19, September 6 - 9 and 21 - 26, 1982, global equivalent current system and others are reported. (Kako, I.)

  7. Local Volume Hi Survey: the far-infrared radio correlation

    Science.gov (United States)

    Shao, Li; Koribalski, Bärbel S.; Wang, Jing; Ho, Luis C.; Staveley-Smith, Lister

    2018-06-01

    In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 "dwarf" galaxies (M* correlation (FRC) over four orders of magnitude (F_1.4GHz ∝ F_FIR^{1.00± 0.08}). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a "conspiracy" to keep the FIR-to-radio ratio generally constant. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the "conspiracy" to keep the FRC alive.

  8. Constraining the 7Be(p,γ)8B S-factor with the new precise 7Be solar neutrino flux from Borexino

    Science.gov (United States)

    Takács, M. P.; Bemmerer, D.; Junghans, A. R.; Zuber, K.

    2018-02-01

    Among the solar fusion reactions, the rate of the 7Be(p , γ)8B reaction is one of the most difficult to determine rates. In a number of previous experiments, its astrophysical S-factor has been measured at E = 0.1- 2.5 MeV centre-of-mass energy. However, no experimental data is available below 0.1 MeV. Thus, an extrapolation to solar energies is necessary, resulting in significant uncertainty for the extrapolated S-factor. On the other hand, the measured solar neutrino fluxes are now very precise. Therefore, the problem of the S-factor determination is turned around here: Using the measured 7Be and 8B neutrino fluxes and the Standard Solar Model, the 7Be(p , γ)8B astrophysical S-factor is determined at the solar Gamow peak. In addition, the 3He(α , γ)7Be S-factor is redetermined with a similar method.

  9. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    2002-09-01

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  10. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.

    Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  11. DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui, E-mail: zhangqh@mail.ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China)

    2016-07-10

    2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.

  12. DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES

    International Nuclear Information System (INIS)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui

    2016-01-01

    2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.

  13. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  14. Flux pinning characteristics in cylindrical niobium samples used for superconducting radio frequency cavity fabrication

    International Nuclear Information System (INIS)

    Dhavale, Asavari S; Dhakal, Pashupati; Ciovati, Gianluigi; Polyanskii, Anatolii A

    2012-01-01

    We present the results from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low-temperature baking as they are typically applied to SRF cavities. The magnetization data are analyzed using a modified critical state model. The critical current density J c and pinning force F p are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples, favorable to lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities. (paper)

  15. Solar induced inter-annual variability of ozone

    Science.gov (United States)

    Fytterer, Tilo; Nieder, Holger; Perot, Kristell; Sinnhuber, Miriam; Stiller, Gabriele; Urban, Joachim

    2014-05-01

    Measurements by the Michelson Interferometer for Passive Atmospheric Sounding instrument on board the ENVIromental SATellite from 2005 - 2011 are used to investigate the impact of solar and geomagnetic activity on O3 in the stratosphere and mesosphere inside the Antarctic polar vortex. It is known from observations that energetic particles, mainly originating from the sun, precipitate in the Earth atmosphere and produce odd nitrogen NOx (N + NO + NO2) in the upper mesosphere and lower thermosphere, which is transported downwards into the stratosphere during polar winter. Results from global chemistry-transport models suggest that this leads to a depletion of O3 down to ~30 km at high latitudes during winter. Therefore it appears promising to search for a link between high energetic particles and O3 in actual data sets. Thus in this study, correlation analysis between a 26 days average centred around 1 Apr, 1 May and 1 Jun of several solar/geomagnetic indices (Ap index, F10.7 cm solar radio flux, Lyman-alpha, 2 MeV electrons flux) and 26 day running means from 1 Apr - 1 Nov of O3 in the altitude range from 20 - 70 km were performed. The results reveal negative correlation coefficients propagating downwards throughout the polar winter, at least for the Ap index and the 2 MeV electrons flux. Comparisons with TIMED/SABER and Odin/SMR O3 data are in moderate agreement, also showing a descending negative signal in either indices, but only for the correlation with 1 Apr.

  16. Photosymbiotic giant clams are transformers of solar flux.

    Science.gov (United States)

    Holt, Amanda L; Vahidinia, Sanaz; Gagnon, Yakir Luc; Morse, Daniel E; Sweeney, Alison M

    2014-12-06

    'Giant' tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved 'three-dimensional' biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.

  17. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    OpenAIRE

    Cheng, X.; Ding, M. D.

    2016-01-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot c...

  18. Solar /flare/ cosmic ray proton fluxes in the recent past

    International Nuclear Information System (INIS)

    Venkatesan, T.R.; Nautiyal, C.M.; Padia, J.T.; Rao, M.N.

    1980-01-01

    A method for determining the average solar cosmic ray (SCR) proton fluxes which occurred in the last few million yr from He-3 samples from suitable lunar rocks is presented. Specimens removed from 0.3-1.5, 5-7, and 7-9 mm depths of the lunar surface were cleaned to reveal the feldspar grains of interest and heated for stepwise mass-spectrometric analyses. The 200 micron or greater grains were outgassed at 600, 1000, 1200, and 1600 C and noble gas data were recorded, along with isotopic ratio data. He-3 is assumed to have been degassed completely from rocks shocked by an impact event and diffusion losses are negligible due to the 90 C or less temperature exposures on the lunar surface. Thus the presence of He-3 is indicative of cosmic ray incidence, and known galactic cosmic ray production abundances for He-3 can be subtracted from the total He-3 observed, yielding the SCR flux results, which, when combined with exposure data, yield a history of SCR events

  19. Propagation of Energetic Electrons from the Corona into Interplanetary Space and Type III Radio Emission. Planetary Radio Emissions| PLANETARY RADIO EMISSIONS VII 7|

    OpenAIRE

    Vocks, C.; Breitling, F.; Mann, G.

    2011-01-01

    During solar flares a large amount of electrons with energies greater than 20 keV is generated with a production rate of typically 1036 s-1. A part of them is able to propagate along open magnetic field lines through the corona into interplanetary space. During their travel they emit radio radiation which is observed as type III radio bursts in the frequency range from 100 MHz down to 10 kHz by the WAVES radio spectrometer aboard the spacecraft WIND, for instance. From the drift rates of thes...

  20. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-10-01

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.

  1. Solar effects on communications

    International Nuclear Information System (INIS)

    Cleveland, F.; Malcolm, W.; Nordell, D.E.; Zirker, J.

    1991-01-01

    When people involved in the power industry think of Solar Magnetic Disturbances (SMD), they normally consider the potential for disrupting power transmission which results form solar-induced disturbances to the earth's magnetic field known as geomagnetic storms. However, in addition to the disruption of power transmission, solar phenomena can interfere with utility communication systems. Utilities use many different types of communication media, some of which can be affected by various solar phenomena. These include wire-based facilities (metallic cables and power line carrier), radio systems (HF, VHF, UHF mobile radio, microwave networks, and satellite transmissions), and fiber optic systems. This paper reports that the solar flares and other solar phenomena can affect these media through different mechanisms: Radio communications can be disturbed by flare-induced changes in the ionispheric layer of the atmosphere; Cable communications can be disrupted by the flare-induced changes in the magnetosphere which surrounds the earth. These changes, in turn, induce currents in the power equipment that energizes long communications cables; Satellite communications can be disrupted by the flare-induced perturbations of satellite orbits and equipment

  2. Is a deep one-cell meridional circulation essential for the flux transport solar dynamo?

    International Nuclear Information System (INIS)

    Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai

    2014-01-01

    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.

  3. Is a deep one-cell meridional circulation essential for the flux transport solar dynamo?

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-02-20

    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.

  4. Solar Proton Events in Six Solar Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  5. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P. [Udaipur Solar Observatory, Physical Research Laboratory, Badi Road, Dewali, Udaipur 313 001 (India); Zhang, J., E-mail: vema@prl.res.in [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States)

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  6. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    International Nuclear Information System (INIS)

    Vemareddy, P.; Zhang, J.

    2014-01-01

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare

  7. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    Science.gov (United States)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  8. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: elena@asu.cas.cz [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  9. Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations

    Directory of Open Access Journals (Sweden)

    C. Kalicinsky

    2016-12-01

    Full Text Available We present the analysis of annual average OH* temperatures in the mesopause region derived from measurements of the Ground-based Infrared P-branch Spectrometer (GRIPS at Wuppertal (51° N, 7° E in the time interval 1988 to 2015. The new study uses a temperature time series which is 7 years longer than that used for the latest analysis regarding the long-term dynamics. This additional observation time leads to a change in characterisation of the observed long-term dynamics. We perform a multiple linear regression using the solar radio flux F10.7 cm (11-year cycle of solar activity and time to describe the temperature evolution. The analysis leads to a linear trend of (−0.089 ± 0.055 K year−1 and a sensitivity to the solar activity of (4.2 ± 0.9 K (100 SFU−1 (r2 of fit 0.6. However, one linear trend in combination with the 11-year solar cycle is not sufficient to explain all observed long-term dynamics. In fact, we find a clear trend break in the temperature time series in the middle of 2008. Before this break point there is an explicit negative linear trend of (−0.24 ± 0.07 K year−1, and after 2008 the linear trend turns positive with a value of (0.64 ± 0.33 K year−1. This apparent trend break can also be described using a long periodic oscillation. One possibility is to use the 22-year solar cycle that describes the reversal of the solar magnetic field (Hale cycle. A multiple linear regression using the solar radio flux and the solar polar magnetic field as parameters leads to the regression coefficients Csolar = (5.0 ± 0.7 K (100 SFU−1 and Chale = (1.8 ±  0.5 K (100 µT−1 (r2 = 0.71. The second way of describing the OH* temperature time series is to use the solar radio flux and an oscillation. A least-square fit leads to a sensitivity to the solar activity of (4.1 ± 0.8 K (100 SFU−1, a period P  =  (24.8 ± 3.3 years, and

  10. Transport of Internetwork Magnetic Flux Elements in the Solar Photosphere

    Science.gov (United States)

    Agrawal, Piyush; Rast, Mark P.; Gošić, Milan; Bellot Rubio, Luis R.; Rempel, Matthias

    2018-02-01

    The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics.

  11. The Open Flux Problem

    Science.gov (United States)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  12. The Open Flux Problem

    Energy Technology Data Exchange (ETDEWEB)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Henney, C. J. [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States); Arge, C. N. [Science and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771 (United States); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Derosa, M. L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States); Yeates, A. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Owens, M. J., E-mail: linkerj@predsci.com [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2017-10-10

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  13. Radio outbursts in extragalactic sources

    International Nuclear Information System (INIS)

    Kinzel, W.M.

    1989-01-01

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior

  14. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Rajan, Raj; Engelen, Steven; Bentum, Marinus Jan; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection

  15. Giant Radio Flare of Cygnus X-3 in September 2016

    Science.gov (United States)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.

    2017-06-01

    In the long-term multi-frequency monitoring program of the microquasars with RATAN-600 we discovered the giant flare from X-ray binary Cyg X-3 on 13 September 2016. It happened after 2000 days of the 'quiescent state' of the source passed after the former giant flare (˜18 Jy) in March 2011. We have found that during this quiet period the hard X-ray flux (Swift/BAT, 15-50 keV) and radio flux (RATAN-600, 11 GHz) have been strongly anti-correlated. Both radio flares occurred after transitions of the microquasar to a 'hypersoft' X-ray state that occurred in February 2011 and in the end of August 2016. The giant flare was predicted by us in the first ATel (Trushkin et al. (2016)). Indeed after dramatic decrease of the hard X-ray Swift 15-50 keV flux and RATAN 4- 11 GHz fluxes (a 'quenched state') a small flare (0.7 Jy at 4-11 GHz) developed on MJD 57632 and then on MJD 57644.5 almost simultaneously with X-rays radio flux rose from 0.01 to 15 Jy at 4.6 GHz during few days. The rise of the flaring flux is well fitted by a exponential law that could be a initial phase of the relativistic electrons generation by internal shock waves in the jets. Initially spectra were optically thick at frequencies lower 2 GHz and optically thin at frequencies higher 8 GHz with typical spectral index about -0.5. After maximum of the flare radio fluxes at all frequencies faded out with exponential law.

  16. Physics of magnetic flux ropes. Geophysical Monograph, No. 58

    International Nuclear Information System (INIS)

    Russell, C.T.; Priest, E.R.; Lee, L.C.

    1990-01-01

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations

  17. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    Science.gov (United States)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  18. Solar dynamics influence on the atmospheric ozone

    International Nuclear Information System (INIS)

    Gogosheva, T.; Grigorieva, V.; Mendeva, B.; Krastev, D.; Petkov, B.

    2007-01-01

    A response of the atmospheric ozone to the solar dynamics has been studied using the total ozone content data, taken from the satellite experiments GOME on ERS-2 and TOMS-EP together with data obtained from the ground-based spectrophotometer Photon operating in Stara Zagora, Bulgaria during the period 1999-2005. We also use data from surface ozone observations performed in Sofia, Bulgaria. The solar activity was characterized by the sunspot daily numbers W, the solar radio flux at 10.7 cm (F10.7) and the MgII wing-to-core ratio solar index. The impact of the solar activity on the total ozone has been investigated analysing the ozone response to sharp changes of these parameters. Some of the examined cases showed a positive correlation between the ozone and the solar parameters, however, a negative correlation in other cases was found. There were some cases when the sharp increases of the solar activity did not provoke any ozone changes. The solar radiation changes during an eclipse can be considered a particular case of the solar dynamics as this event causes a sharp change of irradiance within a comparatively short time interval. The results of both - the total and surface ozone measurements carried out during the eclipses on 11 August 1999, 31 May 2003 and 29 March 2006 are presented. It was found that the atmospheric ozone behavior shows strong response to the fast solar radiation changes which take place during solar eclipse. (authors)

  19. STEREO-Wind radio positioning of an unusually slow drifting event

    Czech Academy of Sciences Publication Activity Database

    Martínez-Oliveros, J. C.; Raftery, C.; Bain, H.; Liu, Y.; Pulupa, M.; Saint-Hilaire, P.; Higgins, P.; Krupař, Vratislav; Krucker, S.; Bale, S. D.

    2015-01-01

    Roč. 290, č. 3 (2015), s. 891-901 ISSN 0038-0938 R&D Projects: GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : solar radio emission * solar radio bursts, type II Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.862, year: 2015 http://link.springer.com/article/10.1007/s11207-014-0638-z

  20. Meteor trajectory estimation from radio meteor observations

    Science.gov (United States)

    Kákona, J.

    2016-01-01

    Radio meteor observation techniques are generally accepted as meteor counting methods useful mainly for meteor flux detection. Due to the technical progress in radio engineering and electronics a construction of a radio meteor detection network with software defined receivers has become possible. These receivers could be precisely time synchronized and could obtain data which provide us with more information than just the meteor count. We present a technique which is able to compute a meteor trajectory from the data recorded by multiple radio stations.

  1. Response of earth's atmosphere to increases in solar flux and implications for loss of water from Venus

    International Nuclear Information System (INIS)

    Kasting, J.F.; Pollack, J.B.; Ackerman, T.P.

    1984-01-01

    A one-dimensional radiative-convective model is used to compute temperature and water vapor profiles as functions of solar flux for an earthlike atmosphere. The troposphere is assumed to be fully saturated, with a moist adiabatic lapse rate, and changes in cloudiness are neglected. Predicted surface temperatures increase monotonically from -1 to 111 C as the solar flux is increased from 0.81 to 1.45 times its present value. The results imply that the surface temperature of a primitive water-rich Venus should have been at least 80-100 C and may have been much higher. Water vapor should have been a major atmospheric constituent at all altitudes, leading to the rapid hydrodynamic escape of hydrogen. The oxygen left behind by this process was presumably consumed by reactions with reduced minerals in the crust. 43 references

  2. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar Raja, K.; Ramesh, R., E-mail: sasikumar@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India)

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  3. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    OpenAIRE

    Haverkorn, Marijke; Spangler, Steven R.

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurem...

  4. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    Science.gov (United States)

    Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.

    2017-12-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Effects of a Deep Mixed Shell on Solar g-Modes, p-Modes, and Neutrino Flux

    Science.gov (United States)

    Wolff, Charles L.

    2009-08-01

    A mixed-shell model that reflects g-modes away from the Sun's center is developed further by calibrating its parameters and evaluating a mixing mechanism: buoyancy. The shell roughly doubles g-mode oscillation periods and would explain why there is no definitive detection of their periods. But the shell has only minor effects on most p-modes. The model provides a mechanism for causing short-term fluctuations in neutrino flux and makes plausible the correlations between this flux and solar activity levels. Relations are derived for a shell heated asymmetrically by transient increases in nuclear burning in small "hot spots." The size of these spots and the timing of a heating event are governed by sets(ell) of standing asymptotic g-modes, coupled by a maximal principle that greatly enhances their excitation and concentrates power toward the equator, assisting the detection of higher-ell sets. Signals from all sets, except one, in the range 2 energy to mix the corresponding shell in a standard solar model in Lt107 yr.

  6. Solar-geophysical data number 391. Part I. Prompt reports. Data for February 1977--January 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1977-03-01

    This prompt report provides data for February 1977 on alert periods, daily solar indices, solar flares, solar radio waves, solar X-ray radiation, coronal holes, solar wind measurements, spacecraft observations, inferred IP magnetic field polarities and mean solar magnetic field. It also provides data for January 1977 on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  7. A Large-scale Plume in an X-class Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E. [Physics Department, Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ, 07102-1982 (United States)

    2017-08-20

    Ever-increasing multi-frequency imaging of solar observations suggests that solar flares often involve more than one magnetic fluxtube. Some of the fluxtubes are closed, while others can contain open fields. The relative proportion of nonthermal electrons among those distinct loops is highly important for understanding energy release, particle acceleration, and transport. The access of nonthermal electrons to the open field is also important because the open field facilitates the solar energetic particle (SEP) escape from the flaring site, and thus controls the SEP fluxes in the solar system, both directly and as seed particles for further acceleration. The large-scale fluxtubes are often filled with a tenuous plasma, which is difficult to detect in either EUV or X-ray wavelengths; however, they can dominate at low radio frequencies, where a modest component of nonthermal electrons can render the source optically thick and, thus, bright enough to be observed. Here we report the detection of a large-scale “plume” at the impulsive phase of an X-class solar flare, SOL2001-08-25T16:23, using multi-frequency radio data from Owens Valley Solar Array. To quantify the flare’s spatial structure, we employ 3D modeling utilizing force-free-field extrapolations from the line of sight SOHO /MDI magnetograms with our modeling tool GX-Simulator. We found that a significant fraction of the nonthermal electrons that accelerated at the flare site low in the corona escapes to the plume, which contains both closed and open fields. We propose that the proportion between the closed and open fields at the plume is what determines the SEP population escaping into interplanetary space.

  8. Solar-geophysical data number 389. Part I. Prompt reports. Data for December 1976--November 1976

    International Nuclear Information System (INIS)

    Leighton, H.

    1977-01-01

    This prompt report provides December 1976 and November 1976 data on alert periods, daily solar indices, solar flares, solar radio waves, solar wind measurements, solar x-ray radiation, coronal holes, and inferred IP magnetic field polarities for December. It also provides data on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices for November

  9. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  10. Diffuse infrared emission from the galaxy. I. Solar neighborhood

    International Nuclear Information System (INIS)

    Boulanger, F.; Perault, M.

    1988-01-01

    A large-scale study of the infrared emission originating in the solar neighborhood based on IRAS data is presented. Away from heating sources and outside molecular clouds, the infrared emission from the ISM is well-correlated with the column density of H I gas. The interstellar radiation field and the dust abundance are roughly uniform on scales of the order of 100 pc. The extinction in the polar caps is discussed, and the origin of the infrared emission from the solar neighborhood is investigated. It is shown that stars younger than a few 100 million yr are responsible for two-thirds of the infrared emission from the solar neighborhood, but that most of this emission comes from interstellar matter not associated with current star formation. The correlation between infrared and radio-continuum fluxes of galaxies breaks down on the scale of a few hundred pc around regions of star formation. 81 references

  11. Propagation of energetic electrons in the solar corona observed with LOFAR

    Science.gov (United States)

    Breitling, F.

    2017-06-01

    This work reports about new high-resolution imaging and spectroscopic observations of solar type III radio bursts at low radio frequencies in the range from 30 to 80 MHz. Solar type III radio bursts are understood as result of the beam-plasma interaction of electron beams in the corona. The Sun provides a unique opportunity to study these plasma processes of an active star. Its activity appears in eruptive events like flares, coronal mass ejections and radio bursts which are all accompanied by enhanced radio emission. Therefore solar radio emission carries important information about plasma processes associated with the Sun's activity. Moreover, the Sun's atmosphere is a unique plasma laboratory with plasma processes under conditions not found in terrestrial laboratories. Because of the Sun's proximity to Earth, it can be studied in greater detail than any other star but new knowledge about the Sun can be transfer to them. This "solar stellar connection" is important for the understanding of processes on other stars. The novel radio interferometer LOFAR provides imaging and spectroscopic capabilities to study these processes at low frequencies. Here it was used for solar observations. LOFAR, the characteristics of its solar data and the processing and analysis of the latter with the Solar Imaging Pipeline and Solar Data Center are described. The Solar Imaging Pipeline is the central software that allows using LOFAR for solar observations. So its development was necessary for the analysis of solar LOFAR data and realized here. Moreover a new density model with heat conduction and Alfvén waves was developed that provides the distance of radio bursts to the Sun from dynamic radio spectra. Its application to the dynamic spectrum of a type III burst observed on March 16, 2016 by LOFAR shows a nonuniform radial propagation velocity of the radio emission. The analysis of an imaging observation of type III bursts on June 23, 2012 resolves a burst as bright, compact region

  12. The Coulomb dissociation of 8B and the 8B solar neutrino flux

    International Nuclear Information System (INIS)

    Gai, M.

    1994-01-01

    The Coulomb Dissociation of 8 B was measured using 46.5 MeV/u 8 B radioactive beams from the RIKEN-RIPS Radioactive Beam Facility, in an attempt to measure the 7 Be(p,γ) 8 B reaction at low energy, of relevance to estimating the 8 B solar neutrino flux. The experimental setup is discussed and the results are consistent with the lower value of S 17 measured by Filippone et al and Vaughn et al

  13. Radio emission of the sun and planets

    CERN Document Server

    Zheleznyakov, V V

    1970-01-01

    International Series of Monographs in Natural Philosophy, Volume 25: Radio Emission of the Sun and Planets presents the origin of the radio emission of the planets. This book examines the outstanding triumphs achieved by radio astronomy of the solar system. Comprised of 10 chapters, this volume begins with an overview of the physical conditions in the upper layers of the Sun, the Moon, and the planets. This text then examines the three characteristics of radio emission, namely, the frequency spectrum, the polarization, and the angular spectrum. Other chapters consider the measurements of the i

  14. Automatic Web-Based, Radio-Network System To Monitor And Control Equipment For Investigating Gas Flux At Water - Air Interfaces

    Science.gov (United States)

    Duc, N. T.; Silverstein, S.; Wik, M.; Beckman, P.; Crill, P. M.; Bastviken, D.; Varner, R. K.

    2015-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks on natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive automatic device that includes an easily mobile diffusive flux chamber and a bubble counter, all in one. Besides a function of automatically collecting gas samples for subsequent various analyses in the laboratory, this device utilizes low cost CO2 sensor (SenseAir, Sweden) and CH4 sensor (Figaro, Japan) to measure GHG fluxes. To measure the spatial variability of emissions, each of the devices is equipped with an XBee module to enable a local radio communication DigiMesh network for time synchronization and data readout at a server-controller station on the lakeshore. Software of this server-controller is operated on a low cost Raspberry Pi computer which has a 3G connection for remote monitoring - controlling functions from anywhere in the world. From field studies in Abisko, Sweden in summer 2014 and 2015, the system has resulted in measurements of GHG fluxes comparable to manual methods. In addition, the deployments have shown the advantage of a low cost automatic network system to study GHG fluxes on lakes in remote locations.

  15. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  16. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    Science.gov (United States)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  17. HELIOSEISMIC INVESTIGATION OF EMERGING MAGNETIC FLUX IN THE SOLAR CONVECTION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ilonidis, Stathis; Zhao, Junwei; Hartlep, Thomas, E-mail: ilonidis@stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2013-11-10

    Helioseismology is capable of detecting signatures of emerging sunspot regions in the solar interior before they appear at the surface. Here we present measurements that show the rising motion of the acoustic travel-time perturbation signatures in the deep convection zone, and study the possible physical origin of these signatures using observational and numerical simulation data. Our results show that the detected signatures first appear at deeper layers and then rise, with velocities of up to 1 km s{sup –1}, to shallower regions. We find evidences that these signatures may not be caused by subsurface flows or wave-speed perturbations, but are associated with acoustic power variations and frequency shifts of the cross-covariance function measured in the emerging-flux region. We also confirm with the use of numerical simulation data that phase travel-time shifts can be associated with frequency shifts related to acoustic power variations. The results of this work reveal the rising motion of magnetic flux in the deep convection zone and explain the large amplitude of the detected perturbation signatures.

  18. HELIOSEISMIC INVESTIGATION OF EMERGING MAGNETIC FLUX IN THE SOLAR CONVECTION ZONE

    International Nuclear Information System (INIS)

    Ilonidis, Stathis; Zhao, Junwei; Hartlep, Thomas

    2013-01-01

    Helioseismology is capable of detecting signatures of emerging sunspot regions in the solar interior before they appear at the surface. Here we present measurements that show the rising motion of the acoustic travel-time perturbation signatures in the deep convection zone, and study the possible physical origin of these signatures using observational and numerical simulation data. Our results show that the detected signatures first appear at deeper layers and then rise, with velocities of up to 1 km s –1 , to shallower regions. We find evidences that these signatures may not be caused by subsurface flows or wave-speed perturbations, but are associated with acoustic power variations and frequency shifts of the cross-covariance function measured in the emerging-flux region. We also confirm with the use of numerical simulation data that phase travel-time shifts can be associated with frequency shifts related to acoustic power variations. The results of this work reveal the rising motion of magnetic flux in the deep convection zone and explain the large amplitude of the detected perturbation signatures

  19. Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding

    Directory of Open Access Journals (Sweden)

    A. Rouillard

    2004-12-01

    Full Text Available An understanding of how the heliosphere modulates galactic cosmic ray (GCR fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth's environment and organisms and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68-year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux. Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields

  20. Improvement in the Accuracy of Flux Measurement of Radio Sources by Exploiting an Arithmetic Pattern in Photon Bunching Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lieu, Richard [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States)

    2017-07-20

    A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.

  1. Improvement in the accuracy of flux measurement of radio sources by exploiting an arithmetic pattern in photon bunching noise

    Science.gov (United States)

    Lieu, Richard

    2018-01-01

    A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the bolometric flux measurement of a radio source.

  2. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  3. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    Science.gov (United States)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  4. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  5. Summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The diagrams in this section of the publication illustrate the summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow observed in Japan. For convenience, the observational results are arranged by the solar rotation number. The aim of this illustration is to disseminate an outline of daily events observed in Japan for the benefit of active research workers who plan to make detailed study of the specific solar and terrestrial events. Therefore, the illustrations do not show all observational results in Japan but only representative ones at some key stations in Japan. They will suffice for the present purpose. The method of illustration shown in the instruction on the next page is still a preliminary one, and it is subject to change resulting from the kind advice of the users of this part of the publication. We welcome any advice for making the data arrangement and expression better and more convenient. (auth.)

  6. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  7. Observations of radio sources or 'What happened to radio stars?'

    International Nuclear Information System (INIS)

    Conway, R.G.

    1988-01-01

    A review is given of the early history of the interpretation of the radiation mechanisms following the discovery of the discrete radio sources, both galactic and extragalactic. The conflicting views which prevailed in the early fifties are discussed in some detail: some advocated thermal radiation from stars relatively close by, and others proposed the alternative that synchrotron radiation was responsible for the majority of the radio sources. Attention is drawn to the importance of high-resolution interferometry, whereby the structure of many of the sources could be obtained. Red-shift measurements and spectral distributions also played a part in determining distances and flux strengths at the sources. (U.K.)

  8. Simultaneous EUV and radio observations of bidirectional plasmoids ejection during magnetic reconnection

    Science.gov (United States)

    Kumar, Pankaj; Cho, Kyung-Suk

    2013-09-01

    We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The extreme ultraviolet (EUV) images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare's occurrence. The kinked filament rises up slowly, and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward-moving plasmoids in the solar corona. The EUV images from AIA 94 Å reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward- and downward-moving plasmoids are ~152-362 and ~83-254 km s-1, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction or coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals a hot flux-rope structure (visible in AIA 131 and 94 Å) prior to the flare initiation and ejection of the multitemperature plasmoids during the flare impulsive phase. Movie is available in electronic form at http://www.aanda.org

  9. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  10. Do Unification Models Explain the X-ray Properties of Radio Sources?

    NARCIS (Netherlands)

    Wilkes, Belinda J.; Kuraszkiewicz, J.; Haas, M.; Barthel, P.; Willner, S. P.; Leipski, C.; Worrall, D.; Birkinshaw, M.; Antonucci, R. R.; Ashby, M.; Chini, R.; Fazio, G. G.; Lawrence, C. R.; Ogle, P. M.; Schulz, B.

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (1 radio selected (and so relatively unbiased in orientation), 3CRR radio sources (21 quasars, 17 narrow line radio galaxies, NLRGs) support Unification models and lead to estimates of the covering

  11. ARTIP: Automated Radio Telescope Image Processing Pipeline

    Science.gov (United States)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  12. Non-uniform temperature field measurement and simulation of a radio telescope’s main reflector under solar radiation

    International Nuclear Information System (INIS)

    Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao

    2017-01-01

    Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  13. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  14. Frequency agile solar radiotelescope

    Science.gov (United States)

    Bastian, Tim S.

    2003-02-01

    The Frequency Agile Solar Radiotelescope (FASR) is a solar-dedicated, ground based, interferometric array optimized to perform broadband imaging spectroscopy from ~ 0.1-30+ GHz. It will do so with the angular, spectral, and temporal resolution required to exploit radio emission from the Sun as a diagnostic of the wide variety of astrophysical processes that occur there. FASR represents a major advance over existing radioheliographs, and is expected to remain the world's premier solar radio instrument for two decades or more after completion. FASR will be a versatile and powerful instrument, providing unique data to a broad users community. Solar, solar-terrestrial, and space physicists will exploit FASR to attack a broad science program, including problems of fundamental interest: coronal magnetography, solar flares and particle acceleration, drivers of space weather, and the thermal structure and dynamics of the solar atmosphere. A design study and implementation planning are underway. Recent progress is reviewed here.

  15. SURVEYING THE DYNAMIC RADIO SKY WITH THE LONG WAVELENGTH DEMONSTRATOR ARRAY

    International Nuclear Information System (INIS)

    Lazio, T. Joseph W.; Clarke, Tracy E.; Lane, W. M.; Gross, C.; Kassim, N. E.; Hicks, B.; Polisensky, E.; Stewart, K.; Ray, P. S.; Wood, D.; York, J. A.; Kerkhoff, A.; Dalal, N. Paravastu; Cohen, A. S.; Erickson, W. C.

    2010-01-01

    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10 -2 events yr -1 deg -2 , having a pulse energy density ∼>1.5 x 10 -20 J m -2 Hz -1 at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.

  16. Analysis of the conditions for the venusian night ionosphere's formation according to radio-transillumination data

    International Nuclear Information System (INIS)

    Gavrik, A.L.; Osmolovskii, I.K.; Samoznaev, L.N.

    1987-01-01

    On the basis of radio-occulation data obtained in a period of low solar activity, the article examines the three-component model (O + , O 2 + , NO + ) of the Venusian night ionosphere's formation with two ionization maxima. The source of the initial ions they have assumed to be a flux of O + plasma overflowing from the day side to the night side and diffusing downward. Numerical computations of a system of equations of continuity for the principal ions and their comparison with the experimental profiles of electron concentration make it possible to find altitude distributions of temperature for the neutral and the ionized components of the ionosphere

  17. Solar--geophysical data number 398, October 1977. Part I. (Prompt reports). Data for September 1977--August 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1977-10-01

    This prompt report provides data for September 1977 on alert period, daily solar indices, solar flares, solar radio waves, coronal holes, solar x-ray radiation, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, and solar proton event (Provisional). It also provides data for August 1977 on daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  18. Solar--geophysical data number 402, February 1978. Part I. Prompt reports. Data for January 1978--December 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-02-01

    This prompt report provides data for January 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, spacecraft observations, inferred IP magnetic field polarities, mean solar magnetic field and solar wind measurements. It also provides data for December 1977 on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  19. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States)

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  20. Solar-Geophysical Data Number 538, June 1989. Part 1 (prompt reports). Data for May, April 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-06-01

    Contents include: detailed index for 1988-1989; data for May 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for April 1989--(solar-active regions, sudden ionospheric disturbances, solar radio-spectral observations, geomagnetic indices, radio-propagation indices); late data--(solar active regions--H-alpha synoptic charts 1813 March 1989, solar radio emission--Nancay 169-Mhz solar interferometric chart April 1989, cosmic rays climax and Huancayo--March 1989, geomagnetic indices-sudden commencements/solar flare effects February 1989)

  1. A search for radio emission from flare stars in the Pleiades

    Science.gov (United States)

    Bastian, T. S.; Dulk, G. A.; Slee, O. B.

    1988-01-01

    The VLA has been used to search for radio emission from flare stars in the Pleiades. Two observational strategies were employed. First, about 1/2 sq deg of cluster, containing about 40 known flare stars, was mapped at 1.4 GHz at two epochs. More than 120 sources with flux densities greater than 0.3 mJy exist on the maps. Detailed analysis shows that all but two of these sources are probably extragalactic. The two sources identified as stellar are probably not Pleiades members as judged by their proper motions; rather, based on their colors and magnitudes, they seem to be foreground G stars. One is a known X-ray source. The second observational strategy, where five rapidly rotating flare stars were observed at three frequencies, yielded no detections. The 0.3 mJy flux-density limit of this survey is such that only the most intense outbursts of flare stars in the solar neighborhood could have been detected if those stars were at the distance of the Pleiades.

  2. DIFFERENCES BETWEEN RADIO-LOUD AND RADIO-QUIET γ -RAY PULSARS AS REVEALED BY FERMI

    Energy Technology Data Exchange (ETDEWEB)

    Hui, C. Y.; Lee, Jongsu [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Takata, J. [Institute of Particle physics and Astronomy, Huazhong University of Science and Technology (China); Ng, C. W.; Cheng, K. S., E-mail: cyhui@cnu.ac.kr, E-mail: takata@hust.edu.cn [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-01-10

    By comparing the properties of non-recycled radio-loud γ -ray pulsars and radio-quiet γ -ray pulsars, we have searched for the differences between these two populations. We found that the γ -ray spectral curvature of radio-quiet pulsars can be larger than that of radio-loud pulsars. Based on the full sample of non-recycled γ -ray pulsars, their distributions of the magnetic field strength at the light cylinder are also found to be different. We note that this might result from an observational bias. By reexamining the previously reported difference of γ -ray-to-X-ray flux ratios, we found that the significance can be hampered by their statistical uncertainties. In the context of the outer gap model, we discuss the expected properties of these two populations and compare with the possible differences that are identified in our analysis.

  3. Solar-geophysical data number 410, October 1978, Part I (Prompt reports). Data for September 1978, August 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-10-01

    This prompt report provides data for September 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field and Boulder geomagnetic substorm log. It also provides data for August 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  4. New and precise construction of the local interstellar electron spectrum from the radio background and an application to the solar modulation of cosmic rays showing an incompatability of the electron and nuclei modulation using the spherically symmetric Fokker-Planck equation

    International Nuclear Information System (INIS)

    Rockstroh, J.M.

    1977-01-01

    Cosmic-ray electrons generate the observed radio-frequency background. Previous attempts in the literature to reconcile quantitatively the measured radio-frequency intensity with the intensity deduced from the electron spectrum measured at earth have culminated in the problem that to get the respective emissivities to agree, an unacceptably high interstellar B field must be chosen. In the light of new experimental data on the emissivity as deduced from H II region studies and on the functional dependence of the diffusion coefficient with solar radius and particle rigidity, the assumptions under which the electron emissivity comparison has been made have been reexamined closely. The paradox between predicted and measured emissivity was resolved by ascribing to the magnetic fields of the galaxy a distribution of magnetic field strengths. From modified synchrotron formulas, the interstellar electron spectrum has been constructed from the radio frequency emission data with greatly improved precision. The interstellar electron spectrum has been determined independently of the solar modulation and provides, therefore, an estimate of the absolute depth of the electron modulation. Then the measured electron, proton, and helium-nuclei fluxes were systematically compared to the predictions of the spherically symmetric Fokker-Planck equation using the electron modulation as a base. A previously unnoticed non-tracking of the modulation parameters was observed during the recent recovery that did not occur during the 1965 to 1969 period. Although the argument could be presented just as well by attributing the anomaly to the nuclei, the discussion here arbitrarily tailored it to the electrons, and this new phenomenon was named, the modulation reluctance of the cosmic-ray electrons

  5. Solar-geophysical data number 408, August 1978, Part I. (Prompt reports). Data for July 1978, June 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-08-01

    This prompt report provides data for July 1978 on: alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, spacecraft observations, Boulder geomagnetic substorm log, and energetic solar particles. It also provides data for June 1978 on: daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  6. A Study of Solar Flare Effects on Mid and High Latitude Radio Wave Propagation using SuperDARN.

    Science.gov (United States)

    Ruohoniemi, J. M.; Chakraborty, S.; Baker, J. B.

    2017-12-01

    Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere, which is sensitive to solar X-ray flares. The Super Dual Auroral Radar Network (SuperDARN), whose working principle is dependent on trans-ionospheric radio communication, uses HF radio waves to remotely sense the ionosphere. The backscatter returns from the terrestrial surface (also known as ground-scatter) transit the ionosphere four times and simulate the operation of an HF communications link. SuperDARN backscatter signal properties are altered (strongly attenuated and changes apparent phase) during a sudden ionospheric disturbance following a solar flare, commonly known as Short-Wave Fadeout or SWF. During an SWF the number of SuperDARN backscatter echoes drops suddenly (≈1 min) and sharply, often to near zero, and recovers within 30 minutes to an hour. In this study HF propagation data (SuperDARN backscatter) obtained during SWF events are analyzed for the purpose of validating and improving the performance of HF absorption models, such as, Space Weather Prediction Center (SWPC) D-region Absorption model (DRAP) and CCMC physics based AbbyNormal model. We will also present preliminary results from a physics based model for the mid and high latitude ionospheric response to flare-driven space weather anomalies, which can be used to estimate different physical parameters of the ionosphere such as electron density, collision frequency, absorption coefficients, response time of D-region etc.

  7. Optical identifications of flat-spectrum radio sources

    International Nuclear Information System (INIS)

    Condon, J.J.; Condon, M.A.; Broderick, J.J.; Davis, M.M.

    1983-01-01

    A complete sample of radio sources with S> or =0.3 Jy at 1400 MHz, +24 0 0 , and low-frequency spectral indices α(408, 1400) or =+0.5 are usually in empty fields. The lower limits that can be assigned to the radio-optical spectral indices α/sub RO/ of these sources are significantly higher than the median α/sub RO/ of the sources with flat high-frequency spectra, so the optical characteristics of the two classes of radio source are intrinsically different. The radio and optical fluxes of flat-spectrum QSO's appear to be correlated, at least when averaged over 10 2 --10 3 yr

  8. Initiation of CMEs by Magnetic Flux Emergence

    Indian Academy of Sciences (India)

    The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axisymmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar ...

  9. Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux

    International Nuclear Information System (INIS)

    Nina, A.; Čadež, V.; Srećković, V.; Šulić, D.

    2012-01-01

    In this paper, we study the influence of solar flares on electron concentration in the terrestrial ionospheric D-region by analyzing the amplitude and phase time variations of very low frequency (VLF) radio waves emitted by DHO transmitter (Germany) and recorded by the AWESOME receiver in Belgrade (Serbia) in real time. The rise of photo-ionization rate in the ionospheric D-region is a typical consequence of solar flare activity as recorded by GOES-15 satellite for the event on March 24, 2011 between 12:01 UT and 12:11 UT. At altitudes around 70 km, the photo-ionization and recombination are the dominant electron gain and electron loss processes, respectively. We analyze the relative contribution of each of these two processes in the resulting electron concentration variation in perturbed ionosphere.

  10. Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux

    Energy Technology Data Exchange (ETDEWEB)

    Nina, A., E-mail: sandrast@ipb.ac.rs [Institute of Physics, University of Belgrade, P.O. Box 57, Belgrade (Serbia); Cadez, V. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Sreckovic, V. [Institute of Physics, University of Belgrade, P.O. Box 57, Belgrade (Serbia); Sulic, D. [Faculty of Ecology and Environmental Protection, Union - Nikola Tesla University, Cara Dusana 62, 11000 Belgrade (Serbia)

    2012-05-15

    In this paper, we study the influence of solar flares on electron concentration in the terrestrial ionospheric D-region by analyzing the amplitude and phase time variations of very low frequency (VLF) radio waves emitted by DHO transmitter (Germany) and recorded by the AWESOME receiver in Belgrade (Serbia) in real time. The rise of photo-ionization rate in the ionospheric D-region is a typical consequence of solar flare activity as recorded by GOES-15 satellite for the event on March 24, 2011 between 12:01 UT and 12:11 UT. At altitudes around 70 km, the photo-ionization and recombination are the dominant electron gain and electron loss processes, respectively. We analyze the relative contribution of each of these two processes in the resulting electron concentration variation in perturbed ionosphere.

  11. The Detectability of Radio Auroral Emission from Proxima b

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Loeb, Abraham [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-11-01

    Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According to recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.

  12. Solar--geophysical data number 406, June 1978, Part I. (prompt reports). Data for May 1978, April 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-06-01

    This prompt report provides data for May 1978 on: alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, inferred IP Magnetic field polarities, mean solar magnetic field, solar wind measurements, geomagnetic substorms, magnetograms of geomagnetic storm 30 April - 4 May, and energetic solar particles. It also provides data for April 1978 on: daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation

  13. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia

    Directory of Open Access Journals (Sweden)

    N. Pertsev

    2008-05-01

    Full Text Available Ground-based spectrographical observations of infrared emissions of the mesopause region have been made at Zvenigorod Observatory (56 N, 37 E, located near Moscow, Russia, for 670 nights of 2000–2006. The characteristics of the hydroxyl and molecular oxygen (865 nm airglow, heights of which correspond to 87 and 94 km, are analyzed for finding their response to solar activity. The measured data exhibit a response to the F10.7 solar radio flux change, which is 30%–40%/100 sfu in intensities of the emissions and about 4.5 K/100 sfu in hydroxyl temperature. Seasonal variations of the airglow response to solar activity are observed. In winter it is more significant than in summer. Mechanisms that may provide an explanation of the solar influence on intensities of the emissions and temperature are considered. Radiative processes not involving atmospheric dynamics appear insufficient to explain the observed effect.

  14. Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia

    Directory of Open Access Journals (Sweden)

    N. Pertsev

    2008-05-01

    Full Text Available Ground-based spectrographical observations of infrared emissions of the mesopause region have been made at Zvenigorod Observatory (56 N, 37 E, located near Moscow, Russia, for 670 nights of 2000–2006. The characteristics of the hydroxyl and molecular oxygen (865 nm airglow, heights of which correspond to 87 and 94 km, are analyzed for finding their response to solar activity. The measured data exhibit a response to the F10.7 solar radio flux change, which is 30%–40%/100 sfu in intensities of the emissions and about 4.5 K/100 sfu in hydroxyl temperature. Seasonal variations of the airglow response to solar activity are observed. In winter it is more significant than in summer. Mechanisms that may provide an explanation of the solar influence on intensities of the emissions and temperature are considered. Radiative processes not involving atmospheric dynamics appear insufficient to explain the observed effect.

  15. Parsec-Scale Radio Properties of Gamma-ray Bright Blazars

    Science.gov (United States)

    Linford, Justin

    2012-01-01

    The parsec-scale radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been investigated using observations with the Very Long Baseline Array (VLBA). Comparisons between LAT and non-LAT detected samples were made using both archival and contemporaneous data. In total, 244 sources were used in the LAT-detected sample. This very large, radio flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. It has been found that LAT-detected BL Lac objects are very similar to the non-LAT BL Lac objects in most properties, although LAT BL Lac objects may have longer jets. The LAT flat spectrum radio quasars (FSRQs) are significantly different from non-LAT FSRQs and are likely extreme members of the FSRQ population. Archival radio data indicated that there was no significant correlation between radio flux density and gamma-ray flux, especially at lower flux levels. However, contemporaneous observations showed a strong correlation. Most of the differences between the LAT and non-LAT populations are related to the cores of the sources, indicating that the gamma-ray emission may originate near the base of the jets (i.e., within a few pc of the central engine). There is some indication that LAT-detected sources may have larger jet opening angles than the non-LAT sources. Strong core polarization is significantly more common among the LAT sources, suggesting that gamma-ray emission is related to strong, uniform magnetic fields at the base of the jets of the blazars. Observations of sources in two epochs indicate that core fractional polarization was higher when the objects were detected by the LAT. Included in our sample are several non-blazar AGN such as 3C84, M82, and NGC 6251.

  16. Teaching radio astrophysics the hand-on way

    Science.gov (United States)

    Joshi, Bhal Chandra

    observations of neutral hydrogen from Milky Way and solar flux moni-toring. Such experiments are also useful to familiarize the students with astronomy jargon, which many times becomes an impediment in connecting them with research. This program also aims to develop low cost radio telescopes with involvement of engineering students and the presentation aims at sharing the experience in this program. Future possibilities bridging the gap between the research institutions, such as ours, and the student population at large are also discussed.

  17. Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches

    Energy Technology Data Exchange (ETDEWEB)

    Argüelles, C.A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA (United States); De Wasseige, G. [Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Fedynitch, A. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Jones, B.J.P., E-mail: caad@mit.edu, E-mail: gdewasse@vub.ac.be, E-mail: anatoli.fedynitch@desy.de, E-mail: ben.jones@uta.edu [University of Texas at Arlington, 108 Science Hall, 502 Yates St, Arlington TX (United States)

    2017-07-01

    Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP self-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP self-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric shower evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.

  18. A STATISTICAL STUDY OF SOLAR ELECTRON EVENTS OVER ONE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Wang Linghua; Lin, R. P.; Krucker, Säm; Mason, Glenn M.

    2012-01-01

    We survey the statistical properties of 1191 solar electron events observed by the WIND 3DP instrument from 300 keV for a solar cycle (1995 through 2005). After taking into account times of high background, the corrected occurrence frequency of solar electron events versus peak flux exhibits a power-law distribution over three orders of magnitude with exponents between –1.0 and –1.6 for different years, comparable to the frequency distribution of solar proton events, microflares, and coronal mass ejections (CMEs), but significantly flatter than that of soft X-ray (SXR) flares. At 40 keV (2.8 keV), the integrated occurrence rate above ∼0.29 (∼330) cm –2 s –1 sr –1 keV –1 near 1 AU is ∼1000 year –1 (∼600 year –1 ) at solar maximum and ∼35 year –1 (∼25 year –1 ) at solar minimum, about an order of magnitude larger than the observed occurrence rate. We find these events typically extend over ∼45° in longitude, implying the occurrence rate over the whole Sun is ∼10 4 year –1 near solar maximum. The observed solar electron events have a 98.75% association with type III radio bursts, suggesting all type III bursts may be associated with a solar electron event. They have a close (∼76%) association with the presence of low-energy (∼0.02-2 MeV nucleon –1 ), 3 He-rich ( 3 He/ 4 He ≥ 0.01) ion emissions measured by the ACE ULEIS instrument. For these electron events, only ∼35% are associated with a reported GOES SXR flare, but ∼60% appear to be associated with a CME, with ∼50% of these CMEs being narrow. These electrons are often detected down to below 1 keV, indicating a source high in the corona.

  19. Ionospheric Change and Solar EUV Irradiance

    Science.gov (United States)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  20. The velocities of type II solar radio bursts

    International Nuclear Information System (INIS)

    Tlamicha, A.; Karlicky, M.

    1976-01-01

    A list is presented of type II radio bursts identified at Ondrejov between January 1973 and December 1974 in the frequency range of the dynamic spectrum 70 to 810 MHz. The velocities of shock waves in the individual cases of type II bursts are given using the fourfold Newkirk model. Some problems associated with type II radio bursts and with the propagation of the shock wave into the interplanetary space and into the region of the Earth are also discussed. (author)

  1. Solar-Geophysical Data Number 539, July 1989. Part 1 (prompt reports). Data for June, May 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-07-01

    Contents include: detailed index for 1988-1989; data for June 1989 -- IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for May 1989 -- solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data -- solar radio emission (Nancay 169-MHz solar interferometric chart, May 1989)

  2. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  3. Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes

    Science.gov (United States)

    Romero, Manuel; González-Aguilar, José; Luque, Salvador

    2017-06-01

    The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.

  4. Resonators for magnetohydrodynamic waves in the solar corona: radioemission modulation effect

    International Nuclear Information System (INIS)

    Zajtsev, V.V.; Stepanov, A.V.

    1982-01-01

    Data on type 2 solar radio bursts are analyzed in the framework of a model of radio emission production by shock waves. Type 2 solar radio bursts data are shown to suggest the existence of Alfven velocity minimum at a height of the one solar radius in the corona. The domain of a low Alfven velocity is a resonator for the fast magnetosonic waves. The eigenmodes of the resonator are determined. The main mode period is about a few minutes. Fast modes in the resonator can be amplified by energetic ion beams at the Cherenkov resonance. The modulation of meter solar radio emission with a period of about a few minutes can be explained by radiowave propagation through the MHD-resonator

  5. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  6. The importance of source positions during radio fine structure observations

    International Nuclear Information System (INIS)

    Chernov, Guennadi P.; Yan Yi-Hua; Fu Qi-Jun

    2014-01-01

    The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures (ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs (the double plasma resonance (DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example, the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources. (mini-volume: solar radiophysics — recent results on observations and theories)

  7. SOLAR PHOTOIONIZATION RATES FOR INTERSTELLAR NEUTRALS IN THE INNER HELIOSPHERE: H, He, O, AND Ne

    Energy Technology Data Exchange (ETDEWEB)

    Bochsler, P.; Kucharek, H.; Möbius, E. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Bzowski, Maciej; Sokół, Justyna M. [Space Research Center of the Polish Academy of Sciences, Ul. Bartycka 18A, 00-716 Warsaw (Poland); Didkovsky, Leonid; Wieman, Seth, E-mail: bochsler@space.unibe.ch [Space Sciences Center, University of Southern California, Los Angeles, CA 90089-1341 (United States)

    2014-01-01

    Extreme UV (EUV) spectra from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Solar EUV Experiment are used to infer photoionization rates in the inner heliosphere. Relating these rates to various proxies describing the solar EUV radiation, we construct a multi-linear model which allows us to extrapolate ionization rates back to periods when no routine measurements of the solar EUV spectral distribution have been available. Such information is important, e.g., for comparing conditions of the interstellar neutral particles in the inner heliosphere at the time of Ulysses/GAS observations with conditions during the more recent observations of the Interstellar Boundary Explorer. From a period of 11 yr when detailed spectra from both TIMED and three proxies—Solar and Heliospheric Observatory/CELIAS/SEM-rates, F10.7 radio flux, and Mg II core-to-wing indices—have been available, we conclude that the simple model is able to reproduce the photoionization rates with an uncertainty of typically 5%.

  8. Chromospheric heating during flux emergence in the solar atmosphere

    Science.gov (United States)

    Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime; Danilovic, Sanja; Scharmer, Göran; Carlsson, Mats

    2018-04-01

    Context. The radiative losses in the solar chromosphere vary from 4 kW m-2 in the quiet Sun, to 20 kW m-2 in active regions. The mechanisms that transport non-thermal energy to and deposit it in the chromosphere are still not understood. Aim. We aim to investigate the atmospheric structure and heating of the solar chromosphere in an emerging flux region. Methods: We have used observations taken with the CHROMIS and CRISP instruments on the Swedish 1-m Solar Telescope in the Ca II K , Ca II 854.2 nm, Hα, and Fe I 630.1 nm and 630.2 nm lines. We analysed the various line profiles and in addition perform multi-line, multi-species, non-local thermodynamic equilibrium (non-LTE) inversions to estimate the spatial and temporal variation of the chromospheric structure. Results: We investigate which spectral features of Ca II K contribute to the frequency-integrated Ca II K brightness, which we use as a tracer of chromospheric radiative losses. The majority of the radiative losses are not associated with localised high-Ca II K-brightness events, but instead with a more gentle, spatially extended, and persistent heating. The frequency-integrated Ca II K brightness correlates strongly with the total linear polarization in the Ca II 854.2 nm, while the Ca II K profile shapes indicate that the bulk of the radiative losses occur in the lower chromosphere. Non-LTE inversions indicate a transition from heating concentrated around photospheric magnetic elements below log τ500 = -3 to a more space-filling and time-persistent heating above log τ500 = -4. The inferred gas temperature at log τ500 = -3.8 correlates strongly with the total linear polarization in the Ca II 854.2 nm line, suggesting that that the heating rate correlates with the strength of the horizontal magnetic field in the low chromosphere. Movies attached to Figs. 1 and 4 are available at http://https://www.aanda.org/

  9. GREEN BANK TELESCOPE AND SWIFT X-RAY TELESCOPE OBSERVATIONS OF THE GALACTIC CENTER RADIO MAGNETAR SGR J1745–2900

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.; Scholz, Paul, E-mail: rlynch@physics.mcgill.ca [Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2015-06-20

    We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, most notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.

  10. Absolute flux scale for radioastronomy

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Stankevich, K.S.

    1986-01-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized

  11. Solar Chameleons

    CERN Document Server

    Brax, Philippe

    2010-01-01

    We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...

  12. Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project

    Science.gov (United States)

    Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.

    2016-12-01

    The Radio JOVE project has long been a hands-on inquiry-based educational project that allows students, teachers and the general public to learn and practice radio astronomy by building their own radio antenna and receiver system from an inexpensive kit that operates at 20.1 MHz and/or using remote radio telescopes through the Internet. Radio JOVE participants observe and analyze natural radio emissions from Jupiter and the Sun. Within the last few years, several Radio JOVE amateurs have upgraded their equipment to make semi-professional spectrographic observations in the frequency band of 15-30 MHz. Due to the widely distributed Radio JOVE observing stations across the US, the Radio JOVE observations can uniquely augment observations by professional telescopes, such as the Long Wavelength Array (LWA) . The Radio JOVE project has recently partnered with the NASA Heliophysics Education Consortium (HEC) to work with students and interested amateur radio astronomers to establish additional spectrograph and single-frequency Radio JOVE stations. These additional Radio JOVE stations will help build a larger amateur radio science network and increase the spatial coverage of long-wavelength radio observations across the US. Our presentation will describe the Radio JOVE project within the context of the HEC. We will discuss the potential for citizen scientists to make and use Radio JOVE observations to study solar radio bursts (particularly during the upcoming solar eclipse in August 2017) and Jovian radio emissions. Radio JOVE observations will also be used to study ionospheric radio scintillation, promoting appreciation and understanding of this important space weather effect.

  13. Solar Effects of Low-Earth Orbit objects in ORDEM 3.0

    Science.gov (United States)

    Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.

    2014-01-01

    Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.

  14. The effect of initial conditions on the electromagnetic radiation generation in type III solar radio bursts

    International Nuclear Information System (INIS)

    Schmitz, H.; Tsiklauri, D.

    2013-01-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [D. Tsiklauri, Phys. Plasmas, 18, 052903 (2011)]. The numerical simulations were carried out using different density profiles and fast electron distribution functions. It is shown that electromagnetic L and R modes are excited by the transverse current, initially imposed on the system. In the course of the simulations, no further interaction of the electron beam with the background plasma could be observed

  15. Quasi-biennial periodicity in the solar neutrino flux and its relation to the solar structure

    International Nuclear Information System (INIS)

    Sakurai, K.

    1981-01-01

    By analysing the observed results on the neutrino flux from the Sun for the years 1970-1978, it is shown that the production rate of the neutrinos at the central core of the Sun had been varying with a period almost equal to 26 months for these years. This so-called 'quasi-biennial' periodicity in this rate suggests that the physical state of the central core of the Sun must have been modulated with this period through the variation of physical parameters as temperature and the chemial composition at the central core of the Sun. An idea to interpret this observed periodicity is thus proposed by taking the variations of these parameters into consideration. Some supporting evidence on this periodicity can be found on the variations of the solar activity as the relative sunspot numbers and the equatorial rotation speed of the Sun. (orig.)

  16. Neutrino Bursts from Fanaroff-Riley I Radio Galaxies

    CERN Document Server

    Anchordoqui, Luis A.; Halzen, Francis; Weiler, Thomas J.; Anchordoqui, Luis A.; Goldberg, Haim; Halzen, Francis; Weiler, Thomas J.

    2004-01-01

    On the basis of existing observations (at the 4.5 \\sigma level) of TeV gamma-ray outbursts from the Fanaroff-Riley I (FRI) radio galaxy Centaurus A, we estimate the accompanying neutrino flux in a scenario where both photons and neutrinos emerge from pion decay. We find a neutrino flux on Earth dF_{\

  17. Scintillating confusion: Evaluation of a technique for measuring compact structure in weak radio sources

    International Nuclear Information System (INIS)

    Spangler, S.R.; Cordes, J.M.; Meyers, K.A.

    1979-01-01

    An attractive scheme for investigating compact structure in weak radio sources is to study the scintillation properties of confusion in a large single-dish radio telescope. We have investigated the utility of this technique by observing the scintillations of 860-MHz confusion of the NRAO 300' (91 m) telescope. Analysis of these data indicated a reduction in the mean scintillation index with decreasing flux density which implied that weaker sources possessed less compact structure. More direct observations indicated that the weak sources of interest were not significantly deficient in compact structure, so the first result is probably due to properties of the IPS process in the strong scintillation regime. Our results may be due to overresolution (by the IPS process in the strong scintillation regime) of the ''hot spots'' responsible for scintillation in most strong sources at frequencies below 1000 MHz, or may indicate abnormally strong turbulence in the solar wind during August, 1977. Future applications of this method would be best conducted at lower frequencies with larger reflectors or short-spacing interferometers

  18. Radio physics of the sun; Proceedings of the Symposium, University of Maryland, College Park, Md., August 7-10, 1979

    Science.gov (United States)

    Kundu, M. R. (Editor); Gergely, T. E.

    1980-01-01

    Papers are presented in the areas of the radio characteristics of the quiet sun and active regions, the centimeter, meter and decameter wavelength characteristics of solar bursts, space observations of low-frequency bursts, theoretical interpretations of solar active regions and bursts, joint radio, visual and X-ray observations of active regions and bursts, and the similarities of stellar radio characteristics to solar radio phenomena. Specific topics include the centimeter and millimeter wave characteristics of the quiet sun, radio fluctuations arising upon the transit of shock waves through the transition region, microwave, EUV and X-ray observations of active region loops and filaments, interferometric observations of 35-GHz radio bursts, emission mechanisms for radio bursts, the spatial structure of microwave bursts, observations of type III bursts, the statistics of type I bursts, and the numerical simulation of type III bursts. Attention is also given to the theory of type IV decimeter bursts, Voyager observations of type II and III bursts at kilometric wavelengths, radio and whitelight observations of coronal transients, and the possibility of obtaining radio observations of current sheets on the sun.

  19. The impact of solar flares and magnetic storms on humans

    Energy Technology Data Exchange (ETDEWEB)

    Joselyn, J.A. (NOAA, Space Environment Laboratory, Boulder, CO (United States))

    1992-03-01

    Three classes of solar emanations, namely, photon radiation from solar flares, solar energetic particles, and inhomogeneities in the solar wind that drive magnetic storms, are examined, and their effects on humans and technological systems are discussed. Solar flares may disrupt radio communications in the HF and VLF ranges. Energetic particles pose a special hazard at low-earth orbit and above, where they can penetrate barriers such as spacesuits and aluminum and destroy cells and solid state electronics. Energetic solar particles also influence terrestrial radio waves propagating through polar regions. Magnetic storms may disturb the operation of navigation instruments, power lines and pipelines, and satellites; they give rise to ionospheric storms which affect radio communication at all latitudes. There is also a growing body of evidence that changes in the geomagnetic field affect biological systems. 3 refs.

  20. The impact of solar flares and magnetic storms on humans

    International Nuclear Information System (INIS)

    Joselyn, J.A.

    1992-01-01

    Three classes of solar emanations, namely, photon radiation from solar flares, solar energetic particles, and inhomogeneities in the solar wind that drive magnetic storms, are examined, and their effects on humans and technological systems are discussed. Solar flares may disrupt radio communications in the HF and VLF ranges. Energetic particles pose a special hazard at low-earth orbit and above, where they can penetrate barriers such as spacesuits and aluminum and destroy cells and solid state electronics. Energetic solar particles also influence terrestrial radio waves propagating through polar regions. Magnetic storms may disturb the operation of navigation instruments, power lines and pipelines, and satellites; they give rise to ionospheric storms which affect radio communication at all latitudes. There is also a growing body of evidence that changes in the geomagnetic field affect biological systems. 3 refs

  1. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  2. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina

    2009-01-01

    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  3. [Can solar/geomagnetic activity restrict the occurrence of some shellfish poisoning outbreaks? The example of PSP caused by Gymnodinium catenatum at the Atlantic Portuguese coast].

    Science.gov (United States)

    Vale, P

    2013-01-01

    Cyclic outbreaks of accumulation of paralytic shellfish poisoning (PSP) toxins in mussels attributed to Gymnodinium catenatum blooms displayed several of the highest inter-annual maxima coincidental with minima of the 11-year solar sunspot number (SSN) cycle. The monthly distribution of PSP was associated with low levels of the solar radio flux, a more quantitative approach than SSN for fluctuations in solar activity. A comparison between monthly distribution of PSP and other common biotoxins (okadaic acid (OA), dinophysistoxin-2 (DTX2) and amnesic shellfish poisoning (ASP) toxins) demonstrated that only PSP was significantly associated with low levels of radio flux (p < 0.01). PSP occurrence suggests a prior decline in solar activity could be required to act as a trigger, in a similar manner to a photoperiodic signal. The seasonal frequency increased towards autumn during the study period, which might be related to the progressive atmospheric cut-off of deleterious radiation associated with the seasonal change in solar declination, and might play an additional role in seasonal signal-triggering. PSP distribution was also associated with low levels of the geomagnetic index Aa. A comparison between monthly distribution of PSP and other common biotoxins, also demonstrated that only PSP was significantly associated with low levels of the Aa index (p < 0.01). In some years of SSN minima no significant PSP-outbreaks in mussels were detected. This was attributed to a steady rise in geomagnetic activity that could disrupt the triggering signal. Global distribution patterns show that hotspots for G. catenatum blooms are regions with deficient crustal magnetic anomalies. In addition to the variable magnetic field mostly of solar origin, static fields related to magnetized rocks in the crust and upper mantle might play a role in restricting worldwide geographic distribution.

  4. New discoveries with radio telescopes

    International Nuclear Information System (INIS)

    Schmidt, J.

    1985-01-01

    The author describes in a simple fashion the results obtained by astronomers from ETH Zurich using the broadband 7-m radio telescope in Switzerland to observe the sun over a period of six years. He explains the results in terms of our present understanding of the sun's workings. The astronomers found that a solar eruption is not a single event but consists of tens of thousands of small eruptions or spikes each only 200 km high and producing a burst of radio waves 10-100 times as intense as the background. (T.J.R.A.)

  5. The statistics of radio emission from quasars

    International Nuclear Information System (INIS)

    Peacock, J.A.; Miller, L.; Longair, M.S.; Edinburgh Univ.

    1986-01-01

    The radio properties of quasars have traditionally been discussed in terms of the radio-to-optical flux-density ratio R, implying a correlation between emission in these wavebands. It is here shown that, for bright quasars, this apparent correlation is largely due to an abrupt change in the radio properties of the quasar population near absolute magnitude Msub(B)=-24. It is suggested that this change in due to the existence of two classes of quasar with differing host galaxies: a proportion of quasars brighter than Msub(B)approx.=-24 lie in elliptical galaxies and thus generate powerful radio sources, while elliptical galaxies with weaker nuclear quasar components are classified as N-galaxies rather than quasars; quasars fainter than Msub(B)approx.=-24 lie in spiral galaxies and thus are high-luminosity analogues of radio-quiet Seyfert galaxies. (author)

  6. Associating Fast Radio Bursts with Extragalactic Radio Sources: General Methodology and a Search for a Counterpart to FRB 170107

    Science.gov (United States)

    Eftekhari, T.; Berger, E.; Williams, P. K. G.; Blanchard, P. K.

    2018-06-01

    The discovery of a repeating fast radio burst (FRB) has led to the first precise localization, an association with a dwarf galaxy, and the identification of a coincident persistent radio source. However, further localizations are required to determine the nature of FRBs, the sources powering them, and the possibility of multiple populations. Here we investigate the use of associated persistent radio sources to establish FRB counterparts, taking into account the localization area and the source flux density. Due to the lower areal number density of radio sources compared to faint optical sources, robust associations can be achieved for less precise localizations as compared to direct optical host galaxy associations. For generally larger localizations that preclude robust associations, the number of candidate hosts can be reduced based on the ratio of radio-to-optical brightness. We find that confident associations with sources having a flux density of ∼0.01–1 mJy, comparable to the luminosity of the persistent source associated with FRB 121102 over the redshift range z ≈ 0.1–1, require FRB localizations of ≲20″. We demonstrate that even in the absence of a robust association, constraints can be placed on the luminosity of an associated radio source as a function of localization and dispersion measure (DM). For DM ≈1000 pc cm‑3, an upper limit comparable to the luminosity of the FRB 121102 persistent source can be placed if the localization is ≲10″. We apply our analysis to the case of the ASKAP FRB 170107, using optical and radio observations of the localization region. We identify two candidate hosts based on a radio-to-optical brightness ratio of ≳100. We find that if one of these is indeed associated with FRB 170107, the resulting radio luminosity (1029‑ 4 × 1030 erg s‑1 Hz‑1, as constrained from the DM value) is comparable to the luminosity of the FRB 121102 persistent source.

  7. The road to OLFAR - a roadmap to interferometric long-wavelength radio astronomy using miniaturized distributed space systems

    NARCIS (Netherlands)

    Engelen, Steven; Quillien, Kevin A.; Verhoeven, Chris; Noroozi, Arash; Sundaramoorthy, Prem; van der Veen, Alle-Jan; Rajan, Raj; Rajan, Raj Thilak; Boonstra, Albert Jan; Bentum, Marinus Jan; Meijerink, Arjan; Budianu, A.

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a space-based low frequency radio telescope that will explore the universe's so-called dark ages, map the interstellar medium, and discover planetary and solar bursts in other solar systems. The telescope,

  8. SLIPPING MAGNETIC RECONNECTION OF FLUX-ROPE STRUCTURES AS A PRECURSOR TO AN ERUPTIVE X-CLASS SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting; Hou, Yijun; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yang, Kai, E-mail: liting@nao.cas.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2016-10-20

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory . The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30−40 km s{sup −1}, with an average period of 130 ± 30 s. The Si iv λ 1402.77 line showed a redshift of 10−30 km s{sup −1} and a line width of 50−120 km s{sup −1} at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.

  9. Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard x rays

    International Nuclear Information System (INIS)

    Zodivaz, A.M.; Kaufmann, P.; Correia, E.; Costa, J.E.R.; Takakura, T.; Cliver, E.W.; Tapping, K.F.; Air Force Geophysics Lab., Hanscom AFB, MA; National Research Council of Canada, Ottawa, Ontario)

    1986-01-01

    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard x rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard x ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy x rays. The hardest x ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at x rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz

  10. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    International Nuclear Information System (INIS)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2013-01-01

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvén modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences

  11. Sun's pole-equator flux differences

    Energy Technology Data Exchange (ETDEWEB)

    Belvedere, G [Istituto di Astronomia dell' Universita di Catania, Italy; Paterno, L [Osservatorio Astrofisico di Catania, Italy

    1977-04-01

    The possibility that large flux differences between the poles and the equator at the bottom of the solar convective zone are compatible with the small differences observed at the surface is studied. The consequences of increasing the depth of the convective zone due to overshooting are explored. A Boussinesq model is used for the convective zone and it is assumed that the interaction of the global convection with rotation is modelled through a convective flux coefficient whose perturbed part is proportional to the local Taylor number. The numerical integration of the equations of motion and energy shows that coexistence between large pole-equator flux differences at the bottom and small ones at the surface is possible if the solar convective zone extends to a depth of 0.4 R(Sun). The angular velocity distribution inside the convective zone is in agreement with the ..cap alpha omega..-dynamo theories of the solar cycle.

  12. The collective radio properties of symbiotic stars

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Taylor, A.R.

    1990-01-01

    Radio measurements of symbiotic stars are reported which extend the search for radio emission and provide multifrequency and multiepoch measurements of previously detected stars. The results show no evidence that there are time variations in excess of about 30 percent over a period of several years in the detected stars. The radio flux densities are correlated with brightness in the IR, especially at the longer IR wavelengths where dust emission dominates. It is confirmed that symbiotics with the latest red giant spectral types are the most luminous radio emitters. The D-types are the most radio-luminous. Virtually all detected stars with measurements at more than one frequency exhibit a positive spectral index, consistent with optically thick thermal bremsstrahlung. The binary separation for a number of radio-emitting symbiotics is estimated, and it is found that the distribution of inferred binary separations is dramatically different for IR D-types than for S-types. 37 refs

  13. Solar-Geophysical Data Number 553, September 1990. Part 1 (prompt reports). Data for August 1990, July 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-09-01

    ;Contents: Detailed index for 1990; Data for August 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and Worldwide), Solar activity indices, Solar flares, Solar radio emission, Standford mean solar magnetic field; Data for July 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Solar radio spectral Bleien and Ondrejov Jun 90, Cosmic ray Huancayo Jun 90, Geomagnetic activity indices May-Jun 90

  14. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  15. VizieR Online Data Catalog: Galaxy clusters: radio halos, relics and parameters (Yuan+, 2015)

    Science.gov (United States)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2017-10-01

    A large number of radio halos, relics, and mini-halos have been discovered and measured in recent decades through observations with VLA (e.g., Giovannini & Feretti 2000NewA....5..335G; van Weeren et al. 2011A&A...533A..35V), GMRT (e.g., Venturi et al. 2007A&A...463..937V; Kale et al. 2015A&A...579A..92K), WSRT (e.g., van Weeren et al. 2010Sci...330..347V; Trasatti et al. 2015A&A...575A..45T), and also ATCA (e.g., Shimwell et al. 2014MNRAS.440.2901S, 2015MNRAS.449.1486S). We have checked the radio images of radio halos, relics, and mini-halos in the literature and collected in Table 1 the radio flux Sν at frequencies within a few per cent around 1.4 GHz, 610 MHz, and 325 MHz; we have interpolated the flux at an intermediate frequency if measurements are available at higher and lower frequencies. To establish reliable scaling relations, we include only the very firm detection of diffuse radio emission in galaxy clusters, and omit questionable detections or flux estimates due to problematic point-source subtraction. (3 data files).

  16. Cosmic radio-noise absorption bursts caused by solar wind shocks

    Directory of Open Access Journals (Sweden)

    A. Osepian

    2004-09-01

    Full Text Available Bursts of cosmic noise absorption observed at times of sudden commencements (SC of geomagnetic storms are examined. About 300SC events in absorption for the period 1967-1990 have been considered. It is found that the response of cosmic radio-noise absorption to the passage of an interplanetary shock depends on the level of the planetary magnetic activity preceding the SC event and on the magnitude of the magnetic field perturbation associated with the SC (as measured in the equatorial magnetosphere. It is shown that for SC events observed against a quiet background (Kp<2, the effects of the SC on absorption can be seen only if the magnitude of the geomagnetic field perturbation caused by the solar wind shock exceeds a threshold value ΔBth. It is further demonstrated that the existence of this threshold value, ΔBth, deduced from experimental data, can be related to the existence of a threshold for exciting and maintaining the whistler cyclotron instability, as predicted by quasi-linear theory. SC events observed against an active background (Kp<2 are accompanied by absorption bursts for all magnetic field perturbations, however small. A quantitative description of absorption bursts associated with SC events is provided by the whistler cyclotron instability theory.

  17. Solar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, G

    1978-04-01

    The current state of neutrino solar astrophysics is outlined, showing the contradictions between the experimental results of solar neutrino detection and the standard solar models constructed on the basis of the star structure and development theory, which give values for high-energy neutrino fluxes considerably exceeding the upper experimental limit. A number of hypotheses interpreting the experimental results are summarized. The hypotheses are critically assessed and experiments are recommended for refining or verifying experimental data. Also dealt with are nuclear reactions in the Sun, as is the attempt to interpret the anomalous by high /sup 3/He fluxes from the Sun and the relatively small amounts of solar neutrinos and gamma quanta. The importance is emphasized of the simultaneous and complex measurement of the fluxes of neutrons, gamma radiation, and isotopes of hydrogen, helium, and boron from the Sun as indicators of nuclear reactions in the Sun.

  18. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.; For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Hwy, WA 6009 (Australia); Crocker, R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bhandari, S.; Callingham, J. R.; Gaensler, B. M.; Hancock, P. J.; Lenc, E. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Sydney NSW (Australia); Hurley-Walker, N.; Seymour, N. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Offringa, A. R. [Netherlands Institute for Radio Astronomy (ASTRON), P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Hanish, D. J. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), P.O. Box 76, Epping, NSW 1710 (Australia); Dwarakanath, K. S. [Raman Research Institute, Bangalore 560080 (India); Hindson, L. [Centre of Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); McKinley, B., E-mail: anna.kapinska@uwa.edu.au [School of Physics, The University of Melbourne, Parkville, VIC 3010 (Australia); and others

    2017-03-20

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGC 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).

  19. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. II. CMEs, Shock Waves, and Drifting Radio Bursts

    Science.gov (United States)

    Grechnev, V. V.; Uralov, A. M.; Chertok, I. M.; Slemzin, V. A.; Filippov, B. P.; Egorov, Y. I.; Fainshtein, V. G.; Afanasyev, A. N.; Prestage, N. P.; Temmer, M.

    2014-04-01

    We continue our study (Grechnev et al., 2013, doi:10.1007/s11207-013-0316-6; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07 - 08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earth's magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with "EUV waves" and dynamic radio spectra up to decameters.

  20. Solar-Geophysical Data Number 535, March 1989. Part 1 (prompt reports). Data for February, January 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-03-01

    Contentsinclude: detailed index for 1988-1989; data for february 1989 (IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for January 1989 (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data (solar-active regions-- H-alpha synoptic charts 1806-1808 (September-November 1988), cosmic-ray measurements by neutron monitor--thule, December 1988, geomagnetic indices -- sudden commencements/solar flare effects December 1988)

  1. A giant radio flare from Cygnus X-3 with associated γ-ray emission: The 2011 radio and γ-ray flare of Cyg X-3

    International Nuclear Information System (INIS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, we observed Cyg X-3 in order to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. There were no γ-rays observed during the ~1-month long quenched state, when the radio flux is weakest. These results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  2. Radio spectra of pulsars. Pt. 1

    International Nuclear Information System (INIS)

    Izekova, V.A.; Kuzmin, A.D.; Malofeev, V.M.; Shitov, Yu.P.

    1981-01-01

    The results of flux pulsar radioemission measurements at meter wavelength, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value is vsub(m) = 130 +- 80 MHz. Averaged on many pulsars, the spectral index is negative in the 39-61 MHz frequency range (anti ALPHA 39 sub(-) 61 = -1.4 +- 0.4) and passes through zero at frequencies of about 100 MHz, becoming positive in the 100-400 MHz frequency range. It was noticed that the spectral index in the 100-400 MHz interval depends upon such pulsar periods as α 100 sub(-) 400 = 0.7 log p + 0.9. Using the spectra, more precise radio luminosities of pulsars have been computed. (orig.)

  3. Automated cross-identifying radio to infrared surveys using the LRPY algorithm: a case study

    Science.gov (United States)

    Weston, S. D.; Seymour, N.; Gulyaev, S.; Norris, R. P.; Banfield, J.; Vaccari, M.; Hopkins, A. M.; Franzen, T. M. O.

    2018-02-01

    Cross-identifying complex radio sources with optical or infra red (IR) counterparts in surveys such as the Australia Telescope Large Area Survey (ATLAS) has traditionally been performed manually. However, with new surveys from the Australian Square Kilometre Array Pathfinder detecting many tens of millions of radio sources, such an approach is no longer feasible. This paper presents new software (LRPY - Likelihood Ratio in PYTHON) to automate the process of cross-identifying radio sources with catalogues at other wavelengths. LRPY implements the likelihood ratio (LR) technique with a modification to account for two galaxies contributing to a sole measured radio component. We demonstrate LRPY by applying it to ATLAS DR3 and a Spitzer-based multiwavelength fusion catalogue, identifying 3848 matched sources via our LR-based selection criteria. A subset of 1987 sources have flux density values for all IRAC bands which allow us to use criteria to distinguish between active galactic nuclei (AGNs) and star-forming galaxies (SFG). We find that 936 radio sources ( ≈ 47 per cent) meet both of the Lacy and Stern AGN selection criteria. Of the matched sources, 295 have spectroscopic redshifts and we examine the radio to IR flux ratio versus redshift, proposing an AGN selection criterion below the Elvis radio-loud AGN limit for this dataset. Taking the union of all three AGNs selection criteria we identify 956 as AGNs ( ≈ 48 per cent). From this dataset, we find a decreasing fraction of AGNs with lower radio flux densities consistent with other results in the literature.

  4. Radio emission from symbiotic variables: CI Cygni, Z Andromedae, and EG Andromedae - Temporal variability as clues to the nature of symbiotics

    International Nuclear Information System (INIS)

    Torbett, M.V.; Campbell, B.

    1989-01-01

    A continuing survey of interacting binary systems has yielded first detections of the symbiotic variables CI Cyg and EG And and reproduced previous flux measurements for Z And. The CI Cyg observation implies considerable radio variability for some symbiotics, while the radio flux from Z And indicates this object has been reasonably stable in the radio for years. Rapid radio variability may indicate the presence of mass transfer through an accretion disk. 27 refs

  5. Witnessing Solar Rejuvenation

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    At the end of last year, the Suns large-scale magnetic field suddenly strengthened, reaching its highest value in over two decades. Here, Neil Sheeley and Yi-Ming Wang (both of the Naval Research Laboratory) propose an explanation for why this happened and what it predicts for the next solar cycle.Magnetic StrengtheningUntil midway through 2014, solar cycle 24 the current solar cycle was remarkably quiet. Even at its peak, it averaged only 79 sunspots per year, compared to maximums of up to 190 in recent cycles. Thus it was rather surprising when, toward the end of 2014, the Suns large-scale magnetic field underwent a sudden rejuvenation, with its mean field leaping up to its highest values since 1991 and causing unprecedentedly large numbers of coronal loops to collapse inward.Yet in spite of the increase we observed in the Suns open flux (the magnetic flux leaving the Suns atmosphere, measured from Earth), there was not a significant increase in solar activity, as indicated by sunspot number and the rate of coronal mass ejections. This means that the number of sources of magnetic flux didnt increase so Sheeley and Wang conclude that flux must instead have been emerging from those sources in a more efficient way! But how?Aligned ActivityWSO open flux and the radial component of the interplanetary magnetic field (measures of the magnetic flux leaving the Suns photosphere and heliosphere, respectively), compared to sunspot number (in units of 100 sunspots). A sudden increase in flux is visible after the peak of each of the last four sunspot cycles. Click for a larger view! [Sheeley Wang 2015]The authors show that the active regions on the solar surface in late 2014 lined up in such a way that the emerging flux was enhanced, forming a strong equatorial dipole field that accounts for the sudden rejuvenation observed.Interestingly, this rejuvenation of the Suns open flux wasnt just a one-time thing; similar bursts have occurred shortly after the peak of every sunspot

  6. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  7. Synthesis imaging in radio astronomy

    International Nuclear Information System (INIS)

    Perley, R.A.; Schwab, F.R.; Bridle, A.H.

    1989-01-01

    Recent advances in techniques and instrumentation for radio synthesis imaging in astronomy are discussed in a collection of review essays. Topics addressed include coherence in radio astronomy, the interferometer in practice, primary antenna elements, cross correlators, calibration and editing, sensitivity, deconvolution, self-calibration, error recognition, and image analysis. Consideration is given to wide-field imaging (bandwidth and time-average smearing, noncoplanar arrays, and mosaicking), high-dynamic-range imaging, spectral-line imaging, VLBI, solar imaging with a synthesis telescope, synthesis imaging of spatially coherent objects, noise in images of very bright sources, synthesis observing strategies, and the design of aperture-synthesis arrays

  8. Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube

    Science.gov (United States)

    Murawski, K.; Kayshap, P.; Srivastava, A. K.; Pascoe, D. J.; Jelínek, P.; Kuźma, B.; Fedun, V.

    2018-02-01

    We perform numerical simulations of impulsively generated magnetic swirls in an isolated flux tube that is rooted in the solar photosphere. These swirls are triggered by an initial pulse in a horizontal component of the velocity. The initial pulse is launched either (a) centrally, within the localized magnetic flux tube or (b) off-central, in the ambient medium. The evolution and dynamics of the flux tube are described by three-dimensional, ideal magnetohydrodynamic equations. These equations are numerically solved to reveal that in case (a) dipole-like swirls associated with the fast magnetoacoustic kink and m = 1 Alfvén waves are generated. In case (b), the fast magnetoacoustic kink and m = 0 Alfvén modes are excited. In both these cases, the excited fast magnetoacoustic kink and Alfvén waves consist of a similar flow pattern and magnetic shells are also generated with clockwise and counter-clockwise rotating plasma within them, which can be the proxy of dipole-shaped chromospheric swirls. The complex dynamics of vortices and wave perturbations reveals the channelling of sufficient amount of energy to fulfil energy losses in the chromosphere (˜104 W m-1) and in the corona (˜102 W m-1). Some of these numerical findings are reminiscent of signatures in recent observational data.

  9. CHROMOSPHERIC SIGNATURES OF SMALL-SCALE FLUX EMERGENCE AS OBSERVED WITH NEW SOLAR TELESCOPE AND HINODE INSTRUMENTS

    International Nuclear Information System (INIS)

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Chae, J.; Cao, W.; Andic, A.; Ahn, K.

    2010-01-01

    With the ever-increasing influx of high-resolution images of the solar surface obtained at a multitude of wavelengths, various processes occurring at small spatial scales have become a greater focus of our attention. Complex small-scale magnetic fields have been reported that appear to have enough stored energy to heat the chromosphere. While significant progress has been made in understanding small-scale phenomena, many specifics remain elusive. We present here a detailed study of a single event of disappearance of a magnetic dipole and associated chromospheric activity. Based on New Solar Telescope Hα data and Hinode photospheric line-of-sight magnetograms and Ca II H images, we report the following. (1) Our analysis indicates that even very small dipoles (elements separated by about 0.''5 or less) may reach the chromosphere and trigger non-negligible chromospheric activity. (2) Careful consideration of the magnetic environment where the new flux is deposited may shed light on the details of magnetic flux removal from the solar surface. We argue that the apparent collision and disappearance of two opposite polarity elements may not necessarily indicate their cancellation (i.e., reconnection, emergence of a 'U' tube, or submergence of Ω loops). In our case, the magnetic dipole disappeared by reconnecting with overlying large-scale inclined plage fields. (3) Bright points (BPs) seen in off-band Hα images are very well correlated with the Ca II H BPs, which in turn are cospatial with G-band BPs. We further speculate that, in general, Hα BPs are expected to be cospatial with photospheric BPs; however, a direct comparison is needed to refine their relationship.

  10. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    International Nuclear Information System (INIS)

    Park, Jinhye; Moon, Y.-J.; Lee, Harim

    2017-01-01

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are as follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  11. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinhye; Moon, Y.-J. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Lee, Harim, E-mail: jinhye@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2017-07-20

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are as follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  12. EoR Foregrounds: the Faint Extragalactic Radio Sky

    Science.gov (United States)

    Prandoni, Isabella

    2018-05-01

    A wealth of new data from upgraded and new radio interferometers are rapidly improving and transforming our understanding of the faint extra-galactic radio sky. Indeed the mounting statistics at sub-mJy and μJy flux levels is finally allowing us to get stringent observational constraints on the faint radio population and on the modeling of its various components. In this paper I will provide a brief overview of the latest results in areas that are potentially important for an accurate treatment of extra-galactic foregrounds in experiments designed to probe the Epoch of Reionization.

  13. Solar Drift-Pair Bursts

    Science.gov (United States)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  14. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  15. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012

    Science.gov (United States)

    Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin

    2015-04-01

    The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.

  16. Solar-cosmic-ray variability

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1976-01-01

    The maximum flux of particles from solar events that should be considered in designing the shielding for a space habitation is discussed. The activities of various radionuclides measured in the top few centimeters of lunar rocks are used to examine the variability of solar cosmic ray fluxes over the last five million years. 10 references

  17. Searching for giga-Jansky fast radio bursts from the Milky Way with a global array of low-cost radio receivers

    Science.gov (United States)

    Maoz, Dan; Loeb, Abraham

    2017-06-01

    If fast radio bursts (FRBs) originate from galaxies at cosmological distances, then their all-sky rate implies that the Milky Way may host an FRB every 30-1500 yr, on average. If many FRBs persistently repeat for decades or more, a local giant FRB could be active now, with 1 GHz radio pulses of flux ˜3 × 1010 Jy, comparable with the fluxes and frequencies detectable by cellular communication devices (cell phones, Wi-Fi and GPS). We propose searching for Galactic FRBs using a global array of low-cost radio receivers. One possibility is the ˜1 GHz communication channel in cellular phones, through a Citizens-Science downloadable application. Participating phones would continuously listen for and record candidate FRBs and would periodically upload information to a central data-processing website which will identify the signature of a real, globe-encompassing, FRB from an astronomical distance. Triangulation of the GPS-based pulse arrival times reported from different Earth locations will provide the FRB sky position, potentially to arcsecond accuracy. Pulse arrival times versus frequency, from reports from phones operating at diverse frequencies, or from fast signal de-dispersion by the application, will yield the dispersion measure (DM). Compared to a Galactic DM model, it will indicate the source distance within the Galaxy. A variant approach uses the built-in ˜100 MHz FM-radio receivers present in cell phones for an FRB search at lower frequencies. Alternatively, numerous 'software-defined radio' devices, costing ˜$10 US each, could be deployed and plugged into USB ports of personal computers (particularly in radio-quiet locations) to establish the global network of receivers.

  18. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  19. A polarized fast radio burst at low Galactic latitude

    NARCIS (Netherlands)

    Petroff, E.; van Haren, H.; The ANTARES Collaboration; The H.E.S.S. Collaboration

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm−3, a pulse duration of 2.8+1.2−0.5 ms, and a measured peak flux density assuming that

  20. Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity

    Science.gov (United States)

    Chandra, Harish; Bhatt, Beena

    2018-04-01

    In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.

  1. A VLA SURVEY FOR FAINT COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Mann, Rita K. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Williams, Jonathan P., E-mail: psheehan@email.arizona.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-11-10

    We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin{sup 2} at 1.3 cm, 70 arcmin{sup 2} at 3.6 cm and 109 arcmin{sup 2} at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope -identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free–free and dust emission model to characterize the radio emission. We extrapolate the free–free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.

  2. Solar saddle bags. Solar-Fahrradpacktaschen

    Energy Technology Data Exchange (ETDEWEB)

    Willems, M

    1991-09-12

    The invention consists of the arrangement of solar cells on the upper side of saddle bags of every design (handle bar pocket, bicycle saddle bag etc.) which charge the accumulators in the pack pocket. One can drive the alternator of the bicycle, a transistor radio, a cassette tape recorder, or similar, with the power from the accumulators. The lamp and the taillight of the bicycle can still be used. The solar cells can be attached firmly to the pack pocket. However, they can also be assembled detachably, e.g. by push-buttons or zip-fasteners.

  3. Solar models: An historical overview

    International Nuclear Information System (INIS)

    Bahcall, John N.

    2003-01-01

    I will summarize in four slides the 40 years of development of the standard solar model that is used to predict solar neutrino fluxes and then describe the current uncertainties in the predictions. I will dispel the misconception that the p-p neutrino flux is determined by the solar luminosity and present a related formula that gives, in terms of the p-p and 7 Be neutrino fluxes, the ratio of the rates of the two primary ways of terminating the p-p fusion chain. I will also attempt to explain why it took so long, about three and a half decades, to reach a consensus view that new physics is being learned from solar neutrino experiments. Finally, I close with a personal confession

  4. Structure in the Radio Counterpart to the 2004 Dec 27 Giant Flare From SGR1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Fender, Rob P.; Muxlow, T.W.B.; Garrett, M.A.; Kouveliotou, C.; Gaensler, B.M.; Garrington, S.T.; Paragi, Z.; Tudose, V.; Miller-Jones, J.C.A.; Spencer, R.E.; Wijers,; Taylor, G.B.; /Southampton U. /Jodrell Bank /JIVE, Dwingeloo /NASA, Marshall /Harvard-Smithsonian Ctr. Astrophys. /Amsterdam U., Astron. Inst. /Astron. Inst. Romanian

    2006-01-11

    The formation of an expanding, moving, and fading radio source. We report observations of this radio source with the Multi-Element Radio-Linked Interferometer Network (MERLIN) and the Very Long Baseline Array (VLBA). The observations confirm the elongation and expansion already reported based on observations at lower angular resolutions, but suggest that at early epochs the structure is not consistent with the very simplest models such as a smooth flux distribution. In particular there appears to be significant structure on small angular scales, with {approx}10% of the radio flux arising on angular scales <= 100 milliarcsec. This structure may correspond to localized sites of particle acceleration during the early phases of expansion and interaction with the ambient medium.

  5. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    Abstract. Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investi- gated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, ...

  6. GCR flux 9-day variations with LISA Pathfinder

    International Nuclear Information System (INIS)

    Grimani, C; Benella, S; Fabi, M; Finetti, N; Telloni, D

    2017-01-01

    Galactic cosmic-ray (GCR) energy spectra in the heliosphere vary on the basis of the level of solar activity, the status of solar polarity and interplanetary transient magnetic structures of solar origin. A high counting rate particle detector (PD) aboard LISA Pathfinder (LPF) allows for the measurement of galactic cosmic-ray and solar energetic particle (SEP) integral fluxes at energies > 70 MeV n −1 up to 6500 counts s −1 . Data are gathered with a sampling time of 15 s. A study of GCR flux depressions associated with the third harmonic of the Sun rotation period (∼ 9 days) is presented here. (paper)

  7. Ionosphere and its Influence on Radio Communications

    Indian Academy of Sciences (India)

    Italian radio pioneer G Marconi succeeded in transmitting. 'wireless' signals over a distance of about 2000 miles across the. Atlantic Ocean. Physicists had .... indirectly, to the ionizing power of the solar radiation. As this radiation penetrates the ...

  8. Cosmic noise: a history of early radio astronomy

    National Research Council Canada - National Science Library

    Sullivan, Woodruff Turner

    2009-01-01

    .... The whole of worldwide radio and radar astronomy is covered, beginning with the discoveries by Jansky and Reber of cosmic noise before World War II, through the wartime detections of solar noise...

  9. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    Science.gov (United States)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  10. Shock-related radio emission during coronal mass ejection lift-off?

    OpenAIRE

    Pohjolainen, S.

    2008-01-01

    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-met...

  11. Solar-Geophysical Data Number 536, April 1989. Part 1 (prompt reports). Data for March, February 1989 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-04-01

    Contents include: detailed index for 1988-1989; data for March 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for February 1989--(solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data--(solar-active-regions - H-alpha synoptic charts 1809-1810 (November-December 1988), cosmic ray measurements by neutron monitor January 1989, geomagnetic indices - sudden commencements/solar flare effects January 1989, Pioneer XII interplanetary magnetic field magnitudes July 1989, Pioneer XII solar wind January-December 1988, march special event data)

  12. Solar chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Zioutas, Konstantin

    2010-01-01

    We analyze the creation of chameleons deep inside the Sun (R∼0.7R sun ) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  13. Solar-geophysical data number 420, August 1979. Part II (Comprehensive reports). Data for February 1979, January 1979

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-08-01

    This comprehensive report provides data for February 1979 on active regions, synoptic solar maps, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts and abbreviated calendar record for January 1979. The miscellaneous data include solar radio emission, cosmic rays-April and May 1979, Solar flares-January 1979, and regional flare index - December 1978

  14. Solar-geophysical data number 417, May 1979. Part II. Data for November 1978--October 1978 and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-05-01

    This comprehensive report provides data for November 1978 on active regions, synoptic solar maps, solar flares, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts, abbreviated calendar record and regional flare index for October 1978. The miscellaneous data includes solar radio emission for January and February 1979 and cosmic rays for February 1979

  15. Ionospheric Effects of X-Ray Solar Bursts in the Brazilian Sector

    Science.gov (United States)

    Becker-Guedes, F.; Takahashi, H.; Costa, J. E.; Otsuka, Y.

    2011-12-01

    When the solar X-ray flux in the interplanetary medium reaches values above a certain threshold, some undesired effects affecting radio communications are expected. Basically, the magnitudes of these effects depend on the X-ray peak brightness and duration, which drive the intensity of the ionosphere response when the associated electromagnetic wave hit the sunlit side of the Earth atmosphere. An important aspect defining the severity of damages to HF radio communications and LF navigation signals in a certain area is the local time when each event takes place. In order to create more accurate warnings referred to possible radio signal loss or degradation in the Brazilian sector, we analyze TEC maps obtained by a GPS network, formed by dual-frequency receivers spread all over the country, to observe ionospheric local changes during several X-ray events in the 0.1-0.8 nm range measured by GOES satellite. Considering the duration, peak brightness, and local time of the events, the final purpose of this study is to understand and predict the degree of changes suffered by the ionosphere during these X-ray bursts. We intend using these results to create a radio blackout warning product to be offered by the Brazilian space weather program named EMBRACE (Estudo e Monitoramento BRAsileiro do Clima Espacial): Brazilian Monitoring and Study of Space Weather.

  16. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena

    Science.gov (United States)

    Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao

    2014-08-01

    We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.

  17. The Origin of Powerful Radio Sources

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-05-01

    Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.

  18. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  19. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy 8 B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure ν e , which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of θ 12 and, together with other solar neutrino measurements, either a measurement of θ 13 or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the 7 Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and 7 Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a

  20. Solar-geophysical data number 584, April 1993. Part 1 (prompt reports). Data for March, February 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-04-01

    Contents: data for march 1993: solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for february 1993: solar active regions; sudden ionospheric disturbances; solar radio spectral observations; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to studies in communications, environmental science,and solar energy