WorldWideScience

Sample records for solar radiation ultraviolet

  1. Solar ultraviolet radiation cataract.

    Science.gov (United States)

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  2. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  3. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  4. Solar ultraviolet hazards

    International Nuclear Information System (INIS)

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  5. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    Science.gov (United States)

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  6. Biological Sensors for Solar Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André P. Schuch

    2011-04-01

    Full Text Available Solar ultraviolet (UV radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products.

  7. Protection from solar ultraviolet radiation by clothing

    Energy Technology Data Exchange (ETDEWEB)

    Pailthorpe, M. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 `Sun Protective Clothing - Evaluation and Classification` specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia`s most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 `sunsuits` have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin.

  8. Protection from solar ultraviolet radiation by clothing

    International Nuclear Information System (INIS)

    Pailthorpe, M.

    1996-01-01

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 'Sun Protective Clothing - Evaluation and Classification' specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia's most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 'sunsuits' have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin

  9. Solar ultraviolet radiation in a changing climate

    Science.gov (United States)

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  10. Ultraviolet solar radiation and the prevention of erythema

    International Nuclear Information System (INIS)

    Tena, F.; Martinez-Lozano, J.A.; Utrillas, M.P.

    1998-01-01

    An ultraviolet index appropriate for its use in Spain is studied on the basis of those already available in other countries. The suitability of this index to characterise ultraviolet solar radiation and, particularly, the potential risks to human health are discussed. Finally, the main factors affecting this index are identified and their influence is studied. (Author) 43 refs

  11. Ultraviolet Radiation in the Solar System

    CERN Document Server

    Vázquez, M

    2006-01-01

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequ...

  12. Assessment and comparison of methods for solar ultraviolet radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.).

  13. Assessment and comparison of methods for solar ultraviolet radiation measurements

    International Nuclear Information System (INIS)

    Leszczynski, K.

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.)

  14. The role of solar ultraviolet radiation in 'natural' water purification

    International Nuclear Information System (INIS)

    Calkins, J.; Buckles, J.D.; Moeller, J.R.

    1976-01-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated. (author)

  15. Role of solar ultraviolet radiation in 'natural' water purification

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, J; Buckles, J D; Moeller, J R [Kentucky Univ., Lexington (USA)

    1976-07-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.

  16. Long-term visual health risks from solar ultraviolet radiation

    International Nuclear Information System (INIS)

    Waxler, M.

    1987-01-01

    Ocular exposure to the ultraviolet radiation (UV) contained in sunlight may result in long-term visual health problems. UV plays a role in the etiology of cataracts and possibly in the etiology of visual impairments associated with solar retinopathy, retinopathy of prematurity, ocular aging, cystoid macular edema, retinitis pigmentosa, and senile macular degeneration. The exact does relationships between known UV bioeffects and these ocular problems is, however, uncertain. Thus, there are questions about the extent to which protective measures should be taken to reduce UV exposure of the eye. This paper identifies the long-term visual health problems potentially associated with ocular exposure to solar UV; proposes worst-case assumptions for the role of solar UV in these visual problems; and recommends protective measures based on damage thresholds and worst-case assumptions

  17. Effects of solar ultraviolet radiation on tropical algal communities

    International Nuclear Information System (INIS)

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity

  18. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Yu, Peter K N; Butson, Martin J

    2013-01-01

    Measurement of solar ultraviolet (UV) radiation is an important aspect of dosimetry for the improved knowledge of UV exposure and its associated health related issues. EBT2 Gafchromic film has been designed by its manufacturers as an improved tool for ionizing radiation dosimetry. The film is stated as exhibiting a significant reduction in UV response. However, results have shown that when exposed to UV from the ‘bottom side’ i.e. from the thick laminate side, the film exhibits a sensitivity to solar UV radiation which is both measurable and accurate for UV dosimetry. Films were irradiated in this position to known solar UV exposures and results are quantified showing a reproducibility of measurement to within ±7% (1 SD) when compared to calibrated UV meters. With an exposure of 20 J cm −2 broad spectrum solar UV, the films net OD change was found to be 0.248 OD ± 0.021 OD when analysing the results using the red channel region of an Epson V700 desktop scanner. This was compared to 0.0294 OD ± 0.0053 OD change with exposure to the same UV exposure from the top side. This means that solar UV dosimetry can be performed using EBT2 Gafchromic film utilizing the underside of the film for dosimetry. The main advantages of this film type for measurement of UV exposure is the visible colour change and thus easy analysis using a desktop scanner as well as its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  19. Outdoor Exposure to Solar Ultraviolet Radiation and Legislation in Brazil.

    Science.gov (United States)

    Silva, Abel A

    2016-06-01

    The total ozone column of 265 ± 11 Dobson Units in the tropical-equatorial zones and 283 ± 16 Dobson Units in the subtropics of Brazil are among the lowest on Earth, and as a result, the prevalence of skin cancer due to solar ultraviolet radiation is among the highest. Daily erythemal doses in Brazil can be over 7,500 J m. Erythemal dose rates on cloudless days of winter and summer are typically about 0.147 W m and 0.332 W m, respectively. However, radiation enhancement events yielded by clouds have been reported with erythemal dose rates of 0.486 W m. Daily doses of the diffuse component of erythemal radiation have been determined with values of 5,053 J m and diffuse erythemal dose rates of 0.312 W m. Unfortunately, Brazilians still behave in ways that lead to overexposure to the sun. The annual personal ultraviolet radiation ambient dose among Brazilian youths can be about 5.3%. Skin cancer in Brazil is prevalent, with annual rates of 31.6% (non-melanoma) and 1.0% (melanoma). Governmental and non-governmental initiatives have been taken to increase public awareness of photoprotection behaviors. Resolution #56 by the Agência Nacional de Vigilância Sanitária has banned tanning devices in Brazil. In addition, Projects of Law (PL), like PL 3730/2004, propose that the Sistema Único de Saúde should distribute sunscreen to members of the public, while PL 4027/2012 proposes that employers should provide outdoor workers with sunscreen during professional outdoor activities. Similar laws have already been passed in some municipalities. These are presented and discussed in this study.

  20. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  1. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  2. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available Solar ultraviolet radiation (UVR) levels are affected by airborne aerosols, such as particles and gases released during biomass burning events. Two large-scale fires in South Africa were identified and selected based on their proximity to solar UVR...

  3. Higher plant acclimation to solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Robberecht, R.

    1981-01-01

    The objectives of this study were to determine: (1) the relationship between plant sensitivity and epidermal uv attenuation, (2) the effect of phenotypic changes in the leaf epidermis, resulting from uv-B exposure, on plant sensitivity to uv radiation, and (3) the platicity of these changes in the epidermis leading to plant acclimation to uv-B radiation. A mechanism of uv-B attenuation, possibly involving the biosynthesis of uv-absorbing flavonoid compounds in the epidermis and mesophyll under the stress of uv-B radiation, and a subsequent increase in the uv-B attenuation capacity of the epidermis, is suggested. The degree of plant sensitivity and acclimation to natural and intensified solar uv-B radiation may involve a dynamic balance between the capacity for uv-B attenuation and uv-radiation-repair mechanisms in the leaf

  4. [Analysis of the cumulative solar ultraviolet radiation in Mexico].

    Science.gov (United States)

    Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Portales-González, Bárbara; Martínez-Rosales, Karla; Hernández-Blanco, Diana

    2016-01-01

    The incidence of skin cancer has increased in Mexico in recent years. Ultraviolet radiation is the main risk factor associated. Due to the need to develop strategies to prevent skin cancer, the aim of the study was to estimate the UV intensity in several representative regions of Mexico, the average annual UV dose of these populations, and the potential benefit of applying sunscreen at different ages. The intensity of UV radiation was quantified by remote and terrestrial radiometry. The dose of UV exposure was measured in minimal erythema doses using validated models for face and arms. The benefit of using a sunscreen was calculated with the use of a sunscreen with SPF 15 from birth to age 70. The UV radiation is lower in December and greater in the period from May to July. The region with a lower annual dose is Tijuana; and the higher annual dose is in the Mexico City area. The annual difference between these regions was 58 %. Through life, a low SPF sunscreen can reduce up to 66 % of the received UV dose. The geographical location is a risk factor for accumulation of UV radiation in Mexico. Since childhood, people receive high amounts of it; however, most of this dose can be reduced using any commercially available sunscreen, if applied strategically.

  5. The influence of meteorological factors on solar ultraviolet radiation over Pretoria, South Africa for the year 2012

    CSIR Research Space (South Africa)

    Makgabutlane, M

    2013-09-01

    Full Text Available Pretoria receives a fair amount of solar ultraviolet radiation (UVR). Certain meteorological factors affect the amount of solar UVR that reaches the ground. The most dominant influencing meteorological factors are stratospheric ozone, cloud cover...

  6. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    Science.gov (United States)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  7. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  8. DNA damage and photosynthetic inhibition induced by solar ultraviolet radiation in tropical phytoplankton (Lake Titicaca, Bolivia)

    NARCIS (Netherlands)

    Helbling, EW; Villafane, VE; Buma, AGJ; Andrade, M; Zaratti, F

    Experiments were conducted during October 1998 in Lake Titicaca, Bolivia (16 degrees S, 68 degrees W, 3810 m a.s.l), to determine the effects of solar ultraviolet radiation (UVR) on phytoplankton photosynthetic rates and DNA damage. Water samples were taken daily and incubated ir? situ or in

  9. Measurement of solar ultraviolet radiation intensity type A and B in Qazvin (2013-14

    Directory of Open Access Journals (Sweden)

    SAR. Babaee

    2016-08-01

    Full Text Available Background: Solar ultraviolet radiation (UVR is considered one of the most important biological risk factors in the world. Most health damages from solar ultraviolet radiation at ground level are mainly caused by UVA and UVB spectrums. Objective: The aim of this study was to Measure the solar ultraviolet radiation intensity type A and B in Qazvin city. Methods: In this cross-sectional study, the intensity of solar ultraviolet radiation type A and B was measured in Qazvin on years of 2013-14 (during one year every monthly at three times, in the morning, afternoon and evening by using a UV Radiometer. Data were analyzed using descriptive statistics. Findings: The maximum average intensity of UVA and UVB rays during the one year with 28.36±1.88 W/m2 and 0.156±0.035 W/m2 respectively was in Tir month (June 22–July 22 and the minimum average intensity of UVA and UVB rays with 10.36±0.83 W/m2 and 0.041±0.010 W/m2 respectively was in Dai month (December 22–January 20. Conclusion: With regards to the results, it is recommended that individuals were less exposed to exposure time with direct sunshine and use appropriate protective measures such as; wear appropriate clothing, sunglasses, and sunscreen.

  10. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.

    Science.gov (United States)

    Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen

    2018-03-30

    Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  11. Effects of increased solar ultraviolet radiation on terrestrial plants

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Teramura, A.H.; Tevini, M.; Bornman, J.F.; Björn, L.O.; Kulandaivelu, G.

    1995-01-01

    Physiological and developmental processes of plants are affected by UV-B radiation, even by the amount of UV-B in present-day sunlight. Plants also have several mechanisms to ameliorate or repair these effects and may acclimate to a certain extent to increased levels of UV-B. Nevertheless, plant growth can be directly affected by UV-B radiation. Response to UV-B also varies considerably among species and also cultivars of the same species. In agriculture, this may necessitate using more UV-B-tolerant cultivars and breeding new ones. In forests and grasslands, this will likely result in changes in species composition; therefore there are implications for the biodiversity in different ecosystems. Indirect changes caused by UV-B-such as changes in plant form, biomass allocation to parts of the plant, timing of developmental phases and secondary metabolism-may be equally, or sometimes more important than damaging effects of UV-B. These changes can have important implications for plant competitive balance, herbivory, plant pathogens, and biogeochemical cycles. These ecosystem-level effects can be anticipated, but not easily predicted or evaluated. Research at the ecosystem level for solar UV-B is barely beginning. Other factors, including those involved in climate change such as increasing CO2, also interact with UV-B. Such reactions are not easily predicted, but are of obvious importance in both agriculture and in nonagricultural ecosystems

  12. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    Science.gov (United States)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  13. Protective mechanisms and acclimation to solar ultraviolet-b radiation in oenothera stricta. Final report

    International Nuclear Information System (INIS)

    Robberecht, R.; Caldwell, M.M.

    1981-12-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated

  14. Solar ultraviolet radiation and the risk of infectious disease: summary of a workshop

    International Nuclear Information System (INIS)

    Chapman, R.S.; Cooper, K.D.; De Faro, E.C.

    1995-01-01

    This invited review summarizes papers presented in a workshop on solar radiation and the risk of infectious disease. Nine reviewers cover the current state of knowledge in the following relevant fields:-ultraviolet climatology, infectious disease in humans, effects of U.V. from artificial light sources on animal and human immune systems, the influence of solar U.V. on animal and human immune systems, (lab, field, and clinical studies), biological consequences of unrepaired solar induced human DNA damage, and epidemiological considerations. Group discussions preceded the preparation of summary statements on each topic. Extensive bibliography. (UK)

  15. Solar ultraviolet radiation induced variations in the stratosphere and mesosphere

    Science.gov (United States)

    Hood, L. L.

    1987-01-01

    The detectability and interpretation of short-term solar UV induced responses of middle atmospheric ozone, temperature, and dynamics are reviewed. The detectability of solar UV induced perturbations in the middle atmosphere is studied in terms of seasonal and endogenic dynamical variations. The interpretation of low-latitude ozone and possible temperature responses on the solar rotation time scale is examined. The use of these data to constrain or test photochemical model predictions is discussed.

  16. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS: III. PREDICTION OF IMPACTS IN SELECTED NORTHERN MIDWESTERN WETLANDS

    Science.gov (United States)

    The deleterious effects of solar ultraviolet radiation, especially the UV-B portion of sunlight, have been hypothesized to reduce survival, increase the frequency of malformations, and contribute to the apparent worldwide decline of many amphibian species.

  17. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    Science.gov (United States)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  18. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  19. Psoriasis and ultraviolet radiation

    International Nuclear Information System (INIS)

    Farber, E.M.; Nall, L.

    1993-01-01

    Prevention and detection screening programs as a public health service in curtailing the ever-increasing incidence of all forms of skin cancer are reviewed. The effect of solar and artificial ultraviolet radiation on the general population and persons with psoriasis is examined. 54 refs

  20. Exposure to solar ultraviolet radiation: a hot topic?

    International Nuclear Information System (INIS)

    Vernez, David; Backes, Claudine; Milon, Antoine

    2016-01-01

    The Sun can be harmful to human health, about a certain threshold. More than occasional exposures, it is chronic exposures that are responsible for the majority of the UV-related skin cancers that affect numerous outdoor workers. Solar exposure should not merely be a public health issue, it should also be raised in the working world. (authors)

  1. A study of ultraviolet solar radiation at Cairo urban area, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Robaa, S.M. [Cairo Univ., Giza (Egypt). Dept. of Astronomy and Meterology

    2004-07-01

    The monthly mean values of global, G, and ultraviolet, UV, solar radiation incident on a horizontal surface at Cairo urban area during the two different periods (1969-1973) and (1993-1997) are presented, analyzed and compared. The effect of urbanization processes on the solar radiation components is investigated and discussed. It was found that the total radiation of the two components, G and UV received at the urban area of Cairo during the period (1969-1973) highly exceeds the radiation received during the period (1993-1997) for all months of the year. The mean relative reduction of G and UV reached 17.4% and 27.4% respectively. A significant correlation between G and UV radiation has been established and the recommended correlation equation has been stated to estimate the values of UV radiation that are difficult to measure at any site in the zone of Lower Egypt. Also, a comparative study of the two radiation components, G and UV, at urban (Cairo) and rural (Bahtim) areas during the period (1993-1997) revealed that the urban area always has values of G and UV radiation distinctly lower than that found in rural area for all months of the year. Urban-rural mean reduction of G and UV reached 7.0% and 17.9% respectively. The ratio of the ultraviolet to global radiation (UV/G) are calculated and compared with other sites in the Arabian Peninsula. The effect of atmospheric dust on the measured solar radiation components is also investigated and discussed. (author)

  2. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    Science.gov (United States)

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  3. Ultraviolet radiation

    International Nuclear Information System (INIS)

    Hawk, J.

    1986-01-01

    Ultraviolet radiation (UVR) from the sun or artificial sources is reflected or transmitted at the surface of the skin, about 5% of normally incident rays being directly reflected. The transmitted fraction is scattered, photochemically absorbed or dissipated as heat within the skin, or passes from it to contribute to the variable total amount of reflected and transmitted radiation. The UVR absorbers in skin are not definitely known, but DNA is a definite target and probably lipoprotein membranes, RNA, proteins, mucopolysaccharides, elastin and collagen. Photochemical or free radical damage to absorber or nearby organelles leads to pharmacological, ultrastructural, histological and clinical changes. Most frequent DNA damage is pyrimidine dimer formation, apparently inhibiting cell function and replication. This is largely enzymatically repaired in man in the dark by excision repair, post-replication repair and possible other enzymatic mechanisms, and at least in some organisms by light-induced photoreactivation repair. UVR exposure causes well recognized acute and chronic clinical syndromes in man. These are discussed in this paper

  4. New advances in protection against solar ultraviolet radiation in textiles for summer clothing.

    Science.gov (United States)

    Aguilera, José; de Gálvez, María Victoria; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2014-01-01

    Clothing is considered one of the most important tools for photoprotection against harmful solar ultraviolet radiation (UVR). The standard for sun-protective clothing is based on erythema despite other biological effects of UVR on the skin. We analyzed the potential protection against UVR in fabrics destined for summer clothing based on several action spectra. We examined 50 garments classified by type of fabric composition, structure of the fiber yarn and color. The ultraviolet protection factor was calculated based on fabric ultraviolet transmittance corrected for erythema according to the EU standard E-13758 as well as the UVA transmittance of fabrics. UVR protection was also analyzed in base of different action spectra as for previtamin D3, nonmelanoma skin cancer, photoimmunosuppression and photoaging. Most knitted fabrics used for sports T-shirts offered excellent ratings for ultraviolet protection while normal shirts showed very low ratings, particularly against photoaging. The cover is the most influential variable in fabric photoprotection, having an exponential relationship with the UPF. The relation between cover and UVA protection was linearly negative. Information about ultraviolet protection in textiles used for summer clothing should be included in labeling as some types of fabrics, especially those used for shirts, offer very low UVR protection. © 2014 The American Society of Photobiology.

  5. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    Science.gov (United States)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  6. An inexpensive setup for assessing the impact of ambient solar ultraviolet radiation on seedlings

    International Nuclear Information System (INIS)

    Adamse, P.; Reed, H.E.; Krizek, D.T.; Britz, S.J.; Mirecki, R.M.

    1997-01-01

    Because of reductions in stratospheric ozone levels due to chlorofluoromethanes and other trace gases, there has been growing concern about the impact of possible increases in ultraviolet-B (UV-B) radiation. Until recently, most studies have focused on the effects of enhanced UV-B levels, however, these have inherent technical difficulties. Ultraviolet-B exclusion studies afford the investigator a rapid means of assessing the effects of present levels of solar UV-B radiation. Unlike UV-B enhancement, UV-B exclusion studies use the sun as the source of UV-B radiation and selective filters to transmit or absorb this portion of sunlight. This article describes a simple, inexpensive system that was used over a 3-yr period to determine seedling response of cucumber (Cucumis sativus L.), soybean (Glycine max (L.) Merr.), and New Zealand spinach ((Tetragonia tetragonoides (Pallas) Kuntze) to UV-B exclusion. Plants of all three species grown outdoors under UV-B absorbing polyester showed an increase in leaf enlargement and biomass accumulation in comparison to those grown under UV-B transmitting cellulose acetate filters. The bask materials used consist of plastic window boxes, plastic filters that transmit or absorb in the UV-B region, wire supports, and binder clips. This setup can be used to demonstrate bask principles of photobiology and stress physiology. It is ideal for students interested in conducting short-term science projects on the effects of solar UV radiation

  7. Solar ultraviolet radiation measurements at South African and Reunion Island Coastal Sites: An indicator of public sun protection

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available Solar ultraviolet radiation (UVR) has the potential to cause biological harm to humans. Intensity of solar UVR at the Earth’s surface depends on several factors, such as total column ozone and cloud cover, and temporal trends are usually dependent...

  8. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids.

    Science.gov (United States)

    Barnes, Paul W; Tobler, Mark A; Keefover-Ring, Ken; Flint, Stephan D; Barkley, Anne E; Ryel, Ronald J; Lindroth, Richard L

    2016-01-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments. © 2015 John Wiley & Sons Ltd.

  9. Real-time measurement of outdoor worker's exposure to solar ultraviolet radiation in Pretoria, South Africa

    Directory of Open Access Journals (Sweden)

    Mmathapelo Makgabutlane

    2015-05-01

    Full Text Available The city of Pretoria in South Africa receives considerable solar ultraviolet radiation (UVR because of its low latitude (22–35°S and relatively clear skies. Certain meteorological factors affect the amount of solar UVR that reaches the ground; the most dominant factors being stratospheric ozone, cloud cover and solar zenith angle. It is known that overexposure to solar UVR may lead to the development of adverse health conditions, the most significant being skin cancer. Outdoor workers spend a significant amount of time outside and are thus susceptible to this risk. In this case study, we estimated, for the first time, the real-time solar UVR exposure of an outdoor worker in Pretoria. Measurements were made on 27 and 28 May 2013 using a handheld ultraviolet index (UVI meter calibrated against a science-grade biometer at the South African Weather Service in Pretoria. Personal exposure estimation was used to discern the pattern in diurnal and annual sunburn risk for the outdoor worker. Ambient UVR levels ranged from 0 UVI to 4.66 UVI and the outdoor worker’s potential exposure estimates regularly exceeded 80% of these levels depending on the time of day. The risk of sunburn was evident; however, actual incidents would depend on individual skin photosensitivity and melanin content, as well as sun protection used. Further research is needed to determine the personal exposure estimations of outdoor workers in other provinces in which solar UVR levels may be equally high, or higher than those in Pretoria.

  10. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  11. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  12. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia. ohoud-aljawi@hotmail.com (Malaysia)

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  13. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses.

    Science.gov (United States)

    Carbonell-Bejerano, Pablo; Diago, Maria-Paz; Martínez-Abaigar, Javier; Martínez-Zapater, José M; Tardáguila, Javier; Núñez-Olivera, Encarnación

    2014-07-09

    Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and

  14. Improving Assessment of Lifetime Solar Ultraviolet Radiation Exposure in Epidemiologic Studies: Comparison of Ultraviolet Exposure Assessment Methods in a Nationwide United States Occupational Cohort.

    Science.gov (United States)

    Little, Mark P; Tatalovich, Zaria; Linet, Martha S; Fang, Michelle; Kendall, Gerald M; Kimlin, Michael G

    2018-06-13

    Solar ultraviolet radiation is the primary risk factor for skin cancers and sun-related eye disorders. Estimates of individual ambient ultraviolet irradiance derived from ground-based solar measurements and from satellite measurements have rarely been compared. Using self-reported residential history from 67,189 persons in a nationwide occupational US radiologic technologists cohort, we estimated ambient solar irradiance using data from ground-based meters and noontime satellite measurements. The mean distance-moved from city of longest residence in childhood increased from 137.6 km at ages 13-19 to 870.3 km at ages ≥65, with corresponding increases in absolute latitude-difference moved. At ages 20/40/60/80, the Pearson/Spearman correlation coefficients of ground-based and satellite-derived solar potential ultraviolet exposure, using irradiance and cumulative radiant-exposure metrics, were high (=0.87-0.92). There was also moderate correlation (Pearson/Spearman correlation coefficients=0.51-0.60) between irradiance at birth and at last-known address, for ground-based and satellite data. Satellite-based lifetime estimates of ultraviolet radiation were generally 14-15% lower than ground-based estimates, albeit with substantial uncertainties, possibly because ground-based estimates incorporate fluctuations in cloud and ozone, which are incompletely incorporated in the single noontime satellite-overpass ultraviolet value. If confirmed elsewhere, the findings suggest that ground-based estimates may improve exposure-assessment accuracy and potentially provide new insights into ultraviolet-radiation-disease relationships in epidemiologic studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

    Science.gov (United States)

    Robson, T Matthew; Hartikainen, Saara M; Aphalo, Pedro J

    2015-05-01

    We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive. © 2014 John Wiley & Sons Ltd.

  16. Solar ultraviolet radiation in Syria measurements and relationship with skin cancer incidence

    International Nuclear Information System (INIS)

    Othman, I; Baydon, S.A.; Dawood, S.

    1994-11-01

    Seasonal variations of solar UVB (285-320) and UVA (320-400) were measured in three sites in Syria (33-37 N sup O) for two years: 1992-1993. UVB measurements were performed using polysulphone films and Robertson-Berger meter, while UVA measurements were done by NVA intensity meter. Two sets of measurements were carried out : - Maximal daily doses three times a week (every other day) - Diurnal variations from sun-rise to sun-set every two hours twice a month (every fortnight). The biological consequences of ultraviolet radiation withreference to some epidemiological data of skin cancer incidence in Syria since 1980 were discussed .(author). 36 refs., 21 figs., 11 tabs

  17. Ultraviolet radiation

    International Nuclear Information System (INIS)

    Faber, M.

    1989-01-01

    Although UV radiation can arise from a large number of man-made sources, the sun is the main source and both the general public and people working out of doors will be exposed to it. This natural background radiation and the variations in its magnitude must be taken into account when exposure limits are discussed. The full extent to which UV affects human well-being is difficult to quantify. Artificially produced UV has, however, been used in mines and cellars and in far northern latitudes as a supplement to combat functional impairment among people. Many of the observed effects, such as a decrease in the incidence of infectious diseases and in absenteeism, may be due to the bactericidal nature of the radiation. On the other hand, large doses of UV have an acute destructive effect on the skin and eye. Doses so low that they give rise only to normally acceptable or even desirable acute effects can, if repeated, induce changes resulting in late effects such as elastosis of the skin, keratosis and skin cancers. These effects will be of greater significance in people with lightly pigmented skin. 130 refs, 13 figs, 2 tabs

  18. Ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    UVR can be classified into UV-A, UV-B, and UV-C regions. A long period of UVR deficiency may have a harmful effect on the human body. The best known manifestation of UVR deficiency is the development of vitamin D deficiency and rickets in children because of a disturbance in the phosphorus and calcium metabolism. The acute effects of UVR on the eyes consist of the development of photokeratitis and photoconjunctivitis. Acute effects on the skin consist of solar erythema sunburn. Chronic effects on the eye consist of the development of pterygium and squamous cell cancer of the conjunctiva and perhaps cataracts. Chronic skin changes due to UVR consist of aging and the induction of premalignant changes and malignant skin tumours. Criteria for occupational exposure levels in work places have been proposed. It must be recognized that significant nonoccupational exposure to UVR occurs from exposure to sunlight. Thus, exposure limits for the general population are difficult to recommend. Finally, the document describes existing protection and control measures such as the containment of UVR sources, and methods for personal protection including the use of sunscreen preparations, clothing, transparent material for eye and skin protection, and behavioural modifications.

  19. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Impact of solar ultraviolet radiation on atopic dermatitis symptoms in young children: A longitudinal study.

    Science.gov (United States)

    Kim, Young-Min; Kim, Jihyun; Lee, Ji Young; Kim, Minji; Kim, Hyunmi; Jung, Kwon; Eo, Soomi; Ahn, Mijin; Ahn, Kangmo

    2017-09-01

    There are controversial data about the effects of sun exposure on atopic dermatitis (AD). We evaluated the association between solar ultraviolet radiation (UVR) exposure and AD symptoms in children. Eighty-two children under 6 years (48 boys and 34 girls) with AD living in Seoul, Korea, were enrolled and followed for 12 months between September 2013 and August 2014. Daily symptoms were recorded to describe the degree of itching, sleep disturbance, erythema, dryness, oozing, and edema. We assessed solar UVR by measuring radiation heat flux over the 290-400 nm wavelength range using thermopiles. A generalized linear mixed model and a generalized additive mixed model were used to evaluate the effects of UVR exposure on AD symptoms after adjusting for age, sex, outdoor temperature, outdoor humidity, and ambient air pollution. Symptom records of 12 915 person-days were analyzed. UVR showed a significantly positive relationship with AD symptoms. Over the study period, an increase in UVR by 10 W/cm 2 was associated with a 1.46% increase in AD symptoms (95% CI: 0.85-2.07) on the exposure day. An increase in the 6-day average level of UVR of the previous 5 days and the current day by 10 W/cm 2 was associated with a 3.58% (95% CI: 2.60-4.56) increase in AD symptoms. UVR exposure significantly increased AD symptoms in autumn, but decreased them in winter. Atopic dermatitis symptoms in children are likely to be affected by exposure to solar UVR with a cumulative effect, and this effect is different according to season. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  1. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Science.gov (United States)

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  2. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 < A < 300 nm), WG-3 - Far-ultraviolet (lambda greater than 100 and lambda less than 200 nanometers), WG-4 - extreme-ultraviolet (lambda greater than 10 and lambda less than 100 nm), and WG-5 - X-ray (lambda greater than 1 and lambda less than 10 nano meters). The overarching goals of SOLERS22 are to: 1) establish daily solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  3. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P.; Koskela, T.; Damski, J.; Supperi, A. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  4. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P; Koskela, T; Damski, J; Supperi, A [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1997-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  5. Applying spaceborne reflectivity measurements for calculation of the solar ultraviolet radiation at ground level

    Directory of Open Access Journals (Sweden)

    P. N. den Outer

    2012-12-01

    Full Text Available Long-term analysis of cloud effects on ultraviolet (UV radiation on the ground using spaceborne observations requires the use of instruments that have operated consecutively. The longest data record can be built from the reflectivity measurements produced by the instruments Total Ozone Mapping Spectrometers (TOMS flown on Nimbus 7 from 1979 to 1992, TOMS on Earth Probe from 1996 to 2005, and the Ozone Monitoring Instrument (OMI flown on EOS Aura since 2004. The reflectivity data produced by TOMS on Earth Probe is only included until 2002. A comparison is made with cloud effects inferred from ground-based pyranometer measurements at over 83 World Radiation Data Centre stations. Modelled UV irradiances utilizing the standard reflectivity are compared with measurements of UV irradiances at eight European low-elevation stations. The reflectivity data of the two TOMS instruments shows a consistent agreement, and the required corrections are of low percentage, i.e. 2–3%. In contrast, the reflectivity product of OMI requires correction of 7–10%, and a solar angle dependency therein is more pronounced. These corrections were inferred from a comparison with pyranometer data, and tested using the UV measurements. The average reduction of UV radiation due to clouds for all sites together indicates a small trend: a diminishing cloudiness, in line with ground-based UV observations. Uncorrected implementation of the reflectivity data would have indicated the opposite.

    An optimal area was established for reflectivity data for the calculation of daily sums of UV radiation. It measures approximately 1.25° in latitudinal direction for square-shaped areas overhead the ground-based UV stations. Such an area can be traversed within 5 to 7 h at the average wind speeds found for the West European continent.

  6. Photodetector of ultraviolet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Branzari, V.; Vieru, T.; Manole, M.; Canter, V.

    2000-01-01

    The invention relates to photodetectors on base of semiconductors of ultraviolet radiation and may be used in optoelectronic system for determining the intensity and the dose of ultraviolet radiation emitted by the Sun or other sources. Summary of the invention consists in the fact that in the photodetector of ultraviolet radiation the superficial potential barrier is divided into two identical elements, electrically isolated each of the other, one of them being covered with a layer of transparent material for visible and infrared radiation and absorption the ultra violet radiation. The technical result consists in mutual compensation of visible and infrared components of the radiation spectrum

  7. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  8. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  9. Ultraviolet radiation and cyanobacteria.

    Science.gov (United States)

    Rastogi, Rajesh Prasad; Sinha, Rajeshwar P; Moh, Sang Hyun; Lee, Taek Kyun; Kottuparambil, Sreejith; Kim, Youn-Jung; Rhee, Jae-Sung; Choi, Eun-Mi; Brown, Murray T; Häder, Donat-Peter; Han, Taejun

    2014-12-01

    Cyanobacteria are the dominant photosynthetic prokaryotes from an ecological, economical, or evolutionary perspective, and depend on solar energy to conduct their normal life processes. However, the marked increase in solar ultraviolet radiation (UVR) caused by the continuous depletion of the stratospheric ozone shield has fueled serious concerns about the ecological consequences for all living organisms, including cyanobacteria. UV-B radiation can damage cellular DNA and several physiological and biochemical processes in cyanobacterial cells, either directly, through its interaction with certain biomolecules that absorb in the UV range, or indirectly, with the oxidative stress exerted by reactive oxygen species. However, cyanobacteria have a long history of survival on Earth, and they predate the existence of the present ozone shield. To withstand the detrimental effects of solar UVR, these prokaryotes have evolved several lines of defense and various tolerance mechanisms, including avoidance, antioxidant production, DNA repair, protein resynthesis, programmed cell death, and the synthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. This study critically reviews the current information on the effects of UVR on several physiological and biochemical processes of cyanobacteria and the various tolerance mechanisms they have developed. Genomic insights into the biosynthesis of MAAs and scytonemin and recent advances in our understanding of the roles of exopolysaccharides and heat shock proteins in photoprotection are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America.

    Science.gov (United States)

    Corrêa, Marcelo de Paula

    2015-01-01

    The beneficial and harmful effects of human exposure to solar ultraviolet radiation (UV-R) are topics that arouse great interest not only among physicians and scientists, but also the general public and the media. Currently, discussions on vitamin D synthesis (beneficial effect) are confronted with the high and growing number of new cases of non-melanoma skin cancer and other diseases of the skin and eyes (harmful effect) diagnosed each year in Brazil. However, the lack of scientific knowledge on the UV-R in Brazil and South America leads to adoption of protective measures based on studies conducted in Europe and USA, where the amounts of UV-R available at surface and the sun-exposure habits and characteristics of the population are significantly different from those observed in Brazil. In order to circumvent this problem, the Brazilian Society of Dermatology recently published the Brazilian Consensus of Photoprotection based on recent studies performed locally. The main goal of this article is to provide detailed educational information on the main properties and characteristics of UV-R and UV index in a simple language. It also provides: a) a summary of UV-R measurements recently performed in Brazil; b) a comparison with those performed in Europe; and, c) an evaluation to further clarify the assessment of potential harm and health effects owing to chronic exposures.

  11. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America*

    Science.gov (United States)

    Corrêa, Marcelo de Paula

    2015-01-01

    The beneficial and harmful effects of human exposure to solar ultraviolet radiation (UV-R) are topics that arouse great interest not only among physicians and scientists, but also the general public and the media. Currently, discussions on vitamin D synthesis (beneficial effect) are confronted with the high and growing number of new cases of non-melanoma skin cancer and other diseases of the skin and eyes (harmful effect) diagnosed each year in Brazil. However, the lack of scientific knowledge on the UV-R in Brazil and South America leads to adoption of protective measures based on studies conducted in Europe and USA, where the amounts of UV-R available at surface and the sun-exposure habits and characteristics of the population are significantly different from those observed in Brazil. In order to circumvent this problem, the Brazilian Society of Dermatology recently published the Brazilian Consensus of Photoprotection based on recent studies performed locally. The main goal of this article is to provide detailed educational information on the main properties and characteristics of UV-R and UV index in a simple language. It also provides: a) a summary of UV-R measurements recently performed in Brazil; b) a comparison with those performed in Europe; and, c) an evaluation to further clarify the assessment of potential harm and health effects owing to chronic exposures. PMID:26131858

  12. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  13. Occupational exposure to solar ultraviolet radiation and the risk of prostate cancer.

    Science.gov (United States)

    Peters, Cheryl E; Demers, Paul A; Kalia, Sunil; Hystad, Perry; Villeneuve, Paul J; Nicol, Anne-Marie; Kreiger, Nancy; Koehoorn, Mieke W

    2016-11-01

    Preventable risk factors for prostate cancer are poorly understood; sun exposure is a possible protective factor. The goal of this study was to investigate prostate cancer risk in outdoor workers, a population with high sun exposure. Prostate cancer cases and controls from a large study (conducted between 1994 and 1997) were used for this analysis. A job exposure matrix (JEM) was used to assign solar ultraviolet radiation (UVR) at work as moderate (2 to hours outside/day) or high (≥6 hours). Average daily satellite UV-B measures were linked to the latitude/longitude of the residences of each participant. Several other exposure metrics were also examined, including ever/never exposed and standard erythemal dose by years (SED×years). Logistic regression was used to evaluate the association between solar UVR exposure and the odds of prostate cancer. A total of 1638 cases and 1697 controls were included. Men of Indian and Asian descent had reduced odds of prostate cancer (ORs 0.17 (0.08 to 0.35) and 0.25 (0.15 to 0.41), respectively) compared with Caucasian men, as did single men (OR 0.76 (0.58 to 0.98)) compared with married men. Overall, no statistically significant associations were observed between sun exposure and prostate cancer with 1 exception. In the satellite-enhanced JEM that considered exposure in high category jobs only, prostate cancer odds in the highest quartile of cumulative exposure was decreased compared with unexposed men (OR 0.68 (0.51 to 0.92)). This study found limited evidence for an association with prostate cancer, with the exception of 1 statistically significant finding of a decreased risk among workers with the longest term and highest sun exposure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. A spectroscopic study on the effect of ultra-violet solar radiation in Antarctica on the human skin fibroblast cells

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Yamamoto

    2013-11-01

    Full Text Available A study on the effect of the solar ultra-violet radiation on the human skin fibroblast cells revealed that the production of matrix metalloproteinase-2 was inhibited by the radiation. A CO2 incubator connected by optical fibers to a reflector telescope for collecting the solar light was built at Syowa station by the 49th Japanese Antarctica Research Expedition. The direction of the telescope was continuously controlled by a sun-tracker to follow the movement of the Sun automatically. The intensity of the collected light was monitored by a portable spectrophotometer housed inside. The human skin fibroblast cells were incubated in the CO2 chamber to investigate the effect of the solar radiation at Syowa station and were compared with those reference experiments at a laboratory in Japan. The results showed cell damage by strong UV radiation. The production of matrix metalloproteinase-2 was prompted by the moderate UV-B, but was inhibited by the strong UV-B radiation, as studied under laboratory conditions in Japan. The effect of strong solar radiation at Syowa station involving the radiation of UV-B region was estimated to be of the same extent of the radiation caused by an artificial UV-B light with the intensity more than 50 mJ/cm2.

  15. SIMULATED SOLAR ULTRAVIOLET RADIATION EFFECTS ON 5 SPECIES OF SCLERACTINIAN CORALS

    Science.gov (United States)

    The impact of global climate change factors such as increased temperature and ultraviolet radiation (UVR) on coral bleaching are of continued interest to the USEPA. Coral bleaching occurs when symbiotic zooxanthellae and/or their pigments are depleted in response to stressors suc...

  16. Solar ultraviolet radiation in Australia. Results from network measurements and their use in public education

    International Nuclear Information System (INIS)

    Roy, C.R.; Gies, H.P.; Lokan, K.H.

    1993-01-01

    Growing evidence of global depletion of stratospheric ozone has given additional support to the ultraviolet radiation (UVR) network established by ARL in Australia and Antarctica. The data produced is necessary to increase our knowledge of atmospheric change, human health studies and for public education. (4 figs., 1 tab.)

  17. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    Science.gov (United States)

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    as growth, DNA damage, oxidative damage and induction of changes in secondary chemicals. Thus, use of a single BSWF for plant or ecosystem response is not appropriate. This brief review emphasizes progress since the previous report toward the understanding of solar ultraviolet radiation effects on terrestrial systems as it relates to ozone column reduction and the interaction of climate change factors.

  18. Evolution of solar ultraviolet luminosity

    International Nuclear Information System (INIS)

    Zahnle, K.J.; Walker, J.C.G.

    1982-01-01

    In view of the major role of the sun in defining the properties of planetary atmospheres, their evolution cannot be fully understood outside the context of an evolving sun. The ultraviolet radiation is especially interesting because of its strong interaction with planetary atmospheres. We use astronomical observation of stars that are analogous to the sun in order to reconstruct a tentative account of the evolution of solar UV luminosity. A wealth of evidence indicates that the young sun was a much more powerful source of energetic particles and radiation than it is today. While on the main sequence, solar activity has declined as an inverse power law of age (between t -5 and t/sup -1.2/) as a consequence of angular momentum loss to the solar wind. Recent IUE satellite observations of premain sequence stars suggest that before the sun reached the main sequence (at an age of about 50 m.y.), it may have emitted as much as 10 4 times as much ultraviolet radiation (γ<2000 A) than it does today. These results could impact our understanding of the photochemistry and escape of constituents of primordial planetary atmospheres

  19. Ultraviolet radiation and immunosuppression.

    LENUS (Irish Health Repository)

    Murphy, G M

    2009-11-01

    Ultraviolet (UV) radiation is a complete carcinogen. The effects of UV radiation are mediated via direct damage to cellular DNA in the skin and suppression of image surveillance mechanisms. In the context of organ transplantation, addiction of drugs which suppress the immune system add greatly to the carcinogenicity of UV radiation. This review considers the mechanisms of such effects.

  20. Solar Ultraviolet Radiation Exposure of South African Marathon Runners During Competition Marathon Runs and Training Sessions: A Feasibility Study.

    Science.gov (United States)

    Nurse, Victoria; Wright, Caradee Y; Allen, Martin; McKenzie, Richard L

    2015-01-01

    Marathon runners spend considerable time in outdoor training for and participating in marathons. Outdoor runners may experience high solar ultraviolet radiation (UVR) exposure. South Africa, where running is popular, experiences high ambient solar UVR levels that may be associated with adverse health effects. This feasibility study explores the use of personal dosimeters to determine solar UVR exposure patterns and possible related acute health risks of four marathon runners during marathons and training sessions in Cape Town and Pretoria. Runners running marathons that started early in the day, and that did not exceed 4 hours, yielded low total solar UVR exposure doses (mean 0.093 SED per exposure period run, median 0.088 SED, range 0.062-0.136 SED; average of 16.54% of ambient solar UVR). Training sessions run during early morning and late afternoon presented similar results. Several challenges hindered analysis including accounting for anatomical position of personal dosimeter and natural shade. To assess health risks, hazard quotients (HQs) were calculated using a hypothetical runner's schedule. Cumulative, annual solar UVR exposure-calculated acute health risks were low (HQ = 0.024) for training sessions and moderate (HQ = 4.922) for marathon runs. While these data and calculations are based on 18 person-days, one can measure marathon runners' personal solar UVR exposure although several challenges must be overcome. © 2015 The American Society of Photobiology.

  1. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  2. The impact of solar ultraviolet radiation on human health in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Caradee Y. Wright

    2012-10-01

    Full Text Available Photoprotection messages and ‘SunSmart’ programmes exist mainly to prevent skin cancers and, more recently, to encourage adequate personal sun exposure to elicit a vitamin D response for healthy bone and immune systems. Several developed countries maintain intensive research networks and monitor solar UV radiation to support awareness campaigns and intervention development. The situation is different in sub-Saharan Africa. Adequate empirical evidence of the impact of solar UV radiation on human health, even for melanomas and cataracts, is lacking, and is overshadowed by other factors such as communicable diseases, especially HIV, AIDS and tuberculosis. In addition, the established photoprotection messages used in developed countries have been adopted and implemented in a limited number of sub-Saharan countries but with minimal understanding of local conditions and behaviours. In this review, we consider the current evidence for sun-related effects on human health in sub-Saharan Africa, summarise published research and identify key issues. Data on the prevalence of human diseases affected by solar UV radiation in all subpopulations are not generally available, financial support is insufficient and the infrastructure to address these and other related topics is inadequate. Despite these limitations, considerable progress may be made regarding the management of solar UV radiation related health outcomes in sub-Saharan Africa, provided researchers collaborate and resources are allocated appropriately.

  3. Data on solar sunburning ultraviolet (UVB radiation at an urban Mediterranean climate

    Directory of Open Access Journals (Sweden)

    Katerina G. Pantavou

    2017-04-01

    Full Text Available This article describes data on the intensity of ultraviolet B (UVB radiation collected during field questionnaire-based surveys in Athens, Greece. The surveys were conducted over 11 days of July and October 2010 at three different urban, outdoor sites. A total of 1104 interviews were conducted. The participants were asked to report whether they felt they got a sunburn at the moment of the interview. Questions related to personal characteristics including skin type and exposure time (visit duration at the interview site were also included in the questionnaire.

  4. Mechanisms of plant resistance to increased solar ultraviolet-B radiation. Final report

    International Nuclear Information System (INIS)

    Teramura, A.H.; Sullivan, J.H.

    1988-05-01

    Since the major conclusions of the project are being disseminated via the scientific literature, the final report consists of a compilation of 11 articles and manuscripts on the effects of ultraviolet-B radiation (UVB) on soybean growth and yield, stress interactions with UVB, and effects of UVB on seedling growth in conifers (the Pinaceae). The effects of UVB on soybeans under field and greenhouse conditions, and under water stress, drought stress and phosphorus deficiency were studied. Soybean yields, seed quality, and physiology, including seed fatty acid and sterol composition, were determined

  5. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    Science.gov (United States)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  6. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Flint, S.D.; Caldwell, M.M.

    1984-01-01

    Pollen from four temperate-latitude taxa were treated with UV radiation in a portion of the UV-B (280-320 nm) waveband during in vitro germination. Inhibition of germination was noted in this pollen compared to samples treated identically except for the exclusion of the UV-B portion of the spectrum. Levels similar to maximum solar UV-B found in temperate-latitude areas failed to inhibit pollen germination significantly, while levels similar to maximum solar UV-B found in equatorial alpine locations caused partial inhibition of germination in three of the four taxa examined

  7. The effect of solar ultraviolet radiation (UVR on induction of skin cancers

    Directory of Open Access Journals (Sweden)

    Marta Pacholczyk

    2016-04-01

    Full Text Available Ultraviolet radiation is a physical mutagenic and cancerogenic factor. About 95% of ultraviolet A (UVA (320–400 nm and 5% of UVB (280–320 nm reach the Earth’s surface. Melanin is a natural skin protective factor against UV radiation. Skin cancers associated with long-term exposure to UV radiation are: basal cell carcinoma (BCC, squamous cell carcinoma (SCC and cutaneous malignant melanoma (CMM. The high risk of BCC development is related to acute and repeated exposure to UV causing sunburn. Molecular studies of BBC demonstrated disorders in sonic hedgehog (SHH cell signaling regulation pathway, associated with the suppressor protein patched homolog 1 gene (PTCH1 mutations. The risk of the BCC development is related to the polymorphism of melanokortin-1 receptor gene (MC1R. Tumor P53 gene mutations observed in BCC cells has been classified as secondary genetic changes. In SCC cells UV-induced mutations were mostly related to P53 gene. Increased expression of cyclooxigenase- 2 gene (COX-2 plays a significant role in the development of SCC. Other pathogenetic factors include intensification of the synthesis of pro-inflammatory cytokines (tumor necrosis factor α (TNF-α, interleukin-1 α (IL-1α, IL-1β and IL-6. Currently, the role of UVB has been recognized in the pathogenesis of CMM. In CMM cells the following gene mutations were noted: cyclindependent kinase inhibitor 2A INK4A (p16INK4A, cyclin-dependent kinase 4 (CDK4, Ras, phosphatase and tensin homolog deleted on chromosome 10 (PTEN and proto-oncogene B-Raf (BRAF. The BRAF gene mutations were observed in ~50% of CMM cases. Mutations of P53 gene are not characteristic of CMM cells. Med Pr 2016;67(2:255–266

  8. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.

  9. Solar ultraviolet radiation in Africa: a systematic review and critical evaluation of the health risks and use of photoprotection.

    Science.gov (United States)

    Lucas, Robyn M; Norval, Mary; Wright, Caradee Y

    2016-01-01

    Most information on the harmful health effects of solar ultraviolet radiation (UVR) has been obtained in populations in which the majority has fair skin. Here a systematic review of evidence on diseases related to solar UVR in Africa was undertaken, and the appropriateness of effective photoprotection for these people considered. There are few population-based studies on UV-induced skin cancers (melanoma, squamous and basal cell carcinomas) in Africa, although limited reports indicated that they occur, even in people with deeply pigmented skin. The incidence of melanoma is particularly high in the white population living in the Western Cape of South Africa and has increased significantly in recent years. Cataract is extremely common in people of all skin colours and is a frequent cause of blindness, particularly in the elderly. For both skin cancer and cataract, the proportion of the disease risk that is attributable to exposure to solar UVR in African populations, and therefore the health burden caused by UV irradiation is unclear. There was little published information on the use of sun protection in Africa. The potential disease burden attributable to solar UVR exposure of Africans is high, although accurate data to quantify this are sparse. Information is required on the incidence, prevalence and mortality for the range of UV-related diseases in different populations living throughout Africa. Photoprotection is clearly required, at least for those subpopulations at particularly high risk, but may be limited by cost and cultural acceptability.

  10. Thermoluminescent monitoring of the solar ultraviolet radiation with KCl: Eu2+ crystals

    International Nuclear Information System (INIS)

    Chernov, V.; Melendrez, R.; Barboza F, M.

    2000-01-01

    In this work it has been investigating the Tl properties of KCl: Eu 2+ subjected to solar direct radiation. Also it was realized irradiation with the Deuterium and Xenon lamps. It was used a set of filters and a Katos monochromator 0.25 M to determine the spectral response to Tl peaks and a study of them with respect to the duration of the Sun irradiation. After of the Sun irradiation the Tl curves show several peaks between the ambient temperature and 673 K. The relation between peaks depends strongly of the irradiation time and the different solar light wavelength. It is possible to divide the Tl peaks in two groups. The first one (T 473 K) is not too sensitive but is more stable under optical whitening. Here the obtained results are discussed with respect to UV dosemeters development for environment which facilitate to obtain direct measurements of the UV index. (Author)

  11. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  12. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang (Cornell); (Guangdong); (UMM)

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  13. Determination of daily solar ultraviolet radiation using statistical models and artificial neural networks

    Directory of Open Access Journals (Sweden)

    F. J. Barbero

    2006-09-01

    Full Text Available In this study, two different methodologies are used to develop two models for estimating daily solar UV radiation. The first is based on traditional statistical techniques whereas the second is based on artificial neural network methods. Both models use daily solar global broadband radiation as the only measured input. The statistical model is derived from a relationship between the daily UV and the global clearness indices but modulated by the relative optical air mass. The inputs to the neural network model were determined from a large number of radiometric and atmospheric parameters using the automatic relevance determination method, although only the daily solar global irradiation, daily global clearness index and relative optical air mass were shown to be the optimal input variables. Both statistical and neural network models were developed using data measured at Almería (Spain, a semiarid and coastal climate, and tested against data from Table Mountain (Golden, CO, USA, a mountainous and dry environment. Results show that the statistical model performs adequately in both sites for all weather conditions, especially when only snow-free days at Golden were considered (RMSE=4.6%, MBE= –0.1%. The neural network based model provides the best overall estimates in the site where it has been trained, but presents an inadequate performance for the Golden site when snow-covered days are included (RMSE=6.5%, MBE= –3.0%. This result confirms that the neural network model does not adequately respond on those ranges of the input parameters which were not used for its development.

  14. Solar Ultraviolet-B radiation monitoring in Khorram Abad city in Iran

    International Nuclear Information System (INIS)

    Gholami, M.; Yoosefi, L.

    2009-01-01

    The increasing evidences show that global depletion of stratospheric ozone layer is caused by pollutant and growing incidence of the skin cancer and cataract is related to the amounts of solar UV radiation reaching the earth's surface. Therefore, the main driving force behind such efforts has been the lack of an appropriate network in scope monitoring of the terrestrial UV radiation. Materials and Methods: The present work was performed at Khorram Abad province, Lorestan, Iran. Khorram Abad (48 d egree ' ,21' E and 30 d egree , 23' N) is approximately 1171m above the mean sea level. UV radiation was measured using a UV-Biometer Model 501, from November 2005 till November 2006. Results: Hourly average UV- index, the effective power and other parameters such as effective UV dose have been m oderate f rom April until the end of August 2006 and very low from November till January 2006. However, in some days, the maximum UVI was in the range of H igh , especially in May. Conclusion: It was observed that the monthly average hourly UV index values in Khorram Abad were never at the extreme range. Chronic UVB exposure could be the major cause of eye's and skin disease in months from April to August, during which most people's activities were performed outdoor in the province of Lorestan.

  15. Solar ultraviolet continuum radiation: The photosphere, the low chromosphere, and the temperature-minimum region

    International Nuclear Information System (INIS)

    Samain, D.

    1980-01-01

    A comparison of solar disk-center intensity measurements with theoretical values calculated for atmospheric models derived from the temperature distributions found by J. Vernazza and his colleagues indicates that generally good agreement is found with an atmospheric model having a minimum temperature of about 4150 K or possibly higher. Empirical opacity values including LTE departures and absorption coefficients which best represent the radiation field in the range 1460 A-2100 A are given. Precise values are obtained for the required opacity distribution, presumably due to lines, longward of 1682 A. It is found that a contribution to the opacity from Fe I almost equal to the Si I opacity allows to explain the observed center-to-limb contrast between 1525 A and 1570 A and its fast change through 1570 A. However, the strong measured limb-darkening as compared with the calculated variation from 1600 A to 1682 A cannot completely be accounted for in terms of opacity, and still preserve the agreement with the absolute center intensities. These differences might be interpreted as having been caused by solar inhomogeneities. Alternatively the differences may indicate that the UV continuum is closer to LTE than current theoretical calculations indicate. If so, our Sun center data would imply a minimum temperature higher than 4150 K

  16. Occupational applications of ultraviolet radiation

    International Nuclear Information System (INIS)

    Eriksen, P.

    1987-01-01

    A large population of workers are exposed to ultraviolet radiation in various occupational environments which often necessitates protection. Since ultraviolet radiation may create other environmental problems an occupational hazard- and protection evaluation can be complicated. Threshold Limit Values adopted by the American Conference of Governmental Industrial Hygienists (ACGIH) on ultraviolet radiation are used in most countries as guidelines for risk assessment and control measures. This review addresses the levels of ultraviolet radiation met in occupational environments, its measurement and evaluation, and discusses different protection methods. Ultraviolet lasers are beginning to find their way into industrial processes but are still limited in number and they will not be covered here. Emphasis is on broad band incoherent radiation in high risk environments such as welding, and on the evaluation of protective eyewear, see-through curtains and plastics. Other occupational risks associated with the emission of ultraviolet radiation are discussed

  17. Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review.

    Science.gov (United States)

    Seité, S; Fourtanier, A; Moyal, D; Young, A R

    2010-11-01

    The effects of acute or repeated suberythemal solar ultraviolet radiation (UVR) exposure on human skin have been insufficiently investigated. Such exposure almost certainly has important long-term consequences that include skin ageing and skin cancer. This review summarizes the published data on the biological effects of suberythemal exposure using a wide range of clinical, cellular and molecular endpoints, some of which may be considered as biomarkers for skin cancer and photoageing. We also include some recent unpublished results from our laboratories. The effects of UVA (320-400 nm), UVB (290-320 nm) and total solar UVR (290-400 nm) are compared. We demonstrate that avoiding sunburn does not prevent many indicators of cutaneous biological damage and that use of low sun protection factor (SPF) sunscreen can inhibit much of the damages induced by suberythemal exposure to UVR. However, even when applied correctly, sunscreen use will result in suberythemal exposure. The degree and spectral quality of such exposure will depend on the SPF and absorption spectrum of the sunscreen, but nonetheless it may contribute to cumulative photodamage. This review may help to determine the level of photoprotection required in sunscreens and daily use products, as well as the ideal ratio of UVB/UVA protection, to improve long-term photoprotection outcomes. © 2010 The Authors. BJD © 2010 British Association of Dermatologists.

  18. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    International Nuclear Information System (INIS)

    Landi, E.; Young, P. R.

    2009-01-01

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s 2 3p 5 4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

  19. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation

    OpenAIRE

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C.; Pourzand, Charareh

    2016-01-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320?400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect...

  20. Solar ultraviolet radiation alters alder and birch litter chemistry that in turn affects decomposers and soil respiration.

    Science.gov (United States)

    Kotilainen, Titta; Haimi, Jari; Tegelberg, Riitta; Julkunen-Tiitto, Riitta; Vapaavuori, Elina; Aphalo, Pedro Jose

    2009-10-01

    Solar ultraviolet (UV)-A and UV-B radiation were excluded from branches of grey alder (Alnus incana) and white birch (Betula pubescens) trees in a field experiment. Leaf litter collected from these trees was used in microcosm experiments under laboratory conditions. The aim was to evaluate the effects of the different UV treatments on litter chemical quality (phenolic compounds, C, N and lignin) and the subsequent effects of these changes on soil fauna and decomposition processes. We measured the decomposition rate of litter, growth of woodlice (Porcellio scaber), soil microbial respiration and abundance of nematodes and enchytraeid worms. In addition, the chemical quality of woodlice feces was analyzed. The exclusion of both UV-A and UV-B had several effects on litter chemistry. Exclusion of UV-B radiation decreased the C content in litter in both tree species. In alder litter, UV exclusion affected concentration of phenolic groups variably, whereas in birch litter there were no significant differences in phenolic compounds. Moreover, further effects on microbial respiration and chemical quality of woodlice feces were apparent. In both tree species, microbial CO(2) evolution was lower in soil with litter produced under exclusion of both UV-A and UV-B radiation when compared to soil with control litter. The N content was higher in the feces of woodlice eating alder litter produced under exclusion of both UV-A and UV-B compared to the control. In addition, there were small changes in the concentration of individual phenolic compounds analyzed from woodlice feces. Our results demonstrate that both UV-A and UV-B alter litter chemistry which in turn affects decomposition processes.

  1. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  2. Design of wideband solar ultraviolet radiation intensity monitoring and control system

    Science.gov (United States)

    Ye, Linmao; Wu, Zhigang; Li, Yusheng; Yu, Guohe; Jin, Qi

    2009-08-01

    According to the principle of SCM (Single Chip Microcomputer) and computer communication technique, the system is composed of chips such as ATML89C51, ADL0809, integrated circuit and sensors for UV radiation, which is designed for monitoring and controlling the UV index. This system can automatically collect the UV index data, analyze and check the history database, research the law of UV radiation in the region.

  3. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. L. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); Yu, P. K. N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong (Hong Kong)

    2014-10-01

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm⁻²p or J m⁻²). The useful range was from ~0.2 to ~30 J cm⁻². The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm⁻², the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recorded values within 15%.

  4. Ultraviolet radiation: the eye

    International Nuclear Information System (INIS)

    Cesarini, J.P.; Sliney, D.H.

    1996-01-01

    Under most conditions, the eye is well adapted to protect itself against ultraviolet radiation encountered in the outdoor environment as a result of the exposure geometry of the sun. Only when snow is on the ground does one experience acute effects of UV sunlight exposure (i.e. snow blindness, or photokeratitis). With regard to artificial sources, there are many occasions where one views bright light sources such as tungsten-halogen lamps, arc lamps and welding arcs. Such viewing is normally only momentary because of the aversion response to bright light and due to discomfort glare. However, such an aversion does not take place for germicidal lamps and other UV lamps which do not contain a strong visible component in their spectrum. The adverse effects from viewing such sources has been studied for decades and during the last two decades guidelines for limiting exposure to protect the eye have been developed. The guidelines were fostered to a large extent by the growing use of lasers and the quickly recognized hazard posed by viewing laser sources. (author)

  5. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation.

    Science.gov (United States)

    Reelfs, Olivier; Abbate, Vincenzo; Hider, Robert C; Pourzand, Charareh

    2016-08-01

    Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320-400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  7. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    Science.gov (United States)

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effects of solar ultraviolet radiation (UVR) on molecular diversity of plankton from the Chubut rivers estuary

    International Nuclear Information System (INIS)

    Manrique, J.M.; Halac, S.; Calvo, A.Y.; Villafane, V.; Jones, L.R.; Helbling, W.E.

    2010-01-01

    Within the framework of a project designed to evaluate the impact of UVR upon estuarine plankton, we present here a molecular analysis of plankton diversity. Water samples were exposed to three radiation treatments (PAR, PAR + UV-A and PAR + UV-A + UV-B) in microcosms for ca 10 days during the Austral summer. At the beginning (t 0 ) and at the end of the experiment samples were filtered 0 through 20, 10, 5 and 0.22 μm pore sizes. The DNA amount retained in each filter indicated that most of the plankton biomass was in the 0.22-5 μm fraction at t0. In contrast, at the end of the experiment this proportion changed according to the radiation treatment and big cells (> 20 μm) dominated. An rDNA library was obtained from the DNA corresponding to the 0.22-5 μm fraction. There was no relationship between treatments and the number and frequency of restriction genotypes. Analyses of 27 clones fraction from t 0 indicated the presence of three genera of Rhodobacteraceae, one genus of Rhodospirillaceae, one SAR11 genus, one genus of Bacillaceae, an unclassified sequences of Alphaproteobacteria, Actinobacteria and Rhodospirillaceae. Also, there were six sequences similar to Ostreococcus tauri (Mamiellales). Even though the sequence analyses are still ongoing, our initial data suggest a big impact of UV-B radiation in the amount and composition of the plankton community towards big cells. (authors)

  9. Comparison of Five Modeling Approaches to Quantify and Estimate the Effect of Clouds on the Radiation Amplification Factor (RAF) for Solar Ultraviolet Radiation

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ultraviolet Radiation (UV) data collected at 21 US Environmental Protection Agency sites throughout the continental US, Alaska, Hawaii, and the US Virgin Islands...

  10. Personal exposure distribution of solar erythemal ultraviolet radiation in tree shade over summer

    International Nuclear Information System (INIS)

    Parisi, A.V.; Wong, J.C.F.

    2000-01-01

    The personal radiant exposure distribution of solar erythemal UV in tree shade for an upright posture was measured, with measurements over the whole summer for a total of 17 trees. For each tree, the personal radiant exposure distribution was measured for both the morning and afternoon periods. The exposure ratios averaged over all the trees and over the morning and afternoon periods ranged from 0.16 to 0.49 for the different anatomical sites. A numerical model was employed to estimate the UV radiant exposure to humans in tree shade over the entire summer. The body sites with the higher exposure ratios in the tree shade were the vertex of the head, shoulders and forearms with radiant exposures over the summer of 1300 MED to the vertex of the head and 1100 MED to the shoulders and forearms. These radiant exposures in the shade are substantially higher than the ambient erythemal UV measured in full sun on a horizontal plane over a full summer at a more temperate northern hemisphere latitude. The average radiant exposures per day to each anatomical site for a complete day in the tree shade ranged from 4.6 to 14.6 MED. This research has provided new data that is essential to quantify human UV exposure during outdoor activities. (author)

  11. Minimum exposure limits and measured relationships between the vitamin D, erythema and international commission on non-ionizing radiation protection solar ultraviolet.

    Science.gov (United States)

    Downs, Nathan; Parisi, Alfio; Butler, Harry; Turner, Joanna; Wainwright, Lisa

    2015-01-01

    The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for exposure to ultraviolet radiation in outdoor occupational settings. Spectrally weighted ICNIRP ultraviolet exposures received by the skin or eye in an 8 h period are limited to 30 J m(-2). In this study, the time required to reach the ICNIRP exposure limit was measured daily in 10 min intervals upon a horizontal plane at a subtropical Australian latitude over a full year and compared with the effective Vitamin D dose received to one-quarter of the available skin surface area for all six Fitzpatrick skin types. The comparison of measured solar ultraviolet exposures for the full range of sky conditions in the 2009 measurement period, including a major September continental dust event, show a clear relationship between the weighted ICNIRP and the effective vitamin D dose. Our results show that the horizontal plane ICNIRP ultraviolet exposure may be used under these conditions to provide minimum guidelines for the healthy moderation of vitamin D, scalable to each of the six Fitzpatrick skin types. © 2014 The American Society of Photobiology.

  12. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  13. Exposure to ultraviolet radiation: recommendations for cosmetic use

    International Nuclear Information System (INIS)

    Dias, C.; Carvalho, F.R.S.

    2000-01-01

    The beginning of the so-called tanning industry made possible the acquisition of a tanned skin independently of the available solar radiation. The tan is produced by ultraviolet radiation and, as well as in solar exposure, there are additional risks on the use of the so-called sun-beds. The damaging effects of ultraviolet exposure are well documented and reasonably quantified. The objective of this paper is to inform the potential effects of ultraviolet radiation exposure in sun-beds and to provide recommendations in order to reduce the associated risks. These recommendations are adapted for cosmetics use only (author)

  14. Ultraviolet-radiation-curable paints

    Energy Technology Data Exchange (ETDEWEB)

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  15. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox

    International Nuclear Information System (INIS)

    Ballare, C.L.; Scopel, A.L.; Stapleton, A.E.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV0B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferrox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. 56 refs., 7 figs

  17. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey.

    Science.gov (United States)

    Greenfield, Jamie A; Park, Philip S; Farahani, Ellie; Malik, Suneil; Vieth, Reinhold; McFarlane, Norman A; Shepherd, Theodore G; Knight, Julia A

    2012-08-15

    Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n = 4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m² increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P = 0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight.

  18. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses

    International Nuclear Information System (INIS)

    Mazza, C.A.; Battista, D.; Zima, A.M.; Szwarcberg-Bracchitta, M.; Giordano, C.V.; Acevedo, A.; Scopel, A.L.; Ballare, C.L.

    1999-01-01

    There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance. (author)

  19. Solar maximum ultraviolet spectrometer and polarimeter

    Science.gov (United States)

    Tandberg-Hanssen, E.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Hyder, C. L.; Michalitsianos, A. G.; Shine, R. A.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.

    1979-01-01

    The objectives of the UVSP experiment are to study solar ultraviolet radiations, particularly from flares and active regions, and to measure constituents in the terrestrial atmosphere by the extinction of sunlight at satellite dawn and dusk. The instrument is designed to observe the Sun at a variety of spectral and spatial resolutions in the range from 1150 to 3600 A. A Gregorian telescope with effective focal length of 1.8 m is used to feed a 1 m Ebert-Fastie spectrometer. A polarimeter containing rotatable magnesium fluoride waveplates is included behind the spectrometer entrance slit and will allow all four Stokes parameters to be determined. Velocities on the Sun can also be measured. The instrument is controlled by a computer which can interact with the data stream to modify the observing program. The observing modes, including rasters, spectral scans, velocity measurements, and polarimetry, are also described along with plans for mission operations, data handling, and analysis of the observations.

  20. Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings

    International Nuclear Information System (INIS)

    Mark, U.; Tevini, M.

    1997-01-01

    The effects of solar UV-B radiation, in combination with elevated temperature (4 °C) and CO 2 (680 μL L -1 ) concentration, on sunflower and maize seedlings were studied from May to August in 1991 at the research station Quinta de São Pedro in Portugal (38.7°N). The ambient solar radiation of Portugal was reduced to levels of Central European latitudes by using the ozone filter technique. This radiation served as control, while the ambient solar radiation of Portugal was to simulate intense UV-B treatment (+30%). All plants were grown up to 18 days in 4 climate controlled growth chambers simulating a daily course of temperature with T max = 28 °C or 32 °C, resp., and ambient CO 2 concentrations (340 μL L -1 ); in one chamber the CO 2 concentration was twice as high (680 μL L-1). Under intense UV-B and at 28 °C (T max ) all growth parameters (height, leaf area, fresh and dry weight, stem elongation rate, relative growth rate) of sunflower and maize seedlings were reduced down to 35% as compared to controls. An increase in growing temperature by 4 °C, alone or in combination with doubled CO 2 , compensated or even overcompensated the UV-B effect so that the treated plants were comparable to controls. Chlorophyll content, on a leaf area basis, increased under intense UV-B radiation. This increase was compensated by lower leaf areas, resulting in comparable chlorophyll contents. Similar to growth, also the net photosynthetic rates of sunflower and maize seedlings were reduced down to 29% by intense UV-B calculated on a chlorophyll basis. This reduction was compensated by an increased temperature. Doubling of CO 2 concentration had effects only on sunflower seedlings in which the photosynthetic rates were higher than in the controls. Dark respiration rates of the seedlings were not influenced by any experimental condition. Transpiration and water use efficiency (wue) were not influenced by intense UV-B. Higher temperatures led to higher transpiration rates and

  1. Maps of ultraviolet radiation in Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2009-01-01

    Ultraviolet radiation (UV) has contributed relatively little energy to the solar spectrum; but is important, because it is biologically active. The software Surfer 8 has created maps designed of the territory of Costa Rica to assess the maximum levels of solar UV radiation on a horizontal plane. The data were used in creating the maps, were predicted at local noon in eighty-three locations scattered across the country, with a spectral atmospheric model which is physically established. The model has used as input data: the date and time, the location identified by latitude, longitude and height of land above sea level, the value of the vertical column ozone, surface albedo and atmospheric turbidity parameters. The estimate differs by 3% of the measurements made in situ, which agrees with the experimental data. The model has used the data estimation of UV radiation, clear sky conditions, which is the condition where you get the maximum energy possible in each locality. This is of fundamental importance when assessing the adverse effects on human health, leads the maximum intensity in this important solar spectrum band. A larger increase of 23% has presented in the UV radiation with altitude obtaining the hills and mountains the highest rates and places located at sea level and the lowest cost, the indices. The annual variation analysis has revealed an increase greater than 27% from the month of lowest UV radiation (December) and the month of greatest UV radiation (April). The issue is of particular interest because of the increasing number of people moving at different times of the year, altitudes over 2000 m altitude, in activities relating to tourism and employment. These individuals are significant increases in levels of UV solar radiation under conditions of clear skies. (author) [es

  2. A broad-spectrum sunscreen prevents cumulative damage from repeated exposure to sub-erythemal solar ultraviolet radiation representative of temperate latitudes.

    Science.gov (United States)

    Seité, S; Christiaens, F; Bredoux, C; Compan, D; Zucchi, H; Lombard, D; Fourtanier, A; Young, A R

    2010-02-01

    We have previously shown the detrimental effects of 19 sub-erythemal exposures to daily ultraviolet radiation (DUVR, which mimics non-extreme exposure conditions), delivered over 4 weeks to volunteers. This source had UVA (320-400 nm) to UVB (290-320 nm) irradiance ratio of 25, instead of that close to 10 that is typically the case with solar-simulated radiation (SSR) that represents summer global sunlight with a clear sky and quasi-zenith solar irradiance. Here, we report on an extension of this previous study, in which we evaluated the photoprotection afforded by a broad-spectrum daily-care product with a low-sun protection factor (SPF 8, UVA-PF 7 and 3* rated UVA protection). We assessed cellular and molecular markers of photodamage that are relevant to skin cancer and photoageing. This study shows that biological effects of repeated exposure to DUVR can be prevented by a broad-spectrum daily-care product and that the level of protection afforded varies with the studied endpoint. Efficient daily UVR protection, as provided by a broad-spectrum daily-care product, is necessary to prevent the 'silent' sub-erythemal cumulative effects of UVR from inadvertent sun exposure.

  3. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    Science.gov (United States)

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a

  4. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer.

    Science.gov (United States)

    Grigalavicius, Mantas; Moan, Johan; Dahlback, Arne; Juzeniene, Asta

    2016-01-01

    Solar ultraviolet (UV) radiation varies with latitude, time of day, and season. Both spectral UV composition and ambient UV dose lead to different health outcomes at different latitudes. Finding the optimal time for sun exposure, whereby the positive effects of UV exposure (vitamin D) are facilitated and the negative effects (skin cancer, photoimmunosuppression) avoided are the most important consideration in modern skin cancer prevention programs. This paper focuses on the latitude dependency of UVB, UVA, vitamin D production, and skin cancer risk in Caucasians. Biologically effective UVB (280-315 nm) and UVA (315-400 nm) doses were calculated using radiative transfer models with appropriate climatologic data for selected locations. Incidences of squamous cell carcinoma (SCC) and cutaneous melanoma (CM) were retrieved from cancer registries and published articles. Annual doses of UVA radiation decrease much less with increasing latitude than annual doses of UVB. Incidences of CM also decrease less steeply with increasing latitude than incidences of SCC. As SCC is caused mainly by UVB, these observations support the assumption that UVA plays an important role in the development of CM. The variations in UVA (relevant to CM) and UVB (relevant to vitamin D production) over 1 day differ: the UVB : UVA ratio is maximal at noon. The best way to obtain a given dose of vitamin D with minimal carcinogenic risk is through a non-burning exposure in the middle of the day, rather than in the afternoon or morning. © 2015 The International Society of Dermatology.

  5. Altmetric: 165More detailArticle | OPENClimate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters

    Science.gov (United States)

    Climate change is accelerating the release of dissolved organic matter (DOM) to inland and coastal waters through increases in precipitation, thawing of permafrost, and changes in vegetation. Our modeling approach suggests that the selective absorption of ultraviolet radiation (U...

  6. Cytogenetic, cellular, and developmental responses in antarctic sea urchins (Sterechinus neumayeri) following laboratory ultraviolet-B and ambient solar radiation exposures

    International Nuclear Information System (INIS)

    Anderson, S.; Hoffman, J.; Wild, G.; Bosch, I.; Karentz, D.

    1993-01-01

    Increasing ultraviolet-B radiation as a consequence of springtime ozone depletion, could harm antarctic ecosystems. This study uses several techniques for studying genotoxic effects to evaluate UV-B effects in sea urchins from Antarctica. 6 refs., 2 figs

  7. Measurement errors in the assessment of exposure to solar ultraviolet radiation and its impact on risk estimates in epidemiological studies.

    Science.gov (United States)

    Dadvand, Payam; Basagaña, Xavier; Barrera-Gómez, Jose; Diffey, Brian; Nieuwenhuijsen, Mark

    2011-07-01

    To date, many studies addressing long-term effects of ultraviolet radiation (UVR) exposure on human health have relied on a range of surrogates such as the latitude of the city of residence, ambient UVR levels, or time spent outdoors to estimate personal UVR exposure. This study aimed to differentiate the contributions of personal behaviour and ambient UVR levels on facial UVR exposure and to evaluate the impact of using UVR exposure surrogates on detecting exposure-outcome associations. Data on time-activity, holiday behaviour, and ambient UVR levels were obtained for adult (aged 25-55 years old) indoor workers in six European cities: Athens (37°N), Grenoble (45°N), Milan (45°N), Prague (50°N), Oxford (52°N), and Helsinki (60°N). Annual UVR facial exposure levels were simulated for 10,000 subjects for each city, using a behavioural UVR exposure model. Within-city variations of facial UVR exposure were three times larger than the variation between cities, mainly because of time-activity patterns. In univariate models, ambient UVR levels, latitude and time spent outdoors, each accounted for less than one fourth of the variation in facial exposure levels. Use of these surrogates to assess long-term exposure to UVR resulted in requiring more than four times more participants to achieve similar statistical power to the study that applied simulated facial exposure. Our results emphasise the importance of integrating both personal behaviour and ambient UVR levels/latitude in exposure assessment methodologies.

  8. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status

    Directory of Open Access Journals (Sweden)

    Ola Engelsen

    2010-05-01

    Full Text Available This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.

  9. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    Science.gov (United States)

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  10. Ultraviolet radiation response of two heterotropy Antarctic marine bacterial

    International Nuclear Information System (INIS)

    Hernandez, Edgardo A.; Ferreyra, Gustavo A.; Mac Cormack, Walter P.

    2004-01-01

    Two Antarctic marine bacterial strains, were exposed to different irradiance of ultraviolet (UV) solar radiation using several experimental protocols and interferential filters. Results showed that both, UV-A and UV-B radiation produce deleterious effects on two tested bacterial strains. The mortality values under UVB treatments were higher than those observed under UVA treatments. UVvi strain proved to be more resistant to UV radiation than the UVps strain. (author) [es

  11. Human exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Bernhardt, J.H.; Matthes, R.

    1987-01-01

    Ultraviolet radiation is that part of the electromagnetic spectrum located between the softest ionizing radiation and visible radiation. The lower limit of 100 nm is equivalent to photon energies of 12.4 eV, which corresponds approximately to the limit for the production of ionization in biologically important materials. A historical subdividing of the UV-region takes some of the biological effects into account. In this arrangement the range 400-315 nm, the so-called black light region, is called UV-A. In this wavelength region, fluorescence can be induced in many substances. UV-B covers the range 315-280 nm (the skin erythemal region). Most of the biologically active and potentially harmful UV from the sun reaching the surface of the earth is part of this spectral region. UV-C includes the radiation of wavelengths less than 280 nm (the germicidal region). It should be noted that this classification is somewhat arbitrary, and today it is more usual to evaluate the biological effectiveness of the whole UV-range from 200 to 400 nm

  12. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  13. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    Science.gov (United States)

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  14. Novel photoinducible protective system in the Candida Guilliermondii under mid-ultraviolet radiation effect

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Pinyaskina, E.V.; Strakhovskaya, M.G.

    1995-01-01

    Resistance of the Candida guilliermondii cells to ultraviolet radiation (290-320 nm, 400-750 nm) is studied. Presence of previously unknown photoinducible protective mechanism in yeasts, providing for increase in cell stability to mid-ultraviolet radiation, biologically most active in the solar radiation spectrum, is revealed. 9 refs.; 3 figs

  15. Effect of ultraviolet-B radiation on biochemical and antioxidant ...

    African Journals Online (AJOL)

    user

    The stratospheric ozone depletion and enhanced solar ultraviolet-B (UV-B) ... mechanism produced by enzymatic antioxidant such as catalase, peroxidase, ... absorb UV-B and prevent it from penetrating into the leaf mosophyll cells. The aim of this work was to investigate the effects of UV-B radiation on Indigofera tinctoria ...

  16. Additive effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A xenon-mercury high pressure lamp and a double monochromator were used to produce ultraviolet (uv) radiation at 295 nm. Pigmented rabbit eyes were irradiated and evaluated by slitlamp biomicroscopy. Corneal threshold (Hc) was 0.05 J.cm-2 and lens threshold (hL) was 0.75 J.cm-2. Other eyes were irradiated with 2 Hc and evaluated from 4 to 24 h at 4 h intervals. Corneal damage was only greater than that expected from a single Hc exposure if the separation between the two Hc exposures did not exceed 8 h. The most repeatable and reliable corneal response to these levels of uv was the development of corneal epithelial granules

  17. Coral skeletons defend against ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Ruth Reef

    Full Text Available BACKGROUND: Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR. High levels of ultraviolet radiation (UVR associated with sunlight, however, represent a potential problem in terms of tissue damage. METHODOLOGY/PRINCIPAL FINDINGS: By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation. CONCLUSIONS/SIGNIFICANCE: Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life.

  18. Stratospheric ozone, ultraviolet radiation and climate change

    International Nuclear Information System (INIS)

    Boucher, O.

    2008-01-01

    It is well known that an overexposure to ultraviolet radiation is associated with a number of health risks such as an increased risk of cataracts and skin cancers. At a time when climate change is often blamed for all our environmental problems, what is the latest news about the stratospheric ozone layer and other factors controlling ultraviolet radiation at the surface of the Earth? Will the expected changes in the chemical composition of the atmosphere and changes in our climate increase or decrease the risk for skin cancer? This article investigates the role of the various factors influencing ultraviolet radiation and presents the latest knowledge on the subject. (author)

  19. Photodetector of ultra-violet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Vieru, T.; Coseac, V.; Chirita, F.

    1999-01-01

    The invention relates to photodetectors on the semiconductors base, in particular, to photodetectors of ultra-violet radiation and can be used in the optoelectronics systems for determining the intensity and dose of ultraviolet radiation emitted by the Sun and other sources. In the structure of the photodetector of ultraviolet radiation with a superficial potential barrier formed of semiconductors A 3 B 5 with the prohibited power width Eg 1 , solid solutions thereof with the prohibited power width Eg 2 and SnO 2 or ITO, in the semiconductors A 3 B 5 at a surface distance less than the absorption length of the visible radiation it is formed an isotype heterojunction between the semiconductors A 3 B 5 and solid solutions thereof with the prohibited power width Eg 2 > Eg 1 . The technical result consists in manufacturing of a photodetector sensitive solely to the ultraviolet radiation

  20. Unintentional exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Sliney, D.H.

    1987-01-01

    To evaluate the risks from unintentional exposure to ultraviolet radiation (UVR), and to consider hazard control regulation, one must face first the problem of their state of scientific knowledge and the public's perception of UVR. Few people in the general public would question the health benefits of sunlight. Many flock to the beaches each summer to develop a healthy tan. Since the 1920's scientists have recognized that most of the benefits--and risks--of sunlight exposure result from the UVR present in sunlight. Dermatologists warn sunbathers to avoid exposure or protect themselves against the intense midday UVR or risk skin cancer. A growing number of scientists warn of hazards to the eye if UVR--perhaps even shorter visible wavelengths--are not filtered by lenses. In addition to any intentional exposure for health or cosmetic purposes, many people are also exposed to UVR without being aware of it or without their intent to be exposed. Outdoor workers are exposed to sunlight, many industrial workers (e.g., welders) are exposed to UVR from arc sources, some UVR penetrates clothing, and people indoors are exposed to UVR from artificial lighting

  1. Dermal damage from ultraviolet radiation

    International Nuclear Information System (INIS)

    Kligman, L.H.

    1988-01-01

    Ultraviolet (UV) radiation is increasingly recognized as the cause of a vast number of changes in the skin of humans and animals. These include alterations at the molecular, cellular, tissue and systematic levels. In the recent past, much has been learned about the immediate effects in skin of acute UV exposure (i.e. sunburn) with its epidermal cell death, inflammation and vasolidation. With chronic exposure, many of the clinical and histologic effects can be seen only after decades. Visually, these are hyper- and hypopigmented macules, dry scaly, wrinkled skin with a variety of benign, pre-malignant and malignant neoplasms. All epidermal in origin, they lead, inexorably in humans, to the appearance the authors described as photo-aged. Underlying many of these visible manifestations are drastic changes in the dermis. These relate chiefly to destruction of mature collagen, with a compensatory overproduction of reticulin fibers, hyperplasia of elastic fibers eventuating in elastosis, increased levels of the glycosaminoglycans (GAGs) comprising the ground substance and changes in the microvasculature. First described in actinically damaged humans, systematic investigation required an animal model

  2. PMMA Wettability Caused by Ultraviolet Radiation

    OpenAIRE

    Dehtjars, J; Lancere, L; Poļaka, N; Soudnikovich, A; Tjuļkins, F; Valters, V

    2010-01-01

    The article is targeted to explore ultraviolet radiation (UV) influence on PMMAf or eye prostheses. UV beingt he Sun lightc omponenta nd could effect PMMA surface that in turn contributesi nteractionw ith tear. PMMA wettabilityw as poweredb y UV.

  3. Thermoluminescent monitoring of the solar ultraviolet radiation with KCl: Eu{sup 2+} crystals; Monitoreo termoluminiscente de la radiacion solar ultravioleta con cristales de KCl: Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.; Melendrez, R.; Barboza F, M. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-88, Hermosillo, Sonora (Mexico)

    2000-07-01

    In this work it has been investigating the Tl properties of KCl: Eu{sup 2+} subjected to solar direct radiation. Also it was realized irradiation with the Deuterium and Xenon lamps. It was used a set of filters and a Katos monochromator 0.25 M to determine the spectral response to Tl peaks and a study of them with respect to the duration of the Sun irradiation. After of the Sun irradiation the Tl curves show several peaks between the ambient temperature and 673 K. The relation between peaks depends strongly of the irradiation time and the different solar light wavelength. It is possible to divide the Tl peaks in two groups. The first one (T<473 K) is very sensitive to ultraviolet radiation but it is strongly affected by visible light. The second one (T>473 K) is not too sensitive but is more stable under optical whitening. Here the obtained results are discussed with respect to UV dosemeters development for environment which facilitate to obtain direct measurements of the UV index. (Author)

  4. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris

    2013-01-01

    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  5. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation

    Science.gov (United States)

    Ryan, robert E.; Underwood, Lauren W.

    2007-01-01

    More than 75 percent of the U.S. population lives in urban communities where people are exposed to levels of smog or pollution that exceed the EPA (U.S. Environmental Protection Agency) safety standards. Urban air quality presents a unique problem because of a number of complex variables, including traffic congestion, energy production, and energy consumption activities, all of which can contribute to and affect air pollution and air quality in this environment. In environmental engineering, photocatalysis is an area of research whose potential for environmental clean-up is rapidly developing popularity and success. Photocatalysis, a natural chemical process, is the acceleration of a photoreaction in the presence of a catalyst. Photocatalytic agents are activated when exposed to near UV (ultraviolet) light (320-400 nm) and water. In recent years, surfaces coated with photocatalytic materials have been extensively studied because pollutants on these surfaces will degrade when the surfaces are exposed to near UV light. Building materials, such as tiles, cement, glass, and aluminum sidings, can be coated with a thin film of a photocatalyst. These coated materials can then break down organic molecules, like air pollutants and smog precursors, into environmentally friendly compounds. These surfaces also exhibit a high affinity for water when exposed to UV light. Therefore, not only are the pollutants decomposed, but this superhydrophilic nature makes the surface self-cleaning, which helps to further increase the degradation rate by allowing rain and/or water to wash byproducts away. According to the Clean Air Act, each individual state is responsible for implementing prevention and regulatory programs to control air pollution. To operate an air quality program, states must adopt and/or develop a plan and obtain approval from the EPA. Federal approval provides a means for the EPA to maintain consistency among different state programs and ensures that they comply with the

  6. Impact of ultraviolet radiation on humans

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    2001-01-01

    Solar radiation, including its ultraviolet (UV) components is a key factor in life on Earth. While small quantities of UV are beneficial for people (for example, through the production of vitamin D), the considerable amount to which people sometimes expose themselves may have extremely noxious effects including actinic erythema, sunburn, photo-induced diseases, photo-worsened diseases, actinic ageing and skin cancers. Since the last century, human exposure to UV has increased either by social-behaviour modifications, or by anthropogenic disruption to the environment through, among other things, industrial development. The World Health Organisation's (WHO) INTERSUN programme has several components: action for reconstruction of the ozone layer through, for example, preventing dumping of chlorofluorocarbons; creation and popularisation of a global UV index; prevention campaigns underlining the risks from UV exposure including dissemination of information to daily newspapers. These are all aimed at reducing the amount of UV radiation that people receive. In addition the WHO advises against exposure to UV artificial sources to reduce overall the quantity of UV received. (author)

  7. Impact of ultraviolet radiation on humans

    Energy Technology Data Exchange (ETDEWEB)

    Cesarini, J.P. [Laboratoire de Recherche sur les Tumeurs de la Peau Humaine, INSERM, Paris (France)

    2001-07-01

    Solar radiation, including its ultraviolet (UV) components is a key factor in life on Earth. While small quantities of UV are beneficial for people (for example, through the production of vitamin D), the considerable amount to which people sometimes expose themselves may have extremely noxious effects including actinic erythema, sunburn, photo-induced diseases, photo-worsened diseases, actinic ageing and skin cancers. Since the last century, human exposure to UV has increased either by social-behaviour modifications, or by anthropogenic disruption to the environment through, among other things, industrial development. The World Health Organisation's (WHO) INTERSUN programme has several components: action for reconstruction of the ozone layer through, for example, preventing dumping of chlorofluorocarbons; creation and popularisation of a global UV index; prevention campaigns underlining the risks from UV exposure including dissemination of information to daily newspapers. These are all aimed at reducing the amount of UV radiation that people receive. In addition the WHO advises against exposure to UV artificial sources to reduce overall the quantity of UV received. (author)

  8. The impact of ultraviolet radiation on timber

    International Nuclear Information System (INIS)

    Dawson, B.

    1993-01-01

    Photochemical degradation of timber, the outcome of exposure of timber to ultraviolet radiation, is a light induced chemical and physical decay. Timber is a collection of dead wood cells. Impacts of radiation on the growing tree are therefore outside the scope of this paper, which is primarily concerned with timber as a material. (author). 5 refs. 2 figs

  9. Experimental study of the ultraviolet global radiation in San Jose, Costa Rica

    International Nuclear Information System (INIS)

    Wright, J.

    1996-01-01

    The ultraviolet global radiation and the global solar radiation at San Jose, Costa Rica (latitude: 9 0 56', longitude: 84 0 54', altitude: 1.172 m.) during the period October 1993 to January 1995 were analyzed with respect to their seasonal variations and their independence. The dependence between the ultraviolet radiation and the clearness index of the skies was also investigated. A poor correlation was found between the quotient of the ultraviolet radiation (Hv/Hg) and between the global solar radiation and the extraterrestrial solar radiation (Hg/Ho). The correlation coefficient found between Hv/Hg and Hg/Ho was not greater than 0.25 for four categories of clearness index, i.e., covered skies, clear skies, and two intermediate conditions. This demonstrates that the ultraviolet radiation is not only associated with other atmospheric transmission conditions. A regression analysis between the hourly values of the ultraviolet and global radiation yielded a linear relationship with a determination coefficient greater than 98%. Thus a simple linear regression is reliable for the estimation of the ultraviolet in San Jose from global solar radiation data. (author) [es

  10. Establishing a ultraviolet radiation observational network and enhancing the study on ultraviolet radiation

    Science.gov (United States)

    Bai, Jianhui; Wang, Gengchen

    2003-09-01

    On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.

  11. Solar radiation over India

    Energy Technology Data Exchange (ETDEWEB)

    Mani, A; Rangarajan, S

    1982-01-01

    Solar radiation data, on horizontal and sloped surfaces, are provided derived from other meteorological parameters at 145 stations covering all major climatic zones of the country. Two methods were used to compute solar radiation, one using regression techniques to derive radiation from sunshine and cloudiness, the other from extra-terrestrial radiation, allowing for its depletion by absorption and scattering in the atmosphere. The methods of calculating the daily global radiation tilt factor using an anisotropic model for diffuse solar radiation are described. The results of statistical analysis of global solar radiation data recorded at 16 stations are presented. Appendices contain an extensive bibliograpny, sun path diagrams for latitudes 6/sup 0/N to 36/sup 0/N, and tables for the calculation of Local Apparent Time from Indian Standard Time.

  12. Ultraviolet radiation, measurements and safety evaluations for radiation protection purposes

    International Nuclear Information System (INIS)

    Witew, B.; Fischer, P.G.

    1983-01-01

    In order to evaluate the effects of ultraviolet radiation, one has to study that photobiologically effective radiation which induces a just measurable threshold reaction. For practical radiation protection, one has to determine the permissible duration of exposure at the end of which the threshold reaction is induced. This time limit is derived by means of spectral measurements and determination of radiation intensity. Detrimental photobiological effects can be avoided, and favourable effects optimized, by observing the time limit. Thus these measurements are used to determine the threshold at which the desired effects of ultraviolet radiation will be accompanied by unwanted effects or damage to persons, as for instance in the use of ultraviolet radiation for operating room sterilization, arc welding work, or cosmetic purposes. (orig.) [de

  13. Effectiveness of eye drops protective against ultraviolet radiation.

    Science.gov (United States)

    Daxer, A; Blumthaler, M; Schreder, J; Ettl, A

    1998-01-01

    To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.

  14. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  15. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  16. Intentional exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Kivisakk, E.

    1987-01-01

    Exposure to UV radiation can cause a number of detrimental effects to human health. Some of these are particularly grave, as for instance the induction of skin cancer. Nevertheless, intentional exposure to UV radiation is commonly practiced for many purposes, ranging from medical treatment to merely a simple form of pastime. From the radiation point of view, the risks associated with exposure to UV radiation in any particular application should be carefully considered, and only accepted if they are obviously compensated by the benefits of the irradiation. This is not always the case today, to some extent due to shortage of information about the effect of UV radiation - especially on a long term basis

  17. Correlation between endogenous glutathione content and sensitivity of cultured human skin cells to radiation at defined wavelengths in the solar ultraviolet range

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Pidoux, M.

    1988-01-01

    Glutathione depletion of cultured human skin fibroblasts by treatment with buthionine-S.R.-sulfoximine (BSO) sensitises them to solar UV radiation. We now show that there is a close quantitative correlation between cellular glutathione content and sensitivity to radiation at 365 nm. A weaker correlation is observed when cells are depleted of glutathione using diethylmaleimide. Both fibroblasts and epidermal keratinocytes derived from the same foreskin biopsy are sensitised to radiation at 313 nm by glutathione depletion. At low to intermediate fluence levels, 10 mM cysteamine present during irradiation at 302 nm is able to almost completely reverse the sensitising effects of glutathione depletion suggesting that the endogenous thiol protects against radiation at this wavelength by a free radical scavenging mechanism. At 313 nm, the sensitisation is not reversed by cysteamine suggesting that glutathione plays a more specific role in protection against radiation at longer wavelengths. Xeroderma pigmentosum group A fibroblasts (excision deficient) are also sensitised to radiation at 313 and 365 nm by depletion of glutathione. The results provide further evidence that endogenous glutathione is involved in protecting human skin cells against a wide range of solar radiation damage. (author)

  18. Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation

    Science.gov (United States)

    Lubin, Dan; Arrigo, Kevin R.; van Dijken, Gert L.

    2004-05-01

    Satellite remote sensing of both surface solar ultraviolet radiation (UVR) and chlorophyll over two decades shows that biologically significant ultraviolet radiation increases began to occur over the Southern Ocean three years before the ozone ``hole'' was discovered. Beginning in October 1983, the most frequent occurrences of enhanced UVR over phytoplankton-rich waters occurred in the Weddell Sea and Indian Ocean sectors of the Southern Ocean, impacting 60% of the surface biomass by the late 1990s. These results suggest two reasons why more serious impacts to the base of the marine food web may not have been detected by field experiments: (1) the onset of UVR increases several years before dedicated field work began may have impacted the most sensitive organisms long before such damage could be detected, and (2) most biological field work has so far not taken place in Antarctic waters most extensively subjected to enhanced UVR.

  19. Comparison of Five Modeling Approaches to Quantify and Estimate the Effect of Clouds on the Radiation Amplification Factor (RAF) for Solar Ultraviolet Radiation

    Science.gov (United States)

    A generally accepted value for the Radiation Amplification Factor (RAF), with respect to the erythemal action spectrum for sunburn of human skin, is −1.1, indicating that a 1.0% increase in stratospheric ozone leads to a 1.1% decrease in the biologically damaging UV radiation in ...

  20. Effects of enhanced solar ultraviolet B radiation due to atmospheric pollutants on the cultivated plant yield (FKW 22). First experimental year

    International Nuclear Information System (INIS)

    Esser, G.; Franz, D.; Haeser, M.; Hugemann, B.; Schaaf, H.

    1979-02-01

    The study examined the effects of enhanced ultraviolet B radiation on the yield of cultivated plants. Preparatory studies have shown the intensity margin within which effects are observable in the plants. The experimental conditions cover four different u.v. B intensities, namely e, f, g, h; corresponding to a given percentage of atmospheric ozone reduction (eapprox.=40 p.c., fapprox.=25 p.c., gapprox.=15 p.c., and happrox.=10 p.c.). The plants for the experiments are potatoes, spring wheat, winter rape-seed, lettuce, and kohlrabi, which have been cultivated under experimental conditions over the whole growth period, except for lattuce and kohlrabi. The irradiation periods are 10 h a day. All four u.v. intensities proved to have an effect on plant yield. In potatoes and spring wheat irradiation corresponding to category h conditions enhanced the yield as compared to non-irradiated controls, whereas intensities corresponding to category e had a yield reducing effect. The starch content of potato nodules was 97 p.c. under g and h conditions, 77 p.c. under condition f, and 68 p.c. under condition e. In lettuce, the yield in fresh weight for category h was 97 p.c., for g 86 p.c., for f 83 p.c., and for e 55 p.c. In kohlrabi plants, yield increases were obtained in the low intensity ranges. In winter rape-seed, radiation of all four categories retarded germination. Another item investigated was the infection of spring wheat with Erisyphe graninis and possible radiation effects on this process. The experiments showed that already low doses ultraviolet B radiation reduced the number of conidiophores on the leaves, without damage to be observed in the plants. (orig./MG) [de

  1. Germ killing by ultraviolet radiation

    International Nuclear Information System (INIS)

    Wawrik, O.

    1975-01-01

    Short-wave UV radiation, in particular the range about 250 nm, has a high germ reducing effect. Corresponding UV burners which above all emit radiation at the line of 254 nm can therefore be used effectively in all cases where the least possible content of germs in the air is aimed at. Apart from this it is also possible to reduce by this process the germs on surfaces and liquids. Especially in the most various ranges of pharmaceutical production one is steadily striving for efficient and last not least economic procedures by which it is possible to reduce the germs present in the air of a room. Numerous scientific investigations have sufficiently proved that short-wave UV radiation is extremely well appropriate for such purposes. Absolutely germ-free air in a room can only be obtained under laboratory conditions. In practice, however, the aim is not to achieve a 100 per cent killing of the germs present in a room but to make sure that the germ rate in certain rooms is constantly reduced to the lowest possible level. If in this connection it is referred to a germ reduction of 100 or 99 per cent this is but theory. (orig.) [de

  2. Ocular ultraviolet radiation exposure of welders.

    Science.gov (United States)

    Tenkate, Thomas D

    2017-05-01

    reference made to the average solar UVR exposure of a Danish outdoor worker being 22 400 J/m 2 per year (min-max 5400 - 66 900 J/m 2 per year) (10). For comparison, taking the mean 8-hour UVR dose within the welding helmets as 15 mJ/cm2 (3), this would equate to an annual ocular/facial UVR dose for welders of 37 500 J/m 2 (at 5 days/week, 50 weeks/year). Even though this value is weighted for the ACGIH action spectrum, and the value for the Danish outdoor workers is weighted for the erythema spectrum, it provides a reasonable comparison and indicates that welders are likely to receive comparable facial/ocular UVR doses to outdoor workers. Slagor et al also state that "it is inferred that welders are not exposed to large amounts of UVR during their work life, in spite of the photokeratoconjunctivitis incidents" (1, p451). I would propose that the UVR dosimetry studies described above (2, 3), taken together with studies on UVR emissions of welding arcs which show that the MPE for many welding arcs can be exceeded in a matter of seconds (11-13), indicate that welders do work in an extreme UVR environment. These studies also suggest that welders are regularly exposed to levels of UVR that exceed the occupational exposure limits at body sites which are thought to be protected (eg, face and eyes) (2, 3). When these exposures are further considered in light of the range of eye conditions reported to occur in welders (14-17), the importance of implementing a comprehensive eye safety strategy for welders and all workers in a welding environment is imperative. References 1. Slagor RM, La Cour M, Bonde JP. The risk of cataract in relation to metal arc welding. Scan J Work Environ Health. 2016;42(5):447-53. https://doi.org/10.5271/sjweh.3572.  2. Shehade SA, Roberts PJ, Diffey BF, Foulds IS. Photodermatitis due to spot welding. Br J Dermatol. 1987;117:117-9. https://doi.org/10.1111/j.1365-2133.1987.tb04100.x.  3. Tenkate TD, Collins MJ. Personal ultraviolet radiation exposure of

  3. A mechanism for solar ultraviolet flux variability

    International Nuclear Information System (INIS)

    Schatten, K.H.; Heath, D.F.

    1981-01-01

    Solar UV emission observed by a filter photometer on Nimbus IV from 1969 to 1973 is examined in an attempt to understand the short term (27 day) and secular variability. Two models are discussed to explain the variations - a calcium plage model and a chromospheric network (faculae and spicule) structure model. Both relate to the remnant magnetic fields of active regions. An association between UV brightenings and the large scale magnetic field has been found consistent with the network model. An increase in UV emittance can be achieved by raising the effective chromospheric temperature closer to a photospheric level. If the Sun's luminosity is constant on these time intervals the enhanced UV radiation could be partially offset by an overall decrease in photospheric temperature as measured by Livingston in visible photospheric profiles. Total solar luminosity may then show less variability, however, the UV to visible luminosity variation may have significant planetary influences. Lockwood and Thompson (1979) report a relation between solar activity and planetary albedos, and Schatten (1979) discussed a long-suspected relationship between solar activity and the Great Red Spot appearance. (orig.)

  4. Cutaneous solar ultraviolet exposure and clinical aspects of photodamage

    Directory of Open Access Journals (Sweden)

    Claire Battie

    2012-01-01

    Full Text Available Solar ultraviolet (UV radiation reaching the earth is a combination of UVB (290-320 nm and UVA (320-400 nm wavelengths. Since UVA is less energetic than UVB, UVB has long been thought to be the factor responsible for the damaging effects of solar radiation. But with modern tools such as in vitro models, it has been proven that UVA plays a major role. The objective of this review is to show how skin may be exposed to UV light and to highlight the clinical aspects of UV-induced skin damages with the respective contribution of UVB or UVA. Even if UVA is less energetic than UVB, it is more abundant and penetrates deeper into the skin, reaching as far as the dermis. Various factors also influence skin exposure to UV light: the latitude, season, and time of the day. Acute as well as chronic sun exposure induces short- and long-term clinical damages. Erythema and pigmentation are immediate responses of normal human skin exposed to UV radiation. The long-term effects are photoaging and photocarcinogenesis. In particular, UVA appears to play a major role in the deterioration of dermal structure leading to the photoaged appearance of the skin.

  5. Cosmetic and medical applications of ultraviolet radiation

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1987-01-01

    The social desirability of a tanned skin is apparent and many people associate a bronzed body with good health and a sense of well-being. In Northern Europe and America the lack of long periods of sunshine has led to the establishment of the suntanning industry where artificial sources of ultraviolet radiation emitting almost entirely in the UV-A region supplement sunlight exposure

  6. Solar constant values for estimating solar radiation

    International Nuclear Information System (INIS)

    Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang

    2011-01-01

    There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.

  7. The Solar Ultraviolet Environment at the Ocean.

    Science.gov (United States)

    Mobley, Curtis D; Diffey, Brian L

    2018-05-01

    Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for 10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.

  8. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  9. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    International Nuclear Information System (INIS)

    Hoikkala, M.; Lappalainen, J.; Leszczynski, K.; Paile, W.

    1990-01-01

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  10. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  11. Effective polycrystalline sensor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    S.Yu. Pavelets

    2017-10-01

    Full Text Available Deposition of special thin layers with high and low resistance in space charge region of surface barrier photoconverters based on the p-Cu1.8S/n-CdS structure leads to a sufficient increase in photosensitivity and decrease in dark tunneling-recombination current. Highly efficient and stable polycrystalline photoconverters of ultraviolet radiation based on polycrystalline CdS have been obtained. Electrical and photoelectric properties have been investigated, and the main operational parameters of ultraviolet sensors have been adduced. The reasons for high stability of the parameters inherent to the p-Cu1.8S/n-CdS sensors are as follows: the absence of impurity components additionally doped to the barrier structure and stability of the photocurrent photoemission component.

  12. CLASSICS Handbook of Solar Radiation Data for India

    Indian Academy of Sciences (India)

    Srimath

    Handbook of Solar Radiation Data for India. By Anna Mani. CHAPTER 1. Introduction. 1.1. The sun and its radiation. The electromagnetic radiation emitted by the sun covers a very large range of wave- lengths, from radiowaves through the infrared, visible and ultraviolet to X-rays and gamma rays. However, 99 per cent of ...

  13. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?

    NARCIS (Netherlands)

    van de Poll, W.H.; Buma, A.G.J.

    2009-01-01

    This Perspective summarizes the state of knowledge of the impact of ultraviolet radiation on the photoprotective xanthophyll cycle in marine phytoplankton. Excess photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) affect various cellular processes and

  14. Ultraviolet radiation, cancer of the skin and immunology

    International Nuclear Information System (INIS)

    Suurmond, D.

    1984-01-01

    The effects of near and far ultraviolet radiation on the development of skin neoplasms are reviewed. Especially the role of ultraviolet radiation in immunosuppression is discussed as a possible working mechanism of the tumor promoting the effect of this radiation, beside effects on DNA-repair. (Auth.)

  15. SUMO: Solar Ultraviolet Monitor and Ozone Nanosatellite

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Godin-Beekman, S.; Rogers, D. J.; Bove, P.; Lagage, P. O.; DeWitte, S.

    2014-12-01

    SUMO is an innovative proof-of-concept nanosatellite aiming to measure on the same platform the different components of the Earth radiation budget (ERB), the solar energy input and the energy reemitted at the top of the Earth atmosphere, with a particular focus on the far UV (FUV) part of the spectrum and on the ozone layer. The FUV is the only wavelength band with energy absorbed in the high atmosphere (stratosphere), in the ozone (Herzberg continuum, 200-220 nm) and oxygen bands, and its high variability is most probably at the origin of a climate influence (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and tropopause). A simultaneous observation of incoming FUV and ozone production would bring an invaluable information on this process of solar-climate forcing. Space instruments have already measured the different components of the ERB but this is the first time that all instruments will operate on the same platform. This characteristic by itself guarantees original scientific results. SUMO is a 3.6 kg, 3W, 10x10x30 cm3 nanosatellite ("3U"), with a "1U" payload of definition has been completed (platform and payload AIT are possible in 24 months). SUMO is proposed for the nanosatellite program of Polytechnic School and CNES (following QB50) for a flight in 2018. Follow-up is 2 fold: on one part more complete measurements using SUMO miniaturized instruments on a larger satellite; on the other part, increase of the coverage in local time and latitude using a constellation of SUMO nanosatellites around the Earth to further geolocalize the Sun influence on our planet. Nanosatellites, with cost and risk limited, are also excellent platforms to evaluate technologies for future missions, e.g. nanotechnology ZnO protection barriers to limit contamination from solar panels in the UV and reduce reflection losses in the visible, or MgZnO solar blind detectors (R

  16. SimUVEx v2 : a numeric tool to predict anatomical solar ultraviolet exposure

    OpenAIRE

    Religi, Arianna; Moccozet, Laurent; Farahmand, Meghdad; Vuilleumier, L.aurent; Vernez, David; Milon, Antoine; Backes, Claudine; Bulliard, Jean-Luc

    2016-01-01

    Solar ultraviolet (UV) radiation has a dual effect on human health: low UV doses promote the photosynthesis of vitamin D and regulate calcium and phosphorus metabolism, while an excessive UV exposure is the main cause of skin cancer, along with eye diseases and premature skin ageing. The link between UV radiation levels and UV exposure is not fully understood since exposure data are limited and individual anatomical variations in UV doses are significant. SimUVEx is a numeric simulation tool ...

  17. Phototherapy cabinet for ultraviolet radiation therapy

    International Nuclear Information System (INIS)

    Horwitz, S.N.; Frost, P.

    1981-01-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities

  18. Application of ultraviolet and infrared radiation in food

    OpenAIRE

    D Jafarpour; M Alizadeh; F Siamak

    2018-01-01

    BACKGROUND: There are many uses of radiation in the food industry. Radiation can be considered as one of the new processes and usage of it can offer new features of food. This process in most food doesn’t leave any physical or sensory changes. Therefore, in this review article, the application of ultraviolet and infrared radiation in food was studied. Methods: Search by the keywords “Ultraviolet Radiation Infrared Radiation Food” in databases Pubmed, Scopus and Web of Sci...

  19. Solar-blind ultraviolet band-pass filter based on metal—dielectric multilayer structures

    International Nuclear Information System (INIS)

    Wang Tian-Jiao; Xu Wei-Zong; Lu Hai; Ren Fang-Fang; Chen Dun-Jun; Zhang Rong; Zheng You-Dou

    2014-01-01

    Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military applications, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of “transparent metal”. The filter consisting of Al/SiO 2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. An assessment of ultraviolet radiation components of light emitted ...

    African Journals Online (AJOL)

    An assessment of ultraviolet radiation components of light emitted from electric arc and their possible exposure risks. ... The study of Ultraviolet Radiation has of recent become interesting because of the health hazards it poses to human. Apart from its intensity reaching the earth from the sun, other man-made sources have ...

  1. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    Science.gov (United States)

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  2. Effects of solar PAR and UV radiation on tropical biofouling communities

    KAUST Repository

    Dobretsov, SV; Gosselin, L; Qian, P

    2010-01-01

    We investigated the effect of solar ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) on the development of tropical micro- and macrofouling communities for 30 d. The experimental design involved 3 treatments: full spectrum

  3. Ultraviolet radiation after exposure to a low-fluence IPL home-use device

    DEFF Research Database (Denmark)

    Thaysen-Petersen, Daniel; Erlendsson, Andres M; Nash, J F

    2015-01-01

    The prevailing advice is to avoid sun exposure after intense pulsed light (IPL) hair removal. However, no systematic evaluation of ultraviolet radiation (UVR) after IPL hair removal exits. Therefore, we investigated the occurrence of side effects in subjects receiving solar-simulated UVR after...

  4. A model investigation of annual surface ultraviolet radiation in Iran

    International Nuclear Information System (INIS)

    Sabziparvar, A.-A.

    2003-01-01

    In recent years, there has been some concern regarding solar ultraviolet (UV) radiation received at the earth,s surface because of its biological hazards affecting living organisms. Although the geographical distribution of ground-based UV network is relatively good in some continents,but over Asia, the number of UV instruments are not sufficient for meteorological and biological purposes. Iran, as an Asian country, is also suffering from the lack of UV monitoring network with the exception of one ground-based UV spectrophotometer site (Brower III) at Esfahan. Using a complex radiative transfer model and various meteorological data (for 8 years) such as total column ozone, cloudiness, surface albedo, surface air pressure, relative humidity, visibility and daily total solar radiation (TSR), the geographical distribution of annual integrated biological surface UV irradiances such as UVB, erythema and cataracts are calculated. The comparison is made for cloud-free and all-sky conditions for eight selected cities distributed from the southern tip of the country (25 N-60 E) to the northern border (39 N-48 E). It is shown that the difference between the annual UV at south and north in all-sky condition is larger than the differences in cloud-free condition. The ratio of some biological UV irradiances at southern cities to the same component at northern cities shows a factor of two and more which is quite significant. The possible reasons which might cause such differences are discussed

  5. Characterization of a smartphone camera's response to ultraviolet A radiation.

    Science.gov (United States)

    Igoe, Damien; Parisi, Alfio; Carter, Brad

    2013-01-01

    As part of a wider study into the use of smartphones as solar ultraviolet radiation monitors, this article characterizes the ultraviolet A (UVA; 320-400 nm) response of a consumer complementary metal oxide semiconductor (CMOS)-based smartphone image sensor in a controlled laboratory environment. The CMOS image sensor in the camera possesses inherent sensitivity to UVA, and despite the attenuation due to the lens and neutral density and wavelength-specific bandpass filters, the measured relative UVA irradiances relative to the incident irradiances range from 0.0065% at 380 nm to 0.0051% at 340 nm. In addition, the sensor demonstrates a predictable response to low-intensity discrete UVA stimuli that can be modelled using the ratio of recorded digital values to the incident UVA irradiance for a given automatic exposure time, and resulting in measurement errors that are typically less than 5%. Our results support the idea that smartphones can be used for scientific monitoring of UVA radiation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  6. Some resistance mechanisms to ultraviolet radiation

    International Nuclear Information System (INIS)

    Alcantara D, D.

    2002-12-01

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  7. Estimation of hourly ultraviolet solar irradiance in the semi-arid northeast region of Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ricardo C. de; Tiba, Chigueru [Dept. de Energia Nuclear da Univ. Federal de Pernambuco, Recife, Pernambuco (Brazil)

    2008-07-01

    Two computational codes, SPCTRAL2 and SMARTS2, were used for estimating ultraviolet solar irradiance in a locality of the semi-arid region of the Northeast of Brazil. The softwares presented simplicity of use, precision and relative ease in obtaining the input variables: zenith angle, atmospheric pressure in relation to sea level, relative humidity of the air, amount of precipitable water, total ozone and the aerosol optic depths (AOD). All these variables are measured in conventional meteorological stations, except for the aerosol optic depth. The AOD was measured with an apparatus that was constructed with a narrow band LED sensor, centered in 555nm which measures the monochromatic radiation transmission through the terrestrial atmosphere, which can be described by Beer's law. The measurements for obtaining the AOD were carried out during the months of December, 2006 and January, 2007 for Pesqueira-PE (Longitude -36.77 and Latitude 8.4 ) semi-arid region of Pernambuco, at intervals of 10 and 10 minutes, simultaneously. The ultraviolet solar irradiation was measured with a TURV (Total Ultraviolet Radiometer) Eppley Pyranometer on a minute scale. The computational simulations with SPCTRAL2 and SMARTS2 were made considering the following cases: (a) obtention of daily AOD, or be it, coming from the linear extrapolation of all the data along the day (b) obtention of hourly AOD, or be it the linearization by parts (piecewise). In the first case, the results of the simulations of ultraviolet solar irradiance and ultraviolet radiation index show an error of 4% and 13% for solar midday, and 78% at end of afternoon, when compared with the values measured with the TURV pyranometer. These results were significantly improved when using the AOD obtained on hourly bases: an error of 6.7 % for solar midday, a maximum error of 10% between 11 and 13 h, a maximum error of 20% between 10 and 14h and finally a maximum error of 30% between 9 and 15h. (orig.)

  8. Pollen and spores as a passive monitor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    Wesley Toby Fraser

    2014-04-01

    Full Text Available Sporopollenin is the primary component of the outer walls of pollen and spores. The chemical composition of sporopollenin is responsive to levels of ultraviolet (UV radiation exposure, via a concomitant change in the concentration of phenolic compounds. This relationship offers the possibility of using fossil pollen and spore chemistry as a novel proxy for past UV flux. Phenolic compounds in sporopollenin can be quantified using Fourier Transform infrared spectroscopy. The high potential for preservation of pollen and spores in the geologic record, and the conservative nature of sporopollenin chemistry across the land plant phylogeny, means that this new proxy has the potential to reconstruct UV flux over much longer timescales than has previously been possible. This new tool has important implications for understanding the relationship between UV flux, solar insolation and climate in the past, as well as providing a possible means of assessing paleoaltitude, and ozone thickness.

  9. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  10. Control of zebra mussels with ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.P.

    1998-07-01

    This paper presents the results of research on the effects of low and medium pressure ultraviolet (UV) radiation on zebra mussel mortality carried out between 1992 and 1995. An initial 1992 study, carried out by Aquatic Sciences (ASI), showed that flow-through UV systems have the ability to kill zebra mussels and prevent them from attaching to downstream surfaces. However, this work did not include expanded testing to determine the limitations of UV radiation at higher flow rates or to further define effective working parameters. The 1994 study was carried out at the Lennox Thermal Generating Station (TGS) of Ontario Hydro in Kingston, Ontario. This study involved the testing of two open channel UV systems (medium and low pressure) in an effort to determine flow rates and volumes for which UV disinfection would be effective and practical for the prevention of zebra mussel infestation. It was recommended that medium pressure (MP) and low pressure (LP) UV systems be tested for their ability to control downstream settlement of zebra mussels, in flow-through trials.

  11. Improved Statistical Model Of 10.7-cm Solar Radiation

    Science.gov (United States)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  12. Absorption of ultraviolet radiation by antarctic phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, M.; Mitchell, B.G. (Univ. of California-San Diego, La Jolla (United States))

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  13. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation

  14. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    International Nuclear Information System (INIS)

    Thorseth, Trond Morten

    2000-01-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe

  15. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, Trond Morten

    2000-07-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe.

  16. Ultraviolet radiation, human health, and the urban forest

    Science.gov (United States)

    Gordon M. Heisler; Richard H. Grant

    2000-01-01

    Excess exposure to ultraviolet (UV) radiation from the sun, particularly the ultraviolet B (UVB) portion, has been linked with adverse effects on human health ranging from skin cancers to eye diseases such as cataracts. Trees may prevent even greater disease rates in humans by reducing UV exposure. Tree shade greatly reduces UV irradiance when both the sun and sky are...

  17. Development of Software for Measurement and Analysis of Solar Radiation

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Abul Adli Anuar; Noor Ezati Shuib

    2015-01-01

    This software was under development using LabVIEW to be using with StellarNet spectrometers system with USB communication to computer. LabVIEW have capabilities in hardware interfacing, graphical user interfacing and mathematical calculation including array manipulation and processing. This software read data from StellarNet spectrometer in real-time and then processed for analysis. Several measurement of solar radiation and analysis have been done. Solar radiation involved mainly infra-red, visible light and ultra-violet. With solar radiation spectrum data, information of weather and suitability of plant can be gathered and analyzed. Furthermore, optimization of utilization and safety precaution of solar radiation can be planned. Using this software, more research and development in utilization and safety of solar radiation can be explored. (author)

  18. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  19. MgII Observations Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the scientific goals of our sounding rocket program, the Solar Ultraviolet Magnetograph Investigation (SUMI). This paper will present a brief description of the optics that were developed to meet SUMI's scientific goals, discuss the spectral, spatial and polarization characteristics of SUMI s optics, describe SUMI's flight which was launched 7/30/2010, and discuss what we have learned from that flight.

  20. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  1. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  2. Health impacts of ultraviolet radiation in urban ecosystems: a review

    Science.gov (United States)

    Heisler, Gordon M.

    2005-08-01

    This paper explores the literature on ultraviolet irradiance (UV) in urban ecosystems with respect to the likely effects on human health. The focus was the question of whether the health effects of UV radiation should be included in planning of landscape elements such as trees and shading structures. In examining the literature, special attention was given to seeking information on the question of whether it is important that shade be provided for elementary school play areas, and if so, how should it be accomplished? Before such practical questions could be dealt with, it became obvious that answers to several pertinent secondary questions had to be sought. Foremost of these was, what are the negative and positive health effects of UV exposure? Recent epidemiological findings of apparent benefits of sunlight because of vitamin-D photosynthesis and resulting anti-cancer effects make this highly relevant. Another basic question is that of trends in ozone depletion, which leads to interesting questions of long-term trends, short-term extremes, and urban influences on UV irradiance. A host of these and other pertinent questions, such as, "What is the relationship between climate of a location and dress," i.e., "How much exposure will people receive during time spent outdoors?" require much more study. Judging from current knowledge of typical spectra of solar radiation in tree shade and the difference between the action spectra for vitamin D synthesis and erythema in human skin, exposure to solar radiation in tree shade for a short period of time can be somewhat more beneficial for vitamin D synthesis and regulation than detrimental in producing sunburn.

  3. Ultra-violet radiation: hazard in workplaces? (part II)

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali

    2003-01-01

    Not many workers are aware that apart from chemicals, physical agents, noise and machines which are known to be hazardous in workplaces, there exist another source of hazard which is equally important to be recognised and respected, that is hazard due to ultrviolet radiation (UV). This is the continuation of part I, which was discussed in the later issue. In this part, hazard of ultraviolet radiation were briefly discused i.e. effects on the skin and the eyes. Other subjects discussed are exposure limits, how to assess the radiation, protection against ultraviolet radiation

  4. Ultraviolet radiation exposure from UV-transilluminators.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  5. Glacial Influences on Solar Radiation in a Subarctic Sea.

    Science.gov (United States)

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  6. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    Background. The detrimental effects of excess personal solar ultraviolet (UV) radiation exposure include sunburn, immunosuppression and skin cancer. In South Africa, individuals with minimum natural protection from melanin, including fair-skinned individuals and African albinos, and people spending extended ...

  7. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  8. Ambient solar UV radiation and seasonal trends in potential sunburn risk among schoolchildren in South Africa

    CSIR Research Space (South Africa)

    Wright, CY

    2011-07-01

    Full Text Available The detrimental effects of excess personal solar ultraviolet (UV) radiation exposure include sunburn, immunosuppression and skin cancer. In South Africa, individuals with minimum natural protection from melanin, including fair-skinned individuals...

  9. UV radiation hardness of silicon inversion layer solar cells

    International Nuclear Information System (INIS)

    Hezel, R.

    1990-01-01

    For full utilization of the high spectral response of inversion layer solar cells in the very-short-wavelength range of the solar spectrum sufficient ultraviolet-radiation hardness is required. In addition to the charge-induced passivation achieved by cesium incorporation into the silicon nitride AR coating, in this paper the following means for further drastic reduction of UV light-induced effects in inversion layer solar cells without encapsulation are introduced and interpretations are given: increasing the nitride deposition temperature, silicon surface oxidation at low temperatures, and texture etching and using higher substrate resistivities. High UV radiation tolerance and improvement of the cell efficiency could be obtained simultaneously

  10. Ultraviolet radiation monitoring in makkah city, Saudi Arabia, using thermoluminescence material CaF2:Tm

    International Nuclear Information System (INIS)

    Al-Ghorabie, F.H.; Natto, S.S.; AL-Lehyani, S.A.

    2005-01-01

    The aim of the present study is to explore the possibility of using Ca F2:Tm thermoluminescence material for measuring and monitoring of solar UV R in Makkah City, Saudi Arabia. Several laboratory experiments, prior to the field measurements, were performed included study of the effects of ultraviolet wavelengths on the response of the phosphor, study of the effect of increasing ultraviolet radiation dose on the intensity of thermoluminescence and study the effect of time factor on the thermoluminescence fading of Ca F 2 :Tm. The phosphor was then exposed directly for one hour to sunlight radiation on a daily basis for 90 days in an open field inside Umm Al-Qura university campus. The field measurements were performed during the months of June, July and August 2003 at 1:00 p.m. The laboratory and field results of this study showed that Ca F 2 :Tm can be used as a suitable dosimeter for solar UV R

  11. Solar ultraviolet radiation affects the activity of ribulose-1, 5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L.

    NARCIS (Netherlands)

    Bischof, K; Krabs, G; Wiencke, C; Hanelt, D

    The effect of solar UV radiation on the physiology of the intertidal green macroalga Ulva lactuca L. was investigated. A natural Ulm community at the shore of Helgoland was covered with screening foils, excluding UV-B or UV-B + UV-A from the solar spectrum. In the sampled material, changes in the

  12. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  13. Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs

    NARCIS (Netherlands)

    Lange, de H.J.; Morris, D.P.; Williamson, C.E.

    2003-01-01

    The UV component in solar radiation increased the availability of DOC for bacterial growth, and led to an increase in bacterial and bacterivore abundance in laboratory plankton cultures. UV radiation may thus stimulate ecosystem productivity by increasing dissolved organic carbon lability and

  14. Disinfection ultraviolet radiation bulk food products

    OpenAIRE

    Семенов, А. А.

    2014-01-01

    В работе представлены результаты обеззараживания сыпучих пищевых продуктов ультрафиолетовым излучением. Предложена технология бактерицидного обеззараживания сыпучих продуктов с размером частиц до 50 мкм. Проведены необходимые расчеты, связанные с дозой облучения, с временем пребывания частиц в зоне облучения и необходимой дозой инактивации в зависимости от вида бактерий. Considered the results of bulk food products disinfection by ultraviolet radiation. The technology bactericidal disinfec...

  15. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    Science.gov (United States)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  16. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultraviolet radiation for the processing and..., PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.39 Ultraviolet radiation for the processing and treatment of food. Ultraviolet radiation for the processing and treatment of food may be...

  17. Effects of near ultraviolet and green radiations on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R.M.; Edsall, P.C.; Gentile, A.C.

    1965-01-01

    Selective removal of near ultraviolet and green wavelengths from white light permitted enhanced growth of marigold, tomato, corn, and Impatiens plants, Chlamydomonas cells and the mycelium of Sordaria. Additions of near ultraviolet and green radiations caused repressions in the growth of marigold and Sordaria. These wavelengths do not alter the oxidative mechanisms of mitochondria, intact algal cells or marigold leaf tissues. The capacity for chlorophyll and carotenoid synthesis by Euglena cells was unaffected by these wavelengths. 23 references, 2 figures, 4 tables.

  18. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  19. Near-ultraviolet radiation blocks SOS responses to DNA damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.A.; Eisenstark, A.

    1984-01-01

    Escherichia coli cells in which the recA promoter is fused to a lac structural gene, (Mu) Mud(Ap,lac)::rec, were irradiated with two far-ultraviolet light wavelengths (254 and 290 nm), selected monochromatic near-ultraviolet (NUV) wavelengths 313 nm, 334 nm, 365 nm, or broad band solar-UV (290-420 nm) from a solar simulator. Irradiation with the two far-ultraviolet wavelengths was followed by high yields of ..beta..-galactosidase, lambda prophage induction, and Weigle reactivation. These end points were not observed after irradiation with the selected NUV wavelengths or the broad spectrum solar-UV. Thus, neither broad spectrum solar-UV nor monochromatic NUV wavelengths resulted in the derepression of the recA promoter. Further, prior exposure of the cells either to the selected monochromatic NUV wavelengths or to solar-UV inhibited a) the induction of ..beta..-galactosidase by subsequent 254-nm radiation, b) subsequent 254-nm induction of lambda prophage, c) Weigle reactivation, and d) mutation frequency. These observations are consistent with the hypothesis that NUV blocks subsequent recA protease action.

  20. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  1. The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Brandt, J. C.; Kalet, M. W.; Kenny, P. J.; Tandberg-Hanssen, E. A.; Bruner, E. C.; Beckers, J. M.; Henze, W.; Knox, E. D.; Hyder, C. L.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 A with better than 2 arcsec spatial resolution, raster range 256 x 256 sq arcsec, and 20 mA spectral resolution in second order. Observations can be made with specific sets of four lines simultaneously, or with both sides of two lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.

  2. The ultraviolet spectrometer and polarimeter on the solar maximum mission

    International Nuclear Information System (INIS)

    Woodgate, B.E.; Brandt, J.C.; Kalet, M.W.; Kenny, P.J.; Beckers, J.M.; Henze, W.; Hyder, C.L.; Knox, E.D.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design. performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 Angstreom with better than 2 arc sec spatial resolution, raster range 256 x 256 arc sec 2 , and 20 m Angstroem spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere. (orig.)

  3. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  4. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  5. THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Froning, Cynthia S.; Stocke, John T.; Bushinsky, Rachel [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tian, Feng [Center for Earth System Sciences, Tsinghua University, Beijing 100084 (China); Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Mauas, Pablo; Vieytes, Mariela [Instituto de Astronomsica del Espacio (CONICET-UBA), C.C. 67 Sucursal 28, 1428 Buenos Aires (Argentina); Walkowicz, Lucianne M., E-mail: kevin.france@colorado.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-02-15

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No 'UV-quiet' M dwarfs are observed. The bright stellar Ly{alpha} emission lines are reconstructed, and we find that the Ly{alpha} line fluxes comprise {approx}37%-75% of the total 1150-3100 A flux from most M dwarfs; {approx}>10{sup 3} times the solar value. We develop an empirical scaling relation between Ly{alpha} and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Ly{alpha}. The intrinsic unreddened flux ratio is F(Ly{alpha})/F(Mg II) = 10 {+-} 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O{sub 2} and O{sub 3}, is shown to be {approx}0.5-3 for all M dwarfs in our sample, >10{sup 3} times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 10{sup 2}-10{sup 3} s timescales. This effect should be taken into account in future UV

  6. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  7. Prostate cancer incidence in Australia correlates inversely with solar radiation.

    Science.gov (United States)

    Loke, Tim W; Seyfi, Doruk; Sevfi, Doruk; Khadra, Mohamed

    2011-11-01

    What's known on the subject? and What does the study add? Increased sun exposure and blood levels of vitamin D have been postulated to be protective against prostate cancer. This is controversial. We investigated the relationship between prostate cancer incidence and solar radiation in non-urban Australia, and found a lower incidence in regions receiving more sunlight. In landmark ecological studies, prostate cancer mortality rates have been shown to be inversely related to ultraviolet radiation exposure. Investigators have hypothesised that ultraviolet radiation acts by increasing production of vitamin D, which inhibits prostate cancer cells in vitro. However, analyses of serum levels of vitamin D in men with prostate cancer have failed to support this hypothesis. This study has found an inverse correlation between solar radiation and prostate cancer incidence in Australia. Our population (previously unstudied) represents the third group to exhibit this correlation. Significantly, the demographics and climate of Australia differ markedly from those of previous studies conducted on men in the United Kingdom and the United States. • To ascertain if prostate cancer incidence rates correlate with solar radiation among non-urban populations of men in Australia. • Local government areas from each state and territory were selected using explicit criteria. Urban areas were excluded from analysis. • For each local government area, prostate cancer incidence rates and averaged long-term solar radiation were obtained. • The strength of the association between prostate cancer incidence and solar radiation was determined. • Among 70 local government areas of Australia, age-standardized prostate cancer incidence rates for the period 1998-2007 correlated inversely with daily solar radiation averaged over the last two decades. •  There exists an association between less solar radiation and higher prostate cancer incidence in Australia. © 2011 THE AUTHORS. BJU

  8. Radiation hard solar cell and array

    International Nuclear Information System (INIS)

    Russell, R.L.

    1975-01-01

    A power generating solar cell for a spacecraft solar array is hardened against transient response to nuclear radiation while permitting normal operation of the cell in a solar radiation environment by shunting the cell with a second solar cell whose contacts are reversed relative to the power cell to form a cell module, exposing the power cell only to the solar radiation in a solar radiation environment to produce an electrical output at the module terminals, and exposing both cells to the nuclear radiation in a nuclear radiation environment so that the radiation induced currents generated by the cells suppress one another

  9. The measurement of ultraviolet radiation and sunburn time over southern Ontario

    Science.gov (United States)

    Evans, W. F. J.

    1994-01-01

    Studies of the depletion of ozone which have been conducted from the TOMS instrument on the NIMBUS 7 satellite indicate that total ozone has declined by 5 percent over the last 12 years at most mid-latitudes in the Northern Hemisphere typical of southern Ontario. The measurement of the actual resultant increases in UVB is now important. A monitoring program of UVB (biologically active solar ultraviolet radiation) has been conducted for the last 24 months at a site near Bolton, Ontario. The sunburn time varies from less than 17 minutes in late July, to over 4 hours in December on clear days. The levels depend on solar insolation and total ozone column. The ultraviolet levels are strongly affected by cloud and sky conditions. The implications of present and future depletion on the sunburn time are discussed.

  10. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    Science.gov (United States)

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  11. Red tattoos, ultraviolet radiation and skin cancer in mice

    DEFF Research Database (Denmark)

    Lerche, Catharina M.; Heerfordt, Ida M.; Serup, Jørgen

    2017-01-01

    Ultraviolet radiation (UVR) induces skin cancer. The combination of UVR and red tattoos may be associated with increased risk of skin cancer due to potential carcinogens in tattoo inks. This combination has not been studied previously. Immunocompetent C3.Cg/TifBomTac hairless mice (n=99) were...

  12. an assessment of ultraviolet radiation components of light emitted ...

    African Journals Online (AJOL)

    Dr

    therefore high for exposure limits of 8 hours for UV-B and UV-C and the 16 minutes for UV-A. The investigation ... has become particularly interesting as the ozone layer ... THEORY. Ultraviolet (UV) light is an electromagnetic radiation with a ...

  13. Short and long term variation in ultraviolet radiation and multiple sclerosis

    DEFF Research Database (Denmark)

    Menni, Cristina; Lowell, Walter E; Bentzen, Joan

    2012-01-01

    We examined the role of ultraviolet radiation (UVR) in persons diagnosed with multiple sclerosis (MS) in four different populations, Italians, Danish, White and African Americans. We tested whether variation in UVR as determined by seasons (short term variation) and solar cycles (long term...... to study the pattern of month of birth distribution in patients with MS comparing with general population data. T-tests were employed to study solar cycles association with lifespan. A surplus of births was observed in June for White Americans. A decrease of births in October and November, though...... not significant after multiple testing correction, was observed in the three populations. In White American with MS overall, males and females, we found that solar cycle is associated with lifespan. We found that season and solar cycles have some role in MS susceptibility and life duration. However...

  14. Effects of Ultraviolet Radiation on Human Health (invited paper)

    International Nuclear Information System (INIS)

    MacKie, R.M.

    2000-01-01

    The detrimental and beneficial effects of exposure to ultraviolet radiation in the UVB and UVA ranges are discussed. The main benefit of UV radiation is promoting the synthesis of vitamin D from precursors in the skin. Detrimental effects include acute sun damage in the form of sunburn and chronic sun damage leading to photoageing and possibly to cutaneous malignancies. Other detrimental effects of UV exposure include photosensitivity reactions to ingested drugs and rare examples of genetically determined photosensitivies. (author)

  15. Effects of Ultraviolet Radiation on Human Health (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    MacKie, R.M

    2000-07-01

    The detrimental and beneficial effects of exposure to ultraviolet radiation in the UVB and UVA ranges are discussed. The main benefit of UV radiation is promoting the synthesis of vitamin D from precursors in the skin. Detrimental effects include acute sun damage in the form of sunburn and chronic sun damage leading to photoageing and possibly to cutaneous malignancies. Other detrimental effects of UV exposure include photosensitivity reactions to ingested drugs and rare examples of genetically determined photosensitivies. (author)

  16. Thermoluminescent phosphors for ultraviolet radiation dosimetry - a review

    International Nuclear Information System (INIS)

    Nagpal, J.S.

    2001-01-01

    Intrinsic TL response of CaSO 4 , CaF 2 , Al 2 O 3 (Si,Ti), Mg 2 SiO 4 : Tb and lamp phosphors to ultraviolet radiation is reviewed. Taking into consideration the characteristics such as afterglow at RT, rate/flux dependence, linearity of response, useful range, spectral dependence and effect of sequential/tandem UV exposures CaF 2 :Eu 2+ is an ideal TL dosemeter for UV radiation dosimetry. (author)

  17. Solar radiation on domed roofs

    Energy Technology Data Exchange (ETDEWEB)

    Faghih, Ahmadreza K.; Bahadori, Mehdi N. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-11-15

    Solar radiation received and absorbed by four domed roofs was estimated and compared with that of a flat roof. The domed roofs all had the same base areas, and equal to that of the flat roof. One of the roofs considered was the dome of the St. Peter's Church in Rome. Compared with the other roofs considered, this dome had a higher aspect ratio. It was found that all domed roofs received more solar radiation than the flat roof. Considering glazed tiles to cover a selected dome in Iran and the dome of the St. Peter's Church, it was found that the solar radiation absorbed by these roofs is reduced appreciably. In the case of the dome of St. Peter's Church, the amount of radiation absorbed was roughly equal to that absorbed by the comparable flat roof in the warm months. In the case of the glazed reference dome located in Yazd, Iran (a city with very high solar radiation), the radiation absorbed was less than that of flat roof at all times. In addition to aesthetics, this may be a reason for employing glazed tiles to cover the domes of all mosques, shrines, and other large buildings in Iran. (author)

  18. Estimating solar radiation in Ghana

    International Nuclear Information System (INIS)

    Anane-Fenin, K.

    1986-04-01

    The estimates of global radiation on a horizontal surface for 9 towns in Ghana, West Africa, are deduced from their sunshine data using two methods developed by Angstrom and Sabbagh. An appropriate regional parameter is determined with the first method and used to predict solar irradiation in all the 9 stations with an accuracy better than 15%. Estimation of diffuse solar irradiation by Page, Lin and Jordan and three other authors' correlation are performed and the results examined. (author)

  19. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    Science.gov (United States)

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  20. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  1. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  2. Polarized vacuum ultraviolet and X-radiation

    International Nuclear Information System (INIS)

    Samson, J.A.R.

    1978-01-01

    The most intense source of polarized vacuum UV and X-radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarisation of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect on monochromators (i.e. diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. The author presents the first experimental evidence that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization. (Auth.)

  3. Key issues of ultraviolet radiation of OH at high altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing [State Key Laboratory of High Temperature Gasdynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  4. Ultraviolet radiation directly induces pigment production by cultured human melanocytes

    International Nuclear Information System (INIS)

    Friedmann, P.S.; Gilchrest, B.A.

    1987-01-01

    In humans the major stimulus for cutaneous pigmentation is ultraviolet radiation (UVR). Little is known about the mechanism underlying this response, in part because of the complexity of interactions in whole epidermis. Using a recently developed culture system, human melanocytes were exposed daily to a physiologic range of UVR doses from a solar simulator. Responses were determined 24 hours after the last exposure. There was a dose-related increase in melanin content per cell and uptake of 14 C-DOPA, accompanied by growth inhibition. Cells from donors of different racial origin gave proportionately similar increases in melanin, although there were approximately tenfold differences in basal values. Light and electron microscopy revealed UVR-stimulated increases in dendricity as well as melanosome number and degree of melanization, analogous to the well-recognized melanocyte changes following sun exposure of intact skin. Similar responses were seen with Cloudman S91 melanoma cells, although this murine cell line required lower UVR dosages and fewer exposures for maximal stimulation. These data establish that UVR is capable of directly stimulating melanogenesis. Because cyclic AMP elevation has been associated in some settings with increased pigment production by cultured melanocytes, preliminary experiments were conducted to see if the effects of UVR were mediated by cAMP. Both alpha-MSH and isobutylmethylxanthine (IBMX), as positive controls, caused a fourfold increase in cAMP level in human melanocytes and/or S91 cells, but following a dose of UVR sufficient to stimulate pigment production there was no change in cAMP level up to 4 hours after exposure. Thus, it appears that the UVR-induced melanogenesis is mediated by cAMP-independent mechanisms

  5. Establishment of a dosimetry method for the exposure evaluation to the ultraviolet radiation

    International Nuclear Information System (INIS)

    Gronchi, Claudia Carla

    2009-01-01

    A dosimetric method for the exposure evaluation to ultraviolet radiation was established with Al 2 O 3 :C InLight detectors and an OSL microStar reader and software, of Landauer, associated to the techniques of Optically Stimulated Luminescence (OSL) and Photo transferred Optically Stimulated Luminescence (PTOSL). The main phases of this work were: characterization of the Al 2 O 3 :C InLight detectors, without pre-conditioning, exposed to ultraviolet radiation (RUV) of solar and artificial sources, using the OSL technique; characterization of the Al 2 O 3 :C InLight detectors, pre-conditioned, exposed to RUV solar and artificial sources, using the PTOSL technique; practical applications of the Al 2 O 3 :C InLight detectors to the solar and artificial RUV, originating from TIG (Tungsten Inert Gas) and electric welding. The Al 2 O 3 :C InLight detectors presented satisfactory OSL and PTOSL responses in relation to the parameters: wavelength, UV illumination time, irradiance, radiance exposure and angular dependence to the RUV. Those detectors presented maximum OSL and PTOSL stimulation for the wavelength of 330 nm, showing that they are may be useful for UVA radiation detection and dosimetry. (author)

  6. Solar radiation measurements at the network of six sites in the UK, January - December 2001

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, C.M.H.; Campbell, J.I.; Pearson, A.J.; Grainger, K.J.L.; Dean, S.F.; Clark, I.E

    2002-04-01

    A summary of the results from January to December 2001 of a survey of solar radiation levels at the UK network of six solar radiation measurement sites is presented. The network consists of three NRPB sites at Chilton, Leeds and (monitoring since 1988) and three Meteorological Office stations at Camborne, Kinloss and Lerwick (monitoring since 1993). Visible (400-770 nm), ultraviolet UVA radiation (320-400 nm) and erythemally weighted ultraviolet radiation UVR{sub eff} (280-400 nm) have been measured simultaneously using a three detector measurement system. Results are compared with calculated irradiances of ultraviolet radiation and published illuminance data, and with data for the measurement period from 1988 to 2000. Yearly reports have been produced for selected sites, giving the daily solar index (which is a measure of the sunburn potential for sensitive skin types) throughout the year. (author)

  7. Solar radiation measurements at the network of six sites in the UK, January - December 2001

    International Nuclear Information System (INIS)

    Driscoll, C.M.H.; Campbell, J.I.; Pearson, A.J.; Grainger, K.J.L.; Dean, S.F.; Clark, I.E.

    2002-01-01

    A summary of the results from January to December 2001 of a survey of solar radiation levels at the UK network of six solar radiation measurement sites is presented. The network consists of three NRPB sites at Chilton, Leeds and (monitoring since 1988) and three Meteorological Office stations at Camborne, Kinloss and Lerwick (monitoring since 1993). Visible (400-770 nm), ultraviolet UVA radiation (320-400 nm) and erythemally weighted ultraviolet radiation UVR eff (280-400 nm) have been measured simultaneously using a three detector measurement system. Results are compared with calculated irradiances of ultraviolet radiation and published illuminance data, and with data for the measurement period from 1988 to 2000. Yearly reports have been produced for selected sites, giving the daily solar index (which is a measure of the sunburn potential for sensitive skin types) throughout the year. (author)

  8. Familial melanoma associated with dominant ultraviolet radiation sensitivity

    International Nuclear Information System (INIS)

    Ramsay, R.G.; Chen, P.; Imray, F.P.; Kidson, C.; Lavin, M.F.; Hockey, A.

    1982-01-01

    Sensitivity to ultraviolet radiation was studied in lymphoblastoid cell lines derived from 32 members of two families with histories of multiple primary melanomas in several generations. As assayed by colony formation in agar or by trypan blue exclusion following irradiation, cellular sensitivity showed a bimodal distribution. All persons with melanoma or multiple moles were in the sensitive group, while some family members exhibited responses similar to those of controls. Cells from four cases of sporadic melanoma showed normal levels of sensitivity. The data are consistent with a dominantly inherited ultraviolet light sensitivity associated with these examples of familial melanoma. Spontaneous and ultraviolet light-induced sister chromatid exchange frequencies were similar to those in control cell lines. No defect in excision repair was detected in any of the above cell lines, but the sensitive group showed postirradiation inhibition of DNA replication intermediate between controls and an excision-deficient xeroderma pigmentosum cell line

  9. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  10. Health effects of exposure to ultraviolet and infrared radiation

    International Nuclear Information System (INIS)

    Thuerauf, J.R.

    1979-01-01

    A working group on the Health Effects of Exposure to Ultraviolet and Infrared Radiation met in Sofia (Bulgaria) from February 21-25, 1978. The conference was organized by the European Regional Bureau of the World Health Organization, WHO, in cooperation with the Bulgarian government. The main task for the participants was the revision and discussion of two guidelines. A Manual on Nonionizing Radiation Protection will be made available in 1979 to governmental and official organs to support them in establishing standards for the control of radiation. (orig.) [de

  11. Ultraviolet Radiation Dose National Standard of México

    Science.gov (United States)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  12. Ultraviolet radiation and its biological effects

    International Nuclear Information System (INIS)

    Rames, J.; Bencko, V.

    1993-01-01

    In connexion with contamination of the atmosphere with freons, the interest is increasing in geophysical and health aspects of 'ozone holes' - the seasonal incidence of increased intensity of UV radiation. Its biological effects depend on the intensity of the radiation, the exposure time and the wavelength. There is a wide range of various sorts of damage, local as well as general. In addition to skin pigmentation and symptoms produced by an elevated histamine blood level, also changes are found which may have more serious and permanent consequences: changes in the number and structure of Langerhans islets, changes of the peripheral capillary walls, dimerization of pyrimidine and thymine in DNA. These changes demonstrably contribute to the development of skin malignancies. After exposure of the eye, changes in pigmentation are found, and depending on the dose, possibly also development of conjunctivitis or retinal damage. Recently the interaction of UV radiation with arsenic was investigated. On the other side, therapeutic effects of UV radiation combined with chemotherapy are used in dermatology, eg., for inhibition of contact sensitization. (author) 42 refs

  13. Nonionising radiation and risk of human cancer: comparison of ultraviolet and radiofrequency radiation

    International Nuclear Information System (INIS)

    Green, A.

    2003-01-01

    Human exposure to ultraviolet radiation (UVR) comes largely from sunlight, although a small proportion of people receive high dose UVR from artificial sources. The causal link between solar UVR and the keratinocyte cancers, basal cell carcinomas and squamous cell carcinomas of the skin, is well-established based on a large body of observational and experimental evidence. UVR damages molecules such as DNA directly and this is the principal mechanism of carcinogenesis, though other mechanisms such as immunosuppression and interaction with viruses may also be involved. People are also exposed to another form of nonionising radiation, radiofrequency radiation (RFR), through occupation, the community environment from base stations, and through use of cellular telephones and related communications devices. However, unlike UVR, the relationship between RFR and cancer is far from clear. The main tumours that have been investigated to date are brain tumours and leukaemia but assessing the RFR exposure pathway to such cancers poses many methodological challenges for epidemiologists. Refinements to measurement of exposure are the major urgent need, and the lack of evidence regarding carcinogenic effects of RFR in experimental settings complicates the assessment. Further insights into the links between RFR and chronic disease such as cancer are likely in the next few years however when results of several large-scale epidemiological studies now in train around the world become available

  14. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  15. Genetics of human sensitivity to ultraviolet radiation

    Science.gov (United States)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  16. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  17. SOLAR ULTRAVIOLET EXPOSURE AND MORTALITY FROM SKIN TUMORS

    Science.gov (United States)

    Berwick, Marianne; Pestak, Claire; Thomas, Nancy

    2015-01-01

    Solar UV radiation (UVR) exposure is clearly associated with increased mortality from nonmelanoma skin cancer—usually squamous cell carcinoma. However, the association with cutaneous melanoma is unclear from the evidence in ecologic studies and several analytic studies have conflicting results regarding the effect of high levels of intermittent UV exposure prior to diagnosis on mortality. Understanding this conundrum is critical to present coherent public health messages and to improve the mortality rates from melanoma. PMID:25207375

  18. Effect of ultraviolet radiation, smoking and nutrition on hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2015-01-01

    Similar to the rest of the skin, the hair is exposed to noxious environmental factors. While ultraviolet radiation (UVR) and smoking are well appreciated as major factors contributing to the extrinsic aging of the skin, their effects on the condition of hair have only lately attracted the attention of the medical community. Terrestrial solar UVR ranges from approximately 290 to 400 nm; UV-B (290-315 nm) reaches only the upper dermis, while the penetration of UV-A (315-400 nm) into the dermis increases with wavelength. The two most important chronic effects of UVR on the skin and bald scalp are photocarcinogenesis and solar elastosis; however, the effects of UVR on hair have largely been ignored. As a consequence of increased leisure time and a growing popularity of outdoor activities and holidays in the sun, the awareness of sun protection of the skin has become important and should also apply to the hair. Besides being the single-most preventable cause of significant cardiovascular and pulmonary morbidity and an important cause of death, the association of tobacco smoking with various adverse effects on the skin and hair has also been recognized. Increasing public awareness of the association between smoking and hair loss seems to offer a good opportunity for the prevention or cessation of smoking, since the appearance of hair plays an important role in the overall physical appearance and self-perception of people. Finally, the quantity and quality of hair are closely related to the nutritional state of an individual. Normal supply, uptake, and transport of proteins, calories, trace elements, and vitamins are of fundamental importance in tissues with high biosynthetic activity, such as the hair follicle. In instances of protein and calorie malnutrition as well as essential amino acid, trace element, and vitamin deficiencies, hair growth and pigmentation may be impaired. Ultimately, important commercial interest lies in the question of whether increasing the

  19. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    International Nuclear Information System (INIS)

    Bero, M A; Abukassem, I

    2009-01-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  20. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    Science.gov (United States)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  1. Threat of ultraviolet radiation to the eye--how to protect against it

    International Nuclear Information System (INIS)

    Pitts, D.G.

    1981-01-01

    The purpose of this paper is to discuss the effects of exposure of the eye to ultraviolet (UV) radiation and to provide information from which protective criteria and standards may be established. To accomplish this purpose, the article discusses ultraviolet radiation, absorption of UV radiation by the eye, the effects of ocular exposure to ultraviolet radiation, and how to protect the eye against exposure to UV radiation

  2. Ultraviolet radiation, sun damage and preventing

    International Nuclear Information System (INIS)

    Johnsen, B.; Christensen, T.; Nilsen, L.T.; Hannevik, M.

    2013-01-01

    The report focuses on the large impact of health damages due to excessive UV exposure from natural sun. The first part of the report gives background information on factors significantly affecting the intensity of UV radiation. The second part gives an overview of health effects related to UV exposure, with recommendations on how to avoid excessive UV exposure and still enjoy the positive sides of outdoor activity. The report is intended to contribute to informational activities about sun exposure as recommended by the World Health Organisation and the World Meteorology Organisation. (Author)

  3. Ultraviolet radiation resistance in Halobacterium salinarium

    International Nuclear Information System (INIS)

    Kristoff, S.R.

    1985-01-01

    An obvious characteristic of wild type H. salinarium is its red pigmentation. A non-pigmented mutant was isolated to test the role of pigmentation in UV radiation resistance. Survival curves of UV-irradiated wild type and mutant cells show that pigmentation does not play a direct role in protecting DNA from UV damage. Pigmentation does play a role, however, in repairing UV damage. UV-irradiated wild type cells show more efficient recovery by photoreactivation with 405 nm light than do UV-irradiated non-pigmented mutants. High internal cation concentrations found in H. salinarium may also be partly responsible for the relative resistance of H. salinarium to UV radiation by causing the DNA to assume a conformation less conducive to the production of pyrimidine dimers. In vitro irradiation of DNA extracted from H. salinarium, dissolved in solutions of different ionic strengths, indicate that pyrimidine dimers may not form as readily in DNA which is in an environment with high salt concentration

  4. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  5. Spectrometer system for diffuse extreme ultraviolet radiation

    Science.gov (United States)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  6. Ultraviolet-B radiation effects on leaf fluorescence characteristics in cultivars of soybean

    International Nuclear Information System (INIS)

    Miles, D.

    1993-01-01

    Ultraviolet-B (UV-B; 280–320 nm)–emitting lamps unavoidably emit ultraviolet-A (UV-A; 320–400 nm) and ultraviolet-C (UV-C; <280 nm) radiation. Short-wavelength–blocking filters are generally used to limit the wave bands of UV under investigation. The widespread use of such filters means that all exposures to UV-B radiation will have a significant UV-A component. Therefore, the physiological effects unique to UV-B exposure are difficult to clearly isolate. This study presents a method to remove the UV-A and UV-C “contamination” using a liquid potassium chromate (K 2 CrO 4 ) filter, thus allowing more direct assessment of the effects of UV-B exposure. Cultures of the green marine alga Dunaliella tertiolecta were grown in the absence of UV radiation. Sunlamps supplied the UV radiation for a 24 h exposure (solar radiation was not used in this study). The UV radiation was filtered either by the standard method (i.e. cellulose acetate (CA) with polyester = Mylar controls) or by a liquid filter of potassium chromate. Photosynthetic responses were compared. Major decreases in the ratio of variable to maximal fluorescence in dark-adapted cells and photosynthetic capacity were observed in CA-filtered cultures, whereas no change was observed in cells exposed to the same UV-B flux with the UV-A removed by K 2 CrO 4 . The use of a CA filter with a Mylar control does not link results unequivocally to UV-B radiation. Such results should be interpreted with caution. (author)

  7. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Science.gov (United States)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  8. Effects of intense ultraviolet radiation on electrostatic energy analyzers

    International Nuclear Information System (INIS)

    Mathew, J.; Jennings, W.C.; Hickok, R.L.; Connor, K.A.; Schoch, P.M.; Hallock, G.A.

    1984-01-01

    Intense ultraviolet radiation from the plasma poses a significant problem for the implementation of heavy ion beam probe diagnostic systems on fusion-oriented confinement devices. The radiation enters the electrostatic energy analyzer used to detect secondary ions, resulting in both a distortion of the electric field inside the analyzer and noise generation in the detector channels. Data acquisition procedures and mechanical design techniques have been developed to significantly reduce these effects. We have also been successful in modelling the electric field distortion and have developed a data correction procedure based on this model. Methods for approaching the problems anticipated in future devices are also suggested

  9. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  10. Radiating properties of solar plasmas

    Science.gov (United States)

    Bruner, M. E.; Mcwhirter, R. W. P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma.

  11. Radiating properties of solar plasmas

    International Nuclear Information System (INIS)

    Bruner, M.E.; Mcwhirter, R.W.P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma. 21 references

  12. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    International Nuclear Information System (INIS)

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-01-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  13. Null bactericidal effect of ultraviolet radiation emitted by LEDs.

    Directory of Open Access Journals (Sweden)

    Francisco Alcántara Muñoz

    2016-11-01

    Full Text Available This research has aimed to assess the bactericidal effect of ultraviolet light emitted by LEDS on the growth on Petri dishes of microorganisms whose legal limits in foods have been established. An electrically fed apparatus has been designed with precise timing and a camera to prevent light spillage, in which two ultraviolet radiation emission devices were connected by LED technology at different wavelengths: through an array of LEDS emitting at around 350nm, and a single specific emission LED at 280nm. 1000 cfu of E. Coli and S. aureus sown on PCA were used as prototypes of gram negative and positive bacteria, respectively, onto which ultraviolet light was radiated at different time intervals, by means of both devices, with the whole experiment being carried out in triplicate . In none of the three series of treatments at the two wavelengths were reductions in microbial growth observed. The series of sowings on PCA were done on unseeded plates in order to be able to discard the likelihood of subsequent recontamination.

  14. Action spectra in mammalian cells exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A review is given of the literature published since 1977 on action spectra in mammalian cells exposed to ultraviolet radiation in the wavelength region above 220 nm. Action spectra for lethal events are discussed for cell inactivation in normal cells, growth arrested cells and photosensitive cells. Action spectra for non-lethal events are also discussed in relation to pyrimidine dimer formation, photoreactivation and the use of photosensitisers. It was concluded from these studies that damage to the DNA, and the extent of the repair of this damage, seems to determine a cell's response to such parameters as inactivation, mutation, transformation, latent viral activation, cellular viral capacity and ultraviolet enhanced viral reactivation. In addition to the direct effects of UV on DNA, photosensitization of cellular responses with chemicals such as 8-MOP extend the wavelength range at which damage can be demonstrated. (U.K.)

  15. Occupational standard for exposure to ultraviolet radiation (1989)

    International Nuclear Information System (INIS)

    1989-12-01

    The exposure limit (EL) values in this standard refer to ultraviolet radiation (UVR) in the spectral region between 180 and 400 nm and represents conditions under which it is believed that nearly all workers may be repeatedly exposed without adverse effect. The EL values for exposure of the eye or the skin may be used to evaluate potentially hazardous exposure from UVR. The limits do not apply to ultraviolet lasers. The values should be used as guides in the control of exposure to both pulsed and continuous sources of UVR where the exposure duration is not less than 0.1 μsec. The ELs are below levels used for UV exposures of patients as a part of medical treatment or for elective cosmetic purposes. They are intended as upper limits for non therapeutic and non cosmetic exposure. 2 refs., 2 tabs

  16. Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.

    Science.gov (United States)

    Tousey, R; Limansky, I

    1972-05-01

    A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.

  17. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  18. Ultraviolet light and infrared radiation. Measurement and hazard assessment

    International Nuclear Information System (INIS)

    Mayer, A.; Salsi, S.

    1979-01-01

    Ultraviolet, light and infrared radiation exists in many work places and can be dangerous in many ways, especially for the eyes. The INRS has developed a method and an apparatus for measuring on site or in a laboratory the spectral energy distribution of such radiation and the luminance of the source. With current knowledge of the effects of radiation on the eyes and by comparing readings taken and recommended limit values, it is possible to determine the risk levels at work places in the different wave ranges. Two examples of readings taken at a pot furnace in a crystal glass factory and at an MAG welding station are given and the appropriate protective measures described [fr

  19. Absolute measurement of undulator radiation in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Maezawa, H.; Kitamura, H.; Sasaki, T.; Mitani, S.; Osaka City Univ.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Tokyo Univ.; Mikuni, A.; Tokyo Univ., Tanashi

    1983-01-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy #betta#, the field parameter K, and the angle of observation THETA in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula lambdasub(n)=lambda 0 /2n#betta# 2 (1+K 2 /2+#betta# 2 THETA 2 ), and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed. (orig.)

  20. Effect of ultraviolet radiation (300-400 nanometers) on polypropylene

    International Nuclear Information System (INIS)

    Lerman, S.

    1983-01-01

    Polypropylene discs and shavings were exposed to simulated ambient ultraviolet (UV) radiation (lambda 300-400 nm) for a period equivalent to at least two years of wear within the eye, assuming the eye to be exposed to ambient UV radiation for four hours per day at 1 mW/cm2. The polypropylene and the incubation media were measured by several forms of optical spectroscopy, and there was no photochemical change in either. Where polypropylene discs were exposed to a very high level of UV radiation (greater than 500 W/cm2), they became brittle and discolored within five to ten days. This level of exposure, however, was equivalent to a total of over 20 million joules/cm2, which is at least one million times levels for expected ambient UV exposure to polypropylene within the eye

  1. UNLAMINATED GAFCHROMIC EBT3 FILM FOR ULTRAVIOLET RADIATION MONITORING.

    Science.gov (United States)

    Welch, David; Randers-Pehrson, Gerhard; Spotnitz, Henry M; Brenner, David J

    2017-11-01

    Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 µJ/cm2. The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of solar radiation on hair and photoprotection.

    Science.gov (United States)

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The potential sensitivity of tropical plants to increased ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ziska, L.H.

    1996-01-01

    Little is known concerning the impact of stratospheric ozone depletion and increasing ultraviolet (UV)-B radiation on the phenology and growth of tropical plants. This is because, ostensibly, tropical plants are already exposed to relatively high levels of UV-B radiation (relative to a temperate environment) and should, therefore, possess a greater degree of tolerance to increased UV-B radiation. In this brief review I hope to show that, potentially, direct and indirect effects on photosynthesis, assimilate partitioning, phenology and biomass could occur in both tropical crops (e.g. cassava, rice) and native species (e.g. Cecropia obtusifolia (Bertol. Fl)., Tetramolopium humile (Gray), Nana sandwicensis L.). However, it should be noted that differences in sensitivity to UV-B radiation can be related to experimental conditions, and care should be taken to ensure that the quantity and quality of background solar radiation remains at near ambient conditions. Nevertheless, by integrating current and past studies on the impact of UV-B radiation on tropical species, I hope to be able to demonstrate that photosynthesis, morphology and growth in tropical plants could be directly affected by UV-B radiation and that UV-B radiation may be a factor in species and community dynamics in natural plant populations in the tropics

  4. A novel sensor array for field based ocular ultraviolet radiation measurements

    International Nuclear Information System (INIS)

    Fleming, D. P.; Walsh, J. E.; Moore, L. A.; Bergmanson, J. P.; McMahon, D.

    2006-01-01

    The intensification of terrestrial solar ultraviolet radiation (UVR) due to the diminution of the ozone layer has promoted a variety of research into establishing the impact of this elevated potential dose of UVR on biological tissues. Certain anterior ocular tissues have been found to be susceptible to damage by incident UVR and potentially blinding diseases such as pterygium are thought to be a direct result of absorbed UVR at the nasal limbus. There is a need for more accurate quantification and localisation of incident UVR at the anterior ocular surface. A novel solar blind photodiode sensor array system has been designed, constructed and tested for this purpose. Initial measurements to quantify the irradiance across the anterior ocular surface within the latitudes known as the 'pterygium belt' provide us with a set of core data for different head orientations and tilt angles and indicate the accuracy and stability of the system. (authors)

  5. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    International Nuclear Information System (INIS)

    Ley, R.D.

    1997-01-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author)

  6. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R.D. [The Lovelace Institutes, Albuqeurque, NM (United States). Photomdecine Program; Fourtanier, A. [L`Oreal, Advanced Research, Clichy (France)

    1997-06-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author).

  7. Mutations induced by ultraviolet radiation affecting virulence in Puccinia striiformis

    International Nuclear Information System (INIS)

    Shang Hongsheng; Jing Jinxue; Li Zhenqi

    1994-01-01

    Uredospores of parent culture, cy 29-1, were treated by ultraviolet radiation and mutations to virulent were tested on resistant wheat cultivars inoculated with treated spores. 7 mutant cultures virulent to the test cultivars were developed with estimated mutation rate 10~6~10~4. The virulence of mutant cultures was different from the all known races of stripe rust. Resistance segregation to mutant cultures was detected in two test cultivars. The results suggested that mutation was important mechanism of virulence variation operative in asexual population of rust fungi

  8. Ultraviolet radiation-induced carcinogenesis: mechanisms and experimental models

    International Nuclear Information System (INIS)

    Ramasamy, Karthikeyan; Shanmugam, Mohana; Balupillai, Agilan; Govindhasamy, Kanimozhi; Gunaseelan, Srithar; Muthusamy, Ganesan; Robert, Beualah Mary; Nagarajan, Rajendra Prasad

    2017-01-01

    Ultraviolet radiation (UVR) is a very prominent environmental toxic agent. UVR has been implicated in the initiation and progression of photocarcinogenesis. UVR exposure elicits numerous cellular and molecular events which include the generation of inflammatory mediators, DNA damage, epigenetic modifications, and oxidative damages mediated activation of signaling pathways. UVR-initiated signal transduction pathways are believed to be responsible for tumor promotion effects. UVR-induced carcinogenic mechanism has been well studied using various animal and cellular models. Human skin-derived dermal fibroblasts, epidermal keratinocytes, and melanocytes served as excellent cellular model systems for the understanding of UVR-mediated carcinogenic events. Apart from this, scientists developed reconstituted three-dimensional normal human skin equivalent models for the study of UVR signaling pathways. Moreover, hairless mice such as SKH-1, devoid of Hr gene, served as a valuable model for experimental carcinogenesis. Scientists have also used transgenic mice and dorsal portion shaved Swiss albino mice for UVR carcinogenesis studies. In this review, we have discussed the current progress in the study on ultraviolet B (UVB)-mediated carcinogenesis and outlined appropriate experimental models for both ultraviolet A- and UVB-mediated carcinogenesis. (author)

  9. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    Science.gov (United States)

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  10. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter. [for Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hassen, E.; Cheng, C. C.; Athay, R. G.; Beckers, J. M.; Brandt, J. C.; Chapman, R. D.; Bruner, E. C.; Henze, W.; Hyder, C. L.; Gurman, J. B.

    1981-01-01

    New observation with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first three months of Solar Maximum Mission operations are presented. Attention is given to polarimetry in sunspots, oscillations above sunspots, density diagnostics of transition-zone plasmas in active regions, and the eruptive prominence - coronal transient link.

  11. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  12. Parameterization Of Solar Radiation Using Neural Network

    International Nuclear Information System (INIS)

    Jiya, J. D.; Alfa, B.

    2002-01-01

    This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values

  13. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  14. Solar Radiation effect on the bituminous binder; Efecto de la radiacion solar sobre el ligante bituminoso

    Energy Technology Data Exchange (ETDEWEB)

    Tadeo Rico, A.; Torres Perez, A.

    2010-07-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  15. Current and future impacts of ultraviolet radiation on the terrestrial carbon balance

    Institute of Scientific and Technical Information of China (English)

    W. Kolby SMITH; Wei GAO; Heidi STELTZER

    2009-01-01

    One of the most documented effects of human activity on our environment is the reduction of stratospheric ozone resulting in an increase of biologically harmful ultraviolet (UV) radiation. In a less predictable manner, UV radiation incident at the surface of the earth is expected to be further modified in the future as a result of altered cloud condition, atmospheric aerosol concentration, and snow cover. Although UV radiation comprises only a small fraction of the total solar radiation that is incident at the earth's surface, it has the greatest energy per unit wavelength and, thus, the greatest potential to damage the biosphere. Recent investigations have highlighted numerous ways that UV radiation could potentially affect a variety of ecological processes, including nutrient cycling and the terrestrial carbon cycle. The objectives of the following literature review are to summarize and synthesize the available information relevant to the effects of UV radiation and other climate change factors on the terrestrial carbon balance in an effort to highlight current gaps in knowledge and future research directions for UV radiation research.

  16. Calculating the diffuse solar radiation in regions without solar radiation measurements

    International Nuclear Information System (INIS)

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  17. Channel catfish response to ultraviolet-B radiation

    Science.gov (United States)

    Ewing, M.S.; Blazer, V.S.; Fabacher, D.L.; Little, E.E.; Kocan, K.M.

    1999-01-01

    Fingerling channel catfish Ictalurus punctatus exposed to simulated ultraviolet-B radiation at an average daily dose of 2.9 J/cm2 were quite sensitive to the radiation. After a 24-h exposure, thinning of the most dorsal epidermis frequently was accompanied by edema. Compared with epidermis of unexposed fish, mucous cells in exposed fish were less superficial and club cells were less numerous both dorsally and high on the lateral surface of the body. Sunburn cells with pyknotic nuclei were evident in the epidermis of exposed fish. Among fish exposed for 48 h, focal necrosis and sloughing of the outer epidermal layer were widespread. A methanol-extractable skin substance that is associated with resistance to sunburn in other fish species was not detected in channel catfish.

  18. Ultraviolet-B radiation absorbing capacity of leaf hairs

    International Nuclear Information System (INIS)

    Karabourniotis, G.; Papadopoulos, K.; Papamarkou, M.; Manetas, Y.

    1992-01-01

    Pubescence layers with their native structure and orientation were isolated from the leaves of Olea europaea L. and Olea chrysophylla L. They were almost transparent in the visible, but considerable absorptance was evident in the ultraviolet-B region (UV-B), with maximum at 310 nm. Methanolic extracts of hairs from Olea and a variety of other pubescent species consistently showed the existence of UV-screening pigments. Absorptance of trichomes varied, but a trend towards more effective UV-B radiation attenuation in the sub-alpine Verbascum species may be claimed. In all cases, pigments were located within hair cells and in Olea they were characterized as phenolics with considerable flavonoid contribution. It is suggested that leaf hairs, besides other functions, may constitute a shield against UV-B radiation. (author)

  19. Thermoluminescent behavior of diamond thin films exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    Barboza F, M.; Gastelum, S.; Melendrez, R.; Chernov, V.; Bernal, R.; Cruz V, C.; Brown, F.

    2002-01-01

    In this work the thermoluminescent properties of diamond thin films are discussed which are grown up through the chemical vapor method exposed to ultraviolet radiation of 200-280 nm. The films with thickness 3, 6, 9, 12, 180 and 500 microns were grown up using a precursor gas formed of H 2 -CH 4 -CO excited through microwave energy or hot filament.The structure and morphology of the films were examined through scanning electron microscopy, indicating the formation of different diamond polycrystal structures which depend on the type of heating of the precursor gas used as well as the film dimensions. In general, the brilliance curve depends on the sample and the wavelength of the irradiation ultraviolet light, however it presents clearly thermoluminescence bands in 148, 160, 272, 304, 320 and 324 C degrees. The maximum of the thermoluminescence efficiency is obtained for the case of sample exposure with light of 214 nm. The sample of 500 microns is what exhibits greater thermoluminescent efficiency of those studied samples. The thermoluminescent behavior in function of radiation dose presents regions of linearity and supra linearity for higher and small doses respectively. The disappearance of the thermoluminescent signal depends on the characteristics of the film and it can reach until a 30 % of loss before to reach the stability. (Author)

  20. Sterilization techniques without heating (ultraviolet ray, radiation and ozone)

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1991-01-01

    The recent demand of consumers for processed foods is characterized by the intention for health and nature, besides, the demand for low sweetness, salt reduction, no additive and freshness becomes strong. In view of the control of microorganisms in products, all these become the negative factors. Accordingly, in order to overcome them, it is urgently desired to develop new technology or to improve conventional methods. As to heating sterilization, the uniform temperature treatment to the inside of foods is difficult, and it cannot be applied to perishables. The high temperature sterilization above 120degC causes the change in nutrition composition and physical properties. Ultraviolet ray and ozone can be used for the sterilization of food surface and powder and liquid foods. Radiation treatment can be applied to packed foods and frozen foods as well as food surface. The principle and the fields of application of ultraviolet ray sterilization, radiation sterilization and ozone sterilization are reported. In the mechanism of these methods, the action to DNA and oxidation are common. (K.I.)

  1. AUMENTO DEL ÍNDICE SOLAR ULTRAVIOLETA CON LA ALTURA SOLAR ULTRAVIOLET INDEX INCREASE WITH ALTITUDE

    Directory of Open Access Journals (Sweden)

    Miguel Rivas A

    2008-09-01

    Full Text Available En este trabajo se presentan los resultados obtenidos al realizar comparaciones entre mediciones experimentales de Índice solar ultravioleta (IUV obtenido a partir de datos experimentales y también de resultados teóricos proveniente del cálculo del IUV mediante el modelo TUV (modelo ultravioleta troposféricol. En especial se destacan los aumentos de la irradianza solar ultravioleta B (UVB 280-320 nm que se reciben a nivel del suelo debido a los aumentos de la altitud del lugar sobre el nivel del mar (efecto altitudinal. Los cálculos mediante el modelo TUV se realizaron en un período comprendido entre los años 1996-2003, introduciendo los parámetros de los lugares geográficos en que se hicieron las mediciones experimentales. Dado que una de las variables importantes de la que depende el IUV es la altitud sobre el nivel del mar y considerando que la zona norte de Chile es un lugar con características especiales para realizar este tipo de estudios, es que se han realizado experimentos para medir la irradianza solar UVB entre 0-3.200 m de altura, y a partir de estos datos se ha obtenido el IUV. La importancia de estos resultados radica en el hecho que a partir de ellos se pueden cuantificar el incremento de la irradianza UVB por cada 1.000 m de altitud sobre el nivel del mar. Un número creciente de personas se desplazan continuamente entre el nivel del mar y altitudes cercanas a los 5.000 m, debido a trabajos relacionados con: minería, turismo, transporte. En todos estos casos estas personas reciben importantes incrementos de irradianza solar UV, que pueden afectar gravemente su salud si no se informan de los riesgos para que puedan tomar precauciones.In this work we present results from ultraviolet solar index (IUV comparisons between values obtained from experimental measurements, with theoretical results obtained from tropospherical ultraviolet model (TUV. It is important to emphasise the observed increase in solar ultraviolet B (UVB

  2. Environment and health: 3. Ozone depletion and ultraviolet radiation

    International Nuclear Information System (INIS)

    De Gruijl, F.R.; Van der Leun, J.C.

    2000-01-01

    Ultraviolet radiation from the sun is responsible for a variety of familiar photochemical reactions, including photochemical smog, bleaching of paints and decay of plastics. Conjugated bonds in organic molecules such as proteins and DNA absorb the UV radiation, which can damage these molecules. By a fortunate evolutionary event, the oxygen produced by photosynthesis forms a filter in the outer reaches of our atmosphere that absorbs the most energetic and harmful UV radiation, with wavelengths below 240 nm (in the UVC band [wavelength 100-280 nm]). In the process, the oxygen molecules split up and recombine to form ozone (Fig. 1). This ratified ozone layer (spread out between 10 and 50 Ion in the stratosphere but only 3 mm thick were it compressed at ground level) in turn efficiently absorbs UV radiation of higher wavelengths (tip to about 310 nm). A part of the UV radiation in the UVB band (wavelength 280-315 nm) still reaches ground level and is absorbed in sufficient amounts to have deleterious effects on cells. The less energetic radiation in the UVA band (wavelength 315-400 nm, bordering the visible band [wavelength 400-800 nm]) is not absorbed by ozone and reaches ground level without much attenuation through a clear atmosphere (i.e., no clouds, no air pollution). Although not completely innocuous, the UVA radiation in sunlight is much less photochemically active and therefore generally less harmful than UVB radiation. Life on earth has adapted itself to the UV stress, particularly UVB stress, fbr example by forming protective UV-absorbing surface layers, by repairing cell damage or by replacing damaged cells entirely. Human skin shows all of these adaptive features. Our eyes are less well adapted, but dicy, are shielded by the brows and by squinting. (author)

  3. Solar radiation and human health

    International Nuclear Information System (INIS)

    Juzeniene, Asta; Moan, Kristin; Moan, Johan; Brekke, Paal; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Joerg; Holick, Michael F; Grant, William B

    2011-01-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  4. Solar radiation and human health

    Energy Technology Data Exchange (ETDEWEB)

    Juzeniene, Asta; Moan, Kristin; Moan, Johan [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo (Norway); Brekke, Paal [Norwegian Space Centre, PO Box 113, Skoeyen, N-0212 Oslo (Norway); Dahlback, Arne [Department of Physics, University of Oslo, Blindern, 0316 Oslo (Norway); Andersson-Engels, Stefan [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Reichrath, Joerg [Klinik fuer Dermatologie, Venerologie und Allergologie, Universitaetsklinikum des Saarlandes, D-66421 Homburg/Saar (Germany); Holick, Michael F [Department of Medicine, Section of Endocrinology, Nutrition and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, 85 E. Newton St., M-1013, Boston, MA 02118 (United States); Grant, William B, E-mail: asta.juzeniene@rr-research.no, E-mail: kmoan@hotmail.com, E-mail: paal.brekke@spacecentre.no, E-mail: arne.dahlback@fys.uio.no, E-mail: j.e.moan@fys.uio.no, E-mail: stefan.andersson-engels@fysik.lth.se, E-mail: joerg.reichrath@uks.eu, E-mail: mfholick@bu.edu, E-mail: wbgrant@infionline.net [Sunlight, Nutrition and Health Research Center (SUNARC), PO Box 641603, San Francisco, CA 94164-1603 (United States)

    2011-06-15

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  5. Solar radiation and human health

    Science.gov (United States)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  6. Measuring solar UV radiation with EBT radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Cheung Tsang; Yu, Peter K N; Butson, Martin J

    2010-01-01

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m -2 UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m -2 (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  7. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  8. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.

    Science.gov (United States)

    Gorton, Holly L; Vogelmann, Thomas C

    2003-06-01

    Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.

  9. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  10. SEURAT: SPH scheme extended with ultraviolet line radiative transfer

    Science.gov (United States)

    Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki

    2018-05-01

    We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.

  11. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  12. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Directory of Open Access Journals (Sweden)

    X. Cai

    2017-10-01

    Full Text Available Biological effects of ultraviolet radiation (UVR; 280–400 nm on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280–320 nm and UV-A (320–400 nm on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101 using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs. After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %, MAA content was higher, and average trichome length was shorter (by up to 22 % in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR alone treatment (400–700 nm. These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  13. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  14. Solar Maximum Mission Experiment - Ultraviolet Spectroscopy and Polarimetry on the Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hanssen, E.; Cheng, C. C.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.; Gurman, J. B.; Hyder, C. L.

    1981-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft is described. It is pointed out that the instrument, which operates in the wavelength range 1150-3600 A, has a spatial resolution of 2-3 arcsec and a spectral resolution of 0.02 A FWHM in second order. A Gregorian telescope, with a focal length of 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit; it permits all four Stokes parameters to be determined. Among the observing modes are rasters, spectral scans, velocity measurements, and polarimetry. Examples of initial observations made since launch are presented.

  15. A comparison of ultraviolet radiation measured at an arctic and an alpine site

    International Nuclear Information System (INIS)

    Ambach, W.; Blumthaler, M.; Wendler, G.

    1991-01-01

    Ultraviolet radiation contributes relatively little energy to the solar spectrum; however, it is very important because it is biologically very active. Measurements were carried out at a high altitude station in Switzerland (jungfraujoch 3576 m), and at a high altitude station in Alaska (Fairbanks 64.82°N) with identical instrumentation. For all season the UV flux for Jungfraujoch was larger than for Fairbanks. In summer the differences between the stations were less pronounced because the lower solar elevation is compensated by a longer day length. In winter the differences are more severe. For both stations the authors find an increased relative intensity of the UV (UV/Global) with increasing cloudiness, while the absolute values decreased with increasing cloudiness. This shows that the clouds absorb more in the near IR than in the UV region of the solar spectrum. For Fairbanks, the UV values in spring were substantially higher (mean value 18%) than for identical solar elevations after summer solstice. Cloudiness could not account for this, because the authors also observed differences for clear sky conditions. A simple model was developed, which took multiple reflections of the highly reflecting snow cover in spring into account, which correctly explained 83% of the observed differences. (author)

  16. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  17. Ultraviolet radiation for the sterilization of contact lenses

    International Nuclear Information System (INIS)

    Gritz, D.C.; Lee, T.Y.; McDonnell, P.J.; Shih, K.; Baron, N.

    1990-01-01

    Two sources of ultraviolet (UV) radiation with peak wavelengths in the UV-C or UV-B ranges were compared for their ability to sterilize contact lenses infected with Pseudomonas aeruginosa, Streptococcus pneumoniae, Acanthamoeba castellani, Candida albicans, and Aspergillus niger. Also examined was the effect of prolonged UV light exposure on soft and rigid gas permeable (RGP) contact lenses. The UV-C lamp (253.7 nm, 250 mW/cm2 at 1 cm) was germicidal for all organisms within 20 minutes but caused destruction of the soft lens polymers within 6 hours of cumulative exposure. UV-C caused damage to RGP lenses in less than 100 hours. The UV-B lamp (290-310 nm, 500 mW/cm2 at 1 cm) was germicidal for all organisms tested (except Aspergillus) with a 180-minute exposure and caused less severe changes in the soft lens polymers than did the UV-C lamp, although cumulative exposure of 300 hours did substantially weaken the soft lens material. RGP materials were minimally affected by exposure to 300 hours of UV-B. Ultraviolet light is an effective germicidal agent but is injurious to soft lens polymers; its possible utility in the sterilization of RGP lenses and lens cases deserves further study

  18. Thermoluminescent of induced calcite by gamma and ultraviolet radiation

    International Nuclear Information System (INIS)

    Lima, J.F. de.

    1987-01-01

    Samples of brazilian calcite, exposed to gamma radiation in laboratory and heated at constant rate of 2.7 0 C/s, showed three glow peaks at 150, 250 and 350 0 C in their thermoluminescent emission curves. The analysis of these peaks, using different models, indicated that they follow a second order kinetics; it has been obtained, for the activation energy, 1.3, 1.5 and 1.7 eV, and, for the pre-exponential factors, 8.1 x 10 14 , 6.8 x10 13 and 2.4 x 10 12 s -1 . Although the total thermoluminescent emission has stayed constant, the relative height of glow peaks has changed with the temperature of annealing in the range of 400 to 700 0 C. Exposed samples were also illuminated with ultraviolet light and the resultant curves showed partial or total bleaching or some glow peaks and the growth of peaks at lower temperatures. Samples of virgin calcite, submited to increasing exposures of gamma rays, showed a corresponding enhancement of the optical absorption bands in the range of 25000 to 47000 cm -1 A subsequent illumination of these samples with ultraviolet light produced a decrease of the optical absorption bands at the same range. (author) [pt

  19. Ultraviolet radiation and autoimmune disease: insights from epidemiological research

    International Nuclear Information System (INIS)

    Ponsonby, Anne-Louise; McMichael, Anthony; Mei, Ingrid van der

    2002-01-01

    This review examines the epidemiological evidence that suggests ultraviolet radiation (UVR) may play a protective role in three autoimmune diseases: multiple sclerosis, insulin-dependent diabetes mellitus and rheumatoid arthritis. To date, most of the information has accumulated from population studies that have studied the relationship between geography or climate and autoimmune disease prevalence. An interesting gradient of increasing prevalence with increasing latitude has been observed for at least two of the three diseases. This is most evident for multiple sclerosis, but a similar gradient has been shown for insulin-dependent diabetes mellitus in Europe and North America. Seasonal influences on both disease incidence and clinical course and, more recently, analytical studies at the individual level have provided further support for a possible protective role for UVR in some of these diseases but the data are not conclusive. Organ-specific autoimmune diseases involve Th1 cell-mediated immune processes. Recent work in photoimmunology has shown ultraviolet B (UVB) can specifically attenuate these processes through several mechanisms which we discuss. In particular, the possible contribution of an UVR-induced increase in serum vitamin D (1,25(OH) 2 D 3 ) levels in the beneficial immunomodulation of these diseases is discussed

  20. Workshop Report on Managing Solar Radiation

    Science.gov (United States)

    Lane, Lee (Compiler); Caldeira, Ken (Compiler); Chatfield, Robert (Compiler); Langhoff, Stephanie (Compiler)

    2007-01-01

    The basic concept of managing Earth's radiation budget is to reduce the amount of incoming solar radiation absorbed by the Earth so as to counterbalance the heating of the Earth that would otherwise result from the accumulation of greenhouse gases. The workshop did not seek to decide whether or under what circumstances solar radiation management should be deployed or which strategies or technologies might be best, if it were deployed. Rather, the workshop focused on defining what kinds of information might be most valuable in allowing policy makers more knowledgeably to address the various options for solar radiation management.

  1. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health.

    Science.gov (United States)

    Holick, Michael F

    2016-03-01

    Humans evolved in sunlight and had depended on sunlight for its life giving properties that was appreciated by our early ancestors. However, for more than 40 years the lay press and various medical and dermatology associations have denounced sun exposure because of its association with increased risk for skin cancer. The goal of this review is to put into perspective the many health benefits that have been associated with exposure to sunlight, ultraviolet A (UVA) ultraviolet B (UVB), visible and infrared radiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Ultraviolet radiation and air contamination during total hip replacement

    International Nuclear Information System (INIS)

    Carlsson, A.S.; Nilsson, B.; Walder, M.H.; Osterberg, K.

    1986-01-01

    Ultraviolet (uv) radiation of the operating room was assessed bacteriologically in an open randomized study of 30 total hip procedures. Volumetric air-sampling demonstrated that the number of colony forming units (cfu m-3) were significantly reduced (P less than 0.001) by uv light, both close to the wound and in the periphery of the operating room. No adverse effects of the uv-irradiation were observed either in the patients or the staff. In operating rooms fitted with a zonal ventilation system and with an air change rate of about 70 h-1, the addition of uv irradiation during surgery may achieve ultra clean air. However, in conventionally ventilated operating rooms uv-irradiation alone is probably not sufficient to do so

  3. Drinking water disinfection by means of ultraviolet radiation

    International Nuclear Information System (INIS)

    Gelzhaeuser, P.; Bewig, F.; Holm, K.; Kryschi, R.; Reich, G.; Steuer, W.

    1985-01-01

    The book presents all lectures held during a course at Technical Academy Esslingen, on September 10, 1985, on the subject of 'Drinking water disinfection by means of ultraviolet radiation'. The methods hitherto used for disinfection are no longer suitable because of the increasing amounts of organic pollutants found in the untreated water, and because of the necessity to make drinking water disinfection less expensive, non-polluting and thus environmentally compatible. U.V. irradiation is a method allowing technically simple and safe disinfection of the water, and also does not have any effect on the natural taste of the drinking water. The lectures presented discuss all aspects of the method, the equipment, and the performance of irradiation systems in practice. (orig./PW) [de

  4. Sensitization of ultraviolet radiation damage in bacteria and mammalian cells

    International Nuclear Information System (INIS)

    Fisher, G.J.; Watts, M.E.; Patel, K.B.; Adams, G.E.

    1978-01-01

    Bacteria (Serratia marcescens) and mammalian cells (Chinese hamsters V79-379A) were irradiated in monolayers with ultraviolet light at 254 nm or 365 nm in the presence or absence of radiosensitizing drugs. At 254 nm, killing is very efficient (Dsub(37) approximately equal 1 J m -2 exposure, or approximately equal 6 x 10 4 photons absorbed by DNA per bacterium), and sensitizers have no effect. At 365 nm, cells are not killed in buffer, but are inactivated in the presence of nifurpipone or misonidazole. Lethal exposures (approximately equal 5 x 10 3 J m -2 at 10 nM misonidazole) correspond to about 10 7 photons absorbed by sensitizer molecules per bacterium. Toxicity of stable photoproducts of the drugs is not involved, nor is oxygen required. Hence the transient species formed by photo-excitation of radiosensitizer molecules are capable of killing cells in the absence of other types of radiation damage. (author)

  5. Ocular effects of ultraviolet radiation from 295 to 365 nm

    International Nuclear Information System (INIS)

    Pitts, D.G.; Cullen, A.P.; Hacker, P.D.

    1977-01-01

    A 5,000 watt Xe--Hg source and a double monochromator were used to produce 6.6 nm full band-pass ultraviolet (UV) radiation. Pigmented rabbit eyes were exposed to the 6.6 nm band-pass UV radiant energy in 5 nm steps from 295 to 320 nm and at random intervals above 320 nm. Corneal and lenticular damage was assessed and classified with a biomicroscope. Corneal threshold radiant exposure (Hc) rose very rapidly from 0.022 Jcm -2 at 300 nm to 10.99 Jcm -2 at 335 nm. Radiant exposures exceeding 2 x Hc resulted in irreversible corneal damage. Lenticular damage was limited to wavebands above 295 nm. The action spectrum for the lens began at 295 nm and extended to about 315 nm. Permanent lenticular damage occurred at radiant exposure levels approximately twice the threshold for lenticular radiant exposure. The importance in establishing both corneal and lenticular damage criteria is emphasized

  6. Ambient ultraviolet radiation causes mortality in salamander eggs

    International Nuclear Information System (INIS)

    Blaustein, A.R.; Edmond, B.; Kiesecker, J.M.

    1995-01-01

    Previous research has shown that amphibian species have differential sensitivity to ultraviolet-B (UV-B) radiation. In some anuran species, ambient levels of UV-B cause mortality in embryonic stages and hatching success is significantly reduced. Projected increases in UV-B may affect an increasing number of species. The adverse effects of UV-B may eventually be manifested at the population level and may ultimately contribute to population declines. Using field experiments, we investigated the effects of ambient UV-B on salamander (Ambystoma gracile) embryos developing at natural oviposition sites. We show that the hatching success of eggs of A. gracile shielded from UV-B is significantly higher than those not shielded from UV-B. 27 refs., 1 fig

  7. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  8. Pregnancy outcome and ultraviolet radiation; A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Megaw, Lauren, E-mail: lauren.megaw@ed.ac.uk [School of Women' s and Infants Health, University of Western Australia, 35 Crawley Ave, Crawley, Perth, Western Australia (Australia); Edinburgh Tommy' s Centre for Reproductive Health, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh (United Kingdom); Clemens, Tom, E-mail: Tom.clemens@ed.ac.uk [School of Geosciences, University of Edinburgh, Drummond St, Edinburgh, Midlothian (United Kingdom); Dibben, Chris, E-mail: Chris.dibben@ed.ac.uk [School of Geosciences, University of Edinburgh, Drummond St, Edinburgh, Midlothian (United Kingdom); Weller, Richard, E-mail: Richard.weller@ed.ac.uk [MRC Centre for Inflammation Research, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh (United Kingdom); Stock, Sarah, E-mail: Sarah.stock@ed.ac.uk [School of Women' s and Infants Health, University of Western Australia, 35 Crawley Ave, Crawley, Perth, Western Australia (Australia); Edinburgh Tommy' s Centre for Reproductive Health, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh (United Kingdom)

    2017-05-15

    Background: Season and vitamin D are indirect and direct correlates of ultraviolet (UV) radiation and are associated with pregnancy outcomes. Further to producing vitamin D, UV has positive effects on cardiovascular and immune health that may support a role for UV directly benefitting pregnancy. Objectives: To investigate the effects of UV exposure on pregnancy; specifically fetal growth, preterm birth and hypertensive complications. Methods: We conducted a systematic review of Medline, EMBASE, DoPHER, Global Health, ProQuest Public Health, AustHealth Informit, SCOPUS and Google Scholar to identify 537 citations, 8 of which are included in this review. This review was registered on PROSPERO and a. narrative synthesis is presented following PRISMA guidance. Results: All studies were observational and assessed at high risk of bias. Higher first trimester UV was associated with and improved fetal growth and increased hypertension in pregnancy. Interpretation is limited by study design and quality. Meta-analysis was precluded by the variety of outcomes and methods. Discussion: The low number of studies and risk of bias limit the validity of any conclusions. Environmental health methodological issues are discussed with consideration given to design and analytical improvements to further address this reproductive environmental health question. Conclusions: The evidence for UV having benefits for pregnancy hypertension and fetal growth is limited by the methodological approaches utilized. Future epidemiological efforts should focus on improving the methods of modeling and linking widely available environmental data to reproductive health outcomes. - Highlights: • Biologically plausible pathways support an association between ultraviolet radiation (UV) and pregnancy outcomes. • This study is the first systematic review of prevailing literature on the relationship between UV and singleton pregnancy outcomes. • It focuses on both substantive findings and the

  9. Pregnancy outcome and ultraviolet radiation; A systematic review

    International Nuclear Information System (INIS)

    Megaw, Lauren; Clemens, Tom; Dibben, Chris; Weller, Richard; Stock, Sarah

    2017-01-01

    Background: Season and vitamin D are indirect and direct correlates of ultraviolet (UV) radiation and are associated with pregnancy outcomes. Further to producing vitamin D, UV has positive effects on cardiovascular and immune health that may support a role for UV directly benefitting pregnancy. Objectives: To investigate the effects of UV exposure on pregnancy; specifically fetal growth, preterm birth and hypertensive complications. Methods: We conducted a systematic review of Medline, EMBASE, DoPHER, Global Health, ProQuest Public Health, AustHealth Informit, SCOPUS and Google Scholar to identify 537 citations, 8 of which are included in this review. This review was registered on PROSPERO and a. narrative synthesis is presented following PRISMA guidance. Results: All studies were observational and assessed at high risk of bias. Higher first trimester UV was associated with and improved fetal growth and increased hypertension in pregnancy. Interpretation is limited by study design and quality. Meta-analysis was precluded by the variety of outcomes and methods. Discussion: The low number of studies and risk of bias limit the validity of any conclusions. Environmental health methodological issues are discussed with consideration given to design and analytical improvements to further address this reproductive environmental health question. Conclusions: The evidence for UV having benefits for pregnancy hypertension and fetal growth is limited by the methodological approaches utilized. Future epidemiological efforts should focus on improving the methods of modeling and linking widely available environmental data to reproductive health outcomes. - Highlights: • Biologically plausible pathways support an association between ultraviolet radiation (UV) and pregnancy outcomes. • This study is the first systematic review of prevailing literature on the relationship between UV and singleton pregnancy outcomes. • It focuses on both substantive findings and the

  10. The effect of ultraviolet radiation on the cornea - experimental study.

    Science.gov (United States)

    Golu, Andreea; Gheorghişor, Irina; Bălăşoiu, A T; Baltă, Fl; Osiac, E; Mogoantă, L; Bold, Adriana

    2013-01-01

    Ultraviolet (UV) radiation in high doses may have harmful effects on the eye. The sources of UV radiation are the sun, as well as some artificial sources such as UV lamps or voltaic arcs. Chronic exposure to UV can cause damage to the anterior pole of the eye, ranging from minor (pterygium) to serious photokeratitis. In our study, we applied a UV dose of 6.5 J/cm(2) in the wavelength range of 290-400 nm, for five consecutive days per rat anterior pole of the eye. Seven days after the last dose of radiation, the animals were sacrificed, harvesting both the irradiated and the non-irradiated eye. Histological and immunohistochemical examination of the lesions revealed that the greatest damage to the epithelium was recorded prior to and 2/3 of the remaining corneal stroma. The epithelial lesions we found varied from pseudokeratosis and detachment of the Bowman epithelium membrane to deep epithelial necrosis. Within the corneal stroma, we observed the formation of interstitial edema with disruption of the collagen structure. We also noticed the presence of an inflammatory infiltrate composed mainly of lymphocytes and CD68+ and CD163+ macrophages, as well as the occurrence of vascular devices. These consisted of angiogenesis capillaries with structured wall composed mainly of endothelial CD34+ precursor cells and a basal membrane rich in collagen IV fibers.

  11. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  12. Competitive interaction in plant populations exposed to supplementary ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Fox, F.M.; Caldwell, M.M.; Utah State Univ., Logan

    1978-01-01

    Changes in plant growth and competitive balance between pairs of competing species were documented as a result of supplementary ultraviolet-B radiation (principally in the 290-315 nm waveband) under field conditions. This component of the terrestrial solar spectrum would be intensified if the atmospheric ozone layer were reduced. A method for calculating and statistically analyzing relative crowding coefficients was developed and used to evaluate the competitive status of the species pairs sown in a modified replacement series. The effect of the supplementary UV-B irradiance was generally detrimental to plant growth, and was reflected in decreased leaf area, biomass, height and density as well as changes competitive balance for various species. For some species, interspecific competition apparently accentuated the effect of the UV-B radiation, while more intense intraspecific competition may have had the same effect for other species. A few species when grown in a situation of more severe mutual interspecific competition exhibited enhanced growth under the UV-B radiation treatment. This, however, was usually associated with a detrimental effect of the radiation, on its competitor and thus was likely the result of its improved competitive circumstance rather than a benefical physiological effect of the radiation. (orig.) [de

  13. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  14. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  15. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum

    Science.gov (United States)

    Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin

    2017-08-01

    Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.

  16. Solar ultraviolet and the occupational radiant exposure of Queensland school teachers: A comparative study between teaching classifications and behavior patterns.

    Science.gov (United States)

    Downs, Nathan J; Harrison, Simone L; Chavez, Daniel R Garzon; Parisi, Alfio V

    2016-05-01

    Classroom teachers located in Queensland, Australia are exposed to high levels of ambient solar ultraviolet as part of the occupational requirement to provide supervision of children during lunch and break times. We investigated the relationship between periods of outdoor occupational radiant exposure and available ambient solar radiation across different teaching classifications and schools relative to the daily occupational solar ultraviolet radiation (HICNIRP) protection standard of 30J/m(2). Self-reported daily sun exposure habits (n=480) and personal radiant exposures were monitored using calibrated polysulphone dosimeters (n=474) in 57 teaching staff from 6 different schools located in tropical north and southern Queensland. Daily radiant exposure patterns among teaching groups were compared to the ambient UV-Index. Personal sun exposures were stratified among teaching classifications, school location, school ownership (government vs non-government), and type (primary vs secondary). Median daily radiant exposures were 15J/m(2) and 5J/m(2)HICNIRP for schools located in northern and southern Queensland respectively. Of the 474 analyzed dosimeter-days, 23.0% were found to exceed the solar radiation protection standard, with the highest prevalence found among physical education teachers (57.4% dosimeter-days), followed by teacher aides (22.6% dosimeter-days) and classroom teachers (18.1% dosimeter-days). In Queensland, peak outdoor exposure times of teaching staff correspond with periods of extreme UV-Index. The daily occupational HICNIRP radiant exposure standard was exceeded in all schools and in all teaching classifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    Full Text Available Photoluminescence (PL emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53–4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV to 400 (3.10 eV nm in step of 10 nm and the corresponding photoluminescence (PL emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC, the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation. Keywords: Photoluminescence spectra, Makrofol® DE 1-1, UV–vis spectrophotometry, Attenuation coefficient, Ultraviolet radiation

  18. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    International Nuclear Information System (INIS)

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-01-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene

  19. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bastian, T. S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Chintzoglou, G.; De Pontieu, B.; Schmit, D. [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Shimojo, M. [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Leenaarts, J. [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Loukitcheva, M., E-mail: tbastian@nrao.edu [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States)

    2017-08-20

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T{sub B} and the Mg ii h line radiation temperature T {sub rad} is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T{sub B} (1.25 mm) and mean T {sub rad} (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T {sub rad} and the ALMA T {sub B} region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  20. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    International Nuclear Information System (INIS)

    Bastian, T. S.; Chintzoglou, G.; De Pontieu, B.; Schmit, D.; Shimojo, M.; Leenaarts, J.; Loukitcheva, M.

    2017-01-01

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T_B and the Mg ii h line radiation temperature T _r_a_d is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T_B (1.25 mm) and mean T _r_a_d (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T _r_a_d and the ALMA T _B region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  1. Protection of humans from ultraviolet radiation through the use of textiles: a review

    International Nuclear Information System (INIS)

    Capjack, L.; Kerr, N.; Davis, S.; Fedosejevs, R.; Hatch, K.L.; Markee, N.L.

    1994-01-01

    One of the growing concerns of the present decade is the health risk associated with exposure to ultraviolet radiation (UVR) and its link with problems such as carcinogenesis, cataracts, sunburn, and photoaging. For protection from UVR, medical experts recommend avoiding exposure, using sunscreens, donning hats, and covering up with clothing. Research on the solar-protective value of clothing, however, still leaves many questions unanswered. This review of literature identifies the need for appropriate protection from the sun, especially for children, and the benefits of clothing as protection. The methods and difficulties associated with assessing the UVR protection and the definition of the sun protection factor (SPF) of clothing are outlined and discussed. Studies using in vivo, radiometric, and spectrophotometric methodologies to assess the UVR transmission throughfabrics are examined. Fabric variables, identified in the literature, that have been found to affect UVR transmission values are discussed

  2. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, M.M.; Flint, S.D. [Utah State Univ., Logan, UT (United States)

    1994-12-31

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research were covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.

  3. Solar radiation on Mars: Update 1991

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  4. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system

    Science.gov (United States)

    Tachi, Fuyuki; Osakabe, Masahiro

    2012-12-01

    Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites ( Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite ( Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species ( T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.

  5. Effects of ultraviolet-B radiation on plants during mild water stress, 4: The insensitivity of soybean internal water relations to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Teramura, A.H.; Forseth, I.N.; Lydon, J.

    1984-01-01

    The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m 2 UV-B BE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants. (author)

  6. Toxic effects of ultraviolet radiation on the skin

    International Nuclear Information System (INIS)

    Matsumura, Yasuhiro; Ananthaswamy, Honnavara N.

    2004-01-01

    Ultraviolet (UV) irradiation present in sunlight is an environmental human carcinogen. The toxic effects of UV from natural sunlight and therapeutic artificial lamps are a major concern for human health. The major acute effects of UV irradiation on normal human skin comprise sunburn inflammation (erythema), tanning, and local or systemic immunosuppression. At the molecular level, UV irradiation causes DNA damage such as cyclobutane pyrimidine dimers and (6-4) photoproducts, which are usually repaired by nucleotide excision repair (NER). Chronic exposure to UV irradiation leads to photoaging, immunosuppression, and ultimately photocarcinogenesis. Photocarcinogenesis involves the accumulation of genetic changes, as well as immune system modulation, and ultimately leads to the development of skin cancers. In the clinic, artificial lamps emitting UVB (280-320 nm) and UVA (320-400 nm) radiation in combination with chemical drugs are used in the therapy of many skin diseases including psoriasis and vitiligo. Although such therapy is beneficial, it is accompanied with undesirable side effects. Thus, UV radiation is like two sides of the same coin--on one side, it has detrimental effects, and on the other side, it has beneficial effects

  7. Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature

    International Nuclear Information System (INIS)

    Sliney, D.H.

    1986-01-01

    A number of environmental cofactors have been implicated in cataracto-genesis. Two have received the greatest attention: ultraviolet radiation (UVR) and ambient temperature. Unfortunately, both temperature and UVR levels vary similarly with geographical latitude. Careful attention to several more refined physical variables and the geometry of exposure may permit investigators to separate the contributory effects of these two physical agents. This paper briefly reviews the available data, estimates the variation of lenticular temperature with ambient temperature, and provides measurements of short-wavelength (UV-B) UVR exposure to the human eye with different meterological conditions. The study attempts to provide epidemiological investigators with more detailed information necessary to perform more accurate studies of cataract and other ocular pathologies that appear to be related to environmental factors. Ocular UV-B radiation exposure levels were measured at nine locations in the USA near 40 degrees latitude at elevations from sea level to 8000 ft. Terrain reflectance is shown to be much more important than terrain elevation; cloud cover and haze may actually increase ocular exposure; and the value of wearing brimmed hats and spectacles varies with the environment. Several avenues for future research are suggested

  8. Failure of supplementary ultraviolet radiation to enhance flower color under greenhouse conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R. M. [University of Vermont, Burlington, VT (United States)

    1990-03-15

    In order to determine whether the concentration of floral petal anthocyanin pigments could be increased, ultraviolet radiations in the UV-A and UV-B wavelength bands were presented to a variety of flowering plants to partly restore those wavelengths filtered out by greenhouse glass. In no tested plant did the supplementary ultraviolet radiation enhance floral anthocyanin content. Supplementary UV radiation has no economic value in greenhouse production of flowering plants. (author)

  9. Using an Ongoing Study of Terrestrial Plant Response to Ultraviolet Radiation in Project ALERT

    Science.gov (United States)

    Condon, Estelle; Skiles, J. W.; Seitz, Jeffery C.; Dantoni, Hector L.

    1998-01-01

    The ALERT (Augmented Learning Environment for Renewable Teaching) Project is a cooperative California-based program with two main partners: California State University (CSU) geoscience and education departments and two NASA Centers, the Jet Propulsion Laboratory (JPL) in Pasadena and the Ames Research Center (ARC) in Mountain View. This paper presents an example of how a NASA research effort can be used in the undergraduate classroom. A study, now in the fourth year, subjects test plants to exposures of varying solar ultraviolet (UV) radiation (280 - 340 nm); a full solar UV exposure, a solar UV exposure less about 14% of ambient UV flux, and a UV-blocked regime. This experiment is simple in that only modest amounts of expense are required yet it is elegant since only one variable, UV-flux is involved. The experiment lends itself to teaching several of the Earth Sciences because it uses information from botany, taxonomy, and ecology. Aspects of physics are inherent in the study since portions of the electromagnetic spectrum are studied. Further, since only one of many variables are manipulated, UV flux, the study demonstrates how the scientific method is used in formulating and testing hypotheses. Based on the ALERT experience this summer, this study will be implemented at a CSU campus with the expectation that it will serve as a pedagogical tool and where it will involve students in actual research.

  10. Ultraviolet radiation as disinfection for fish surgical tools

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Geist, David R.; Gay, Marybeth E.; Woodley, Christa M.; Eppard, M. B.; Brown, Richard S.

    2013-04-04

    Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelomic cavity of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When fish are implanted consecutively, as in large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. To determine the efficacy for this application, ultraviolet (UV) radiation was used to disinfect surgical tools exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica, causative agents of furunculosis, coldwater disease, bacterial kidney disease, and saprolegniasis (water mold), respectively. Four experiments were conducted to address the question of UV efficacy. In the first experiment, forceps were exposed to the three bacteria at three varying concentrations. After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods – 2, 5, or 15 min. UV radiation exposures at all durations were effective at killing all three bacteria on forceps at the highest bacteria concentrations. In the second experiment, stab scalpels, sutures, and needle holders were exposed to A. salmonicida using the same methodology as used in Experiment 1. UV radiation exposure at 5 and 15 min was effective at killing A. salmonicida on stab scalpels and sutures but not needle holders. In the third experiment, S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV radiation was effective at killing the water mold at all three exposure durations. Collectively, this study shows that UV

  11. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  12. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  13. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    Science.gov (United States)

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  14. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  15. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  16. The National Solar Radiation Database (NSRDB)

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Habte, Aron; Lopez, Anthony; Xie, Yu; Molling, Christine; Gueymard, Christian

    2017-03-13

    This presentation provides a high-level overview of the National Solar Radiation Database (NSRDB), including sensing, measurement and forecasting, and discusses observations that are needed for research and product development.

  17. ACCURATELY CALCULATING THE SOLAR ORIENTATION OF THE TIANGONG-2 ULTRAVIOLET FORWARD SPECTROMETER

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-04-01

    Full Text Available The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit, and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  18. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  19. Skin Erythema, Pigmentation and Hydration Kinetics after Ultraviolet Radiation-induced Photodamage in Southern Chinese Women.

    Science.gov (United States)

    Wan, Miaojian; Hu, Rong; Xie, Xiaoyuan; Gong, Zijian; Yi, Jinling; Chen, Haiyan; Xie, Lin; Guan, Xiaomin; Guan, Lei; Lai, Wei

    2017-10-01

    Although there have been some studies about changes of skin erythema and pigmentation following ultraviolet radiation in other races, the relevant data in Chinese have never been achieved. Thus, we evaluated the long-time course of skin erythema, pigmentation and hydration changes after different doses of solar-simulated ultraviolet (SSUV) irradiation in 26 Chinese women for 168 days. The erythema index increased abruptly and peaked during 3 days of SSUV exposure, then slowly returned to the baseline level starting at day 7 and completely recovered during 168-day course of this study only in one minimal erythema doses (MED) SSUV irradiation. The melanin index started to slowly increase at day 3 of SSUV exposure, peaking at day 14 and gradually returned to the baseline level thereafter, but did not return to the baseline level during 168-day course in all doses. Skin hydration slowly declined at day 3 of exposure, hitting the lowest point at day 7, then slowly recovered starting at day 14 and completely returned to the baseline level at day 28 only in 1.5MED. These results will serve as baseline data on Chinese skin and provide useful references for the treatment of serious skin photodamage in Chinese. © 2017 The American Society of Photobiology.

  20. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    Science.gov (United States)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  1. Ultraviolet radiation is feasible alternative for desinfeting of aerobic and anaerobic treatment systems sewage in Brazil

    International Nuclear Information System (INIS)

    Daniel, Luis Antonio; Campos, Jose Roberto

    1993-01-01

    This works shows desinfecting results employing ultraviolet radiation to wastes of sewage treatment station on true scales. Wastes of anaerobic, facultative and maturation pools, septic tank and anaerobic reactor were disinfected. It was found a inactive efficiency to coliforms higher than 99.9%. Safe ultraviolet desinfecting is technically applicable to wastes of sewage treatment station applying aerobic or anaerobic process

  2. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    Science.gov (United States)

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Ecological and nonhuman biological effects of solar UV-B radiation

    International Nuclear Information System (INIS)

    Worrest, R.C.

    1984-01-01

    Recent studies regarding the impact of UV-B radiation upon ecological and nonhuman biological systems is the subject of the report. For years scientists and laymen alike have causally noted the impact of solar ultraviolet radiation upon the nonhuman component of the biosphere. Stratospheric ozone functions effectively as an ultraviolet screen by filtering out solar radiation in the 220-320 nm waveband as it penetrates through the atmosphere, thus allowing only small amounts of the longer wavelengths of radiation in the waveband to leak through to the surface of the earth. Although this radiation (UV-B radiation, 290-320 nm) comprises only a small fraction (lesser tha 1%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA, absorb UV-B radiation which can initiate photochemical reactions. It is life's ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated concern over the potential depletion of stratospheric ozone

  4. Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation

    International Nuclear Information System (INIS)

    Matsuo, K.; Fukuyama, T.; Yonehara, R.; Namatame, H.; Taniguchi, M.; Gekko, K.

    2005-01-01

    We have constructed a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer using a synchrotron radiation and an assembled-type MgF 2 cell endurable under a high vacuum, to measure the CD spectra of biomaterials in aqueous solutions from 310 to 140 nm. To avoid the absorption of light by air and water vapor, all optical devices of the spectrophotometer were set up under a high vacuum (10 -4 Pa). A path length of the optical cell can be adjusted by various Teflon spacers in the range from 1.3 to 50 μm and its temperature can be controlled to an accuracy of ±1 deg. C over the range from -30 to 70 deg. C by a temperature-control unit using a Peltier thermoelectric element. The performance of the spectrophotometer and the optical cell constructed was tested by measuring the CD spectra of ammonium d-camphor-10-sulfonate, D- and L-isomers of amino acids, and myoglobin in aqueous solutions. The spectra obtained demonstrate that the optical system and the sample cell constructed operate normally under a high vacuum and provide useful information on the structure of biomolecules based on the higher energy chromophores

  5. Skin cancer induced by ultraviolet radiation and immunity

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1977-01-01

    It was clarified that an immunological mechanism, in which the resistance against ultraviolet radiation (UV)-induced neoplasm with strong antigenicity in the body disappeared, was introduced, when the mouse was exposed to UV for two to five weeks. It was also suggested that the immunological mechanism was an induction of T lymphocyte (inhibitive T cells) which had a function to specifically inhibit proliferation of lymphocyte clone which had anti-UV-induced neoplasm activity contained in lymphocyte mass of normal mouse. It can be thought that the action mechanism of this cells may inhibit a process of differentiation of T precursor cells of cell damage, which has anti-UV-induced neoplasm activity, into cell damage T cells. As a mechanism in which such inhibitive T cells are induced, the possibility that specific inhibitive T cells against antigens which are changed by UV would be induced after proteins, which receives some changes in consequence of skin injuries due to UV, are separated from cells as soluble antigens, is thought. Reports of experiments on these problems performed by many researchers were also described. (Tsunoda, M.)

  6. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.

    Directory of Open Access Journals (Sweden)

    Aayushi Uberoi

    2016-05-01

    Full Text Available Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1 that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR, specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.

  7. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    Science.gov (United States)

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  8. Viability and Virulence of Entomopathogenic Nematodes Exposed to Ultraviolet Radiation.

    Science.gov (United States)

    Shapiro-Ilan, David I; Hazir, Selcuk; Lete, Luis

    2015-09-01

    Entomopathogenic nematodes (EPNs) can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure to environmental stress such as from ultraviolet (UV) radiation. Our objectives were to 1) compare UV tolerance among a broad array of EPN species, and 2) investigate the relationship between reduced nematode viability (after exposure to UV) and virulence. Nematodes exposed to a UV radiation (254 nm) for 10 or 20 min were assessed separately for viability (survival) and virulence to Galleria mellonella. We compared 9 different EPN species and 15 strains: Heterorhabditis bacteriophora (Baine, fl11, Oswego, and Vs strains), H. floridensis (332), H. georgiana (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All, Cxrd, DD136, and Sal strains), S. feltiae (SN), S. rarum (17C&E), and S. riobrave (355). In viability assessments, steinernematids, particularly strains of S. carpocapsae, generally exhibited superior UV tolerance compared with the heterorhabditids. However, some heterorhabditids tended to be more tolerant than others, e.g., H. megidis and H. bacteriophora (Baine) were most susceptible and H. bacteriophora (Vs) was the only heterorhabditid that did not exhibit a significant effect after 10 min of exposure. All heterorhabditids experienced reduced viability after 20 min exposure though several S. carpocapsae strains did not. In total, after 10 or 20 min exposure, the viability of seven nematode strains did not differ from their non-UV exposed controls. In virulence assays, steinernematids (particularly S. carpocapsae strains) also tended to exhibit higher UV tolerance. However, in contrast to the viability measurements, all nematodes experienced a reduction in virulence relative to their controls. Correlation analysis revealed that viability among nematode strains is not necessarily related to virulence. In conclusion, our results indicate that the impact of UV varies substantially among EPNs, and viability alone

  9. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tadamichi [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, 930-0194, Toyama (Japan)

    2010-08-09

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  10. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    International Nuclear Information System (INIS)

    Shimizu, Tadamichi

    2010-01-01

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer

  11. The Role of Macrophage Migration Inhibitory Factor (MIF in Ultraviolet Radiation-Induced Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tadamichi Shimizu

    2010-08-01

    Full Text Available Ultraviolet (UV radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL-1, IL-6, tumor necrosis factor (TNF-α. and macrophage migration inhibitory factor (MIF. MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  12. Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature

    Science.gov (United States)

    Howe, R.

    Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.

  13. Spectral signature of ultraviolet solar irradiance in Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo V, J. L; Mireles G, F; Rios M, C; Quirino T, L. L; Davila R, J. I [Universidad Autonoma de Zacatecas, Zacatecas, Zacatecas (Mexico)

    2006-10-15

    This study presents an analysis of the global ultraviolet spectral irradiance (290-400 nm) registered in Zacatecas, a city near the Tropic of Cancer, located at 2500 m above sea level, latitude of 22 degrees N and longitude of 102 degrees W. The spectra have been measured using a Bentham radiometer with a 0.5 nm step in wavelength. The measurements show relatively high levels of ultraviolet irradiance (UV), which may be characteristic of areas close to the Tropic of Cancer. Faced with an increase of the incidence of skin cancer among the population of Zacatecas, these measurements highlight that a damage prevention plan is required. [Spanish] En este trabajo se presenta un analisis de la radiacion espectral global ultravioleta (290-400 nm) registrada en Zacatecas, una ciudad vecina al tropico de cancer, situada a 2500 m sobre el nivel del mar, latitud de 22 grados N y longitud de 102 grados O. Los espectros correspondientes han sido medidos mediante un espectroradiometro Bentham con un paso de 0.5 nm de longitud de onda. Las mediciones muestran niveles de radiacion ultravioleta (UV) relativamente elevados, que pueden ser caracteristicos de las zonas vecinas al tropico de cancer. Frente al aumento de incidencia de cancer en la piel en la poblacion del estado de Zacatecas, estas mediciones ponen en relieve la necesidad de formular un plan preventivo de danos.

  14. Photokeratitis induced by ultraviolet radiation in travelers: A major health problem

    Directory of Open Access Journals (Sweden)

    M Izadi

    2018-01-01

    Full Text Available Ultraviolet (UV irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses, and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified.

  15. Photokeratitis induced by ultraviolet radiation in travelers: A major health problem.

    Science.gov (United States)

    Izadi, M; Jonaidi-Jafari, N; Pourazizi, M; Alemzadeh-Ansari, M H; Hoseinpourfard, M J

    2018-01-01

    Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR) humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses), and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified.

  16. Solar radiation at Parsons, West Virginia

    Science.gov (United States)

    James H. Patric; Stanley Caruso

    1978-01-01

    Twelve years of solar radiation data, measured with a Kipp-Zonen pyranometer, were recorded near Parsons, West Virginia. The data agree well with calculated values of potential and average radiation for the vicinity and are applicable to the central Appalachian region.

  17. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1987-01-01

    We have analyzed the pattern of protein synthesis in solar near ultraviolet (334 nm, 365 nm) and near visible (405 nm) irradiated normal human skin fibroblasts. Two hours after irradiation we find that one major stress protein of approximately 32 kDa is induced in irradiated cells. This protein is not induced by ultraviolet radiation at wavelengths shorter than 334 nm and is not inducible by heat shock treatment of these cells. Although sodium arsenite, diamide, and menadione all induced a 32-kDa protein, they also induced the major heat shock proteins. In contrast, the oxidizing agent, hydrogen peroxide, induced the low molecular weight stress protein without causing induction of the major heat shock proteins. A comparison of the 32-kDa proteins induced by sodium arsenite, H 2 O 2 , and solar near ultraviolet radiation using chemical peptide mapping shows that they are closely related. These results imply that the pathways for induction of the heat shock response and the 32-kDa protein are not identical and suggest that, at least in the case of radiation and treatment with H 2 O 2 , the 32-kDa protein might be induced in response to cellular oxidative stress. This conclusion is supported by the observation that depletion of endogenous cellular glutathione prior to solar near ultraviolet irradiation lowers the fluence threshold for induction of the 32-kDa stress protein

  18. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    OpenAIRE

    Khatib, Tamer; Elmenreich, Wilfried

    2015-01-01

    This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that...

  19. Solar radiation estimation based on the insolation

    International Nuclear Information System (INIS)

    Assis, F.N. de; Steinmetz, S.; Martins, S.R.; Mendez, M.E.G.

    1998-01-01

    A series of daily global solar radiation data measured by an Eppley pyranometer was used to test PEREIRA and VILLA NOVA’s (1997) model to estimate the potential of radiation based on the instantaneous values measured at solar noon. The model also allows to estimate the parameters of PRESCOTT’s equation (1940) assuming a = 0,29 cosj. The results demonstrated the model’s validity for the studied conditions. Simultaneously, the hypothesis of generalizing the use of the radiation estimative formulas based on insolation, and using K = Ko (0,29 cosj + 0,50 n/N), was analysed and confirmed [pt

  20. Orbiter radiator panel solar focusing test

    Science.gov (United States)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  1. Solar photocatalytic generation of hydrogen under ultraviolet-visible ...

    Indian Academy of Sciences (India)

    Administrator

    solar energy has been regarded as an attractive solution to resolve the global energy ... simultaneous hydrogen production and H2S decomposi- tion is a highly ... of CdCO3 and ZnCO3 in dilute acetic acid at 60–70°C. Mixing slowly the hot ...

  2. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  3. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  4. Radiation From Solar Activity | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  5. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    Science.gov (United States)

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  6. Obliquity Modulation of the Incoming Solar Radiation

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  7. The risk of melanoma associated with ambient summer ultraviolet radiation.

    Science.gov (United States)

    Pinault, Lauren; Bushnik, Tracey; Fioletov, Vitali; Peters, Cheryl E; King, Will D; Tjepkema, Michael

    2017-05-17

    Depletion of the ozone layer has meant that ambient ultraviolet radiation (UVR) has increased in recent decades. At the same time, the incidence of skin cancers, including melanoma, has risen. The relatively few large-scale studies that linked ambient UVR to melanoma found a trend toward rising incidence closer to the equator, where UVR estimates are highest. Similar research has not been conducted in Canada, where ambient UVR is generally lower than in countries further south. Modelled UVR data for the months of June through August during the 1980-to-1990 period were spatially linked in Geographic Information Systems to 2.4 million white members of the 1991 Canadian Census Health and Environment Cohort and tracked for melanoma diagnosis over an 18-year period (1992 to 2009). Standard Cox proportional hazards models were used to estimate melanoma risk associated with increases of ambient summer UVR, assigned by residence at baseline. Models were adjusted for age, sex and socioeconomic (SES) characteristics. Separate analyses by body site of melanoma were conducted. Effect modification of the association between ambient UVR and melanoma by sex, age, outdoor occupation and selected SES characteristics was evaluated. Differences of one standard deviation (446 J/m², or 7% of the mean) in average ambient summer UVR were associated with an increased hazard ratio (HR) for melanoma of 1.22 (95% CI: 1.19 to 1.25) when adjusting for sex, age and SES characteristics. The HR for melanoma in relative UVR (per 1 standard deviation) was larger for men (HR = 1.26; 95% CI: 1.21 to 1.30) than for women (HR = 1.17; 95% CI: 1.13 to 1.22). Ambient summer UVR is associated with a greater risk of melanoma among the white population, even in a country where most people live within a narrow latitudinal belt. A stronger association between melanoma and ambient UVR was evident among men and among people of lower SES.

  8. Red tattoos, ultraviolet radiation and skin cancer in mice.

    Science.gov (United States)

    Lerche, Catharina M; Heerfordt, Ida M; Serup, Jørgen; Poulsen, Thomas; Wulf, Hans Christian

    2017-11-01

    Ultraviolet radiation (UVR) induces skin cancer. The combination of UVR and red tattoos may be associated with increased risk of skin cancer due to potential carcinogens in tattoo inks. This combination has not been studied previously. Immunocompetent C3.Cg/TifBomTac hairless mice (n=99) were tattooed on their back with a popular red tattoo ink. This often used ink is banned for use on humans because of high content of the potential carcinogen 2-anisidine. Half of the mice were irradiated with three standard erythema doses UVR thrice weekly. Time to induction of first, second and third squamous cell carcinoma (SCC) was measured. All UV-irradiated mice developed SCCs. The time to the onset of the first and second tumor was identical in the red-tattooed group compared with the control group (182 vs 186 days and 196 vs 203 days, P=ns). Statistically, the third tumor appeared slightly faster in the red-tattooed group than in the controls (214 vs 224 days, P=.043). For the second and third tumor, the growth rate was faster in the red-tattooed group compared with the control (31 vs 49 days, P=.009 and 30 vs 38 days, P=.036). In conclusion, no spontaneous cancers were observed in skin tattooed with a red ink containing 2-anisidine. However, red tattoos exposed to UVR showed faster tumor onset regarding the third tumor, and faster growth rate of the second and third tumor indicating red ink acts as a cocarcinogen with UVR. The cocarcinogenic effect was weak and may not be clinically relevant. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The use of shore wave ultraviolet radiation for disinfection in operating rooms

    International Nuclear Information System (INIS)

    Baanrud, H.; Moan, J.

    1999-01-01

    Over a number of years short wave ultraviolet radiation (UVC;200-280 nm) has been used to disinfect air and surfaces in operating rooms, patient rooms and laboratories, as well as air in ventilation ducts. Despite the well-documented effect of ultraviolet radiation on air quality, this technology has been relatively little used. One advantage of this method is that the UVC sources ensure a continuous reduction in the number of airborne microorganisms that are generated all the time. There are, however, some disadvantages with this method. Human exposure to ultraviolet C may cause keratoconjunctivitis and erythema and requires protection of the skin and the eyes of people exposed to levels above recommended exposure limits. However, by enclosing the UVC sources or by irradiation in the absence of human activity, human exposure is eliminated. These and other aspects concerning the use of short wave ultraviolet radiation as a disinfection agent in operating rooms are discussed in this article

  10. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    CERN Document Server

    MacKinlay, Alistair F; Whillock, M J

    1989-01-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard.

  11. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    International Nuclear Information System (INIS)

    McKinlay, A.F.; Whillock, M.J.; Meulemans, C.C.E.

    1989-07-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard. (author)

  12. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  13. Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation

    International Nuclear Information System (INIS)

    Johnson, G.A.; Day, T.A.

    2002-01-01

    We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO 2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV-induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut-offs from 280 to 382 nm, against a background of non-saturating visible light. When the abaxial surface was irradiated, P n averaged 4.6% higher with the UV supplement that cut-off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV-induced blue fluorescence, we measured the UV-induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut-off filter, thereby estimating the potential contribution of UV-induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non

  14. Study of effect ultraviolet radiation on Aspergillus Flavus and Aspergillus Parasiticus

    International Nuclear Information System (INIS)

    Ghafourian, H.; Kafaei, F.; Raouf, J.B.

    2000-01-01

    In this article the results of ultraviolet radiation effects on Aspergillus Flavus and Aspergillus parasiticus to reach the quality control standards are presented. The purpose was to test the effect of ultraviolet radiation in 254 nanometer wavelength for fungi decontamination with respect to the exposure time of radiation and the distance between samples and radiation source. The ultraviolet radiation effects on plates containing Aspergillus Flavus and Aspergillus Parasiticus fungi were studied in the exposure time duration of 30, to 360 seconds of a fixed distance, and also for variable distances from 10 to 40 cm at a given exposure time. It is shown that in the exposure time of more than 360 second the ultraviolet radiation exposure highly decreases the number of Aspergillus Flavus and Aspergillus Parasiticus fungi colonies. By reducing the distance, the number of colonies decreases and it is minimized at a 10 cm distance in the time exposure of 360 second. The above results show that the ultraviolet radiation is an effective method for food decontamination and can be used in industry

  15. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    Science.gov (United States)

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  16. Animal model for evaluation of topical photoprotection against ultraviolet A (320-380 nm) radiation

    International Nuclear Information System (INIS)

    Chew, S.; DeLeo, V.A.; Harber, L.C.

    1987-01-01

    Recent studies reporting UVA (ultraviolet A radiation 320-380 nm) as an integral part of the cumulative sun-induced damage in human skin have prompted an interest in developing effective UVA photoprotective agents. The development of such compounds has been impeded by the absence of a clinically relevant animal model for evaluating their efficacy. This report describes the development and use of such a laboratory animal system. Selected concentrations of oxybenzone (2-hydroxy-4-methoxybenzophenone) in vehicle (0.1% to 6%) or vehicle alone were applied to the depilated dorsal skin of 30 Hartley strain female albino guinea pigs. The skin was irradiated with solar simulated UVA from a xenon light source. Acute radiation-induced damage was assayed by erythema grading and inhibition of [ 3 H]thymidine incorporation into epidermal DNA. Data from erythema grading studies indicated that a significant degree of photoprotection was achieved with 6%, 3%, and 1% solutions of benzophenone compared with the control vehicle; the 6% solution was significantly more photoprotective than the 3% and 1% solutions. A 6% solution afforded significant photoprotection when assayed by [ 3 H]thymidine incorporation

  17. Aqueous extract of Pinus caribaea inhibits the damage induced by ultraviolet radiations, in plasmid DNA

    Directory of Open Access Journals (Sweden)

    Marioly Vernhes Tamayo

    2017-08-01

    Full Text Available Context: The incidence of solar ultraviolet radiation (UV on Earth has increased due to diminish of the ozone layer. This enviromental agent is highly genotoxic causing numerous damage in DNA molecule. Nowadays there is a growing interest in the search of compounds capable to minimize these effects. In particular, phytocompounds have been tested as excelent candidates for their antigenotoxic properties. Aims: To evaluate the protective effect of the aqueous extract of Pinus caribaea (EPC against the damage induced by the UVB and UVC radiation. Methods: The cell-free plasmid DNA assay was employed. The forms of plasmid were separated electrophoretically in agarose gel. For genotoxic and photoprotective evaluation of P. caribaea, different concentrations of the extract (0.1 – 2.0 mg/mL and exposure times were evaluated. The CPD lesions were detected enzymatically. Additionally, the transmittance of the aqueous extract against 254 nm and 312 nm was measured. Results: None of the concentrations were genotoxic in 30 min of treatment, for superior times a clastogenic effect was observed. The EPC despite inhibiting the activity of the enzyme T4 endo V, impedes photolesions formation in DNA at concentrations ≥ 0.1 mg/mL. Conclusions: The EPC has photoprotective properties, this effect could be related with its antioxidants and absorptives capacities.

  18. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Daniel L. Jones

    2017-09-01

    Full Text Available Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  19. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz [Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic)

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  20. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  1. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  2. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  3. Absolute, Extreme-Ultraviolet Solar Spectral Irradiance Monitor (AESSIM)

    Science.gov (United States)

    1994-04-01

    molecular constituents [Meier 1991]. This radiation is the principal source of energy for producing and maintaining the complex, time-dependent, thermal...158.4 nm emisions for interstellar wind studies. After -2005, there is unlikely to be sufficient power to provide the requisite heating of the scan

  4. A solar radiation database for Chile.

    Science.gov (United States)

    Molina, Alejandra; Falvey, Mark; Rondanelli, Roberto

    2017-11-01

    Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of "solar climates" due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.

  5. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  6. Measurement tolerance analysis of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cimo, J.; Maderkova, L.; Horak, J.; Igaz, D.; Pasztorova, S. [Department of Biomereorlogy and Hydrology, Slovak Agriculture University, Nitra (Slovakia)

    2012-07-01

    Solar radiant energy is bane and almost the only one source of heat for Earth 's surface and for atmosphere, and almost the only one source of energy for physical processes. Solar energy is one of the most available and the most ecological energy source. Currently the firm Kipp and Zonen belongs to prominent producer of sensors for measuring of global radiation. These sensors are the most used in our country and also in network of meteorological measurements of WMO. Therefore the two types of measuring sensors for global radiation (pyranometer PMP6, CMP 11) in comparison with calculation method Savin-Angstrom are analysed. (author)

  7. Ultraviolet radiation-mediated damage to cellular DNA

    International Nuclear Information System (INIS)

    Cadet, Jean; Sage, Evelyne; Douki, Thierry

    2005-01-01

    Emphasis is placed in this review article on recent aspects of the photochemistry of cellular DNA in which both the UVB and UVA components of solar radiation are implicated individually or synergistically. Interestingly, further mechanistic insights into the UV-induced formation of DNA photoproducts were gained from the application of new accurate and sensitive chromatographic and enzymic assays aimed at measuring base damage. Thus, each of the twelve possible dimeric photoproducts that are produced at the four main bipyrimidine sites can now be singled out as dinucleoside monophosphates that are enzymatically released from UV-irradiated DNA. This was achieved using a recently developed high-performance liquid chromatography-tandem mass spectrometry assay (HPLC-MS/MS) assay after DNA extraction and appropriate enzymic digestion. Interestingly, a similar photoproduct distribution pattern is observed in both isolated and cellular DNA upon exposure to low doses of either UVC or UVB radiation. This applies more specifically to the DNA of rodent and human cells, the cis-syn cyclobutadithymine being predominant over the two other main photolesions, namely thymine-cytosine pyrimidine (6-4) pyrimidone adduct and the related cyclobutyl dimer. UVA-irradiation was found to generate cyclobutane dimers at TT and to a lower extent at TC sites as a likely result of energy transfer mechanism involving still unknown photoexcited chromophore(s). Oxidative damage to DNA is also induced although less efficiently by UVA-mediated photosensitization processes that mostly involved 1 O 2 together with a smaller contribution of hydroxyl radical-mediated reactions through initially generated superoxide radicals

  8. Rocksalt MgS solar blind ultra-violet detectors

    Directory of Open Access Journals (Sweden)

    Ying-Hoi Lai

    2012-03-01

    Full Text Available Studies using in-situ Auger electron spectroscopy and reflection high energy electron diffraction, and ex-situ high resolution X-ray diffraction and electron backscatter diffraction reveal that a MgS thin film grown directly on a GaAs (100 substrate by molecular beam epitaxy adopts its most stable phase, the rocksalt structure, with a lattice constant of 5.20 Å. A Au/MgS/n+-GaAs (100 Schottky-barrier photodiode was fabricated and its room temperature photoresponse was measured to have a sharp fall-off edge at 235 nm with rejection of more than three orders at 400 nm and higher than five orders at 500 nm, promising for various solar-blind UV detection applications.

  9. Comparison of Solar UVA and UVB Radiation Measured in Selangor, Malaysia

    International Nuclear Information System (INIS)

    Kamarudin, S. U.; Gopir, G.; Yatim, B.; Sanusi, H.; Mahmud, P. S. Megat; Choo, P. Y.

    2010-01-01

    The solar ultraviolet A (UVA) radiation data was measured at Physics Building, Universiti Kebangsaan Malaysia (2 degree sign 55' N, 101 degree sign 46' E, 50m asl) by the Xplorer GLX Pasco that connected to UVA Light sensor. The measured solar UVA data were compared with the total daily solar ultraviolet B (UVB) radiation data recorded by the Malaysian Metrological Department at Petaling Jaya, Malaysia (3 degree sign 06' N, 101 degree sign 39' E, 50m asl) for 18 days in year 2007. The daily total average of UVA radiation received is (298±105) kJm -2 while the total daily maximum is (600±56) kJm -2 . From the analysis, it shows that the values of UVA radiation data were higher than UVB radiation data with the average ratio of 6.41% between 3-14%. A weak positive correlation was found (the correlation coefficient, r, is 0.22). The amount of UVA radiation that reached the earth surface is less dependence on UVB radiation and the factors were discussed.

  10. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.M.; Young, A.R

    2000-07-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  11. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    International Nuclear Information System (INIS)

    Sheehan, J.M.; Young, A.R.

    2000-01-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  12. Fast simulation tool for ultraviolet radiation at the earth's surface

    Science.gov (United States)

    Engelsen, Ola; Kylling, Arve

    2005-04-01

    FastRT is a fast, yet accurate, UV simulation tool that computes downward surface UV doses, UV indices, and irradiances in the spectral range 290 to 400 nm with a resolution as small as 0.05 nm. It computes a full UV spectrum within a few milliseconds on a standard PC, and enables the user to convolve the spectrum with user-defined and built-in spectral response functions including the International Commission on Illumination (CIE) erythemal response function used for UV index calculations. The program accounts for the main radiative input parameters, i.e., instrumental characteristics, solar zenith angle, ozone column, aerosol loading, clouds, surface albedo, and surface altitude. FastRT is based on look-up tables of carefully selected entries of atmospheric transmittances and spherical albedos, and exploits the smoothness of these quantities with respect to atmospheric, surface, geometrical, and spectral parameters. An interactive site, http://nadir.nilu.no/~olaeng/fastrt/fastrt.html, enables the public to run the FastRT program with most input options. This page also contains updated information about FastRT and links to freely downloadable source codes and binaries.

  13. Effect of near-ultraviolet radiation on the cell surface of the protozoan Tritichomonas foetus

    International Nuclear Information System (INIS)

    Filho, F.C.S.; Elias, C.A.; Souza, W. de

    1982-01-01

    It is concluded that the authors' data showing that near-ultraviolet radiation decreases the cellular electrophoretic mobility of Tritrichomonas foetus indicate that ultraviolet radiation may have an important effect on basic properties of the plasma membrane such as (a) its surface charge, (b) the mobility of membrane-associated components, as revealed by the concanavalin A-induced agglutination, and (c) changes in its permeability to cytoplasmic components. These data also indicate that protozoa may be a useful model for studies related with the effect of radiation on eukaryotic cells. (author)

  14. Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation

    International Nuclear Information System (INIS)

    Matsu, K.; Yonehara, R.; Gekko, K.

    2004-01-01

    Full text: Circular dichroism (CD) spectroscopy is powerful for analyzing the structure of optically active materials such as biopolymers. However, no commercial CD spectrophotometer is capable of measuring the CD in the vacuum ultraviolet (VUV) region below 190 nm because of technical difficulties involved in the light source, optical device, and sample cell. CD measurements extended to the VUV region can provide more detailed and new information on the structure of biopolymers based on the higher energy transition of chromophores such as hydroxyl and acetal groups. We have constructed a VUVCD spectrophotometer to measure the CD spectra of biomaterials in aqueous solutions in the 310-140 nm wavelength region under a high vacuum, using a small-scale SR source (0.7 GeV) at Hiroshima Synchrotron Radiation Center (HiSOR). All optical devices of the spectrophotometer were set up under a high vacuum (10 -6 Torr), to avoid the absorption of light by air and water vapor. The SR light is separated into two orthogonal linearly polarized light beams by a linear polarizer and then modulated to circularly polarized light at 50 kHz by a photo-elastic modulator (PEM). In order to control PEM accurately and to stabilize the lock-in amplifier under a high vacuum, we used the optical servo-control system. Also, an assembled-type MgF 2 cell with a temperature-control unit was constructed using a Peltier thermoelectric element. Its path length can be adjusted by various Tefron spacers in the range from 1.3 to 50 μm and its temperature can be controlled within an accuracy of ± 1 deg C in the range from -30 to 70 deg C. The performance of the spectrophotometer and MgF 2 cell constructed was tested by monitoring the CD spectra of ammonium d-camphor-10-sulfonate (ACS), D- and L-isomers of amino acids. These obtained results demonstrate that the optical system and the sample cell constructed normally operate under a high vacuum to provide useful information on the structure analysis of

  15. [Solar radiation exposure in agriculture: an underestimated risk].

    Science.gov (United States)

    Gobba, F

    2012-01-01

    Solar Radiation (SR) is a major occupational risk in agriculture, mainly related to its ultraviolet (UV) component. Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma and squamous cell carcinoma of the skin, and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in agriculture. The role of the Occupational Physician in prevention is fundamental.

  16. SOLAR RADIATION MAPS FOR EIIDOPIA Tesfaye Bayou and ...

    African Journals Online (AJOL)

    day-1, thus signifying the solar power potential ... data are available only for few places due to the high cost of ... the mean daily global solar radiation for Ethiopia ... wind speed and precipitation. ..... Insolation on Tilted Surfaces, Solar Energy,.

  17. Formation of fatty acid esterified vitamin D3 in rat skin by exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Takada, K.

    1983-01-01

    The formation of fatty acid esters of vitamin D3 was demonstrated in rat skin exposed to artificial ultraviolet rays by using multi-dimensional high-performance liquid chromatography, ultraviolet spectrophotometry, and gas-liquid chromatography-mass spectrometry. This result indicated that the fatty acid esters of 7-dehydrocholesterol in rat skin (at least 80% of 7-dehydrocholesterol in rat skin is esterified) is also isomerized into vitamin D3 ester in vivo. The initial percentage of the esterified form was 84.3% and this did not significantly change up to the time when about half of the skin total vitamin D3 disappeared (2 days). Consequently, it was speculated that the vitamin D3 ester was delivered into the blood circulation from skin without having been hydrolyzed. This was supported by the presence of vitamin D3 ester in rat plasma exposed to ultraviolet radiation. In addition, in connection with the study of the restriction of vitamin D3 synthesis, distribution of total vitamin D3 in rat skin exposed to ultraviolet irradiation in vivo was compared with that in isolated skin exposed to ultraviolet radiation. The dermal layer of the isolated skin contained about 4 times more total vitamin D3 than that of in vivo skin. This finding suggests not only that ultraviolet rays could not penetrate deeply into the in vivo skin, but that the restriction of cutaneous synthesis of vitamin D3 observed in vivo may arise from this reduced penetration of ultraviolet rays

  18. Investigating work-related neoplasia associated with solar radiation.

    Science.gov (United States)

    Turner, S; Forman, S D; McNamee, R; Wilkinson, S M; Agius, R

    2015-01-01

    Both solar and non-solar exposures associated with occupation and work tasks have been reported as skin carcinogens. In the UK, there are well-established surveillance schemes providing relevant information, including when exposures took place, occupation, location of work and dates of symptom onset and diagnosis. To add to the evidence on work-related skin neoplasia, including causal agents, geographical exposure and time lag between exposure and diagnosis. This study investigated incident case reports of occupational skin disease originating from clinical specialists in dermatology reporting to a UK-wide surveillance scheme (EPIDERM) by analysing case reports of skin neoplasia from 1996 to 2012 in terms of diagnosis, employment, suspected causal agent and symptom onset. The suspected causal agent was 'sun/sunlight/ultraviolet light' in 99% of the reported work-related skin neoplasia cases. Most cases reported (91%) were in males, and the majority (62%) were aged over 65 at the time of reporting. More detailed information on exposure was available for 42% of the cases, with the median time from exposure to symptom onset ranging from 44 (melanoma) to 57 (squamous cell carcinoma) years. Irrespective of diagnostic category, the median duration of exposure to 'sun/sunlight/ultraviolet light' appeared longer where exposures occurred in the UK (range 39-51 years) rather than outside the UK (range 2.5-6.5 years). It is important to provide effective information about skin protection to workers exposed to solar radiation, especially to outdoor workers based outside the UK. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Effects of antibiotics and ultraviolet radiation on the halophilic blue-green alga

    International Nuclear Information System (INIS)

    Yopp, J.H.; Albright, G.; Miller, D.M.; Southern Illinois Univ., Carbondale

    1979-01-01

    The effects of a variety of antibiotics, ultraviolet radiation and N-methyl-N-nitro-N-nitro-N-nitrosoguanidine (NTG) on the survival and mutability of the halophilic blue-green alga, Aphanothece halophytica, were determined. The halophile was found extremely sensitive to penicillin G and bacitracin; moderately sensitive to novobiocin, amino acid analogs, chloramphenicol and streptomycin; and tolerant to actidione and hydroxyurea. Ultraviolet and NTG killing curves and photoreactivation capabilities were seimilar to those reported for other members of the Chroococcales. Three stable morphological mutants were obtained by ultraviolet and NTG treatment, the latter being much more efficient in the production of mutants. (orig.)

  20. Biological effect of ultraviolet radiation on cattle: bovine ocular squamous cell carcinoma

    International Nuclear Information System (INIS)

    Kopecky, K.E.; Pugh, G.W. Jr.; Hughes, D.E.; Booth, G.D.; Cheville, N.F.

    1979-01-01

    The relationship between bovine ocular squamous cell carcinoma and ultraviolet radiation was studied. Experimental procedures were devised to irradiate cattle with predetermined quantities of ultraviolet beta. Irradiation induced a preneoplastic ocular growth in one of four irradiated cattle. An epizootiologic study indicates that since 1950 the occurrence of bovine ocular squamous cell carcinoma reported at slaughter has increased. This increase was real and not due to an increase in numbers of cattle

  1. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation

    Science.gov (United States)

    Kadekaro, Ana Luisa; Leachman, Sancy; Kavanagh, Renny J.; Swope, Viki; Cassidy, Pamela; Supp, Dorothy; Sartor, Maureen; Schwemberger, Sandy; Babcock, George; Wakamatsu, Kazumasa; Ito, Shosuke; Koshoffer, Amy; Boissy, Raymond E.; Manga, Prashiela; Sturm, Richard A.; Abdel-Malek, Zalfa A.

    2010-01-01

    The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α-melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α-melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation-induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. nonfunctional receptor to α-melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α-melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.—Kadekaro, A. L., Leachman, S., Kavanagh, R. J., Swope, V., Cassidy, P., Supp, D., Sartor, M., Schwemberger, S., Babcock, G., Wakamatsu, K., Ito, S., Koshoffer, A., Boissy, R. E., Manga, P., Sturm, R. A., Abdel-Malek, Z. A. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. PMID:20519635

  2. Solar and terrestrial radiation: methods and measurements

    National Research Council Canada - National Science Library

    Coulson, Kinsell L

    1975-01-01

    ... AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. Ill Fifth Avenue, New York, New York 10003 United Kingdom Edition published by A C A D E M I C PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 Library of Congress Cataloging in Publication Data Coulson, Kinsell L Solar and terrestrial radiation. Inclu...

  3. Solar radiation observation stations updated to 1979

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.A.; Cristina, J.R.; Williams, B.B.

    1979-04-01

    The type of sensing and recording equipment for 420 stations in the US are listed alphabetically by states. The stations are divided according to whether or not they are in the basic National Weather Service, NOAA, network. Reports of summarized solar radiation data are listed in an appendix. (MHR)

  4. MODELING ACUTE EXPOSURE TO SOLAR RADIATION

    Science.gov (United States)

    One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...

  5. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation

    Directory of Open Access Journals (Sweden)

    Spencer Dunaway

    2018-04-01

    Full Text Available Human skin exposed to solar ultraviolet radiation (UVR results in a dramatic increase in the production of reactive oxygen species (ROS. The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs. Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.

  6. Sensitivity of the vibrios to ultraviolet-radiation

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Chatterjee, S.N.

    1977-01-01

    The ultraviolet-inactivation kinetics of a number of strains of Vibrio cholerae (classical), Vibrio cholerae (el tor), NAG vibrios and Vibrio parahaemolyticus were investigated. Statistical analyses revealed significant differences between any two of the four types of vibrio in respect of their sensitivity to U.V. (author)

  7. Invisible Misconceptions: Student Understanding of Ultraviolet and Infrared Radiation

    Science.gov (United States)

    Libarkin, Julie C.; Asghar, Anila; Crockett, C.; Sadler, Philip

    2011-01-01

    The importance of nonvisible wavelengths for the study of astronomy suggests that student understanding of nonvisible light is an important consideration in astronomy classrooms. Questionnaires, interviews, and panel discussions were used to investigate 6-12 student and teacher conceptions of ultraviolet (UV) and infrared (IR). Alternative…

  8. Accelerated Solar-UV Test Chamber

    Science.gov (United States)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  9. Low doses of ultraviolet-B or ultraviolet-C radiation affect phytohormones in young pea plants

    International Nuclear Information System (INIS)

    Ivanov, S.; Azmi, A.; Prinsen, E.; Van Onckelen, H.; Alexieva, V.; Katerova, Z.

    2009-01-01

    Pea (cv. Scinado) seedlings were exposed to low doses of ultraviolet-B (UV-B; 4.4 and 13.3 kJ/square m/d) or UV-C (0.1 and 0.3 kJ/square m/d) radiation for 14 d. Aminocyclopropane carboxylic acid (ACC), indoleacetic acid (IAA) and abscisic acid (ABA) concentrations were quantified by gas chromatography coupled to mass spectrometry. The accumulation of ACC upon irradiation was dose-dependent. ABA conc. was reduced and IAA conc. increased upon UV-C treatment, whereas the UV-B doses used did not cause significant changes in ABA and IAA levels

  10. Effects of ultraviolet-B radiation on phytoplankton - zooplankton interactions = [Effecten van ultraviolet-B straling op interacties tussen fytoplankton en zooplankton

    NARCIS (Netherlands)

    Lange, de H.J.

    1999-01-01

    The decrease in stratospheric ozone concentration has received wide attention because the ozone layer protects the earth from harmful ultraviolet-B radiation (UVB, 280-320 nm). UVB radiation is harmful for organisms, and therefore scientific research into how UVB radiation affects organisms

  11. Solar cell radiation handbook. Addendum 1: 1982-1988

    International Nuclear Information System (INIS)

    Anspaugh, B.E.

    1989-02-01

    The Solar Cell Radiation Handbook (JPL Publication 82-69) is updated. In order to maintain currency of solar cell radiation data, recent solar cell designs have been acquired, irradiated with 1 MeV electrons, and measured. The results of these radiation experiments are reported

  12. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  13. Radiative origins of the solar corona

    International Nuclear Information System (INIS)

    Koch, P.

    1978-01-01

    Within observational accuracy, the radiation pressure aT 4 /3 at the effective solar temperature is equal to the coronal gas pressure nkT. This suggests a radiative gas discontinuity between optically thick and optically thin regions. Ideal transitions of this nature are studied and the applicability of this model to the Sun is explored. Further empirical corroboration is obtained if the gas pressure anomalies of Gulyaev are resolved by postulating a corrective gradient of radiation pressure possibly caused by Lyman-α opacity. (Auth.)

  14. Radiation balances and the solar constant

    Science.gov (United States)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  15. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    Science.gov (United States)

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  16. The caretakers of the genome. Repair of DNA lesions induced by ultraviolet-light and ionizing radiation

    International Nuclear Information System (INIS)

    Boiteux, S.; Radicella, J.P.

    2000-01-01

    The DNA contained in the nucleus of each of our cells daily suffers of thousand damages caused by solar ultraviolet radiations or ionizing radiations, with a natural or not origin, agents able to modify the genetic information. This information stays stable. True caretakers of the genome repair the DNA, provided that the cell is not over-taken by the level of the attack. Alterations of the repair mechanism are at the origin of extremely severe syndromes. The failure of one of these caretakers of the genome, the O.G.G.1 gene, seems implicated in the cancer development. It can be a lead to discover a predisposition to radioinduced or caused by other toxic agents cancers. (N.C.)

  17. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  18. Turning collectors for solar radiation

    Science.gov (United States)

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  19. Effect of ultraviolet radiation absorbing film on pollination work of foreign bumblebee [Bombus terrestris

    International Nuclear Information System (INIS)

    Nishiguchi, I.

    1999-01-01

    The transmitted light through the ultraviolet radiation absorbing (UVA) film has a preventing effect of disease and pest occurrence. To develop the agriculture harmonized with the ecosystem, we attempted to research a further possible utilization of the UVA film. Pollination work of foreign bumblebee (Bombus terrestris) in the greenhouses roofed with UVA film and with common film for agriculture was examined in growing fruit-vegetables. The bumblebees used were not acclimatized to environmental conditions of the greenhouses. They visited flowers and gathered pollen from flowered crops grown in both houses, irrespective of the kind of film covering over the greenhouse roof, and the pollen quantity gathered was far greater in crops which produced in large quantity of pollen. Thus, the bumblebees were capable to work under the condition lacking in ultraviolet radiation. This pollinating behavior is different from that of honeybees. Then we concluded that bumblebees functioned well as an efficient pollinator under the condition without ultraviolet radiation

  20. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes

    Science.gov (United States)

    Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis

    2011-01-01

    Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692

  1. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Barnes, P.W.; Flint, S.D.; Caldwell, M.M.

    1990-01-01

    The influence of ultraviolet-B (UV-B) radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots

  2. Effects of ultraviolet radiation on rates and size distribution of primary production by Lake Erie phytoplankton

    International Nuclear Information System (INIS)

    Hiriart, V.P.; Greenberg, B.M.; Guildford, S.J.; Smith, R.E.H.

    2002-01-01

    The impact of natural solar ultraviolet radiation (UVR), particularly UVB (297-320 nm), on phytoplankton primary production in Lake Erie was investigated during the spring and summer of 1997. Radiocarbon incorporation and size-selective filtration was used to trace total production and its distribution among particulate and dissolved pools. On average, 1-h exposures produced half the UVB-dependent inhibition of total production realized in 8-h exposures, indicating rapid kinetics of photoinhibition. Cumulative UVB-dependent photoinhibition averaged 36% in 8-h simulated surface exposures. The efficiency of photoinhibition was greater for N-deficient than N-replete communities, but was not related to phytoplankton light history, P limitation, or the dominant genera. The proportion of recently fixed carbon occurring in the dissolved pool after 8-h exposures was significantly greater in higher-UVB treatments, whereas the share in picoplankton (<2 μm) was significantly lower. Significant UVB-dependent inhibition of total production was limited on average to relatively severe exposures, but the rapid kinetics of inhibition and the apparent effects on the allocation of carbon suggest it may be important to the lake's food web. Differences in optical properties and thermal stratification patterns suggested that the relatively turbid west basin was potentially more susceptible to UVR photoinhibition than the more transparent east or central basins. (author)

  3. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton

    International Nuclear Information System (INIS)

    Behrenfeld, M.J.; Lean, D.R.S.; Lee, H. II

    1995-01-01

    Ultraviolet-B radiation (UVBR: 290-320 nm) inhibited ammonium uptake (ρ NH4 ) and nitrate uptake (ρ NO3 ) in natural plankton assemblages collected during a transect from 37 degrees N to 55 degrees N in the Pacific Ocean. Comparison of responses in ρ NH4 to ambient solar- and lamp-enhanced UVBR spectra allowed calculation of an action spectrum for ρ NH4 inhibition. The slope of the action spectrum for ρ NH4 is half as steep as action spectra for UVBR inhibition of photosynthetic carbon uptake. Consequently, UVBR-induced photoinhibition of ρ NH4 extends to greater depths than inhibition of carbon fixation due to the greater relative effect of longer UVBR wavelengths. Inhibition of ρ NH4 was dependent upon UVBR dose when doses were weighted by the ρ NH4 action spectrum. Dependence of UVBR inhibition of ρ NH4 on dose rate was not apparent. We found that near-surface ρ NH4 and ρ NO3 can be overestimated in excess of 50% when measured using standard incubation vessels made of UVBR-absorbing materials such as polycarbonate. 68 refs., 9 figs., 1 tab

  4. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  5. Conversion of solar radiation using parabolic mirrors

    Directory of Open Access Journals (Sweden)

    Jolanta Fieducik

    2017-08-01

    Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.

  6. DNA replication and repair in Tilapia cells. 1. The effect of ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yew, F.H.; Chang, L.M. (National Taiwan Univ., Taipei (China))

    1984-12-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-..beta..-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor.

  7. Comprehensive Review of Ultraviolet Radiation and the Current Status on Sunscreens

    Science.gov (United States)

    Moon, Summer; Armstrong, Frank

    2012-01-01

    In the past, manufacturers’ labeling of sunscreen varied greatly, confusing the consumers regarding efficacy and the appropriate photoprotection provided by their products. Therefore, in June 2011, the United States Food and Drug Administration issued new guidelines for sunscreen labeling. Sunscreen products are over-the-counter drugs; therefore, they are regulated by the United States Food and Drug Administration to determine safety, efficacy, and labeling. This article discusses ultraviolet radiation and the positive and negative effects of ultraviolet radiation, provides a review of sunscreens, and discusses the new United States Food and Drug Administration regulations for sunscreens. PMID:23050030

  8. A search for thermal extreme ultraviolet radiation from nearby pulsars

    International Nuclear Information System (INIS)

    Greenstein, G.; Margon, B.

    1977-01-01

    We present the first extreme ultraviolet (100-1000 A) observations of radio pulsars. Using an EUV telescope carried aboard the Apollo-Soyuz mission, data were acquired on the nearby pulsars PSR 1133 + 16, 1451 - 68 and 1929 + 10. The data are interpreted to set limits on the effective temperatures of the neutron stars, yielding T 5 K in the best cases, and the limits compared with theoretical predictions. (orig./BJ) [de

  9. Ultraviolet action spectra for aerobic and anaerobic inactivation of Escherichia coli strains specifically sensitive and resistant to near ultraviolet radiations

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Tuveson, R.W.

    1983-01-01

    Action spectra for the lethal effects of ultraviolet light (254-434 nm) irradiation delivered under aerobic or anaerobic conditions to Escherichia coli RT2 (specifically sensitive to near-UV radiation; > 320 nm) and E. coli RT4 (near-UV resistant) were prepared. Negligible oxygen dependence was observed for both strains below about 315 nm. The oxygen enhancement ratio (OER) for RT4 increased above this wavelength to the longest wavelength used, whereas for RT2 there was a greater increase in the OER to a large peak at 365 nm, then a progressive decrease at longer wavelengths. The results are consistent with the possibility that the sensitivity of strain RT2 to near-UV radiation may be due to hyperproduction of photosensitizer, operating via photodynamic type reactions involving excited species of oxygen. (author)

  10. Molecular effects of 1-naphthyl-methylcarbamate and solar radiation exposures on human melanocytes.

    Science.gov (United States)

    Ferrucio, Bianca; Tiago, Manoela; Fannin, Richard D; Liu, Liwen; Gerrish, Kevin; Maria-Engler, Silvya Stuchi; Paules, Richard S; Barros, Silvia Berlanga de Moraes

    2017-02-01

    Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, the main etiologic factor for skin carcinogenesis. We hypothesized that carbaryl exposure may increase deleterious effects of UV solar radiation on skin melanocytes. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100μM) and solar radiation (375mJ/cm 2 ). In a microarray analysis, carbaryl, but not solar radiation, induced an oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of CDKN1A, BRCA1/2 and MDM2 genes was notably more intense in the combined treatment group, in a synergistic manner. Flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation

    International Nuclear Information System (INIS)

    Conconi, A.; Smerdon, M.J.; Howe, G.A.; Ryan, C.A.

    1996-01-01

    Many plant genes that respond to environmental and developmental changes are regulated by jasmonic acid, which is derived from linolenic acid via the octadecanoid pathway. Linolenic acid is an important fatty-acid constituent of membranes in most plant species and its intracellular levels increase in response to certain signals. Here we report that irradiation of tomato leaves with ultraviolet light induces the expression of several plant defensive genes that are normally activated through the octadecanoid pathway after wounding. The response to ultraviolet light is blocked by an inhibitor of the octadecanoid pathway and it does not occur in a tomato mutant defective in this pathway. The ultraviolet irradiation maximally induces the defence genes at levels where cyclobutane pyrimidine dimer formation, an indicator of DNA damage, is less than 0.2 dimers per gene. Our evidence indicates that this plant defence response to certain wavelengths of ultraviolet radiation requires the activation of the octadecanoid defence signalling pathway. (author)

  12. Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean

    International Nuclear Information System (INIS)

    Hollmann, Gabriela; Ferreira, Gabrielle de Jesus; Geihs, Márcio Alberto; Vargas, Marcelo Alves

    2015-01-01

    Highlights: • Ultraviolet (UV) radiation produces biological damage, principally oxidative stress. • We analyzed oxidative stress in the central nervous system (CNS) of a crab. • The damage was evaluated using biochemical tests and immunohistochemistry. • We verified the occurrence of apoptosis in the brain of the UV-exposed crabs. • Environmental doses of UV can cause oxidative damage to CNS, including apoptosis. - Abstract: Ultraviolet (UV) radiation can produce biological damage, principally oxidative stress, by increasing the production of reactive oxygen species (ROS). This study evaluated biochemical impairments related to the oxidative stress induced by UVA, UVB and UVA + UVB (solar simulator-SIM) in environmental doses, during five consecutive days of exposure, in the brain and eyestalk of the crab Ucides cordatus. We evaluated these regions by sampling on the 1st, 3rd and 5th days of UV exposure for lipid peroxidation (LPO), antioxidant capacity against the peroxyl radical (ACAP), and the activities of catalase (CAT), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Immunohistochemical and immunoblotting assays were performed for anti-activated-caspase 3 in the brains. After the first day of exposure, LPO increased in the eyestalks and brains of the UV-exposed animals; ACAP, and CAT, GPX and GST activities also increased in the brains. On the third day, the LPO values in the eyestalk remained high in the UV-exposed groups, while ACAP decreased in the brain and eyestalk and CAT activity remained high in all irradiated groups in both regions. On the fifth day, LPO decreased in the eyestalk and brain of the UV-exposed groups. These results may have been a consequence of the antioxidant defense system (ADS) activity, since CAT activity was high in both regions, ACAP was high in the eyestalks of the SIM group, and GPX activity remained high in the eyestalks of the UVA and UVB groups. Immunohistochemical assays and immunoblotting

  13. Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Ferreira, Gabrielle de Jesus, E-mail: gabi_ferreiira@hotmail.com [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Geihs, Márcio Alberto, E-mail: geihs@hotmail.com [Programa de Pós Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS 96201-900 (Brazil); Vargas, Marcelo Alves, E-mail: biovargas@gmail.com [Programa de Pós Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS 96201-900 (Brazil); and others

    2015-03-15

    Highlights: • Ultraviolet (UV) radiation produces biological damage, principally oxidative stress. • We analyzed oxidative stress in the central nervous system (CNS) of a crab. • The damage was evaluated using biochemical tests and immunohistochemistry. • We verified the occurrence of apoptosis in the brain of the UV-exposed crabs. • Environmental doses of UV can cause oxidative damage to CNS, including apoptosis. - Abstract: Ultraviolet (UV) radiation can produce biological damage, principally oxidative stress, by increasing the production of reactive oxygen species (ROS). This study evaluated biochemical impairments related to the oxidative stress induced by UVA, UVB and UVA + UVB (solar simulator-SIM) in environmental doses, during five consecutive days of exposure, in the brain and eyestalk of the crab Ucides cordatus. We evaluated these regions by sampling on the 1st, 3rd and 5th days of UV exposure for lipid peroxidation (LPO), antioxidant capacity against the peroxyl radical (ACAP), and the activities of catalase (CAT), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Immunohistochemical and immunoblotting assays were performed for anti-activated-caspase 3 in the brains. After the first day of exposure, LPO increased in the eyestalks and brains of the UV-exposed animals; ACAP, and CAT, GPX and GST activities also increased in the brains. On the third day, the LPO values in the eyestalk remained high in the UV-exposed groups, while ACAP decreased in the brain and eyestalk and CAT activity remained high in all irradiated groups in both regions. On the fifth day, LPO decreased in the eyestalk and brain of the UV-exposed groups. These results may have been a consequence of the antioxidant defense system (ADS) activity, since CAT activity was high in both regions, ACAP was high in the eyestalks of the SIM group, and GPX activity remained high in the eyestalks of the UVA and UVB groups. Immunohistochemical assays and immunoblotting

  14. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  15. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  16. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  17. Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function

    Energy Technology Data Exchange (ETDEWEB)

    Sucre, Elliott, E-mail: elliott.sucre@univ-montp2.fr [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Vidussi, Francesca [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Mostajir, Behzad [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Centre d' ecologie marine experimentale MEDIMEER (Mediterranean centre for Marine Ecosystem Experimental Research), Universite Montpellier 2-CNRS (UMS 3301), Station Mediterraneenne de l' Environnement Littoral, MEDIMEER, 2 Rue des Chantiers, 34200 Sete (France); Charmantier, Guy; Lorin-Nebel, Catherine [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France)

    2012-03-15

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 {mu}W cm{sup -2}: 4 h L/20 h D) and medium (80 {mu}W cm{sup -2}: 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na{sup +}/K{sup +}-ATPase and the Na{sup +}/K{sup +}/2Cl{sup -} cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  18. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.Key words: Atmospheric composition and structure (transmission and scattering of radiation - Meteorology and atmospheric dynamics (radiative process

  19. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.

    Key words: Atmospheric composition and structure (transmission and scattering of radiation - Meteorology and atmospheric dynamics (radiative process

  20. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, S.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-10-24

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

  1. Water purification using solar radiation in Nigeria

    International Nuclear Information System (INIS)

    Udounwa, A.E.; Osuji, R.U.

    2005-12-01

    In developing countries, lack of safe and reliable drinking water constitutes a major problem. Contaminated water is the major cause of most water borne diseases like diarrhoea. Disinfection of water is accomplished by a number of different physical - chemical treatments including boiling, application of chlorine and filtration techniques. Solar energy, which is universally available, can also be used effectively in this process, that is, to deactivate the micro-organisms present in this contaminated water thereby improving its microbiological quality. This treatment process is called solar water disinfection. This paper therefore appraises the extent to which research work has been done as regards purification of water using solar radiation in Nigeria vis-a-vis outside the country. It is hoped that it will serve as a wake-up-call for Nigerians especially those in remote areas with no treated pipe borne water supply. The problems and prospects of this technology as well as the policy implications are presented. (author)

  2. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, Sebastian

    2014-01-01

    Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.

  3. Absorption of solar radiation in broken clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  4. Electron Radiation Belts of the Solar System

    Science.gov (United States)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  5. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  6. Infrared radiation increases skin damage induced by other wavelengths in solar urticaria.

    Science.gov (United States)

    de Gálvez, María Victoria; Aguilera, José; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2016-09-01

    Photodermatoses are typically investigated by analyzing the individual or combined effects of ultraviolet A (UVA), ultraviolet B (UVB), and visible light using light sources that simulate portions of the solar spectrum. Infrared radiation (IRR), however, accounts for 53% of incident solar radiation, but its effects are not taken into account in standard phototest protocols. The aim was to analyze the effects of IRR, alone and combined with UVA and visible light on solar urticaria lesions, with a distinction between infrared A (IRA) and infrared B (IRB). We performed standard phototests with UVA and visible light in four patients with solar urticaria and also tested the effects after blocking IRB with a water filter. To analyze the direct effect of IRR, we performed phototests with IRA and IRB. Initial standard phototests that were all positive found the induction of erythema and whealing, while when IRR was blocked from the UVA and visible light sources, three of the patients developed no lesions, while the fourth developed a very small wheal. These results suggest that IRR has the potential to produce and exacerbate lesions caused by other types of radiation. Consideration of these effects during phototesting could help prevent diagnostic errors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. New high-resolution rocket-ultraviolet filtergrams of the solar disc

    Science.gov (United States)

    Foing, B.; Bonnet, R.-M.; Bruner, M.

    1986-01-01

    A rocket-borne solar ultraviolet telescope named Transition Region Camera was launched successfully for the third on July 13, 1982. High quality calibrated photographic images of the sun were obtained at Lyman alpha and in the continuum at 160 nm and 220 nm. The angular resolution achieved is better than one arcsec. A flare, active regions, sunspots, the 8 Mm mesostructure, the chromospheric network, bright UV grains and coronal loops were observed during the flight. The results are presented and the evolution with height in the solar atmosphere of the various structures observed is followed from one wavelength to the other, showing distinct differences. The value of the field's intensity of magnetic flux tubes is deduced from the observations.

  8. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  9. High mortality of Red Sea zooplankton under ambient solar radiation.

    Directory of Open Access Journals (Sweden)

    Ali M Al-Aidaroos

    Full Text Available High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation. The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM 18.4±5.8% h(-1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM 12±5.6 h(-1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  10. Ocular exposure to ultraviolet and visible radiation from light sources

    International Nuclear Information System (INIS)

    Hietanen, M.

    1992-01-01

    Exposure of the eyes to UV radiation and blue light of artificial light sources and the sun was evaluated. A spectroradiometer was used to determine the spectral irradiance at 1 nm intervals from 250 to 800 nm. Various groups of workers are at risk of ocular over-exposure to optical radiation, outdoor workers maintenance personnel of bright light source as and wear eye-protectors with effective filtering of UV radiation and blue light. (author)

  11. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    Science.gov (United States)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  12. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    International Nuclear Information System (INIS)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.; Bonnet, R.M.; NASA, Marshall Space Flight Center, Huntsville, AL; ESA, Paris, France)

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references

  13. Investigation of solar cell radiation damage

    International Nuclear Information System (INIS)

    Bernard, J.; Reulet, R.; Arndt, R.A.

    1974-01-01

    Development of communications satellites has led to the requirement for a greater and longer lived solar cell power source. Accordingly, studies have been undertaken with the aim of determining which solar cell array provides the greatest power at end of life and the amount of degradation. Investigation of the damage done to thin silicon and thin film CdS solar cells is being carried out in two steps. First, irradiations were performed singly with 0.15, 1.0 and 2.0MeV electrons and 0.7, 2.5 and 22MeV proton. Solar cells and their cover materials were irradiated separately in order to locate the sites of the damage. Diffusion length and I.V. characteristics of the cells and transmission properties of the cover materials were measured. All neasurements were made in vacuum immediately after irradiation. In the second part it is intended to study the effect of various combinations of proton, electron and photon irradiation both with and without an electrical load. The results of this part show whether synergism is involved in solar cell damage and the relative importance of each of three radiation sources if synergism is found [fr

  14. European Code against Cancer 4th edition: Ultraviolet radiation and cancer

    NARCIS (Netherlands)

    R. Greinert (Rüdiger); E. de Vries (Esther); F. Erdmann (Friederike); C. Espina (Carolina); A. Auvinen (Anssi); A. Kesminiene (Ausrele); J. Schüz (Joachim)

    2015-01-01

    textabstractUltraviolet radiation (UVR) is part of the electromagnetic spectrum emitted naturally from the sun or from artificial sources such as tanning devices. Acute skin reactions induced by UVR exposure are erythema (skin reddening), or sunburn, and the acquisition of a suntan triggered by

  15. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadaie, Y.; Kada, T.; Ohta, Y. (National Inst. of Genetics, Mishima, Shizuoka (Japan)); Kobayashi, K.; Hieda, K.; Ito, T.

    1984-06-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor.

  16. Sensitivity of Escherichia coli acrA Mutants to Psoralen plus Near-Ultraviolet Radiation

    DEFF Research Database (Denmark)

    Hansen, M. Trier

    1982-01-01

    The sensitivity to psoralen plus near-ultraviolet radiation (PUVA) was compared in a pair of E. coli strains differing at the acrA locus. Survival was determined for both bacteria and phage λ. AcrA mutant cells were 40 times more sensitive than wild type to the lethal effect of PUVA. Free λ phage...

  17. Performance of a high resolution monochromator for the vacuum ultraviolet radiation from the DORIS storage ring

    International Nuclear Information System (INIS)

    Saile, V.; Skibowski, M.; Steinmann, W.; Guertler, P.; Koch, E.E.; Kozevnikov, A.

    1976-03-01

    The unique properties of the DORIS storage ring at DESY as a synchrotron radiation source are exploited for high resolution spectroscopy in the vacuum ultraviolet. We describe a new experimental set up with a 3 meter normal incidence monochromator for wavelengths between 3,000 A to 300 A (4 [de

  18. Ultraviolet radiation, sun and tanning salons; Ultrafiolett straaling, sol og solarier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The pamphlet gives some information about ultraviolet radiation (UV), UV-sources and health effects, tanning in artificial and natural sun. It also includes some sun protection advice. It is intended mainly for persons inspecting artificial tanning units and for the owners of tanning salons. (Author)

  19. Melanoma Surveillance in the US: Melanoma, Ultraviolet Radiation, and Socioeconomic Status

    Centers for Disease Control (CDC) Podcasts

    This podcast accompanies the publication of a series of articles on melanoma surveillance in the United States, available in the November supplement edition of the Journal of the American Academy of Dermatology. Chris Johnson, from the Cancer Data Registry of Idaho, discusses analyses examining the relationship between melanoma and two variables at the county level, ultraviolet radiation and socioeconomic status.

  20. Determinants of personal ultraviolet-radiation exposure doses on a sun holiday

    DEFF Research Database (Denmark)

    Petersen, B; Thieden, E; Philipsen, P A

    2013-01-01

    A great number of journeys to sunny destinations are sold to the Danish population every year. We suspect that this travel considerably increases personal annual ultraviolet-radiation (UVR) exposure doses. This is important because such exposure is the main cause of skin cancer, and studies have...

  1. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices.

    Science.gov (United States)

    Mathew, J Itty; Cadnum, Jennifer L; Sankar, Thriveen; Jencson, Annette L; Kundrapu, Sirisha; Donskey, Curtis J

    2016-06-01

    Mobile handheld devices used in health care settings may become contaminated with health care-associated pathogens. We demonstrated that an enclosed ultraviolet-C radiation device was effective in rapidly reducing methicillin-resistant Staphylococcus aureus, and with longer exposure times, Clostridium difficile spores, on glass slides and reducing contamination on in-use mobile handheld devices. Published by Elsevier Inc.

  2. Fluctuation characteristics of solar radiation in crop cultivation

    International Nuclear Information System (INIS)

    Hayashi, S.; Suzuki, H.

    1996-01-01

    The objective of this study was to clarify the fluctuation of solar radiation for long and short periods, which is very crucial for plant growth. Data obtained from a meteorological observatory were used to investigate solar radiation and sunshine duration for a long period. For a short period, observation of global solar radiation and sky solar radiation were conducted in a glass house and at an open field. (1) Yearly average percentage of solar radiation at Kagawa from 1973 to 1994 was 44.3%, and its coefficient of variation was 3.9%. The percentage of possible sunshine and the coefficient were larger than those of solar radiation, 47.3% and 56% respectively. (2) Percentage of possible solar radiation and percentage of possible sunshine showed seasonal variation. Those coefficients of variation both increased exponentially with cloud amount. (3) Variations of global solar radiation and direct solar radiation were more remarkable in the glass house than those in the open field, while variations of sky solar radiation were small in the house and at the open field. (4) The fluctuation of solar radiation observed every 5 minutes was presented as the difference of radiation, present value minus the preceding value. The difference was positive in the morning, negative in the afternoon at the open field. In the house both positive and negative values were obtained the whole day. (5) Diurnal variation of ratio of direct solar radiation to sky solar radiation showed a parabolic effect, whereas it had irregular and large fluctuations at the open field

  3. Solar radiation data sources, applications, and network design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  4. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  5. Assessing the Performance of Global Solar Radiation Empirical ...

    African Journals Online (AJOL)

    In the region where solar radiation data are scarce, the next alternative method is to use solar radiation models to estimate the data needed for some applications such as simulation of crop performance and the design of solar energy conversion devices. In this paper, the validations of fifteen models for estimating monthly ...

  6. The minimal melanogenesis dose/minimal erythema dose ratio declines with increasing skin pigmentation using solar simulator and narrowband ultraviolet B exposure

    DEFF Research Database (Denmark)

    Ravnbak, Mette H; Philipsen, Peter A; Wulf, Hans Christian

    2010-01-01

    To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure.......To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure....

  7. Effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

    International Nuclear Information System (INIS)

    Palffy, K.; Ordog, V.; Voros, L.

    2004-01-01

    Since the discovery of the ozone hole, an increasing amount of work has been devoted to measuring the impact of the UV-radiation on living organisms. In this point of view, algae as the primer producers of aquatic ecosystems, get to the central part of the interest. The aim of the study was to study the effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

  8. Calibration technique for radiation measurements in vacuum ultraviolet - soft x-ray region

    International Nuclear Information System (INIS)

    Mizui, Jun-ichi

    1986-05-01

    This is a collection of the papers presented at the workshop on ''Calibration Technique for Radiation Measurements in Vacuum Ultraviolet - Soft X-ray Region'' held at the Institute of Plasma Physics, Nagoya University, on December 19 - 20, 1985, under the Collaborating Research Program at the Institute. The following topics were discussed at the workshop: the needs for the calibration of plasma diagnostic devices, present status of the calibration technique, use of the Synchrotron Orbit Radiations for radiometry, and others. (author)

  9. Photodegradation of antibiotics under simulated solar radiation: implications for their environmental fate.

    Science.gov (United States)

    Batchu, Sudha Rani; Panditi, Venkata R; O'Shea, Kevin E; Gardinali, Piero R

    2014-02-01

    Roxithromycin, erythromycin, ciprofloxacin and sulfamethoxazole are frequently detected antibiotics in environmental waters. Direct and indirect photolysis of these problematic antibiotics were investigated in pure and natural waters (fresh and salt water) under irradiation of different light sources. Fundamental photolysis parameters such as molar absorption coefficient, quantum yield and first order rate constants are reported and discussed. The antibiotics are degraded fastest under ultraviolet 254 nm, followed by 350 nm and simulated solar radiation. The composition of the matrix (pH, dissolved organic content, chloride ion concentration) played a significant role in the observed photodegradation. Under simulated solar radiation, ciprofloxacin and sulfamethoxazole degrade relatively quickly with half-lives of 0.5 and 1.5h, respectively. However, roxithromycin and erythromycin, macrolides are persistent (half-life: 2.4-10 days) under solar simulation. The transformation products (15) of the targeted antibiotics produced under irradiation experiments were identified using high resolution mass spectrometry and degradation pathways were proposed. © 2013.

  10. Scattering of ultraviolet and photosynthetically active radiation by Sorghum bicolor: influence of epicuticular wax

    International Nuclear Information System (INIS)

    Grant, R.H.; Jenks, M.A.; Rich, P.J.; Peters, P.J.; Ashworth, E.N.

    1995-01-01

    Near-isogenic mutants of Sorghum bicolor with genetic alterations affecting epicuticular wax (EW) structure but having similar canopy architecture provided a model system to examine the influence of EW on plant radiation scattering. Differences in canopies with two different sheath EW amounts showed differences in angular reflectance and transmittance. The differences varied with waveband of radiation. Canopy ultraviolet-B (UVB) and photosynthetically active radiation (PAR) backward reflectance in the principal solar plane were higher by wild-type plants (N-15) bearing reflective stalk EW filaments than mutant plants (bm-15) lacking stalk EW filaments. Between panicle emergence to anthesis the backward PAR reflectance increased more in the N-15 than bm-15 canopy. We suspect that the increase was a result of reflections from stalk facets emerging above the surface plane of the canopy foliage and exposing reflective EW. As panicles emerged above the foliage, canopy UVB and PAR forward reflectance by bm-15 increased while forward reflectance by N-15 decreased. The increased forward reflectance from bm-15 may be because of high specular reflectance from the microscopically smooth bm-15 stalk surfaces. Based on comparisons of probability distributions, significant differences in PAR and UVB canopy transmittance were detected between N-15 and bm-15. The median UVB transmittance was greater in the bm-15 canopy than the N-15 canopy, while the median PAR transmittance was the same for the two canopies. The greater transmittance in the N-15 canopy corresponded with lower EW load of the sheaths, but the difference between canopies was within the experimental error. Distinct influences of the stalk EW on canopy reflectance and transmittance were difficult to assess because of the relatively low proportion of surface area containing EW, the experimental errors associated with UVB irradiance field measurements. The optical properties of the S. bicolor canopy varied by waveband

  11. Nature of the Background Ultraviolet Radiation Field at High Redshifts

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, 19-27 .... to know the shape of the ionizing radiation to determine the ionization parameter from the C II to C IV ratio. ... different shapes of the background radiation spectrum as explained in the text. The solid lines.

  12. Ultraviolet-B radiation causes tendril coiling in Pisum sativum

    International Nuclear Information System (INIS)

    Brosché, M.; Strid, A.

    2000-01-01

    Low dose UV-B radiation (UV-B BE,300 = 0.1 W m -2 ), but neither UV-A radiation, ozone and NaCl stress, nor wounding, caused tendril coiling in Pisum sativum. This coiling occurred with both attached and detached tendrils and can be used as a specific UV-B stress marker in pea

  13. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    Science.gov (United States)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  14. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  15. Ultraviolet radiation response of two heterotropy Antarctic marine bacterial; Respuesta a la radiacion ultravioleta de dos cepas bacterianas marinas heterotrofas antarticas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Edgardo A [Buenos Aires Univ. (Argentina). Facultad de Farmacia y Bioquimica; Ferreyra, Gustavo A; Mac Cormack, Walter P [Direccion Nacional del Antartico, Buenos Aires (Argentina). Instituto Antartico Argentino

    2004-07-01

    Two Antarctic marine bacterial strains, were exposed to different irradiance of ultraviolet (UV) solar radiation using several experimental protocols and interferential filters. Results showed that both, UV-A and UV-B radiation produce deleterious effects on two tested bacterial strains. The mortality values under UVB treatments were higher than those observed under UVA treatments. UVvi strain proved to be more resistant to UV radiation than the UVps strain. (author) [Spanish] Dos cepas marinas antarticas fueron expuestas a diferentes irradiancias de radiacion solar ultravioleta (UV) utilizando diferentes protocolos experimentales y filtros interferenciales. Los resultados mostraron que tanto la radiacion UV-A como UV-B produce efectos deletereos sobre las dos cepas bacterianas analizadas. Los valores de mortalidad bajo tratamiento UV-B fueron mayores que los observados bajo tratamiento UV-A. La cepa UVvi mostro mayor resistencia a la radiacion UV que la cepa UVps. (autor)

  16. Ultraviolet radiation effects on pigmentation in the cyanobacterium ''Phormidium uncinatum''

    International Nuclear Information System (INIS)

    Donkor, V.A.; Haeder, D.P.

    1997-01-01

    The Baikal strain of the cyanobacterium Phormidium uncinatum was found to possess the photosynthetic pigments chlorophyll a, carotenoids, phycocyanin and allophycocyanin, while the Tuebingen strain of Phormidium contained, in addition to these, the biliprotein phycoerythrin. Sucrose gradient centrifugation of the pigment extracts resulted in a separation of the phycobiliproteins into several bands, which according to their absorption and fluorescence properties, were identified as monomers, trimers and hexamers. With increasing UV-B irradiation the heavier aggregates were broken down into smaller components. Photobleaching of these accessory pigments also occurred. FPLC gel filtration analyses of the pigments also showed loss of heavier aggregates of the phycobilins and bleaching of the pigments. SDS-polyacrylamide gel electrophoresis of the sucrose gradient and FPLC fractions indicated loss of the biliproteins with increasing UV-B irradiation. The loss of the β- were more rapid than that of the α- subunits. Increasing levels of ultraviolet irradiation is therefore deleterious to these organism. (author)

  17. A Solar Radiation Parameterization for Atmospheric Studies. Volume 15

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J. (Editor)

    1999-01-01

    The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.

  18. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    Science.gov (United States)

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Application of ultraviolet and infrared radiation in food

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: According to variety of food and maintenance ways, food irradiation is one of the best ways. Food quality becomes constant in different times by processing of food with radiation and putrefactions can stop by controlling of microorganisms

  20. Application of ultraviolet and infrared radiations in documentoscopy

    International Nuclear Information System (INIS)

    Lopez, Jorgelina Andrea

    2010-01-01

    UV and IR radiation are located outside the visible electromagnetic spectrum, providing relevant service documentoscopic analysis, referring to the words of author Jose Del Picchia we can say that ''sixth sense to be the expert cabinet . Various bodies under its action and substances or emit luminescence radiating a particular energy, and using pinhole cameras, proper lighting and photographic material, as the case of the radiation used can be achieved discover forged documents by physical or chemical action, revealed secret ink, regeneration of original texts eradicated by fraudulent, amendment, deletion, you can achieve the reconstruction of incipient charred documents, among others, are some of the many specific applications of UV and IR electromagnetic radiation. That contribute to the task expert. (author) [es