WorldWideScience

Sample records for solar energy harvest

  1. Organoruthenium Complexes for Solar Energy Harvesting

    NARCIS (Netherlands)

    Wadman, S.H.|info:eu-repo/dai/nl/304834084

    2008-01-01

    One of the greatest challenges of this time is providing the world with the energy it needs to sustain human kind's current standard of living. Solar energy is the most abundant and ubiquitous renewable energy source available, and as such it holds great promises. Traditionally, the field of solar

  2. Flexible wearable sensor nodes with solar energy harvesting.

    Science.gov (United States)

    Taiyang Wu; Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2017-07-01

    Wearable sensor nodes have gained a lot of attention during the past few years as they can monitor and record people's physical parameters in real time. Wearable sensor nodes can promote healthy lifestyles and prevent the occurrence of potential illness or injuries. This paper presents a flexible wearable sensor system powered by an efficient solar energy harvesting technique. It can measure the subject's heartbeats using a photoplethysmography (PPG) sensor and perform activity monitoring using an accelerometer. The solar energy harvester adopts an output current based maximum power point tracking (MPPT) algorithm, which controls the solar panel to operate within its high output power range. The power consumption of the flexible sensor nodes has been investigated under different operation conditions. Experimental results demonstrate that wearable sensor nodes can work for more than 12 hours when they are powered by the solar energy harvester for 3 hours in the bright sunlight.

  3. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  4. Single/Dual-Polarized Infrared Rectenna for Solar Energy Harvesting

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-05-01

    Full Text Available Single and dual linearly-polarized receiving mode nanoantennas are designed for solar energy harvesting at 28.3 THz. The infrared rectennas are used to harvest the solar energy and converting it to electrical energy.  The proposed infrared rectenna is a thin dipole made of gold and printed on a silicon dioxide substrate. Different shapes of the dipole arms have been investigated for maximum collected energy. The two poles of the dipole have been determined in a rectangular, circular and rhombus shapes. The rectenna dipole is used to concentrate the electromagnetic energy into a small localized area at the inner tips of the gap between the dipole arms. The dimensions of the different dipole shapes are optimized for maximum near electric field intensity at a frequency of 28.3 THz. A Metal Insulator Metal (MIM diode is incorporated with the nanoantenna dipole to rectify the received energy. The receiving efficiency of the solar energy collector with integrated MIM diode has been investigated. A dual-polarized, four arms, rhombus shaped nanoantenna dipole for solar energy harvesting has been designed and optimized for 28.3 THz applications.

  5. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.

    Science.gov (United States)

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  7. Solar energy harvesting for a WSN router

    OpenAIRE

    León Márquez, Carlos

    2013-01-01

    The emergence of the Internet of Things has caused the proliferation of wireless sensor networks (WSNs) used to capture and distribute all kind of data. These WSNs need to be completely autonomous in order to be easily deployable and therefore the use of renewable energies such as sunlight is often the only option available to supply these systems. There are currently a variety of applications supplied with small photovoltaic (PV) systems. In order to increase the efficiency of these PV syste...

  8. Copper and Zinc Oxide Composite Nanostructures for Solar Energy Harvesting

    Science.gov (United States)

    Wu, Fei

    Solar energy is a clean and sustainable energy source to counter global environmental issues of rising atmospheric CO2 levels and depletion of natural resources. To extract useful work from solar energy, silicon-based photovoltaic devices are extensively used. The technological maturity and the high quality of silicon (Si) make it a material of choice. However limitations in Si exist, ranging from its indirect band gap to low light absorption coefficient and energy and capital intensive crystal growth schemes. Therefore, alternate materials that are earth-abundant, benign and simpler to process are needed for developing new platforms for solar energy harvesting applications. In this study, we explore oxides of copper (CuO and Cu2O) in a nanowire morphology as alternate energy harvesting materials. CuO has a bandgap of 1.2 eV whereas Cu2O has a bandgap of 2.1 eV making them ideally suited for absorbing solar radiation. First, we develop a method to synthesize vertical, single crystalline CuO and Cu2O nanowires of ~50 microm length and aspect ratios of ~200. CuO nanowire arrays are synthesized by thermal oxidation of Cu foils. Cu2O nanowire arrays are synthesized by thermal reduction of CuO nanowires. Next, surface engineering of these nanowires is achieved using atomic layer deposition (ALD) of ZnO. By depositing 1.4 nm of ZnO, a highly defective surface is produced on the CuO nanowires. These defects are capable of trapping charge as is evident through persistent photoconductivity measurements of ZnO coated CuO nanowires. The same nanowires serve as efficient photocatalysts reducing CO2 to CO with a yield of 1.98 mmol/g-cat/hr. Finally, to develop a robust platform for flexible solar cells, a protocol to transfer vertical CuO nanowires inside flexible polydimethylsiloxane (PDMS) is demonstrated. Embedded CuO nanowires-ZnO pn junctions show a VOC of 0.4 V and a JSC of 10.4 microA/cm2 under white light illumination of 5.7 mW/cm2. Thus, this research provides broad

  9. Integrated Solar-Energy-Harvesting and -Storage Device

    Science.gov (United States)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  10. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-12-08

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices with efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.

  11. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maher Kayal

    2013-02-01

    Full Text Available This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS process and occupies a core area of only 0.25 mm2. This circuit features a low power consumption of 2.1 µW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

  12. Overview of optical rectennas for solar energy harvesting

    Science.gov (United States)

    Zhu, Zixu; Joshi, Saumil; Pelz, Bradley; Moddel, Garret

    2013-09-01

    Although the concept of using optical rectenna for harvesting solar energy was first introduced four decades ago, only recently has it invited a surge of interest, with dozens of laboratories around the world working on various aspects of the technology. An optical rectenna couples an ultra-high-speed diode to a submicron antenna so that the incoming radiation received by the antenna is rectified by the diode to produce a DC power output. The result is a technology that can be efficient and inexpensive, requiring only low-cost materials. Conventional classical rectification theory does not apply at optical frequencies, necessitating the application of quantum photon-assisted tunneling theory to describe the device operation. At first glance it would appear that the ultimate conversion efficiency is limited only by the Landsberg limit of 93%, but a more sober analysis that includes limitation due to the coherence of solar radiation leads to a result that coincides with the Trivich-Flinn limit of 44%. Innovative antenna designs are required to achieve high efficiency at frequencies where resistive losses in metal are substantial. The diode most often considered for rectennas make use of electron tunneling through ultra-thin insulators in metal-insulator-metal (MIM) diodes. The most severe constraint is that the impedances of the antenna and diodes must match for efficient power transfer. The consequence is an RC time constant that cannot be achieved with parallel-plate MIM diodes, leading to the need for real innovations in diode structures. Technologies under consideration include sharp-tip and traveling-wave MIM diodes, and graphene geometric diodes. We survey the technologies under consideration.

  13. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  14. Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting.

    Science.gov (United States)

    Shin, Won-Ho; Yang, Se-Hoon; Kwon, Do-Hoon; Han, Sang-Kook

    2016-10-31

    We propose a self-reverse-biased solar panel optical receiver for energy harvesting and visible light communication. Since the solar panel converts an optical component into an electrical component, it provides both energy harvesting and communication. The signal component can be separated from the direct current component, and these components are used for communication and energy harvesting. We employed a self-reverse-biased receiver circuit to improve the communication and energy harvesting performance. The reverse bias on the solar panel improves the responsivity and response time. The proposed system achieved 17.05 mbps discrete multitone transmission with a bit error rate of 1.1 x 10-3 and enhanced solar energy conversion efficiency.

  15. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  16. Adaptive Control of the Packet Transmission Period with Solar Energy Harvesting Prediction in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kideok Kwon

    2015-04-01

    Full Text Available A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  17. Adaptive control of the packet transmission period with solar energy harvesting prediction in wireless sensor networks.

    Science.gov (United States)

    Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan

    2015-04-24

    A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  18. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.

    Science.gov (United States)

    Bereuter, L; Williner, S; Pianezzi, F; Bissig, B; Buecheler, S; Burger, J; Vogel, R; Zurbuchen, A; Haeberlin, A

    2017-05-01

    Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients' life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm 2 ) and continuously measure a subcutaneous solar cell's output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67 µW (=19 µW cm -2 ), which is sufficient to power e.g. a cardiac pacemaker.

  19. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Powering Autonomous Sensors An Integral Approach with Focus on Solar and RF Energy Harvesting

    CERN Document Server

    Penella-López, María Teresa

    2011-01-01

    Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented. Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly...

  1. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    Science.gov (United States)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  2. Electromagnetic energy harvester for harvesting acoustic energy

    Indian Academy of Sciences (India)

    Farid U Khan

    Acoustics; energy harvesting; electromagnetic; Helmholtz resonator; sound pressure level; suspended coil. ... WSNs, which are supposed to operate for longer period of time. However ... several ambient energies such as wind, thermal, vibration, and solar are ..... textile plants in Northern India with specific reference to noise.

  3. Design of Hybrid Solar and Wind Energy Harvester for Fishing Boat

    Science.gov (United States)

    Banjarnahor, D. A.; Hanifan, M.; Budi, E. M.

    2017-07-01

    In southern beach of West Java, Indonesia, there are many villagers live as fishermen. They use small boats for fishing, in one to three days. Therefore, they need a fish preservation system. Fortunately, the area has high potential of solar and wind energy. This paper presents the design of a hybrid solar and wind energy harvester to power a refrigerator in the fishing boat. The refrigerator should keep the fish in 2 - 4 °C. The energy needed is 720 Wh daily. In the area, the daily average wind velocity is 4.27 m/s and the sun irradiation is 672 W/m2. The design combined two 100W solar panels and a 300W wind turbine. The testing showed that the solar panels can harvest 815 - 817 Wh of energy, while the wind turbine can harvest 43 - 62 Wh of energy daily. Therefore, the system can fulfil the energy requirement in fishing boat, although the solar panels were more dominant. To install the wind turbine on the fishing-boat, a computational design had been conducted. The boat hydrostatic dimension was measured to determine its stability condition. To reach a stable equilibrium condition, the wind turbine should be installed no more than 1.7 m of height.

  4. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  5. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  6. Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions.

    Science.gov (United States)

    Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua

    2018-06-14

    Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.

    Science.gov (United States)

    Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie

    2016-10-05

    The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.

  8. Design of a hybrid power system based on solar cell and vibration energy harvester

    Science.gov (United States)

    Zhang, Bin; Li, Mingxue; Zhong, Shaoxuan; He, Zhichao; Zhang, Yufeng

    2018-03-01

    Power source has become a serious restriction of wireless sensor network. High efficiency, self-energized and long-life renewable source is the optimum solution for unmanned sensor network applications. However, single renewable power source can be easily affected by ambient environment, which influences stability of the system. In this work, a hybrid power system consists of a solar panel, a vibration energy harvester and a lithium battery is demonstrated. The system is able to harvest multiple types of ambient energy, which extends its applicability and feasibility. Experiments have been conducted to verify performance of the system.

  9. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    Science.gov (United States)

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

  10. A Single-Chip Solar Energy Harvesting IC Using Integrated Photodiodes for Biomedical Implant Applications.

    Science.gov (United States)

    Chen, Zhiyuan; Law, Man-Kay; Mak, Pui-In; Martins, Rui P

    2017-02-01

    In this paper, an ultra-compact single-chip solar energy harvesting IC using on-chip solar cell for biomedical implant applications is presented. By employing an on-chip charge pump with parallel connected photodiodes, a 3.5 × efficiency improvement can be achieved when compared with the conventional stacked photodiode approach to boost the harvested voltage while preserving a single-chip solution. A photodiode-assisted dual startup circuit (PDSC) is also proposed to improve the area efficiency and increase the startup speed by 77%. By employing an auxiliary charge pump (AQP) using zero threshold voltage (ZVT) devices in parallel with the main charge pump, a low startup voltage of 0.25 V is obtained while minimizing the reversion loss. A 4 V in gate drive voltage is utilized to reduce the conduction loss. Systematic charge pump and solar cell area optimization is also introduced to improve the energy harvesting efficiency. The proposed system is implemented in a standard 0.18- [Formula: see text] CMOS technology and occupies an active area of 1.54 [Formula: see text]. Measurement results show that the on-chip charge pump can achieve a maximum efficiency of 67%. With an incident power of 1.22 [Formula: see text] from a halogen light source, the proposed energy harvesting IC can deliver an output power of 1.65 [Formula: see text] at 64% charge pump efficiency. The chip prototype is also verified using in-vitro experiment.

  11. Efficiency Limits of Solar Energy Harvesting via Internal Photoemission in Carbon Materials

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2018-02-01

    Full Text Available We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, including visible and near-infrared light. The energy of photo-generated non-equilibrium or ‘hot’ charge carriers can be harvested before they thermalize with the crystal lattice via the process of their internal photo-emission (IPE through the rectifying Schottky junction with a semiconductor. However, the low efficiency and the high cost of noble metals necessitates the search for cheaper abundant alternative materials, and we show here that carbon can serve as a promising IPE material candidate. We compare the upper limits of performance of IPE photon energy-harvesting platforms, which incorporate either gold or carbon as the photoactive material where hot electrons are generated. Through a combination of density functional theory, joint electron density of states calculations, and Schottky diode efficiency modeling, we show that the material electron band structure imposes a strict upper limit on the achievable efficiency of the IPE devices. Our calculations reveal that graphite is a good material candidate for the IPE absorber for harvesting visible and near-infrared photons. Graphite electron density of states yields a sizeable population of hot electrons with energies high enough to be collected across the potential barrier. We also discuss the mechanisms that prevent the IPE device efficiency from reaching the upper limits imposed by their material electron band structures. The proposed approach is general and allows for efficient pre-screening of materials for their potential use in IPE energy converters and photodetectors within application-specific spectral windows.

  12. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    Science.gov (United States)

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks.

    Science.gov (United States)

    Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian

    2016-01-04

    Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks' activities in an uninterrupted and efficient manner.

  14. Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2016-01-01

    Full Text Available Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks’ activities in an uninterrupted and efficient manner.

  15. Energy transfer in nanowire solar cells with photon-harvesting shells

    KAUST Repository

    Peters, C. H.; Guichard, A. R.; Hryciw, A. C.; Brongersma, M. L.; McGehee, M. D.

    2009-01-01

    The concept of a nanowire solar cell with photon-harvesting shells is presented. In this architecture, organic molecules which absorb strongly in the near infrared where silicon absorbs weakly are coupled to silicon nanowires (SiNWs). This enables

  16. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  17. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    Science.gov (United States)

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  18. Energy transfer in nanowire solar cells with photon-harvesting shells

    KAUST Repository

    Peters, C. H.

    2009-01-01

    The concept of a nanowire solar cell with photon-harvesting shells is presented. In this architecture, organic molecules which absorb strongly in the near infrared where silicon absorbs weakly are coupled to silicon nanowires (SiNWs). This enables an array of 7-μm -long nanowires with a diameter of 50 nm to absorb over 85% of the photons above the bandgap of silicon. The organic molecules are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons and subsequently transfer the energy to the SiNWs via Förster resonant energy transfer, creating free electrons and holes within the SiNWs. The carriers are then separated at a radial p-n junction in a nanowire and extracted at the respective electrodes. The shortness of the nanowires is expected to lower the dark current due to the decrease in p-n junction surface area, which scales linearly with wire length. The theoretical power conversion efficiency is 15%. To demonstrate this concept, we measure a 60% increase in photocurrent from a planar silicon-on-insulator diode when a 5 nm layer of poly[2-methoxy-5-(2′ -ethyl-hexyloxy)-1,4-phenylene vinylene is applied to the surface of the silicon. This increase is in excellent agreement with theoretical predictions. © 2009 American Institute of Physics.

  19. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy

    KAUST Repository

    Chen, Jun

    2016-09-12

    Developing lightweight, flexible, foldable and sustainable power sources with simple transport and storage remains a challenge and an urgent need for the advancement of next-generation wearable electronics. Here, we report a micro-cable power textile for simultaneously harvesting energy from ambient sunshine and mechanical movement. Solar cells fabricated from lightweight polymer fibres into micro cables are then woven via a shuttle-flying process with fibre-based triboelectric nanogenerators to create a smart fabric. A single layer of such fabric is 320 μm thick and can be integrated into various cloths, curtains, tents and so on. This hybrid power textile, fabricated with a size of 4 cm by 5 cm, was demonstrated to charge a 2 mF commercial capacitor up to 2 V in 1 min under ambient sunlight in the presence of mechanical excitation, such as human motion and wind blowing. The textile could continuously power an electronic watch, directly charge a cell phone and drive water splitting reactions. In light of concerns about global warming and energy crises, searching for renewable energy resources that are not detrimental to the environment is one of the most urgent challenges to the sustainable development of human civilization1,2,3. Generating electricity from natural forces provides a superior solution to alleviate expanding energy needs on a sustainable basis4,5,6,7,8,9. With the rapid advancement of modern technologies, developing lightweight, flexible, sustainable and stable power sources remains both highly desirable and a challenge10,11,12,13,14,15,16. Solar irradiance and mechanical motion are clean and renewable energy sources17,18,19,20,21,22,23,24. Fabric-based materials are most common for humans and fibre-based textiles can effectively accommodate the complex deformations induced by body motion25,26,27,28,29,30,31,32. A smart textile that generates electrical power from absorbed solar irradiance and mechanical motion could be an important

  20. Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops.

    Science.gov (United States)

    Liu, Yuqiang; Sun, Na; Liu, Jiawei; Wen, Zhen; Sun, Xuhui; Lee, Shuit-Tong; Sun, Baoquan

    2018-03-27

    Solar cells, as promising devices for converting light into electricity, have a dramatically reduced performance on rainy days. Here, an energy harvesting structure that integrates a solar cell and a triboelectric nanogenerator (TENG) device is built to realize power generation from both sunlight and raindrops. A heterojunction silicon (Si) solar cell is integrated with a TENG by a mutual electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film. Regarding the solar cell, imprinted PEDOT:PSS is used to reduce light reflection, which leads to an enhanced short-circuit current density. A single-electrode-mode water-drop TENG on the solar cell is built by combining imprinted polydimethylsiloxane (PDMS) as a triboelectric material combined with a PEDOT:PSS layer as an electrode. The increasing contact area between the imprinted PDMS and water drops greatly improves the output of the TENG with a peak short-circuit current of ∼33.0 nA and a peak open-circuit voltage of ∼2.14 V, respectively. The hybrid energy harvesting system integrated electrode configuration can combine the advantages of high current level of a solar cell and high voltage of a TENG device, promising an efficient approach to collect energy from the environment in different weather conditions.

  1. Organometal Halide Perovskite Solar Absorbers and Ferroelectric Nanocomposites for Harvesting Solar Energy

    Science.gov (United States)

    Hettiarachchi, Chaminda Lakmal

    Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid and methylamine) are quite expensive. This work describes a novel, single-step, simple, and cost-effective solution approach to prepare CH3NH3PbI3-xClx thin films by the direct reaction of the commercially available CH3NH 3Cl (or MACl) and PbI2. A detailed analysis of the structural and optical properties of CH3NH3PbI3-xCl x thin films deposited by aerosol assisted chemical vapor deposition is presented. Optimum growth conditions have been identified. It is shown that the deposited thin films are highly crystalline with intense optical absorbance. Charge carrier separation of these thin films can be enhanced by establishing a local internal electric field that can reduce electron-hole recombination resulting in increased photo current. The intrinsic ferroelectricity in nanoparticles of Barium Titanate (BaTiO3 -BTO) embedded in the solar absorber can generate such an internal field. A hybrid structure of CH3NH 3PbI3-xClx perovskite and ferroelectric BTO nanocomposite FTO/TiO2/CH3NH3PbI3-xClx : BTO/P3HT/Cu as a new type of photovoltaic device is investigated. Aerosol assisted chemical vapor deposition process that is scalable to large-scale manufacturing was used for the growth of the multilayer structure. TiO 2 and P3HT with additives were used as ETL and HTL respectively. The growth process of the solar absorber layer includes the

  2. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    Science.gov (United States)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  3. TiO2-photoanode-assisted direct solar energy harvesting and storage in a solar-powered redox cell using halides as active materials.

    Science.gov (United States)

    Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong

    2018-06-19

    The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO2 photoanode in the cathode side. Direct charging the cell by solar irradiation results in the conversion of solar energy in to chemical energy. While discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br2/Br- and I3-/I- in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5V with good round-trip efficiencies. This design is expected to be a potential alternative towards the development of affordable, inexhaustible and clean solar energy technologies.

  4. Hybrid energy harvesting using active thermal backplane

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  5. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  6. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  7. Energy harvesting for microsystems

    DEFF Research Database (Denmark)

    Xu, Ruichao

    The purpose of this project is to design and fabricate piezoelectric energy harvesters based on integration of Pb(ZrxTi1-x)O3 (PZT) thick film technology and silicon microtechnology. The fabrication processes are carried out in close collaboration with Meggitt Sensing Systems (MSS) who has...... the unique expertise to screen print piezoelectric thick film layers, thus all screen printing steps are done by MSS while the silicon micromachining is carried out at Danchip facility at DTU. The presented energy harvesters are all based on using piezoelectric thick film operating in the 31-mode to generate...... power when strained. Three archetypes of the numerous fabricated energy harvesters will be presented in detail, they represent three major milestones in this project. The first energy harvester archetype has an unimorph cantilever beam, which consists of a 20 µm silicon layer and 10-30 µm screen printed...

  8. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-01

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag

  9. Characterization of Piezoelectric Energy Harvesting MEMS

    Science.gov (United States)

    2015-12-01

    of previously fabricated MEMS piezoelectric energy harvesters and use the results to optimize an advanced finite element model to be used in...possibilities of using solar power and the piezoelectric effect to harvest energy [12]. The design goal was to develop an energy harvester with a resonant... The piezoelectric properties of AlN are also relatively constant over a wide range of temperatures [7]. AlN was further characterized

  10. Electromagnetic energy harvester for harvesting acoustic energy

    Indian Academy of Sciences (India)

    Farid U Khan

    SPLs) both in ... several ambient energies such as wind, thermal, vibration, and solar are available and have been successfully trans- ..... mentsTM data acquisition (DAQ) card and NI LabVIEW software is used to acquire the signals from the ...

  11. Smart multi-application energy harvester using Arduino | Rizman ...

    African Journals Online (AJOL)

    This paper presents a Smart Multi-App Harvester Energy Using Arduino for energy harvesting. The system consists of a few mechanical parts such as solar, thermal plate and dynamo (for kinetic) to harvest the energy. The objectives of the project are to harvest the wasted energy from the mechanical parts and used it as a ...

  12. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.

    Science.gov (United States)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-25

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm 2 . At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  13. Solar energy harvesting by magnetic-semiconductor nanoheterostructure in water treatment technology.

    Science.gov (United States)

    Mahmoodi, Vahid; Bastami, Tahereh Rohani; Ahmadpour, Ali

    2018-03-01

    Photocatalytic degradation of toxic organic pollutants in the wastewater using dispersed semiconductor nanophotocatalysts has a number of advantages such as high activity, cost effectiveness, and utilization of free solar energy. However, it is difficult to recover and recycle nanophotocatalysts since the fine dispersed nanoparticles are easily suspended in waters. Furthermore, a large amount of photocatalysts will lead to color contamination. Thus, it is necessary to prepare photocatalysts with easy separation for the reusable application. To take advantage of high photocatalysis activity and reusability, magnetic photocatalysts with separation function were utilized. In this review, the photocatalytic principle, structure, and application of the magnetic-semiconductor nanoheterostructure photocatalysts under solar light are evaluated. Graphical abstract ᅟ.

  14. Design of broadband multilayer dichroic coating for a high-efficiency solar energy harvesting system.

    Science.gov (United States)

    Jiachen, Wang; Lee, Sang Bae; Lee, Kwanil

    2015-05-20

    We report on the design and performance of a broadband dichroic coating for a solar energy conversion system. As a spectral beam splitter, the coating facilitates a hybrid system that combines a photovoltaic cell with a thermal collector. When positioned at a 45° angle with respect to incident light, the coating provides high reflectance in the 40-1100 nm and high transmission in the 1200-2000 nm ranges for a photovoltaic cell and a thermal collector, respectively. Numerical simulations show that our design leads to a sharp transition between the reflection and transmission bands, low ripples in both bands, and slight polarization dependence.

  15. Wind energy harvesting with a piezoelectric harvester

    International Nuclear Information System (INIS)

    Wu, Nan; Wang, Quan; Xie, Xiangdong

    2013-01-01

    An energy harvester comprising a cantilever attached to piezoelectric patches and a proof mass is developed for wind energy harvesting, from a cross wind-induced vibration of the cantilever, by the electromechanical coupling effect of piezoelectric materials. The vibration of the cantilever under the cross wind is induced by the air pressure owing to a vortex shedding phenomenon that occurs on the leeward side of the cantilever. To describe the energy harvesting process, a theoretical model considering the cross wind-induced vibration on the piezoelectric coupled cantilever energy harvester is developed, to calculate the charge and the voltage from the harvester. The influences of the length and location of the piezoelectric patches as well as the proof mass on the generated electric power are investigated. Results show that the total generated electric power can be as high as 2 W when the resonant frequency of the cantilever harvester is close to the vortex shedding frequency. Moreover, a value of total generated electric power up to 1.02 W can be practically realized for a cross wind with a variable wind velocity of 9–10 m s −1 by a harvester with a length of 1.2 m. This research facilitates an effective and compact wind energy harvesting device. (paper)

  16. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  17. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  18. Energy harvesting for microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Ruichao Xu

    2012-05-15

    The purpose of this project is to design and fabricate piezoelectric energy harvesters based on integration of Pb(ZrxTi1-x)O3 (PZT) thick film technology and silicon microtechnology. The fabrication processes are carried out in close collaboration with Meggitt Sensing Systems (MSS) who has the unique expertise to screen print piezoelectric thick film layers, thus all screen printing steps are done by MSS while the silicon micromachining is carried out at Danchip facility at DTU. The presented energy harvesters are all based on using piezoelectric thick film operating in the 31-mode to generate power when strained. Three archetypes of the numerous fabricated energy harvesters will be presented in detail, they represent three major milestones in this project. The first energy harvester archetype has an unimorph cantilever beam, which consists of a 20 {mu}m silicon layer and 10-30 {mu}m screen printed PZT layer, anchored on a silicon frame at one end and attached to a silicon proof mass at the other. Electrodes will cover both side of the PZT layer, so the harvested energy can be collected electrically. The second archetype has a bimorph cantilever beam, which consists of two 15-35 {mu}m PZT layers, anchored on a silicon frame at the one end and attached to a silicon proof mass at the other. Electrodes are deposited below, between and above the two PZT layers. The root mean square (RMS) power output measured on this type of harvesters is as high as 37.1{mu}W at 1 g. The third archetype is similar to the first one, the screen printed PZT layer is replaced by a lead free piezoelectric material, (KxNa1-x)NbO3 (KNN). Some of the major challenges encountered during the development processes are bad adhesion, fragile structures and short circuiting through the PZT layer. All of which have being fully or partially solved in this project. The final energy harvesters are designed to be used in an energy harvester powered wireless sensing system. (Author)

  19. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.; Hoke, Eric T.; Armstrong, Paul B.; Yum, Jun-Ho; Comte, Pascal; Torres, Tomá s; Fré chet, Jean M. J.; Nazeeruddin, Md Khaja; Grä tzel, Michael; McGehee, Michael D.

    2009-01-01

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near

  20. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.

    Science.gov (United States)

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-12-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  1. Piezoelectric energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Howells, Christopher A [Power Technology Branch, US Army, CERDEC, C2D, Ft. Belvoir, VA 22060-5816 (United States)

    2009-07-15

    Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. This technology, together with innovative mechanical coupling designs, can form the basis for harvesting energy from mechanical motion. Piezoelectric energy can be harvested to convert walking motion from the human body into electrical power. Recently four proof-of-concept Heel Strike Units were developed where each unit is essentially a small electric generator that utilizes piezoelectric elements to convert mechanical motion into electrical power in the form factor of the heel of a boot. The results of the testing and evaluation and the performance of this small electric generator are presented. The generator's conversion of mechanical motion into electrical power, the processes it goes through to produce useable power and commercial applications of the Heel Strike electric generator are discussed. (author)

  2. Piezoelectric energy harvesting

    International Nuclear Information System (INIS)

    Howells, Christopher A

    2009-01-01

    Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. This technology, together with innovative mechanical coupling designs, can form the basis for harvesting energy from mechanical motion. Piezoelectric energy can be harvested to convert walking motion from the human body into electrical power. Recently four proof-of-concept Heel Strike Units were developed where each unit is essentially a small electric generator that utilizes piezoelectric elements to convert mechanical motion into electrical power in the form factor of the heel of a boot. The results of the testing and evaluation and the performance of this small electric generator are presented. The generator's conversion of mechanical motion into electrical power, the processes it goes through to produce useable power and commercial applications of the Heel Strike electric generator are discussed.

  3. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen

    2016-01-01

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized

  4. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  5. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  6. Piezoelectric Energy Harvesting Solutions

    Science.gov (United States)

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  7. Experimental and numerical investigation of the aperture size effect on the efficient solar energy harvesting for solar thermochemical applications

    International Nuclear Information System (INIS)

    Sarwar, J.; Georgakis, G.; Kouloulias, K.; Kakosimos, K.E.

    2015-01-01

    Highlights: • Experimental results on thermal analysis of a solar cavity for variable apertures. • Development of an optical model for energy transfer from light source to the cavity. • Development of a coupled ray tracing and heat transfer model for the cavity. • Validation of both the models with experimental measurements. • Use of the models to study new cases like the efficiency of the variable apertures. - Abstract: In this paper, experimental and numerical work have been undertaken to investigate the steady state temperatures throughout the day of a cylindrical solar receiver when using fixed and variable size apertures. A high flux solar simulator, consisting of a 7 kW xenon short arc lamp, is employed as a light source. The sunlight intensity variations at early morning (06:30), morning (07:15) and noon (12:00) time of a reference day are imitated by changing the input current to the lamp. Experiments have been performed with different aperture diameters across selected irradiance levels to imitate sunlight variations. An optical model is developed to simulate incident flux distribution and the output is compared with the experimental measurements for validation. A finite volume algorithm is developed, based on a coupled Monte Carlo heat transfer model, to calculate the steady state temperatures in the receiver. Experimental and numerical temperatures are compared and an excellent agreement with an average temperature difference of ±0.2%, is observed. The optimum aperture size varies with the change in irradiance intensity and therefore the time of day. Simulations for a 30 kW light source show that the daily steady state temperature differential for fixed apertures of 8–10 cm is 170–190 K. Variable apertures reduce power consumption by half when compared to fixed apertures. Variable apertures maintain steady state temperatures of 1000 K, 1100 K and 1200 K by consuming 26.8 kW day, 33.2 kW day and 26.9 kW day, respectively

  8. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  9. Micro energy harvesting

    CERN Document Server

    Briand, Danick; Roundy, Shad

    2015-01-01

    With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, e

  10. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  11. Energy harvesting with functional materials and microsystems

    CERN Document Server

    Bhaskaran, Madhu; Iniewski, Krzysztof

    2013-01-01

    For decades, people have searched for ways to harvest energy from natural sources. Lately, a desire to address the issue of global warming and climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices without batteries, and thermoelectric technology is being explored to convert wasted heat, such as in automobile engine combustion, into electricity. Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growi

  12. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  13. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee; Zhao, Chao; Priante, Davide; Ooi, Boon S.; Hussein, Mohamed Ebaid Abdrabou

    2018-01-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  14. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee

    2018-02-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  15. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-04

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag at the vehicle-water interface. This reduction in drag corresponds to an increase in speed and/or greater fuel efficiency. The mechanical energy of the rolling cylindrical drums is also transformed into electrical energy using an electricity producing device, such as a dynamo or an alternator. Thus, the efficiency of the vehicle is enhanced in two parallel modes: from the reduction in drag at the vehicle-water interface, and from capturing power from the rotational motion of the drums.

  16. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  17. Progress on bioinspired, biomimetic, and bioreplication routes to harvest solar energy

    Science.gov (United States)

    Martín-Palma, Raúl J.; Lakhtakia, Akhlesh

    2017-06-01

    Although humans have long been imitating biological structures to serve their particular purposes, only a few decades ago engineered biomimicry began to be considered a technoscientific discipline with a great problem-solving potential. The three methodologies of engineered biomimicry-viz., bioinspiration, biomimetic, and bioreplication-employ and impact numerous technoscientific fields. For producing fuels and electricity by artificial photosynthesis, both processes and porous surfaces inspired by plants and certain marine animals are under active investigation. Biomimetically textured surfaces on the subwavelength scale have been shown to reduce the reflectance of photovoltaic solar cells over the visible and the near-infrared regimes. Lenticular compound lenses bioreplicated from insect eyes by an industrially scalable technique offer a similar promise.

  18. Photonic Color Filters Integrated with Organic Solar Cells for Energy Harvesting

    KAUST Repository

    Park, Hui Joon

    2011-09-27

    Color filters are indispensable in most color display applications. In most cases, they are chemical pigment-based filters, which produce a particular color by absorbing its complementary color, and the absorbed energy is totally wasted. If the absorbed and wasted energy can be utilized, e.g., to generate electricity, innovative energy-efficient electronic media could be envisioned. Here we show photonic nanostructures incorporated with photovoltaics capable of producing desirable colors in the visible band and utilize the absorbed light to simultaneously generate electrical powers. In contrast to the traditional colorant-based filters, these devices offer great advantages for electro-optic applications. © 2011 American Chemical Society.

  19. Photonic Color Filters Integrated with Organic Solar Cells for Energy Harvesting

    KAUST Repository

    Park, Hui Joon; Xu, Ting; Lee, Jae Yong; Ledbetter, Abram; Guo, L. Jay

    2011-01-01

    Color filters are indispensable in most color display applications. In most cases, they are chemical pigment-based filters, which produce a particular color by absorbing its complementary color, and the absorbed energy is totally wasted

  20. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  1. Thermoelectrics and its energy harvesting

    National Research Council Canada - National Science Library

    Rowe, David Michael

    2012-01-01

    .... It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material...

  2. Radio Frequency Energy Harvesting Sources

    Directory of Open Access Journals (Sweden)

    Action NECHIBVUTE

    2017-12-01

    Full Text Available This radio frequency (RF energy harvesting is an emerging technology and research area that promises to produce energy to run low-power wireless devices. The great interest that has recently been paid to RF harvesting is predominantly driven by the great progress in both wireless communication systems and broadcasting technologies that have availed a lot of freely propagating ambient RF energy. The principle aim of an RF energy harvesting system is to convert the received ambient RF energy into usable DC power. This paper presents a state of the art concise review of RF energy harvesting sources for low power applications, and also discusses open research questions and future research directions on ambient RF energy harvesting.

  3. Potential Ambient Energy-Harvesting Sources and Techniques

    Science.gov (United States)

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  4. Solar Energy

    Science.gov (United States)

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  5. Thermodynamic limits of energy harvesting from outgoing thermal radiation.

    Science.gov (United States)

    Buddhiraju, Siddharth; Santhanam, Parthiban; Fan, Shanhui

    2018-04-17

    We derive the thermodynamic limits of harvesting power from the outgoing thermal radiation from the ambient to the cold outer space. The derivations are based on a duality relation between thermal engines that harvest solar radiation and those that harvest outgoing thermal radiation. In particular, we derive the ultimate limit for harvesting outgoing thermal radiation, which is analogous to the Landsberg limit for solar energy harvesting, and show that the ultimate limit far exceeds what was previously thought to be possible. As an extension of our work, we also derive the ultimate limit of efficiency of thermophotovoltaic systems.

  6. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-02-11

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized by fabricating an array of polydimethylsiloxane (PDMS) - iron nanowire nanocomposite cilia on a planar coil array. Each coil element consists of 14 turns and occupies an area of 600 μm x 600μm. The cilia are arranged in a 12x5 array and each cilium is 250 μm wide and 2 mm long. The magnetic characteristics of the fabricated cilia indicate that the nanowires are well aligned inside of the nanocomposite, increasing the efficiency of energy harvesting. The energy harvester occupies an area of 66.96 mm2 and produces an output r.m.s voltage of 206.47μV, when excited by a 40 Hz vibration of 1 mm amplitude.

  7. Energy harvesting on highway bridges.

    Science.gov (United States)

    2011-01-01

    A concept for harvesting energy from the traffic-induced loadings on a highway bridge using piezoelectric : materials to generate electricity was explored through the prototype stage. A total of sixteen lead-zirconate : titanate (PZT) Type 5A piezoel...

  8. Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization

    Science.gov (United States)

    Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.

    2018-06-01

    The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.

  9. Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting

    Science.gov (United States)

    Routray, S. R.; Lenka, T. R.

    2017-11-01

    Now-a-days III-Nitride nanowires with axial (nanodisk) and radial (core/shell/shell-nanowire) junctions are two unique and potential methods for solar energy harvesting adopted by worldwide researchers. In this paper, polarization behavior of GaN/InGaN/GaN junction and its effect on carrier dynamics of nanodisk and CSS-nanowire type solar cells are intensively studied and compared with its planar counterpart by numerical simulations using commercially available Victory TCAD. It is observed that CSS-NW with hexagonal geometrical shapes are robust to detrimental impact of polarization charges and could be good enough to accelerate carrier collection efficiency as compared to nanodisk and planar solar cells. This numerical study provides an innovative aspect of fundamental device physics with respect to polarization charges in CSS-NW and nanodisk type junction towards photovoltaic applications. The internal quantum efficiencies (IQE) are also discussed to evaluate carrier collection mechanisms and recombination losses in each type of junctions of solar cell. Finally, it is interesting to observe a maximum conversion efficiency of 6.46% with 91.6% fill factor from n-GaN/i-In0.1Ga0.9N/p-GaN CSS-nanowire solar cell with an optimized thickness of 180 nm InGaN layer under one Sun AM1.5 illumination.

  10. Triboelectric effect in energy harvesting

    Science.gov (United States)

    Logothetis, I.; Vassiliadis, S.; Siores, E.

    2017-10-01

    With the development of wearable technology, much research has been undertaken in the field of flexible and stretchable electronics for use in interactive attire. The challenging problem wearable technology faces is the ability to provide energy whilst keeping the endproduct comfortable, light, ergonomic and nonintrusive. Energy harvesting, or energy scavenging as it is also known, is the process by which ambient energy is captured and converted into electric energy. The triboelectric effect converts mechanical energy into electrical energy based on the coupling effect of triboelectrification and electrostatic induction and is utilized as the basis for triboelectric generators (TEG). TEG’s are promising for energy harvesting due their high output power and efficiency in conjunction with simple and economical production. Due to the wide availability of materials and ease of integration, in order to produce the triboelectric effect such functional materials are effective for wearable energy harvesting systems. Flexible TEG’s can be built and embedded into attire, although a thorough understanding of the underlying principle of how TEG’s operate needs to be comprehended for the development and in incorporation in smart technical textiles. This paper presents results associated with TEG’S and discusses their suitability for energy harvesting in textiles structures.

  11. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  12. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  13. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  14. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Science.gov (United States)

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318

  15. A Hip Implant Energy Harvester

    Science.gov (United States)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2014-11-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 μW was achieved with an optimum resistive load of 250Ω.

  16. A Hip Implant Energy Harvester

    International Nuclear Information System (INIS)

    Pancharoen, K; Zhu, D; Beeby, S P

    2014-01-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 μW was achieved with an optimum resistive load of 250Ω

  17. Fluid flow nozzle energy harvesters

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  18. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  19. A Facile Method for Synthesizing TiO2 Sea-Urchin-Like Structures and Their Applications in Solar Energy Harvesting

    International Nuclear Information System (INIS)

    Wang Wen-Hui; Xu Hong-Xing; Wang Wen-Zhong

    2011-01-01

    We present a new method to prepare TiO 2 sea-urchin-like structures, which involves the initial formation of tubular nanostructures and subsequent self-assembly of the nanotubes into micrometer-scale sea-urchin-like structures. We also investigate the important role of alkali aqueous conditions in the preparation of TiO 2 sea-urchin-like structures. This facile and cost-effective approach provides a new route for the preparation of self-assembled TiO 2 structures. In addition, the performance of the as-synthesized TiO 2 sea-urchin-like structures as the active layer of an efficient solar energy harvester is also studied and discussed. (cross-disciplinary physics and related areas of science and technology)

  20. Integration with Energy Harvesting Technology

    Directory of Open Access Journals (Sweden)

    S. Williams

    2012-11-01

    Full Text Available This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.

  1. Energy Harvesting Research: The Road from Single Source to Multisource.

    Science.gov (United States)

    Bai, Yang; Jantunen, Heli; Juuti, Jari

    2018-06-07

    Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  3. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  4. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  5. Issues in vibration energy harvesting

    Science.gov (United States)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-05-01

    In this study, fundamental issues related to bandwidth and nonlinear resonance in vibrational energy harvesting devices are investigated. The results show that using bandwidth as a criterion to measure device performance can be misleading. For a linear device, an enlarged bandwidth is achieved at the cost of sacrificing device performance near resonance, and thus widening the bandwidth may offer benefits only when the natural frequency of the linear device cannot match the dominant excitation frequency. For a nonlinear device, since the principle of superposition does not apply, the ''broadband" performance improvements achieved for single-frequency excitations may not be achievable for multi-frequency excitations. It is also shown that a large-amplitude response based on the traditional ''nonlinear resonance" does not always result in the optimal performance for a nonlinear device because of the negative work done by the excitation, which indicates energy is returned back to the excitation. Such undesired negative work is eliminated at global resonance, a generalized resonant condition for both linear and nonlinear systems. While the linear resonance is a special case of global resonance for a single-frequency excitation, the maximum potential of nonlinear energy harvesting can be reached for multi-frequency excitations by using global resonance to simultaneously harvest energy distributed over multiple frequencies.

  6. Electrodynamic energy harvester for electrical transformer's ...

    Indian Academy of Sciences (India)

    Electrical transformer; electrodynamic; energy harvester; self-powered ...... Kennedy S P and Gordner T 2013 Hot spot studies for sheet wound transformer wind- ... and Lambert F 2011 Powering low-cost utility sensors using energy harvesting.

  7. Performance Limits of Communication with Energy Harvesting

    KAUST Repository

    Znaidi, Mohamed Ridha

    2016-01-01

    In energy harvesting communications, the transmitters have to adapt transmission to the availability of energy harvested during communication. The performance of the transmission depends on the channel conditions which vary randomly due to mobility

  8. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  9. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  10. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  11. Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices

    Science.gov (United States)

    Sharma, Saumya

    Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that

  12. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al; Jabbour, Ghassan E.

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films

  13. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  14. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  15. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...... is achieved by placing the cantilever in a magnetic field induced by either one or two magnets located oppositely of the cantilever. The attraction force created by the magnetic field and iron foils introduces a mechanical force in opposite direction of the cantilevers restoring force causing a spring...

  16. Microelectronic circuit design for energy harvesting systems

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2017-01-01

    This book describes the design of microelectronic circuits for energy harvesting, broadband energy conversion, new methods and technologies for energy conversion. The author also discusses the design of power management circuits and the implementation of voltage regulators. Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control and conditioning circuit design. Provides a single-source reference to energy harvesting and its applications; Serves as a practical guide to microelectronics design for energy harvesting, with application to mobile power supplies; Enables readers to develop energy harvesting systems for wearable/mobile electronics.

  17. Solar energy. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Benseman, R.

    1977-10-15

    The potential for solar space heating and solar water heating in New Zealand is discussed. Available solar energy in New Zealand is indicated, and the economics of solar space and water heating is considered. (WHK)

  18. Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio

    2012-01-01

    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....... without any needs for battery recharge or replacement. However, energy harvesting introduces a change to the fundamental principles based on which WSNs are designed and realized. In this poster we sketch some of the key research challenges as well as our ongoing work in designing and realizing Wireless...

  19. Solar Energy Basics | NREL

    Science.gov (United States)

    Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the technologies convert sunlight to usable energy for buildings. The most commonly used solar technologies for

  20. Experimental measurement of energy harvesting with backpack

    Science.gov (United States)

    Pavelkova, Radka; Vala, David; Suranek, Pavel; Mahdal, Miroslav

    2017-08-01

    This article deals with the energy harvesting systems, especially the energy harvesting backpack, which appears as a convenient means for energy harvesting for mobile sensors power. Before starting the experiment, it was necessary to verify whether this energy will be sufficient to get acquainted with the human kinematics and analyze problematics itself. For this purpose there was used motion capture technology from Xsens. Measured data on the position of a particle moving man and back when walking, these data were then used for experimental realization of energy harvesting backpack and as input data to the simulation in Simulink, which brought us a comparison between theoretical assumptions and practical implementation. When measuring characteristics of energy harvesting system we have a problem with measurements on backpack solved when redoing of the hydraulic cylinder as a source of a suitable movement corresponding to the amplitude and frequency of human walk.

  1. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  2. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  3. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  4. Adaptive learning algorithms for vibration energy harvesting

    International Nuclear Information System (INIS)

    Ward, John K; Behrens, Sam

    2008-01-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27–34%

  5. Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Peiris, T.A.; Sagu, Jagdeep S.; Hazim Yusof, Y.; Upul Wijayantha, K.G., E-mail: U.Wijayantha@lboro.ac.uk

    2015-09-01

    Metallic Zn thin films were electrodeposited on fluorine-doped tin oxide (FTO) glass substrates and oxidized under air by conventional radiant and microwave post-annealing methods to obtain ZnO thin film electrodes. The temperature of each post-annealing method was varied systematically and the photoelectrochemical (PEC) performance of electrodes was evaluated. The best photocurrent density achieved by the conventional radiant annealing method at 425 °C for 15 min was 93 μA cm{sup −2} at 1.23 V vs. NHE and the electrode showed an incident photon-to-electron conversion efficiency (IPCE) of 28.2%. X-ray diffractogram of this electrode showed that the oxidation of Zn to ZnO was not completed during the radiant annealing process as evident by the presence of metallic Zn in the electrode. For the electrode oxidized from Zn to ZnO under microwave irradiation, a photocurrent of 130 μA cm{sup −2} at 1.23 V vs. NHE and IPCE of 35.6% was observed after annealing for just 3 min, during which the temperature reached 250 °C. The photocurrent was 40% higher for the microwave annealed sample; this increase was attributed to higher surface area by preserving the nanostructure, confirmed by SEM surface topographical analysis, and better conversion yields to crystalline ZnO. Overall, it was demonstrated that oxidation of Zn to ZnO can be accomplished by microwave annealing five times faster than that of conventional annealing, thus resulting in a ~ 75% power saving. This study shows that microwave processing of materials offers significant economic and performance advantages for industrial scale up. - Highlights: • Conversion of Zn to ZnO by microwave and radiant annealing was conducted. • Microwave conversion was 5 times faster compared to radiant annealing. • Photoelectrochemical performance of microwave annealed ZnO was 40% higher. • Microwave annealing results in a 75% energy saving.

  6. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  7. Piezoelectric energy harvesting from broadband random vibrations

    International Nuclear Information System (INIS)

    Adhikari, S; Friswell, M I; Inman, D J

    2009-01-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples

  8. Piezoelectric energy harvesting from broadband random vibrations

    Science.gov (United States)

    Adhikari, S.; Friswell, M. I.; Inman, D. J.

    2009-11-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  9. Midinfrared radiation energy harvesting device

    Science.gov (United States)

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  10. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  11. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  12. Harvesting renewable energy from Earth's mid-infrared emissions

    KAUST Repository

    Byrnes, S. J.; Blanchard, R.; Capasso, F.

    2014-01-01

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

  13. Harvesting renewable energy from Earth's mid-infrared emissions.

    Science.gov (United States)

    Byrnes, Steven J; Blanchard, Romain; Capasso, Federico

    2014-03-18

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

  14. Harvesting renewable energy from Earth's mid-infrared emissions

    KAUST Repository

    Byrnes, S. J.

    2014-03-03

    It is possible to harvest energy from Earth\\'s thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

  15. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Walkemeyer, Phillip E. (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Colonius, Tim (Inventor); Tosi, Phillipe (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor); Corbett, Thomas Gary (Inventor); Arrazola, Alvaro Jose (Inventor)

    2016-01-01

    A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.

  16. Energy Harvesting for Sensor Nodes in the Internet of Things

    OpenAIRE

    Castillo, Erick

    2015-01-01

    Wireless sensor networks have an extensive range of applications in the real world. From military uses saving lives, to environmental applications monitoring the fauna and weather conditions, but also by checking the health of patients and even by automating our homes. This work presents a solution to implement an energy harvesting sensor network. By using solar energy to power a sensor node we can extend its lifetime beyond the one powered only by batteries. Moreover, this sol...

  17. Ultrasound acoustic wave energy transfer and harvesting

    Science.gov (United States)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  18. Design of Solar Harvested Semi Active RFID Transponder with Supercapacitor Storage

    OpenAIRE

    Gary Valentine; Lukas Vojtech; Marek Neruda

    2015-01-01

    This paper presents the analysis, design and manufacture of a low cost, low maintenance and long-range prototype of RFID transponder with continuous operability. A prototype of semi-active RFID transponder is produced with a range that can be extended via a DC input to allow all of the readers signal power to be reflected via backscatter modulation. The transponder is powered via solar harvested power which is selected over other energy harvesting technologies as it provides a greater energy ...

  19. Piezoelectric energy harvesting with parametric uncertainty

    International Nuclear Information System (INIS)

    Ali, S F; Friswell, M I; Adhikari, S

    2010-01-01

    The design and analysis of energy harvesting devices is becoming increasing important in recent years. Most of the literature has focused on the deterministic analysis of these systems and the problem of uncertain parameters has received less attention. Energy harvesting devices exhibit parametric uncertainty due to errors in measurement, errors in modelling and variability in the parameters during manufacture. This paper investigates the effect of parametric uncertainty in the mechanical system on the harvested power, and derives approximate explicit formulae for the optimal electrical parameters that maximize the mean harvested power. The maximum of the mean harvested power decreases with increasing uncertainty, and the optimal frequency at which the maximum mean power occurs shifts. The effect of the parameter variance on the optimal electrical time constant and optimal coupling coefficient are reported. Monte Carlo based simulation results are used to further analyse the system under parametric uncertainty

  20. Hydrogen from solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The long-range options of energy sources are the breeding reactor, nuclear fusion, and solar energy. Concerning solar energy three systems are being developed: First the photovoltaic cells which are almost ready for industrial production, but which are still too expensive - at least today. Secondly the thermal utilization of solar radiation. Compared to these, thirdly, the photobiological and photochemical possibilities of solar energy utilization have been somewhat neglected so far. However, the photolysis of water by solar energy is a very promising option for future energy demands. This can be done by making use of the photo-synthetic splitting of water in technical facilities or with semiconductors.

  1. Materials in energy conversion, harvesting, and storage

    CERN Document Server

    Lu, Kathy

    2014-01-01

    First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy an

  2. Vibration energy harvesting using the Halbach array

    International Nuclear Information System (INIS)

    Zhu, Dibin; Beeby, Steve; Tudor, John; Harris, Nick

    2012-01-01

    This paper studies the feasibility of vibration energy harvesting using a Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field to almost zero on the other side. This arrangement can improve electromagnetic coupling in a limited space. The Halbach array offers an advantage over conventional layouts of magnets in terms of its concentrated magnetic field and low-profile structure, which helps improve the output power of electromagnetic energy harvesters while minimizing their size. Another benefit of the Halbach array is that due to the existence of an almost-zero magnetic field zone, electronic components can be placed close to the energy harvester without any chance of interference, which can potentially reduce the overall size of a self-powered device. The first reported example of a low-profile, planar electromagnetic vibration energy harvester utilizing a Halbach array was built and tested. Results were compared to ones for energy harvesters with conventional magnet layouts. By comparison, it is concluded that although energy harvesters with a Halbach array can have higher magnetic field density, a higher output power requires careful design in order to achieve the maximum magnetic flux gradient. (paper)

  3. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  4. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brian E.; Hoke, Eric T.; Baranoff, Etienne; Zakeeruddin, Shaik M.; Nazeeruddin, Mohammad K.; Torres, Tomas; McGehee, Michael D.; Grä tzel, Michael

    2011-01-01

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse

  5. Multiple Timescale Energy Scheduling for Wireless Communication with Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    H. Xiao

    2012-09-01

    Full Text Available The primary challenge in wireless communication with energy harvesting devices is to efficiently utilize the harvesting energy such that the data packet transmission could be supported. This challenge stems from not only QoS requirement imposed by the wireless communication application, but also the energy harvesting dynamics and the limited battery capacity. Traditional solar predictable energy harvesting models are perturbed by prediction errors, which could deteriorate the energy management algorithms based on this models. To cope with these issues, we first propose in this paper a non-homogenous Markov chain model based on experimental data, which can accurately describe the solar energy harvesting process in contrast to traditional predictable energy models. Due to different timescale between the energy harvesting process and the wireless data transmission process, we propose a general framework of multiple timescale Markov decision process (MMDP model to formulate the joint energy scheduling and transmission control problem under different timescales. We then derive the optimal control policies via a joint dynamic programming and value iteration approach. Extensive simulations are carried out to study the performances of the proposed schemes.

  6. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  7. Feasibility of energy harvesting techniques for wearable medical devices.

    Science.gov (United States)

    Voss, Thaddaeus J; Subbian, Vignesh; Beyette, Fred R

    2014-01-01

    Wearable devices are arguably one of the most rapidly growing technologies in the computing and health care industry. These systems provide improved means of monitoring health status of humans in real-time. In order to cope with continuous sensing and transmission of biological and health status data, it is desirable to move towards energy autonomous systems that can charge batteries using passive, ambient energy. This not only ensures uninterrupted data capturing, but could also eliminate the need to frequently remove, replace, and recharge batteries. To this end, energy harvesting is a promising area that can lead to extremely power-efficient portable medical devices. This paper presents an experimental prototype to study the feasibility of harvesting two energy sources, solar and thermoelectric energy, in the context of wearable devices. Preliminary results show that such devices can be powered by transducing ambient energy that constantly surrounds us.

  8. Improving Vibration Energy Harvesting Using Dynamic Magnifier

    Directory of Open Access Journals (Sweden)

    Almuatasim Alomari

    2016-01-01

    Full Text Available This paper reports on the design and evaluation of vibration-based piezoelectric energy-harvesting devices based on a polyvinylidene fluoride unimorph cantilever beam attached to the front of a dynamic magnifier. Experimental studies of the electromechanical frequency response functions are studied for the first three resonance frequencies. An analytical analysis is undertaken by applying the chain matrix in order to predict output voltage and output power with respect to the vibration frequency. The proposed harvester was modeled using MATLAB software and COMSOL multi- physics to study the mode shapes and electrical output parameters. The voltage and power output of the energy harvester with a dynamic magnifier was 2.62 V and 13.68 mW, respectively at the resonance frequency of the second mode. The modeling approach provides a basis to design energy harvesters exploiting dynamic magnification for improved performance and bandwidth. The potential application of such energy harvesting devices in the transport sector include autonomous structural health monitoring systems that often include embedded sensors, data acquisition, wireless communication, and energy harvesting systems.

  9. Broadband piezoelectric energy harvesting using nonlinear magnetic forces; Bandbreitensteigerung von piezoelektrischen Energy Harvesting Systemen durch Magnetkraefte

    Energy Technology Data Exchange (ETDEWEB)

    Westermann, Henrik; Neubauer, Marcus; Wallaschek, Joerg [Hannover Univ. (Germany). Inst. fuer Dynamik und Schwingungen

    2012-07-15

    Using ambient energy by piezoelectric energy harvesting systems received much attention over the last years. Most vibration-based generators produce a sufficient power only if the transducer is excited in its resonance frequency. The use of magnetic forces suggests a promising strategy to increase the efficiency. This paper presents different ways for broadband piezoelectric energy harvesting using nonlinear magnetic forces. (orig.)

  10. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  11. Solar energy guide

    International Nuclear Information System (INIS)

    Lentz, A.; Winter, R.

    1993-07-01

    Many aspects with regard to the practical use of solar energy are discussed. This guide is aimed at informing local and regional administrators, committee members of housing corporations and public utilities and public relations officers on the possibilities to use solar energy. In chapter one an overview is given of the use of solar energy in the housing sector, the recreational sector, agricultural sector, industry, trade and other sectors. In the chapters two, three and four attention is paid to passive solar energy, active thermal solar energy and photovoltaic energy respectively. In the chapters five and six aspects concerning the implementation of solar energy systems in practice are discussed. First an outline of the parties involved in implementing solar energy is given: the municipality, the energy utility, the province, local authorities, advisors, housing constructors and the occupants of the buildings. Then attention is paid to the consequences of implementing solar energy for the building inspection and regulations, the finances, energy savings and the environment. In chapter seven an overview is given of the subsidy regulations of the European Community, the Dutch national and local governments. Chapter contains addresses of solar thermal systems, photovoltaic systems and other institutes operating in the field of solar energy, as well as the titles of a number of brochures and courses. 51 figs., 7 tabs., 86 refs

  12. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    Science.gov (United States)

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  13. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    Directory of Open Access Journals (Sweden)

    Bruno Srbinovski

    2016-03-01

    Full Text Available Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind. Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources and power hungry sensors (ultrasonic wind sensor and gas sensors. The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  14. Energy harvesting with piezoelectric and pyroelectric materials

    CERN Document Server

    Muensit, Nantakan

    2011-01-01

    The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technolo

  15. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  16. Vivaldi Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-12-01

    Full Text Available Energy harvesting is a future technology for capturing ambient energy from the environment to be recycled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB applications, because it operates according to FCC regulations (3.1 – 10.6 GHz. The designed antenna is printed on ARLON 600 substrate and operates in frequency band from 0.810 GHz up to more than 12 GHz. Experimental results show good conformity with simulated performance.

  17. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  18. Energy harvesting concepts for small electric unmanned systems

    Science.gov (United States)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  19. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  20. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen; Wang, Xudong; Wang, Zhong Lin

    2009-01-01

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies

  1. Energy harvesting from hydraulic pressure fluctuations

    International Nuclear Information System (INIS)

    Cunefare, K A; Skow, E A; Erturk, A; Savor, J; Verma, N; Cacan, M R

    2013-01-01

    State-of-the-art hydraulic hose and piping systems employ integral sensor nodes for structural health monitoring to avoid catastrophic failures. Energy harvesting in hydraulic systems could enable self-powered wireless sensor nodes for applications such as energy-autonomous structural health monitoring and prognosis. Hydraulic systems inherently have a high energy intensity associated with the mean pressure and flow. Accompanying the mean pressure is the dynamic pressure ripple, which is caused by the action of pumps and actuators. Pressure ripple is a deterministic source with a periodic time-domain behavior conducive to energy harvesting. An energy harvester prototype was designed for generating low-power electricity from pressure ripples. The prototype employed an axially-poled off-the-shelf piezoelectric stack. A housing isolated the stack from the hydraulic fluid while maintaining a mechanical coupling allowing for dynamic-pressure-induced deflection of the stack. The prototype exhibited an off-resonance energy harvesting problem since the fundamental resonance of the piezoelectric stack was much higher than the frequency content of the pressure ripple. The prototype was designed to provide a suitable power output for powering sensors with a maximum output of 1.2 mW. This work also presents electromechanical model simulations and experimental characterization of the piezoelectric power output from the pressure ripple in terms of the force transmitted into the harvester. (paper)

  2. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  3. Solar energy in Israel

    International Nuclear Information System (INIS)

    Zvirin, Y.; Zamkow, S.

    1993-01-01

    The state of Israel has been a pioneer in the solar energy development and utilization since it was founded. In the 50's solar domestic home heaters became commercially available. At the same time research work has been started in different areas of solar energy, which led to more advanced solar systems for additional applications. The presentation includes some details of commercial utilization of solar energy and a brief description of the main Research and Development projects in industry, universities and research institutes. (authors)

  4. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  5. A novel bistable energy harvesting concept

    International Nuclear Information System (INIS)

    Scarselli, G; Nicassio, F; Pinto, F; Ciampa, F; Iervolino, O; Meo, M

    2016-01-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%–6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments. (paper)

  6. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  7. Mechanisms of Light Energy Harvesting in Dendrimers and Hyperbranched Polymers

    Directory of Open Access Journals (Sweden)

    David L. Andrews

    2011-12-01

    Full Text Available Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon—or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics.

  8. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  9. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    OpenAIRE

    Ozel, Omur; Shahzad, Khurram; Ulukus, Sennur

    2013-01-01

    We consider data transmission with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while the battery has unlimited space. The transmitter can choose to store the harvested energy in the SC or in the battery. The energy is drained from the SC and the battery simultaneously. In this setting, we consider the offline throughput maximization problem ...

  10. A Galloping Energy Harvester with Attached Flow

    Science.gov (United States)

    Denissenko, Petr; Khovanov, Igor; Tucker-Harvey, Sam

    2017-11-01

    Aeroelastic energy harvesters are a promising technology for the operation of wireless sensors and microelectromechanical systems, as well as providing the possibility of harvesting wind energy in applications were conventional wind turbines are ineffective, such as in highly turbulent flows, or unreliable, such as in harsh environmental conditions. The development of aeroelastic energy harvesters to date has focused on the flutter of airfoils, the galloping of prismatic structures, and the vortex induced vibrations. We present a novel type of galloping energy harvester with the flow becoming attached when the oscillation amplitude is high enough. With the flow attached, the harvester blade acts closer to an aerofoil than a bluff body, which results in a higher efficiency. The dynamics of a prototype device has been characterised experimentally with the use of a motion tracking system. The flow structure in the vicinity of the device has been studied using smoke visualisation and PIV measurements. A lumped parameter mathematical model has been developed and related to the experimental results.

  11. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad; Celik, Abdulkadir; Kamal, Ahmed E.

    2018-01-01

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power

  12. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  13. Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures

    International Nuclear Information System (INIS)

    Choi, Dukhyun; Kim, Eok Su; Kim, Tae Sang; Lee, Sang Yoon; Choi, Jae-Young; Kim, Jong Min; Lee, Keun Young; Lee, Kang Hyuck; Kim, Sang-Woo

    2010-01-01

    In this work, we report a flexible hybrid nanoarchitecture that can be utilized as both an energy harvester and a touch sensor on a single platform without any cross-talk problems. Based on the electron transport and piezoelectric properties of a zinc oxide (ZnO) nanostructured thin film, a hybrid cell was designed and the total thickness was below 500 nm on a plastic substrate. Piezoelectric touch signals were demonstrated under independent and simultaneous operations with respect to photo-induced charges. Different levels of piezoelectric output signals from different magnitudes of touching pressures suggest new user-interface functions from our hybrid cell. From a signal controller, the decoupled performance of a hybrid cell as an energy harvester and a touch sensor was confirmed. Our hybrid approach does not require additional assembly processes for such multiplex systems of an energy harvester and a touch sensor since we utilize the coupled material properties of ZnO and output signal processing. Furthermore, the hybrid cell can provide a multi-type energy harvester by both solar and mechanical touching energies.

  14. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    NARCIS (Netherlands)

    Matova, S.P.; Elfrink, R.; Vullers, R.J.M.; Schaijk, R. van

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with

  15. Solar energy promises realized?

    International Nuclear Information System (INIS)

    Oudshoff, B.

    2010-01-01

    The US market for solar cells grew 36% in 2009. Thousands of new jobs were created, many millions are invested and new businesses see new opportunities. Optimism among investors, incentivising government policy and new technological developments all contribute to these positive developments. This article provides an update of the incentive measures and their effects and a brief overview of the three solar energy technologies: photovoltaic (PV), solar thermal and concentrated solar power (CSP) [nl

  16. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  17. Piezoelectric energy harvester under parquet floor

    Science.gov (United States)

    Bischur, E.; Schwesinger, N.

    2011-03-01

    The design, fabrication and testing of piezoelectric energy harvesting modules for floors is described. These modules are used beneath a parquet floor to harvest the energy of people walking over it. The harvesting modules consist of monoaxial stretched PVDF-foils. Multilayer modules are built up as roller-type capacitors. The fabrication process of the harvesting modules is simple and very suitable for mass production. Due to the use of organic polymers, the modules are characterized by a great flexibility and the possibility to create them in almost any geometrical size. The energy yield was determined depending on the dynamic loading force, the thickness of piezoelectric active material, the size of the piezoelectric modules, their alignment in the walking direction and their position on the floor. An increase of the energy yield at higher loading forces and higher thicknesses of the modules was observed. It was possible to generate up to 2.1mWs of electric energy with dynamic loads of 70kg using a specific module design. Furthermore a test floor was assembled to determine the influence of the size, alignment and position of the modules on the energy yield.

  18. Electromechanical Modeling of Piezoelectric Energy Harvesters

    OpenAIRE

    Erturk, Alper

    2009-01-01

    Vibration-based energy harvesting has been investigated by several researchers over the last decade. The ultimate goal in this research field is to power small electronic components (such as wireless sensors) by using the vibration energy available in their environment. Among the basic transduction mechanisms that can be used for vibration-to-electricity conversion, piezoelectric transduction has received the most attention in the literature. Piezoelectric materials are preferred in energy ha...

  19. Architectures for wrist-worn energy harvesting

    Science.gov (United States)

    Rantz, R.; Halim, M. A.; Xue, T.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S.

    2018-04-01

    This paper reports the simulation-based analysis of six dynamical structures with respect to their wrist-worn vibration energy harvesting capability. This work approaches the problem of maximizing energy harvesting potential at the wrist by considering multiple mechanical substructures; rotational and linear motion-based architectures are examined. Mathematical models are developed and experimentally corroborated. An optimization routine is applied to the proposed architectures to maximize average power output and allow for comparison. The addition of a linear spring element to the structures has the potential to improve power output; for example, in the case of rotational structures, a 211% improvement in power output was estimated under real walking excitation. The analysis concludes that a sprung rotational harvester architecture outperforms a sprung linear architecture by 66% when real walking data is used as input to the simulations.

  20. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    Science.gov (United States)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  1. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  2. MEMS-Based Waste Vibrational Energy Harvesters

    Science.gov (United States)

    2013-06-01

    MEMS energy- harvesting device. Although PZT is used more prevalently due to its higher piezoelectric coefficient and dielectric constant, AlN has...7 1. Lead Zirconium Titanate ( PZT ) .........................................................7 2. Aluminum...Laboratory PiezoMUMPS Piezoelectric Multi-User MEMS Processes PZT Lead Zirconate Titanate SEM Scanning Electron Microscopy SiO2 Silicon

  3. Energy harvesting through piezoelectricity - technology foresight

    DEFF Research Database (Denmark)

    Laumann, Felix; Sørensen, Mette Møller; Hansen, Tina Mølholm

    2017-01-01

    scientific articles. In contrast to this, is found a low level of ability to convert the technology from academia to commercialization. A decision making model is proposed including a requirement for better understanding of niches, niche definitions and configuration of energy harvesting design...

  4. Harvesting sunlight energy: a biophysics approach

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2011-04-01

    Full Text Available centre chlorophyll molecule where charge separation occurs in less than 100 ps and at about 95% efficiency. It has been shown that organised connective light harvesting complexes are required for long range energy transfer. By extracting these system...

  5. Harvesting-Aware Energy Management for Environmental Monitoring WSN

    Directory of Open Access Journals (Sweden)

    James Rodway

    2017-05-01

    Full Text Available Wireless sensor networks can be used to collect data in remote locations, especially when energy harvesting is used to extend the lifetime of individual nodes. However, in order to use the collected energy most effectively, its consumption must be managed. In this work, forecasts of diurnal solar energies were made based on measurements of atmospheric pressure. These forecasts were used as part of an adaptive duty cycling scheme for node level energy management. This management was realized with a fuzzy logic controller that has been tuned using differential evolution. Controllers were created using one and two days of energy forecasts, then simulated in software. These controllers outperformed a human-created reference controller by taking more measurements while using less reserve energy during the simulated period. The energy forecasts were comparable to other available methods, while the method of tuning the fuzzy controller improved overall node performance. The combination of the two is a promising method of energy management.

  6. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  7. Energy harvesting autonomous sensor systems design, analysis, and practical implementation

    CERN Document Server

    Tan, Yen Kheng

    2013-01-01

    This book is the considered the first to describe sensor-oriented energy harvesting issues. Its content is derived from the author's research on the development of a truly self-autonomous and sustainable energy harvesting wireless sensor network (EH-WSN). This network harvests energy from a variety of ambient energy sources and converts it into electrical energy to power batteries. The book discusses various types of energy harvesting (EH) systems and their respective main components.

  8. A piezoelectric device for impact energy harvesting

    International Nuclear Information System (INIS)

    Jacquelin, E; Adhikari, S; Friswell, M I

    2011-01-01

    This paper studies a piezoelectric impact energy harvesting device consisting of two piezoelectric beams and a seismic mass. The aim of this work is to find the influence of several mechanical design parameters on the output power of such a harvester so as to optimize its performance; the electrical design parameters were not studied. To account for the dynamics of the beams, a model including the mechanical and piezoelectric properties of the system is proposed. The impacts involved in the energy harvesting process are described through a Hertzian contact law that requires a time domain simulation to solve the nonlinear equations. A transient regime and a steady-state regime have been identified and the performance of the device is characterized by the steady-state mean electrical power and the transient electrical power. The time simulations have been used to study the influence of various mechanical design parameters (seismic mass, beam length, gap, gliding length, impact location) on the performance of the system. It has been shown that the impact location is an important parameter and may be optimized only through simulation. The models and the simulation technique used in this work are general and may be used to assess any other impact energy harvesting device

  9. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  10. Conjugated Polymers for Flexible Energy Harvesting and Storage.

    Science.gov (United States)

    Zhang, Zhitao; Liao, Meng; Lou, Huiqing; Hu, Yajie; Sun, Xuemei; Peng, Huisheng

    2018-03-01

    Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium-ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-05-01

    Full Text Available To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  12. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  13. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  14. Performance Limits of Communication with Energy Harvesting

    KAUST Repository

    Znaidi, Mohamed Ridha

    2016-04-01

    In energy harvesting communications, the transmitters have to adapt transmission to the availability of energy harvested during communication. The performance of the transmission depends on the channel conditions which vary randomly due to mobility and environmental changes. During this work, we consider the problem of power allocation taking into account the energy arrivals over time and the quality of channel state information (CSI) available at the transmitter, in order to maximize the throughput. Differently from previous work, the CSI at the transmitter is not perfect and may include estimation errors. We solve this problem with respect to the energy harvesting constraints. Assuming a perfect knowledge of the CSI at the receiver, we determine the optimal power policy for different models of the energy arrival process (offline and online model). Indeed, we obtain the power allocation scheme when the transmitter has either perfect CSI or no CSI. We also investigate of utmost interest the case of fading channels with imperfect CSI. Moreover, a study of the asymptotic behavior of the communication system is proposed. Specifically, we analyze of the average throughput in a system where the average recharge rate goes asymptotically to zero and when it is very high.

  15. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    International Nuclear Information System (INIS)

    Matova, S P; Elfrink, R; Vullers, R J M; Van Schaijk, R

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with adjustable resonance frequencies have been designed—one with a solid bottom and one with membrane on the bottom. The resonance frequencies of the resonators were matched to the complementing piezoelectric harvesters during harvesting. The aim of the presented work is a feasibility study on using packaged piezoelectric energy harvesters with Helmholtz resonators for airflow energy harvesting. The maximum energy we were able to obtain was 42.2 µW at 20 m s −1

  16. Heat to electricity conversion by cold carrier emissive energy harvesters

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved

  17. Helical Piezoelectric Energy Harvester and Its Application to Energy Harvesting Garments

    Directory of Open Access Journals (Sweden)

    Minsung Kim

    2017-04-01

    Full Text Available In this paper, we propose a helical piezoelectric energy harvester, examine its application to clothes in the form of an energy harvesting garment, and analyze its design and characteristics. The helical harvester is composed of an elastic core and a polymer piezoelectric strap twining the core. The fabricated harvester is highly elastic and can be stretched up to 158% of its initial length. Following the experiments using three different designs, the maximum output power is measured as 1.42 mW at a 3 MΩ load resistance and 1 Hz motional frequency. The proposed helical harvesters are applied at four positions of stretchable tight-fitting sportswear, namely shoulder, arm joint, knee, and hip. The maximum output voltage is measured as more than 20 V from the harvester at the knee position during intended body motions. In addition, electric power is also generated from this energy harvesting garment during daily human motions, which is about 3.9 V at the elbow, 3.1 V at the knee, and 4.4 V at the knee during push-up, walking, and squatting motions, respectively.

  18. Solar energy in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, H.

    1981-12-01

    The past, present, and future of Peru is discussed in terms of solar energy development and the social, economic, climatic, and technical factors involved. It is pointed out that there are 3 geographical divisions in Peru including: (1) the foggy coastal strip where rain is infrequent, insolation is low and population is high; (2) the mountainous Andes region with high insolation and many populated high mountain valleys; and (3) the rainy, Amazon basin covered with jungle, and sparcely populated with high but inconsistent insolation. Since there is little competition with other forms of energy, solar energy shows promise. Passive solar heating of buildings, particularly in the Andes region, is described, as well as the use of solar water heaters. Prototypes are described and illustrated. Industrial use of solar heated water in the wool industry as well as solar food drying and solar desalination are discussed. High temperature applications (electrical generators and refrigeration) as well as photovoltaic systems are discussed briefly. It is concluded that social and political factors are holding back the development of solar energy but a start (in the form of prototypes and demonstration programs) is being made. (MJJ)

  19. The Solar Energy Notebook.

    Science.gov (United States)

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  20. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  1. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  2. Solar energy policy review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-17

    A number of memoranda and reports are collected which deal with evaluations of solar energy policy options, including direct and indirect labor impacts and costs of different options and consumer protection. (LEW)

  3. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  4. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  5. The Energy Crisis and Solar Energy

    Science.gov (United States)

    Bockris, J. O'M.

    1974-01-01

    Examines the status of the energy crisis in Australia. Outlines energy alternatives for the 1990's and describes the present status of solar energy research and the economics of solar energy systems. (GS)

  6. Modelling and analysis of piezoelectric cantilever energy harvester for different proof mass and material proportion

    Science.gov (United States)

    Shashank, R.; Harisha, S. K., Dr; Abhishek, M. C.

    2018-02-01

    Energy harvesting using ambient energy sources is one of the fast growing trends in the world, research and development in the area of energy harvesting is moving progressively to get maximum power output from the existing resources. The ambient sources of energy available in the nature are solar energy, wind energy, thermal energy, vibrational energy etc. out of these methods energy harvesting by vibrational energy sources gain more importance due to its nature of not getting influenced by any environmental parameters and its free availability at anytime and anywhere. The project mainly deals with validating the values of voltage and electrical power output of experimentally conducted energy harvester, varying the parameters of the energy harvester and analyse the effect of the parameters on the performance of the energy harvester and compare the results. The cantilever beam was designed, analysed and simulated using COMSOL multi-physics software. The energy harvester gives an electrical output voltage of the 2.75 volts at a natural frequency of 37.2 Hz and an electrical power of 29μW. Decreasing the percentage of the piezoelectric material and simultaneously increasing the percentage of polymer material (so that total percentage of proportion remains same) increases the electrical voltage and decreases the natural frequency of the beam linearly upto 3.9V and 28.847 Hz till the percentage proportion of the beam was 24% piezoelectric beam and 76% polymer beam when the percentage proportion increased to 26% and 74% natural frequency goes on decreases further but voltage suddenly drops to 2.8V. The voltage generated by energy harvester increases proportionally and reaches 3.7V until weight of the proof mass reaches 4 grams and further increase in the weight of the proof mass decreases the voltage generated by energy harvester. Thus the investigation conveys that the weight of the proof mass and the length of the cantilever beam should be optimised to obtain maximum

  7. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  8. State of the art in acoustic energy harvesting

    Science.gov (United States)

    Ullah Khan, Farid; Izhar

    2015-02-01

    For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68 pW to 30 mW however, the power generation of the developed electromagnetic AEHs is in the range of 1.5-1.96 mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143-470 Hz), than that of piezoelectric AEHs (146 Hz-16.7 kHz).

  9. State of the art in acoustic energy harvesting

    International Nuclear Information System (INIS)

    Khan, Farid Ullah; Izhar

    2015-01-01

    For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68 pW to 30 mW; however, the power generation of the developed electromagnetic AEHs is in the range of 1.5–1.96 mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143–470 Hz), than that of piezoelectric AEHs (146 Hz–16.7 kHz). (topical review)

  10. Characterization of Energy Availability in RF Energy Harvesting Networks

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira

    2016-01-01

    Full Text Available The multiple nodes forming a Radio Frequency (RF Energy Harvesting Network (RF-EHN have the capability of converting received electromagnetic RF signals in energy that can be used to power a network device (the energy harvester. Traditionally the RF signals are provided by high power transmitters (e.g., base stations operating in the neighborhood of the harvesters. Admitting that the transmitters are spatially distributed according to a spatial Poisson process, we start by characterizing the distribution of the RF power received by an energy harvester node. Considering Gamma shadowing and Rayleigh fading, we show that the received RF power can be approximated by the sum of multiple Gamma distributions with different scale and shape parameters. Using the distribution of the received RF power, we derive the probability of a node having enough energy to transmit a packet after a given amount of charging time. The RF power distribution and the probability of a harvester having enough energy to transmit a packet are validated through simulation. The numerical results obtained with the proposed analysis are close to the ones obtained through simulation, which confirms the accuracy of the proposed analysis.

  11. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  12. Bright Idea: Solar Energy Primer.

    Science.gov (United States)

    Missouri State Dept. of Natural Resources, Jefferson City.

    This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)

  13. Ferrofluid based micro-electrical energy harvesting

    Science.gov (United States)

    Purohit, Viswas; Mazumder, Baishakhi; Jena, Grishma; Mishra, Madhusha; Materials Department, University of California, Santa Barbara, CA93106 Collaboration

    2013-03-01

    Innovations in energy harvesting have seen a quantum leap in the last decade. With the introduction of low energy devices in the market, micro energy harvesting units are being explored with much vigor. One of the recent areas of micro energy scavenging is the exploitation of existing vibrational energy and the use of various mechanical motions for the same, useful for low power consumption devices. Ferrofluids are liquids containing magnetic materials having nano-scale permanent magnetic dipoles. The present work explores the possibility of the use of this property for generation of electricity. Since the power generation is through a liquid material, it can take any shape as well as response to small acceleration levels. In this work, an electromagnet-based micropower generator is proposed to utilize the sloshing of the ferrofluid within a controlled chamber which moves to different low frequencies. As compared to permanent magnet units researched previously, ferrofluids can be placed in the smallest of containers of different shapes, thereby giving an output in response to the slightest change in motion. Mechanical motion from 1- 20 Hz was able to give an output voltage in mV's. In this paper, the efficiency and feasibility of such a system is demonstrated.

  14. Energy harvesting with Di-Electro Active Polymers

    DEFF Research Database (Denmark)

    Due, Jens; Munk-Nielsen, Stig; Nielsen, Rasmus Ørndrup

    2010-01-01

    This article presents a way of using Di-Electro Active Polymers (D-EAPs) for harvesting mechanical energy sources. The article describes the basics of energy harvesting with D-EAPs, and an electrical model of a D-EAP is suggested. This leads to a converter design which is able to extract...... the electrical energy harvested by the D-EAP. This converter is simulated and realized. Through experimental results both the model of the DEAP and the converter are verified. It is found that it is possible to harvest energy with a D-EAP and build a converter that can extract the harvested energy....

  15. Solar energy in practice

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1996-01-01

    One of the Dutch energy distribution companies (REMU) applies integrated passive, thermal and photovoltaic solar energy systems in fifty newly built dwellings in Amersfoort, Netherlands. The houses are equipped with a combi-boiler (solar energy and natural gas) and 22.5m 2 photovoltaic panels to produce electricity. Six houses are equipped with an electric heat pump, while the other 44 houses have a high-efficiency low-NO x combi-boiler. The experiences with the project so-far are outlined. 6 figs., 1 tab., 10 refs

  16. Solar Energy Demonstrations

    Science.gov (United States)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  17. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  18. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  19. Harvestable energy from the coconut palm

    Energy Technology Data Exchange (ETDEWEB)

    Banzon, J A

    1984-01-01

    The harvestable energy from the coconut palm is in the form of husks, shells and oil from the nuts and the leaf petioles with a regular monthly production of a bunch of nuts and one leaf. From the known energy content of the husks, nut shells and petioles, the number of palm trees required to provide the total energy for domestic cooking at wood equivalent to 1-3 kg firewood per day ranges from 5-14 for husks, shells and petioles, or 15-47 if the material is first converted to charcoal. In order to provide diesel fuel containing 10% coconut oil and cope with the annual increase in such a demand, the coconut crop would have to increase at the rate of 1 nut per bunch per month from 3-11 nuts to 12 nuts over the next 8 years. Highest coconut sap yield in ethanol terms, amounts to 109 MJ/month per palm which equals the oil in a 20-nut fruit bunch, thus indicating possible greater energy harvest from coconut sap than from coconut oil.

  20. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    Science.gov (United States)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  1. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam

    2017-04-11

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester\\'s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  2. Energy harvesting from high-rise buildings by a piezoelectric harvester device

    International Nuclear Information System (INIS)

    Xie, X.D.; Wang, Q.; Wang, S.J.

    2015-01-01

    A novel piezoelectric technology of harvesting energy from high-rise buildings is developed. While being used to harness vibration energy of a building, the technology is also helpful to dissipate vibration of the building by the designed piezoelectric harvester as a tuned mass damper. The piezoelectric harvester device is made of two groups of series piezoelectric generators connected by a shared shaft. The shaft is driven by a linking rod hinged on a proof mass on the tip of a cantilever fixed on the roof of the building. The influences of some practical considerations, such as the mass ratio of the proof mass to the main structure, the ratios of the length and flexural rigidity of the cantilever to those of the main structure, on the root mean square (RMS) of the generated electric power and the energy harvesting efficiency of the piezoelectric harvester device are discussed. The research provides a new method for an efficient and practical energy harvesting from high-rise buildings by piezoelectric harvesters. - Highlights: • A new piezoelectric technology in energy harvesting from high-rise buildings is introduced. • A new mathematics model to calculate the energy harvested by the piezoelectric device is developed. • A novel efficient design of the piezoelectric harvester device in provided. • An electric power up to 432 MW under a seismic excitation at a frequency of 30 rad/s is achieved.

  3. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  4. Energy Requirements for Biomass Harvest and Densification

    Directory of Open Access Journals (Sweden)

    Kevin Shinners

    2018-03-01

    Full Text Available This research quantified the unit and bulk density of several biomass crops across a variety of harvest and processing methods, as well as the energy and fuel requirements for these operations. A load density of approximately 240 kg·m−3 is needed to reach the legal weight limit of most transporters. Of the three types of balers studied, only the high density (HD large square baler achieved this target density. However, the specific energy and fuel requirements increased exponentially with bale density, and at the maximum densities for corn stover and switchgrass, the dry basis energy and fuel requirements ranged from 4.0 to 5.0 kW·h·Mg−1 and 1.2 to 1.4 L·Mg−1, respectively. Throughputs of tub grinders when grinding bales was less than any other harvesting or processing methods investigated, so specific energy and fuel requirements were high and ranged from 13 to 32 kW·h·Mg−1 and 5.0 to 11.3 L·Mg−1, respectively. Gross size-reduction by pre-cutting at baling increased bale density by less than 6% and increased baling energy requirements by 11% to 22%, but pre-cut bales increased the tub grinder throughput by 25% to 45% and reduced specific fuel consumption for grinding by 20% to 53%. Given the improvement in tub grinder operation, pre-cutting bales should be considered as a means to increase grinder throughput. Additional research is needed to determine the energy required to grind high density pre-cut bales at high throughputs so that better estimates of total energy required for a high density bale system can be made. An alternative bulk feedstock system was investigated that involved chopping moist biomass crops with a precision-cut forage harvester, compacting the bulk material in a silo bag, and then segmenting the densified material into modules optimized for efficient transport. The specific fuel use for chopping and then compacting biomass crops in the silo bag ranged from 1.6 to 3.0 L·Mg−1 and 0.5 to 1.3 L·Mg−1

  5. Energy harvesting using a thermoelectric material

    Science.gov (United States)

    Nersessian, Nersesse [Van Nuys, CA; Carman, Gregory P [Los Angeles, CA; Radousky, Harry B [San Leandro, CA

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  6. System for harvesting water wave energy

    Science.gov (United States)

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  7. Multimodal piezoelectric devices optimization for energy harvesting

    Directory of Open Access Journals (Sweden)

    G Acciani

    2016-09-01

    Full Text Available The use of the piezoelectric effect to convert ambient vibration into useful electrical energy constitutes one of the most studied areas in Energy Harvesting (EH research. This paper presents a typical cantilevered Energy Harvester device, which relates the electrical outputs to the vibration mode shape easily. The dynamic strain induced in the piezoceramic layer results in an alternating voltage output. The first six modes of frequencies and the deformation pattern of the beam are carried out basing on an eigenfrequency analysis conducted by the MEMS modules of the COMSOL Multiphysic® v3.5a to perform the Finite Element Analysis of the model. Subsequently, the piezoelectric material is cut around the inflection points to minimize the voltage cancellation effect occurring when the sign changes in the material. This study shows that the voltage produced by the device, increases in as the dimensions of the cuts vary in the piezoelectric layer. Such voltage reaches the optimum amount of piezoelectric material and cuts positioning. This proves that the optimized piezoelectric layer is 16% more efficient than the whole piezoelectric layer.

  8. Electromagnetic Vibration Energy Harvesting for Railway Applications

    Directory of Open Access Journals (Sweden)

    Bradai S.

    2018-01-01

    Full Text Available Safe localization of trains via GPS and wireless sensors is essential for railway traffic supervision. Especially for freight trains and because normally no power source is available on the wagons, special solutions for energy supply have to be developed based on energy harvesting techniques. Since vibration is available in this case, it provides an interesting source of energy. Nevertheless, in order to have an efficient design of the harvesting system, the existing vibration needs to be investigated. In this paper, we focus on the characterization of vibration parameters in railway application. We propose an electromagnetic vibration converter especially developed to this application. Vibration profiles from a train traveling between two German cities were measured using a data acquisition system installed on the train’s wagon. Results show that the measured profiles present multiple frequency signals in the range of 10 to 50 Hz and an acceleration of up to 2 g. A prototype for a vibration converter is designed taking into account the real vibration parameters, robustness and integrability requirements. It is based on a moving coil attached to a mechanical spring. For the experimental emulation of the train vibrations, a shaker is used as an external artificial vibration source controlled by a laser sensor in feedback. A maximum voltage of 1.7 V peak to peak which corresponds to a maximum of 10 mW output power where the applied excitation frequency is close to the resonant frequency of the converter which corresponds to 27 Hz.

  9. Frequency adjustable MEMS vibration energy harvester

    Science.gov (United States)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  10. Frequency adjustable MEMS vibration energy harvester

    International Nuclear Information System (INIS)

    Podder, P; Constantinou, P; Roy, S; Amann, A

    2016-01-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)

  11. Flow energy piezoelectric bimorph nozzle harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  12. The Potential for Harvesting Energy from the Movement of Trees

    Directory of Open Access Journals (Sweden)

    Chris Knight

    2011-09-01

    Full Text Available Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node.

  13. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  14. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  15. Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters

    OpenAIRE

    Boisseau, S.; Despesse, G.; Seddik, B. Ahmed

    2012-01-01

    Vibration Energy Harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power microsystems of the future. Most of present vibration energy harvesters are based on a mass spring structure introducing a resonance phenomenon that allows to increase the output power compared to non-resonant systems, but limits the working frequency bandwidth. Therefore, they are not able to harvest energy when ambient vibrations' frequencies shift. To follow sh...

  16. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    The paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  17. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun. 11 references.

  18. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  19. Porphyrin nanorods-polymer composites for solar radiation harvesting applications

    CSIR Research Space (South Africa)

    Mongwaketsi, NP

    2014-09-01

    Full Text Available harvesting systems requires several key factors, such as absorption in the UV-visible and near-infrared wavelengths, energy transfer ability and the selection of light absorbing pigments. Another key factor is the organizational structure through which...

  20. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Nangle, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simon, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  1. Solar Power for Post Harvest Losses - A Sensible Solution for Developing Countries!

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwar, C.; Chilukuri, Snigdha

    2010-09-15

    About 30% of horticultural crops grown in developing countries like India (38.77 million tonnes amounting to US $13 billion), get wasted annually due to gaps in Cold Chain like insufficient cold storage capacity, unavailability of cold storages in close proximity to farms, poor transportation infrastructure etc. With solar energy availability (Insolation) averaging 5.0 KWh/sq. m/day with 3000 hours of sunshine every year, about 30-35% of these losses can be reduced by transporting the freshly harvested produce to the cold storages in 40,000 TEUs of refrigerated containers with 5 million sq. ft. of solar PV panels fixed on their rooftops and sides.

  2. Flexible electret energy harvesters with parylene electret on PDMS substrates

    International Nuclear Information System (INIS)

    Chiu, Yi; Wu, Shih-Hsien

    2013-01-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to harvest energy from periodic motions in specific directions. However, in some situations the motion is random and aperiodic; or the targeted energy source is the strain energy in deformation, rather than the kinetic energy in vibration. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with parylene-C electret that can be attached to any deformable surfaces to harvest the stain energy caused by external deformation. The proposed flexible harvester was fabricated and characterized. The measured power at 20 Hz is 0.18 μW and 82 nW in the compression and bending modes, respectively. Such a harvester has the potential for wearable and implantable electronics applications

  3. Nonmonotonic energy harvesting efficiency in biased exciton chains

    NARCIS (Netherlands)

    Vlaming, S.M.; Malyshev, V.A.; Knoester, J.

    2007-01-01

    We theoretically study the efficiency of energy harvesting in linear exciton chains with an energy bias, where the initial excitation is taking place at the high-energy end of the chain and the energy is harvested (trapped) at the other end. The efficiency is characterized by means of the average

  4. Looped energy harvester for human motion

    Science.gov (United States)

    Geisler, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Gobbo, C.; Despesse, G.; Ait-Ali, I.; Perraud, S.

    2017-10-01

    The development of energy harvesters for smart wearables is a challenging topic, with a difficult combination of ergonomics constraints, lifetime and electrical requirements. In this work, we focus on an inertial inductive structure, composed of a magnetic ball circulating inside a closed-loop guide and converting the kinetic energy of the user’s limbs into electricity during the run. A specific induction issue related to the free self-rotation of the ball is underlined and addressed using a ferromagnetic ‘rail’ component. From a 2 g moving ball, a 5 cm-diameter 21 cm3 prototype generated up to 4.8 mW of average power when worn by someone running at 8 km h-1. This device is demonstrated to charge a 2.4 V NiMH battery and supply an acceleration and temperature Wireless Sensor Node at 20 Hz.

  5. Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center and Reaction Center Plus Light Harvesting Complexes

    Science.gov (United States)

    Yaghoubi, Houman

    Harvesting solar energy can potentially be a promising solution to the energy crisis now and in the future. However, material and processing costs continue to be the most important limitations for the commercial devices. A key solution to these problems might lie within the development of bio-hybrid solar cells that seeks to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. The bio-photoelectrochemical cell technologies exploit biomimetic means of energy conversion by utilizing plant-derived photosystems which can be inexpensive and ultimately the most sustainable alternative. Plants and photosynthetic bacteria harvest light, through special proteins called reaction centers (RCs), with high efficiency and convert it into electrochemical energy. In theory, photosynthetic RCs can be used in a device to harvest solar energy and generate 1.1 V open circuit voltage and ~1 mA cm-2 short circuit photocurrent. Considering the nearly perfect quantum yield of photo-induced charge separation, efficiency of a protein-based solar cell might exceed 20%. In practice, the efficiency of fabricated devices has been limited mainly due to the challenges in the electron transfer between the protein complex and the device electrodes as well as limited light absorption. The overarching goal of this work is to increase the power conversion efficiency in protein-based solar cells by addressing those issues (i.e. electron transfer and light absorption). This work presents several approaches to increase the charge transfer rate between the photosynthetic RC and underlying electrode as well as increasing the light absorption to eventually enhance the external quantum efficiency (EQE) of bio-hybrid solar cells. The first approach is to decrease the electron transfer distance between one of the redox active sites in the RC and the underlying electrode by direct attachment of the of protein complex

  6. Solar energy for Europe

    International Nuclear Information System (INIS)

    Berkmann, Rainer

    1998-01-01

    The virtues of solar energy are extolled. The greenhouse gas aspect is mentioned but the main thrust of the paper is the technology and applications such as domestic water heating, combined water and space heating, swimming pools, industrial heating and air conditioning. Statistical data for the present European market, sales and installed collector area are given. (UK)

  7. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  8. Solar Energy Now.

    Science.gov (United States)

    Rose, Harvey, Ed.

    Twenty articles addressing different aspects of solar energy are compiled in this book. They represent the views of different governmental and non-governmental organizations, members of congress, and other individuals including, for example, Barry Commoner and Amory Lovins. Topics discussed include the need for federal support, passive solar…

  9. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  10. Design guidelines of triboelectric nanogenerator for water wave energy harvesters.

    Science.gov (United States)

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-05-05

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  11. Solar energy: a UK assessment

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A panel convened by UK-ISES to analyze all aspects of solar energy systems and to assess the potential for solar energy utilization and research and development needs in the UK and for export is reported. Topics covered include: solar energy in relation to other energy sources; international solar energy research and development program; the physical nature of solar energy and its availability in the UK and other countries; thermal collection, storage, and low-temperature applications; solar energy and architecture; solar thermal power systems; solar cells; agricultural and biological systems; photochemical systems; social, legal, and political considerations with particular reference to the UK; and future policy on solar research and development for the UK. (WDM)

  12. Relay Selection for Cooperative Relaying in Wireless Energy Harvesting Networks

    Science.gov (United States)

    Zhu, Kaiyan; Wang, Fei; Li, Songsong; Jiang, Fengjiao; Cao, Lijie

    2018-01-01

    Energy harvesting from the surroundings is a promising solution to provide energy supply and extend the life of wireless sensor networks. Recently, energy harvesting has been shown as an attractive solution to prolong the operation of cooperative networks. In this paper, we propose a relay selection scheme to optimize the amplify-and-forward (AF) cooperative transmission in wireless energy harvesting cooperative networks. The harvesting energy and channel conditions are considered to select the optimal relay as cooperative relay to minimize the outage probability of the system. Simulation results show that our proposed relay selection scheme achieves better outage performance than other strategies.

  13. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2016-07-01

    Full Text Available In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ.

  14. Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink

    Science.gov (United States)

    Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.

    2018-05-01

    A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.

  15. Piezoelectric Energy Harvesting in Internal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2015-10-01

    Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  16. Piezoelectric energy harvesting in internal fluid flow.

    Science.gov (United States)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-10-14

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  17. Design of Solar Harvested Semi Active RFID Transponder with Supercapacitor Storage

    Directory of Open Access Journals (Sweden)

    Gary Valentine

    2015-01-01

    Full Text Available This paper presents the analysis, design and manufacture of a low cost, low maintenance and long-range prototype of RFID transponder with continuous operability. A prototype of semi-active RFID transponder is produced with a range that can be extended via a DC input to allow all of the readers signal power to be reflected via backscatter modulation. The transponder is powered via solar harvested power which is selected over other energy harvesting technologies as it provides a greater energy density and lower cost. Solar has one major drawback in terms of providing a steady DC voltage in it needed a constant supply of sunlight. A method of power storage is proposed, and the use of a supercapacitor over a rechargeable battery is used as it has a longer lifespan due to higher recharge rates. The prototype underwent a series of experiments in various working environments and proves an effective solution in providing long lasting operability. The paper concludes the use of solar harvesting with supercapacitor storage has potential for further uses in external remote sensors used in the Internet of Things.

  18. Development of energy harvesting modules based on piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, V.; Waechter, D.; Ben Mrad, R. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering; El-Diraby, T. [Toronto Univ., ON (Canada). Dept. of Civil Engineering; Somayajula, N.; Nemana, S.; Prasad, E. [Sensor Technology Ltd., Collingwood, ON (Canada)

    2009-07-01

    Self-powered devices can overcome the current reliance and limitations of finite-supply batteries. They have potential in developing next-generation wireless electronics for a wide variety of applications such as health monitoring in civil infrastructure, micro-electro-mechanical system (MEMS) sensor arrays for automotive and aerospace applications, and sensor arrays for environmental control. These energy harvesting devices capture the ambient energy surrounding a system and convert it into usable electrical energy. A common method of power harvesting is to convert ambient mechanical vibrations into electricity through the use of piezoelectric materials such as piezoceramics (PZT). This paper highlighted some of the recent developments in piezoceramic energy harvesting along with proposed circuits that can improve the performance of energy harvesters. The successful storage and use of energy generated by various harvesting devices requires the use of specific circuitry to optimize the output from the devices. Energy harvesting circuitry was characterized in terms of energy storage; AC/DC converter; DC-DC step down converter; and non-linear voltage processing. The patent activity and applications on piezoceramic energy harvesting was also summarized. It was concluded that despite significant research, piezoceramic energy harvesting remains an emerging technology that requires considerable advancement before it can be commercially viable. The power generated by current piezoelectric harvesters is too low for many applications. Alternative piezoceramic materials and their characteristics must be investigated. 31 refs., 1 tab., 4 figs.

  19. Solar energy in Amersfoort, Netherlands

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1997-01-01

    For the first time in the world a newly to be built housing area (Nieuwland in Amersfoort, Netherlands) will be constructed, exclusively on the basis of sustainability. First, the use of three forms of solar energy conversion techniques (thermal solar energy, passive solar energy and photovoltaic energy) is going to be integrated in 50 rental houses. At the end of this century 10,000 m 2 of solar cells will be installed with a capacity of 1 MWp. 2 figs

  20. A broadband electromagnetic energy harvester with a coupled bistable structure

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupled bistable energy harvester can achieve bistable operation with lower excitation amplitude and generate more output power than both conventional bistable and linear energy harvesters under white noise excitation

  1. Energy Harvesting Through Optical Properties of TiO2 and C- TiO2 Nanofluid for Direct Absorption Solar Collectors

    OpenAIRE

    alagappan, subramaniyan; Subramaniyan, A. L.; Lakshmi Priya, S.; Ilangovan, R.

    2016-01-01

    Nanofluids are tailored suspensions of nanoparticles in a suitable base fluid. The discovery of  nanofluids by Stephen choi opened a new heat transfer mechanism. Since then several research has taken place to explore thermal, electrical and magnetic property of nanofluids. Nanofluids showed enhanced electrical and thermal conductivities. The nanofluids are also proved as a potential candidate for direct absorption solar collectors (DASC). The present work investigates the effect of nanopartic...

  2. Micro thermal energy harvester design optimization

    International Nuclear Information System (INIS)

    Trioux, E; Basrour, S; Monfray, S

    2017-01-01

    This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through the thermal buckling of a bilayer aluminum nitride/aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, with improved performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease in buckling temperatures compared to previously studied rectangular plates. Firstly, an analytical model exposes the basic principle of the presented device. Then a numerical model completes the explanations by introducing a butterfly shaped structure. Finally the fabrication process is briefly described and both the rectangular and butterfly harvesters are characterized. We compare their performances with an equal thickness of Al and AlN. Secondly, with a thicker Al layer than AlN layer, we will characterize only the butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack. (paper)

  3. Magnetically levitated autoparametric broadband vibration energy harvesting

    International Nuclear Information System (INIS)

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-01-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation. (paper)

  4. Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy

    KAUST Repository

    Hansen, Benjamin J.; Liu, Ying; Yang, Rusen; Wang, Zhong Lin

    2010-01-01

    the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby

  5. Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Dragoni, Nicola

    2015-01-01

    Energy Harvesting - Wireless Sensor Networks (EH-WSNs) constitute systems of networked sensing nodes that are capable of extracting energy from the environment and that use the harvested energy to operate in a sustainable state. Sustainability, seen as design goal, has a significant impact...

  6. The solar energy in Israel

    International Nuclear Information System (INIS)

    Bocquet, L.

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  7. Nano/microscale pyroelectric energy harvesting: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Devashish Lingam

    2013-12-01

    Full Text Available With the ever-growing demand for renewable energy sources, energy harvesting from natural resources has gained much attention. Energy sources such as heat and mechanical motion could be easily harvested based on pyroelectric, thermoelectric, and piezoelectric effects. The energy harvested from otherwise wasted energy in the environment can be utilized in self-powered micro and nano devices, and wearable electronics, which required only µW–mW power. This article reviews pyroelectric energy harvesting with an emphasis on recent developments in pyroelectric energy harvesting and devices at micro/nanoscale. Recent developments are presented and future challenges and opportunities for more efficient materials and devices with higher energy conversion efficiency are also discussed.

  8. 78 FR 17717 - Notice of Availability of the Record of Decision for the EDF Renewable Energy Desert Harvest...

    Science.gov (United States)

    2013-03-22

    ... decommission an up to 150-megawatt (MW), nominal capacity, alternating current, solar photovoltaic (PV) energy... surrounding areas. The CDCA Plan, while recognizing the potential compatibility of solar generation facilities... LVRWB12B4920] Notice of Availability of the Record of Decision for the EDF Renewable Energy Desert Harvest...

  9. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  10. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Energy harvesting for self-powered aerostructure actuation

    Science.gov (United States)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  12. Solar Energy Development PEIS Information Center

    Science.gov (United States)

    skip navigation Solar Energy Development Programmatic EIS Home About the EIS Public Involvement Solar Energy Solar Energy Zones Maps Documents secondary menu News Frequently Asked Questions Glossary E the Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern

  13. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  15. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  16. Survey of a fusion technology for wireless PEC with energy harvesting in nuclear industry

    International Nuclear Information System (INIS)

    Lee, Jae Cheol; Choi, Yoo Rark

    2008-01-01

    The wireless sensor network has a power-supply problem by constitution. Large amount of sensors are used in wireless networks and each sensor needs energy source for its operation. The life of a battery used in a sensor is finite. When a battery went out, we must exchange it with new one. But the number of sensors used in the wireless network is too numerous, so it is somewhat terrible job to exchange the exhausted batteries with new ones. Various researches have been executed to solve this problem. The mainstreams of them are energy efficiency and energy harvesting. The protocols such as flat-based routing, hierarchical-based routing, location-based routing and MAC protocol have been developed and applied to sensor networks for energy efficiency. But energy harvesting methods can be a ultimate solution. Energy harvesting is the process for capturing and storing of energies. A variety of different sources exist for harvesting energy, such as solar power, thermal energy, wind energy, salinity gradients and kinetic energy. We described an energy harvesting technology and a wireless pulsed eddy currents(PEC) inspection based on it

  17. A vibration energy harvesting device with bidirectional resonance frequency tunability

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T

    2008-01-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined

  18. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  19. The optimum energy harvest efficiency of nitrogen fixing hydrophyte: Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Tennakone, K. (Institute of Fundamental Studies, Kandy (LK) Ruhuna Univ., Matara (LK). Dept. of Physics); Punchihewa, S.; Jayasuriya, A.C. (Institute of Fundamental Studies, Kandy (LK))

    1989-01-01

    Azolla is a nitrogen fixing hydrophyte that can be cultivated in absence of nitrogenous fertilizer. It is found that when biomass is continuously harvested from a culture of Azolla, solar energy can be converted at an optimum efficiency of 1.1%. (author).

  20. Public Policies of Solar Energy

    International Nuclear Information System (INIS)

    Bouvier, Yves; Pehlivanian, Sophie; Teissier, Pierre; Chauvin-Michel, Marion; Forget, Marie; Raymond, Roland; Hyun Jin Yu, Julie; Popiolek, Nathalie; Guthleben, Denis

    2013-01-01

    This dossier about the Public Policies of Solar Energy brings together the presentations given in June 2013 at a colloquium organised by the Savoie university of Chambery (France): Introduction (Yves Bouvier, Sophie Pehlivanian); Passive solar energy in the shade of the French energy policy, 1945-1986 (Pierre Teissier); Solar architectures and energy policies in France: from oil crisis to solar crisis (Marion Chauvin-Michel); Sun in media, between promotion and contestation (Sophie Pehlivanian); Public policies of solar energy and territorial jurisdictions: the example of village photovoltaic power plants (Marie Forget); Energy social system and ordinary creative movement (Roland Raymond); The Historical Evolution of South Korea's Solar PV Policies since the 1970's (Julie Hyun Jin Yu, Nathalie Popiolek); Research on solar energy from yesterday to the present day: an historical project (Denis Guthleben); Photovoltaic power: public policies and economical consequences. The French choices in the international context - 1973-2013 (Alain Ricaud)

  1. Thermoelectric energy harvesting from small ambient temperature transients

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Andre

    2012-07-01

    up, combining all relevant source properties (e.g.{Delta}T) and harvester properties (e.g. thermal/electrical interface). The model ensures maximum power in the electrical load if the harvester's interfaces are adapted to the source (source-matching) before adapting the TEG to the interfaces (load-matching). At the start of this design process, the energy source is characterized by field measurements of the temperature difference (mean absolute values: vertical stroke {Delta}T{sub building} vertical stroke = 2.16 K, vertical stroke {Delta}T{sub tunnel} vertical stroke = 1.23 K), the mean heat transfer mode (forced convention: {upsilon}{sub building} = 0.28 {sup m}/s, {upsilon}{sub tunnel} = 1.15 {sup m}/s), and the time dependence (frequency components in the {mu}Hz/Hz-range). The interfaces depend on these source properties: the source-matching requires the use of a pin fin heat sink as a thermal interface to the air (Fischer ICKPEN45W) and a DC/DC step-up converter (EnOcean ECT310) as an electrical interface. Since the heat sink has the largest impact on the output power, its geometry is optimized by analytical and numerical means, yielding a final heat transfer improvement of +41.7% for an inclined and staggered fin arrangement (ick45inc60stag) versus the original geometry (ICKPEN45W). The load-matching of the TEG to the interfaces states that the TEG Peltron 128A0023 produces maximum power. The optimized harvester (heat sink, DC/DC converter, TEG) is able to power a WSN in two application scenarios: The source- and load-matched harvester operates with a total temperature difference of only vertical stroke {Delta}T{sub building} vertical stroke = 0.74 K and vertical stroke {Delta}T{sub tunnel} vertical stroke = 1.27 K, without relying on direct solar irradiation. The accumulated electrical energy of E{sub building} = 0.317{sup J}/day and E{sub tunnel} = 0.354{sup J}/day enables the WSN to transmit more than 400 data packages per day in both applications. This

  2. Performance of a piezoelectric energy harvester in actual rain

    International Nuclear Information System (INIS)

    Wong, Voon-Kean; Ho, Jee-Hou; Chai, Ai-Bao

    2017-01-01

    When raindrops impact on the surface of a piezoelectric beam, strain energy produced by the impinging raindrop will be converted to harvestable electrical energy by the piezoelectric layers in a cantilever beam. The novelty of this study is to investigate the performance of the harvester in actual rain and provide practical insights on implementation. The influences of rain parameters such as rain rate, rainfall depth, raindrop count, and drop size distribution (DSD) are discussed in this study. The raindrops accumulated on the surface of the piezoelectric beam will form a water layer. It is described using added mass coefficient in this study. In an actual rain experiment, a piezoelectric beam with surface area of 0.0018 m 2 is able to produce 2076 μJ of energy over a duration of 301 min. The energy generation of a raindrop impact piezoelectric energy harvester is highly dependent on the rain rate. Due to the inconsistency of the energy generation, the piezoelectric energy harvester would require an integration of suitable energy storage device for continuous operation. Nevertheless, this work shows the feasibility of harvesting raindrop energy using a piezoelectric beam. - Highlights: • The performance of a piezoelectric rain energy harvester is tested in actual rain. • The energy generation is highly dependent on the rain rate. • Practical insights on the implementation of the harvester are discussed. • A total energy of 2076 μJ is generated over a duration of 301 min.

  3. Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Gu, Yousong; Zhang, Kui; Liang, Mengyuan; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-03-01

    Water-related energy is an inexhaustible and renewable energy resource in our environment, which has huge amount of energy and is not largely dictated by daytime and sunlight. The transparent characteristic plays a key role in practical applications for some devices designed for harvesting water-related energy. In this paper, a highly transparent triboelectric nanogenerator (T-TENG) was designed to harvest the electrostatic energy from flowing water. The instantaneous output power density of the T-TENG is 11.56 mW/m2. Moreover, with the PTFE film acting as an antireflection coating, the maximum transmittance of the fabricated T-TENG is 87.4%, which is larger than that of individual glass substrate. The T-TENG can be integrated with silicon-based solar cell, building glass and car glass, which demonstrates its potential applications for harvesting waste water energy in our living environment and on smart home system and smart car system.

  4. Magnetocaloric piezoelectric composites for energy harvesting

    International Nuclear Information System (INIS)

    Cleveland, Michael; Liang, Hong

    2012-01-01

    Magnetocaloric alloy, Gd 5 Si 2 Ge 2 , was developed into a composite with the poly(vinylidene fluoride) (PVDF) piezoelectric polymer. This multifunctional material possesses unique properties that are suitable for energy conversion and harvesting. Experimental approaches include using an arc melting technique to synthesize the Gd 5 Si 2 Ge 2 (GSG) alloy and the spinning casting method to fabricate the composite. The materials were characterized using various techniques at different length scales. These include atomic force microscopy (AFM), optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The results indicated that the phase transformation of the magnetocaloric material close to its Curie temperature induced a significant increase in power generation in the piezoelectric polymer. The power output of a laminated structure was 1.1 mW, more than 200 thousand times higher than the piezoelectric materials alone (5.1 nW). (technical note)

  5. A low frequency rotational energy harvesting system

    International Nuclear Information System (INIS)

    Febbo, M; Machado, S P; Ramirez, J M; Gatti, C D

    2016-01-01

    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation. (paper)

  6. Sustainable Performance in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Dragoni, Nicola

    2013-01-01

    In this practical demo we illustrate the concept of "sustainable performance" in Energy-Harvesting Wireless Sensor Networks (EH-WSNs). In particular, for different classes of applications and under several energy harvesting scenarios, we show how it is possible to have sustainable performance when...

  7. Data retrieval time for energy harvesting wireless sensors

    NARCIS (Netherlands)

    Mitici, M.A.; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2015-01-01

    We consider the problem of retrieving a reliable estimate of an attribute monitored by a wireless sensor network, where the sensors harvest energy from the environment independently, at random. Each sensor stores the harvested energy in batteries of limited capacity. Moreover, provided they have

  8. Energy harvesting for human wearable and implantable bio-sensors.

    Science.gov (United States)

    Mitcheson, Paul D

    2010-01-01

    There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.

  9. Solar low energy dwellings

    International Nuclear Information System (INIS)

    Hestnes, Anne Grete

    2000-01-01

    By now, a lot has been learnt about how to reduce energy use in dwellings using solar and low energy technologies, and many good examples can be found throughout Europe. Still, they are not quite the common feature we would expect them to be, i.e. they have not really penetrated the market. The reason for this is in part a result of the fact that the designers and developers of these buildings have not looked at what the market wants and needs, but rather at how to use a set of given technologies. The buildings are the result of a technology push rather than a market pull and have therefore, often, been detached or semidetached dwellings with different solar technologies added on in less than optimal ways. In order to increase market penetration, it is time to look at the market trends and relate to these. Fortunately, quite a few European architects have realized this and have started designing somewhat different residential buildings. The paper focuses on examples of the new trends in solar residential architecture and by that, hopefully, it shows that we are on the right track. (au)

  10. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.

    Science.gov (United States)

    Lee, Soobum; Youn, Byeng D

    2011-03-01

    This paper presents an advanced design concept for a piezoelectric energy harvesting (EH), referred to as multimodal EH skin. This EH design facilitates the use of multimodal vibration and enhances power harvesting efficiency. The multimodal EH skin is an extension of our previous work, EH skin, which was an innovative design paradigm for a piezoelectric energy harvester: a vibrating skin structure and an additional thin piezoelectric layer in one device. A computational (finite element) model of the multilayered assembly - the vibrating skin structure and piezoelectric layer - is constructed and the optimal topology and/or shape of the piezoelectric layer is found for maximum power generation from multiple vibration modes. A design rationale for the multimodal EH skin was proposed: designing a piezoelectric material distribution and external resistors. In the material design step, the piezoelectric material is segmented by inflection lines from multiple vibration modes of interests to minimize voltage cancellation. The inflection lines are detected using the voltage phase. In the external resistor design step, the resistor values are found for each segment to maximize power output. The presented design concept, which can be applied to any engineering system with multimodal harmonic-vibrating skins, was applied to two case studies: an aircraft skin and a power transformer panel. The excellent performance of multimodal EH skin was demonstrated, showing larger power generation than EH skin without segmentation or unimodal EH skin.

  11. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  12. The case for energy harvesting on wildlife in flight

    International Nuclear Information System (INIS)

    Shafer, Michael W; MacCurdy, Robert; Garcia, Ephrahim; Shipley, J Ryan; Winkler, David; Guglielmo, Christopher G

    2015-01-01

    The confluence of advancements in microelectronic components and vibrational energy harvesting has opened the possibility of remote sensor units powered solely from the motion of their hosts. There are numerous applications of such systems, including the development of modern wildlife tracking/data-logging devices. These ‘bio-logging’ devices are typically mass-constrained because they must be carried by an animal. Thus, they have historically traded scientific capability for operational longevity due to restrictions on battery size. Recently, the precipitous decrease in the power requirements of microelectronics has been accompanied by advancements in the area of piezoelectric vibrational energy harvesting. These energy harvesting devices are now capable of powering the type of microelectronic circuits used in bio-logging devices. In this paper we consider the feasibility of employing these vibrational energy harvesters on flying vertebrates for the purpose of powering a bio-logging device. We show that the excess energy available from birds and bats could be harvested without adversely affecting their overall energy budget. We then present acceleration measurements taken on flying birds in a flight tunnel to understand modulation of flapping frequency during steady flight. Finally, we use a recently developed method of estimating the maximum power output from a piezoelectric energy harvester to determine the amount of power that could be practically harvested from a flying bird. The results of this analysis show that the average power output of a piezoelectric energy harvester mounted to a bird or bat could produce more than enough power to run a bio-logging device. We compare the power harvesting capabilities to the energy requirements of an example system and conclude that vibrational energy harvesting on flying birds and bats is viable and warrants further study, including testing. (paper)

  13. Method of osmotic energy harvesting using responsive compounds and molecules

    KAUST Repository

    Hu, Xiao; Cai, Yufeng; Lai, Zhiping; Zhong, Yujiang

    2017-01-01

    The present invention discloses and claims a more efficient and economical method and system for osmotic energy production and capture using responsive compounds and molecules. The present invention is an energy harvest system enabled by stimuli

  14. Localization of Energy Harvesting Empowered Underwater Optical Wireless Sensor Networks

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    with insufficient battery, harvest the energy and starts communicating once it has sufficient energy storage. Network localization is carried out by measuring the RSSs of active nodes, which are modeled based on the underwater optical communication channel

  15. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  16. Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage

    KAUST Repository

    Hsiao, Min-Chien

    2017-02-08

    The composite of MoS2 and hollow carbon sphere (MoS2@HCS) is prepared via a glucose-assisted one pot synthesis. The composite consists of hierarchical spheres with a diameter of 0.5–4 μm and these hollow spheres are decorated with a number of curled and interlaced MoS2 nanosheets. After the composite is subject to the lithium intercalation, the MoS2 is converted from 2H to 1T phase. In this current work, the activities of 1T-MoS2@HCS toward photocatalytic hydrogen evolution and the reduction of I3− in dye-sensitized solar cells (DSCs) are systemically investigated. When evaluated as the photocatalyst for hydrogen evolution, the amount of evolved hydrogen over 1T-MoS2@HCS can reach 143 μmol in 2 h, being 3.6 times higher than as-synthesized 2H-MoS2@HCS. Additionally, the 1T-MoS2@HCS can be employed as the counter electrode (CE) material in DSCs. The DSCs based on 1T-MoS2@HCS CE possesses the power conversion efficiency of 8.94%, being higher than that with 2H-MoS2@HCS CE (8.16%) and comparable to that with Pt CE (8.87%). Our study demonstrates that 1T-MoS2@HCS has a great potential as an inexpensive alternative to Pt catalysts.

  17. Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage

    KAUST Repository

    Hsiao, Min-Chien; Chang, Chin-Yu; Niu, Li-Juan; Bai, Feng; Li, Lain-Jong; Shen, Hsin-Hui; Lin, Jeng-Yu; Lin, Tsung-Wu

    2017-01-01

    The composite of MoS2 and hollow carbon sphere (MoS2@HCS) is prepared via a glucose-assisted one pot synthesis. The composite consists of hierarchical spheres with a diameter of 0.5–4 μm and these hollow spheres are decorated with a number of curled and interlaced MoS2 nanosheets. After the composite is subject to the lithium intercalation, the MoS2 is converted from 2H to 1T phase. In this current work, the activities of 1T-MoS2@HCS toward photocatalytic hydrogen evolution and the reduction of I3− in dye-sensitized solar cells (DSCs) are systemically investigated. When evaluated as the photocatalyst for hydrogen evolution, the amount of evolved hydrogen over 1T-MoS2@HCS can reach 143 μmol in 2 h, being 3.6 times higher than as-synthesized 2H-MoS2@HCS. Additionally, the 1T-MoS2@HCS can be employed as the counter electrode (CE) material in DSCs. The DSCs based on 1T-MoS2@HCS CE possesses the power conversion efficiency of 8.94%, being higher than that with 2H-MoS2@HCS CE (8.16%) and comparable to that with Pt CE (8.87%). Our study demonstrates that 1T-MoS2@HCS has a great potential as an inexpensive alternative to Pt catalysts.

  18. Solar energy receiver

    Science.gov (United States)

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  19. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  20. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tran Dinh Hieu

    2016-05-01

    Full Text Available A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio.

  1. Energy-harvesting potential of automobile suspension

    Science.gov (United States)

    Múčka, Peter

    2016-12-01

    This study is aimed quantify dissipated power in a damper of automobile suspension to predict energy harvesting potential of a passenger car more accurately. Field measurements of power dissipation in a regenerative damper are still rare. The novelty is in using the broad database of real road profiles, a 9 degrees-of-freedom full-car model with real parameters, and a tyre-enveloping contact model. Results were presented as a function of road surface type, velocity and road roughness characterised by International Roughness Index. Results were calculated for 1600 test sections of a total length about 253.5 km. Root mean square of a dissipated power was calculated from 19 to 46 W for all four suspension dampers and velocity 60 km/h and from 24 to 58 W for velocity 90 km/h. Results were compared for a full-car model with a tyre-enveloping road contact, full-car and quarter-car models with a tyre-road point contact. Mean difference among three models in calculated power was a few per cent.

  2. Fabrication of SU-8 low frequency electrostatic energy harvester

    KAUST Repository

    Ramadan, Khaled S.

    2011-11-01

    A 1500μm × 1500μm × 150μm out-of-plane, gap closing, electrostatic energy harvester is designed and fabricated to harvest low-frequency ambient vibrations. SU-8 is used to fabricate the proof mass (1200μm × 1200μm × 150μm) and the 5 m springs. Different harvesters were designed to harvest at 50, 75 and 110 Hz. At 110 Hz, Simulations show that with an input vibration of 10 μm amplitude at the frequency of resonance of the structure, the energy harvester should generate an average output power density of 0.032μW/mm3. This is the most area-efficient low-frequency electrostatic harvester to-date. © 2011 IEEE.

  3. Performance modeling of unmanned aerial vehicles with on-board energy harvesting

    Science.gov (United States)

    Anton, Steven R.; Inman, Daniel J.

    2011-03-01

    The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition

  4. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Abdul Hafiz Alameh

    2018-05-01

    Full Text Available Piezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this work, the effects of proof mass geometry on piezoelectric energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. A piezoelectric energy harvester has been fabricated and tested operating at a frequency of about 4 kHz within the audible range. The responses of various prototypes were studied, and an optimized T-shaped piezoelectric vibration energy harvester design is presented for improved performance.

  5. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  6. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  7. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Science.gov (United States)

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  8. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-12-01

    Full Text Available In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV measurement. The energy harvesting wireless sensor network (WSN was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an

  9. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    Science.gov (United States)

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  10. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  11. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.G.; English, B.C. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-party custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.

  12. Solar energy implementation in Nigeria

    OpenAIRE

    Museckaite, Rasa; Kevelaitis, Karolis; Obialo, Gaisva R.; Raudonis, Vytautas

    2009-01-01

    This research focuses on energy sector in Nigeria, more precisely, the electricity sector. The current situation in the Nigeria is that energy supply is not covering the energy demand. We made a research to investigate if solar energy could be a solution for the present situation in the mentioned country acting as a supportive energy supply. We analyzed both economical and environmental costs/benefits of implementation of solar energy system. We analyzed environmental aspect by comparing sola...

  13. Solar energy perspectives in France

    International Nuclear Information System (INIS)

    2008-01-01

    In a context combining climate change, energy supply crisis, an increased interest in solar energy, a strongly increasing market of solar installations, new technologies, a promotion of the development of the use solar energy in France and a fast development of the water heater and photovoltaic generator markets in France, this report proposes a wide overview of the past, present and future development of solar energy. It discusses the evolution of the French national energy policy and of the solar energy within this policy. It presents and discusses the solar energy resources, their strengths and weaknesses, their geographical and time distribution. It describes the various uses and applications of solar energy in buildings, discusses different aspects of this market (actors, economical data, evolutions, public incentives, perspectives). Then, it describes and discusses technical and economical aspects of two important technologies, the photovoltaic solar energy and the thermodynamic conversion of solar energy. Public incentives, laws and regulations, technical and economic aspects of the connection to the distribution network are then discussed. Some recommendations and ideas are formulated concerning research activities, industrial development, quality of equipment and facilities, personnel education, investment needs

  14. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    Science.gov (United States)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  15. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells

    Science.gov (United States)

    Hafez, H. S.; Shenouda, S. S.; Fadel, M.

    2018-03-01

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO2 nanoparticles with an average particle size (10-40 nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100 mW.cm- 2. The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R = 15.6-23.8 mA.W- 1 and η = 0.13-0.25) at AM = 1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology.

  16. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells.

    Science.gov (United States)

    Hafez, H S; Shenouda, S S; Fadel, M

    2018-03-05

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO 2 nanoparticles with an average particle size (10-40nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO 2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100mW.cm -2 . The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R=15.6-23.8mA.W -1 and η=0.13-0.25) at AM=1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. How to harvest efficient laser from solar light

    Science.gov (United States)

    Zhao, Changming; Guan, Zhe; Zhang, Haiyang

    2018-02-01

    Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.

  18. Harvesting renewable energy from Earth’s mid-infrared emissions

    Science.gov (United States)

    Byrnes, Steven J.; Blanchard, Romain; Capasso, Federico

    2014-01-01

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations. PMID:24591604

  19. Comparison of the dielectric electroactive polymer generator energy harvesting cycles

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    The Dielectric ElectroActive Polymer (DEAP) generator energy harvesting cycles have been in the spotlight of the scientific interest for the past few years. Indeed, several articles have demonstrated thorough and comprehensive comparisons of the generator fundamental energy harvesting cycles......, namely Constant Charge (CC), Constant Voltage (CV) and Constant E-field (CE), based on averaged theoretical models. Yet, it has not been possible until present to validate the outcome of those comparisons via respective experimental results. In this paper, all three primary energy harvesting cycles...... are experimentally compared, based upon the coupling of a DEAP generator with a bidirectional non-isolated power electronic converter, by means of energy gain, energy harvesting efficiency and energy conversion efficiency....

  20. Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy

    KAUST Repository

    Hansen, Benjamin J.

    2010-07-27

    Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor. © 2010 American Chemical Society.

  1. Analytical model for nonlinear piezoelectric energy harvesting devices

    International Nuclear Information System (INIS)

    Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P

    2014-01-01

    In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)

  2. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  3. Fabrication of SU-8 low frequency electrostatic energy harvester

    KAUST Repository

    Ramadan, Khaled S.; Foulds, Ian G.

    2011-01-01

    A 1500μm × 1500μm × 150μm out-of-plane, gap closing, electrostatic energy harvester is designed and fabricated to harvest low-frequency ambient vibrations. SU-8 is used to fabricate the proof mass (1200μm × 1200μm × 150μm) and the 5 m springs

  4. Support for solar energy collectors

    Science.gov (United States)

    Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren

    2016-11-01

    A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.

  5. When the solar energy pays

    International Nuclear Information System (INIS)

    Laramee, V.

    1997-01-01

    In the californian desert of Mojave, the three biggest solar power plants in the world produce 90% of world solar electric power. They have been operating for ten years, and their managers go on to improve them. These installations beat the productivity record every year, proving that the thermal solar energy can be competitive. (N.C.)

  6. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  7. Sustained operation of sensor nodes with energy harvesters and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Bernd-Christian

    2013-06-01

    Sensor nodes powered by energy harvesters and supercapacitors open the door to unlimited and uninterrupted operation. This dissertation closes the persistent gap of system integration w.r.t. holistic online energy assessment, develops a new concept for harvest forecasting while assessing the behavior and quality of known approaches, and proposes a novel load adaptation scheme to achieve sustained and uniform sensor node operation with low complexity and computational overhead. For this purpose, a prototype of an energy harvester with a supercapacitor for off-the-shelf sensor nodes is developed and used for practical evaluation.

  8. Characterization of Direct Piezoelectric Properties for Vibration Energy Harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Takeshi; Miyabuchi, Hiroki; Ashida, Atsushi; Fujimura, Norifumi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 (Japan); Murakami, Syuichi, E-mail: tyoshi@pe.osakafu-u.ac.jp [Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka, 594-1157 (Japan)

    2011-10-29

    Direct piezoelectric effect of Pb(Zr,Ti)O{sub 3} (PZT) thin films was investigated to discuss the application of ferroelectric films to vibration energy harvesting. From the model of the piezoelectric vibration energy harvester, it was found that the figure of merit (FOM) is proportional of the square of the effective transverse piezoelectric coefficient e{sub 31,f}. The e{sub 31,f} coefficient of PZT films were measured by substrate bending method. Furthermore, it was found that the e{sub 31,f} coefficient increases with increasing strain, which is favourable for the vibration energy harvesting.

  9. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable......W, respectively) with an iron yoke is subject to losses that exceed the realistic input power, and was therefore deemed infeasible. A generator without the iron yoke was concluded to perform well as a wearable energy harvester. An experimental investigation of a prototype revealed an output power of almost 1 m...

  10. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  11. Modelling piezoelectric energy harvesting potential in an educational building

    International Nuclear Information System (INIS)

    Li, Xiaofeng; Strezov, Vladimir

    2014-01-01

    Highlights: • Energy harvesting potential of commercialized piezoelectric tiles is analyzed. • The parameters which will affect the energy harvesting efficiency are determined. • The potential could cover 0.5% of the total energy usage of the library building. • A simplified evaluation indicator is proposed to test the considered paving area. - Abstract: In this paper, potential application of a commercial piezoelectric energy harvester in a central hub building at Macquarie University in Sydney, Australia is examined and discussed. Optimization of the piezoelectric tile deployment is presented according to the frequency of pedestrian mobility and a model is developed where 3.1% of the total floor area with the highest pedestrian mobility is paved with piezoelectric tiles. The modelling results indicate that the total annual energy harvesting potential for the proposed optimized tile pavement model is estimated at 1.1 MW h/year. This potential energy generation may be further increased to 9.9 MW h/year with a possible improvement in piezoelectric energy conversion efficiency integrated into the system. This energy harvesting potential would be sufficient to meet close to 0.5% of the annual energy needs of the building. The study confirms that locating high traffic areas is critical for optimization of the energy harvesting efficiency, as well as the orientation of the tile pavement significantly affects the total amount of the harvested energy. A Density Flow evaluation is recommended in this study to qualitatively evaluate the piezoelectric power harvesting potential of the considered area based on the number of pedestrian crossings per unit time

  12. Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells.

    Science.gov (United States)

    Ho, Cheng-Han; Lien, Der-Hsien; Chang, Hung-Chih; Lin, Chin-An; Kang, Chen-Fang; Hsing, Meng-Kai; Lai, Kun-Yu; He, Jr-Hau

    2012-12-07

    We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.

  13. Developing solar energy in France

    International Nuclear Information System (INIS)

    Alary-Grall, L.

    2003-01-01

    3 years ago the 'Soleil' program was launched and today 660.000 m 2 of solar cells have been installed which has made France to rank 4 behind Germany, Greece and Austria in terms of the use of solar energy. The 'Soleil' program, that will end in 2006, aims at developing solar energy in France and is composed of 4 axis: 1) the contribution to the funding of solar equipment through enticing financial helps, 2) the implementation of a quality plan for the installers of solar equipment, 3) the setting of a quality label for innovative and efficient solar equipment and 4) the promoting of solar energy to the professionals of the construction sector. (A.C.)

  14. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  15. Parametric studies on the harvested energy of piezoelectric switching techniques

    International Nuclear Information System (INIS)

    Neubauer, M; Krack, M; Wallaschek, J

    2010-01-01

    Piezoelectric energy harvesting techniques have experienced increasing research effort during the last few years. Possible applications including wireless, fully autonomous electronic devices, such as sensors, have attracted great interest. The key aspect of harvesting techniques is the amount of converted and stored energy, because the energy source and the conversion rate is limited. In particular, switching techniques offer many parameters that can be optimized. It is therefore crucial to examine the influence of these parameters in a precise manner. This paper addresses an accurate analytical modeling approach, facilitating the calculation of standard-DC and parallel SSHI-DC energy harvesting circuits. In particular the influence of the frequency ratio between the excitation and the electrical resonance of the switching LR-branch, and the voltage gaps across the rectifier diodes are studied in detail. Additionally a comparison with the SSDI damping network is performed. The relationship between energy harvesting and damping is indicated in this paper

  16. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    International Nuclear Information System (INIS)

    Watanabe, M; Nakamura, A; Kunii, A; Kusano, K; Futagawa, M

    2015-01-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO 2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture. (paper)

  17. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    Science.gov (United States)

    Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.

    2015-12-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.

  18. An Integrated Hybrid Energy Harvester for Autonomous Wireless Sensor Network Nodes

    Directory of Open Access Journals (Sweden)

    Mukter Zaman

    2014-01-01

    Full Text Available Profiling environmental parameter using a large number of spatially distributed wireless sensor network (WSN NODEs is an extensive illustration of advanced modern technologies, but high power requirement for WSN NODEs limits the widespread deployment of these technologies. Currently, WSN NODEs are extensively powered up using batteries, but the battery has limitation of lifetime, power density, and environmental concerns. To overcome this issue, energy harvester (EH is developed and presented in this paper. Solar-based EH has been identified as the most viable source of energy to be harvested for autonomous WSN NODEs. Besides, a novel chemical-based EH is reported as the potential secondary source for harvesting energy because of its uninterrupted availability. By integrating both solar-based EH and chemical-based EH, a hybrid energy harvester (HEH is developed to power up WSN NODEs. Experimental results from the real-time deployment shows that, besides supporting the daily operation of WSN NODE and Router, the developed HEH is capable of producing a surplus of 971 mA·hr equivalent energy to be stored inside the storage for NODE and 528.24 mA·hr equivalent energy for Router, which is significantly enough for perpetual operation of autonomous WSN NODEs used in environmental parameter profiling.

  19. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends

    Science.gov (United States)

    Bashir, M.; Rajendran, P.; Khan, S. A.

    2018-01-01

    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  20. Solar energy enters the market

    International Nuclear Information System (INIS)

    Coehoorn, M.; Sinke, W.C.

    1995-11-01

    Everybody agrees that there is a bright future for solar energy. After two decades of research and development, the market introduction of solar hot water systems is now taking off. In several countries, including the Netherlands, preparations are also underway for the large-scale introduction of photovoltaic systems. Although the share of thermal and photovoltaic solar energy in the energy supply sector in the Netherlands is very small (0.1 PJ) there are signs of imminent change. According to the Follow-up Policy Document on Energy Conservation, the share of solar energy should increase to 7 PJ by the year 2010. After years of concentrating on research and development, it is now generally recognised that it is time to introduce these technologies onto the market in order to realize the long-term objectives. In this respect, thermal solar energy is ahead of photovoltaics. 4 ills

  1. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  2. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  3. Controlling vacancies in chalcogenides as energy harvesting materials

    NARCIS (Netherlands)

    Li, Guowei

    2016-01-01

    Recent years witnessed fruitful results on tailoring properties and application performance, especially in the field of clean energy storage and harvesting materials. Defects, especially elemental vacancies, exist universally and are inevitable in materials. Due to the difficulties to precisely map

  4. Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)

    2013-08-15

    This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

  5. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  6. High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric energy harvesting utilizes materials that generate an electrical current when subjected to a temperature gradient, or simply, a hot and cold source of...

  7. Energy harvesting from mastication forces via a smart tooth

    Science.gov (United States)

    Bani-Hani, Muath; Karami, M. Amin

    2016-04-01

    The batteries of the current pacing devices are relatively large and occupy over 60 percent of the size of pulse generators. Therefore, they cannot be placed in the subtle areas of human body. In this paper, the mastication force and the resulting tooth pressure are converted to electricity. The pressure energy can be converted to electricity by using the piezoelectric effect. The tooth crown is used as a power autonomous pulse generator. We refer to this envisioned pulse generator as the smart tooth. The smart tooth is in the form of a dental implant. A piezoelectric vibration energy harvester is designed and modeled for this purpose. The Piezoelectric based energy harvesters investigated and analyzed in this paper initially includes a single degree of freedom piezoelectric based stack energy harvester which utilizes a harvesting circuit employing the case of a purely resistive circuit. The next step is utilizing and investigating a bimorph piezoelectric beam which is integrated/embedded in the smart tooth implant. Mastication process causes the bimorph beam to buckle or return to unbuckled condition. The transitions results in vibration of the piezoelectric beam and thus generate energy. The power estimated by the two mechanisms is in the order of hundreds of microwatts. Both scenarios of the energy harvesters are analytically modeled. The exact analytical solution of the piezoelectric beam energy harvester with Euler-Bernoulli beam assumptions is presented. The electro-mechanical coupling and the geometric nonlinearities have been included in the model for the piezoelectric beam.

  8. Energy harvesting from low frequency applications using piezoelectric materials

    International Nuclear Information System (INIS)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-01-01

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters

  9. An innovative tri-directional broadband piezoelectric energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei-Jiun, E-mail: weijiun@mie.utoronto.ca; Zu, Jean [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2013-11-11

    This paper presents a tri-directional piezoelectric energy harvester that is able to harvest vibration energy over a wide bandwidth from three orthogonal directions. The harvester consists of a main beam, an auxiliary beam, and a spring-mass system, with magnets integrated to introduce nonlinear force and couple the three sub-systems. Theoretical analysis and experiments were performed at constant acceleration under frequency sweeps to acquire frequency responses. The experimental results show that the voltage can achieve more than 2 V over more than 5 Hz of bandwidth with 1 MΩ load in the three orthogonal directions.

  10. Effects of springs on a pendulum electromechanical energy harvester

    Directory of Open Access Journals (Sweden)

    Arnaud Notué Kadjie

    2014-01-01

    Full Text Available This paper studies a model of energy harvester that consists of an electromechanical pendulum system subjected to nonlinear springs. The output power is analyzed in terms of the intrinsic parameters of the device leading to optimal parameters for energy harvesting. It is found that in an appropriate range of the springs constant, the power attains higher values as compared to the case without springs. The dynamical behavior of the device shows transition to chaos.

  11. Effects of springs on a pendulum electromechanical energy harvester

    OpenAIRE

    Arnaud Notué Kadjie; Paul Woafo

    2014-01-01

    This paper studies a model of energy harvester that consists of an electromechanical pendulum system subjected to nonlinear springs. The output power is analyzed in terms of the intrinsic parameters of the device leading to optimal parameters for energy harvesting. It is found that in an appropriate range of the springs constant, the power attains higher values as compared to the case without springs. The dynamical behavior of the device shows transition to chaos.

  12. A broadband electromagnetic energy harvester with a coupled bistable structure

    OpenAIRE

    Zhu, Dibin; Beeby, Steve

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupl...

  13. A seesaw-type approach for enhancing nonlinear energy harvesting

    Science.gov (United States)

    Deng, Huaxia; Wang, Zhemin; Du, Yu; Zhang, Jin; Ma, Mengchao; Zhong, Xiang

    2018-05-01

    Harvesting sustainable mechanical energy is the ultimate objective of nonlinear energy harvesters. However, overcoming potential barriers, especially without the use of extra excitations, poses a great challenge for the development of nonlinear generators. In contrast to the existing methods, which typically modify the barrier height or utilize additional excitations, this letter proposes a seesaw-type approach to facilitate escape from potential wells by transfer of internal energy, even under low-intensity excitation. This approach is adopted in the design of a seesaw-type nonlinear piezoelectric energy harvester and the energy transfer process is analyzed by deriving expressions for the energy to reveal the working mechanism. Comparison experiments demonstrate that this approach improves energy harvesting in terms of an increase in the working frequency bandwidth by a factor of 60.14 and an increase in the maximum output voltage by a factor of 5.1. Moreover, the output power is increased by a factor of 51.3, which indicates that this approach significantly improves energy collection efficiency. This seesaw-type approach provides a welcome boost to the development of renewable energy collection methods by improving the efficiency of harvesting of low-intensity ambient mechanical energy.

  14. Radio Frequency Energy Harvesting for Long Lifetime Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Han, Bo; Nielsen, Rasmus Hjorth; Prasad, Ramjee

    2014-01-01

    In wireless sensor networks energy scarcity is a major concern on energy consumption, and by properly designing on the node network architecture or selecting efficient protocols of the networks, the maximum energy can be reduced significantly thereby increasing the network lifetime. However......, in most of the cases, the sensor nodes are either powered by non-replaceable batteries, or there will be a considerable replacement cost. Thus a self-rechargeable sensor node design is necessary: the sensor node should be able to harvest energy from the environment. Among the existing techniques......, harvesting energy from the radio frequency (RF) waves gives the lowest system design. Previous research on RF energy harvesting is based on the model that the radio energy is omnidirectional in the air. In this paper, a directional transmission/receiving model is proposed which can further overcome the path...

  15. Experimental study of energy harvesting in UHF band

    International Nuclear Information System (INIS)

    Bernacki, Ł; Gozdur, R; Salamon, N

    2016-01-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments. (paper)

  16. Multislot Simultaneous Spectrum Sensing and Energy Harvesting in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available In cognitive radio (CR, the spectrum sensing of the primary user (PU may consume some electrical power from the battery capacity of the secondary user (SU, resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF energy of the PU signal to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

  17. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices

    Directory of Open Access Journals (Sweden)

    Jian-Zhang Chen

    2015-01-01

    Full Text Available Atmospheric pressure plasma jet (APPJ technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.

  18. Engineered Nanomaterials for Energy Harvesting and Storage Applications

    Science.gov (United States)

    Gullapalli, Hemtej

    Energy harvesting and storage are independent mechanisms, each having their own significance in the energy cycle. Energy is generally harvested from temperature variations, mechanical vibrations and other phenomena which are inherently sporadic in nature, harvested energy stands a better chance of efficient utilization if it can be stored and used later, depending on the demand. In essence a comprehensive device that can harness power from surrounding environment and provide a steady and reliable source of energy would be ideal. Towards realizing such a system, for the harvesting component, a piezoelectric nano-composite material consisting of ZnO nanostructures embedded into the matrix of 'Paper' has been developed. Providing a flexible backbone to a brittle material makes it a robust architecture. Energy harvesting by scavenging both mechanical and thermal fluctuations using this flexible nano-composite is discussed in this thesis. On the energy storage front, Graphene based materials developed with a focus towards realizing ultra-thin lithium ion batteries and supercapacitors are introduced. Efforts for enhancing the energy storage performance of such graphitic carbon are detailed. Increasing the rate capability by direct CVD synthesis of graphene on current collectors, enhancing its electrochemical capacity through doping and engineering 3D metallic structures to increase the areal energy density have been studied.

  19. Technological and Economic Aspects of Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Rahul Basu

    2018-01-01

    Full Text Available The geographical regions contiguous to the Indian Ocean, Bay of Bengal and the Arabian Sea are prone to natural disasters and poor electric supply especially in rural and hard to reach coastal regions. Utilization of ocean resources for power generation such as tidal, thermal solar and wind for energy need to be incorporated in a broad framework for the region. Development of ocean-based energy systems can be integrated with early warning networks linked by satellite which can give a few hours to days warning to help mitigate the severity of natural disasters on human life. Ocean-based electricity extraction has; however, remained elusive for various reasons. Interest in these systems resumed after the oil crisis of the 1970’s, but was uncoordinated. Extraction of ocean energy from the kinetic energy of waves and ocean currents depends on various mechanical devices with variable efficiencies. Apart from the efficiency, one must match the output phase of the feeder waveforms with that of the electrical grid. Also, the wavelengths of the typical wave are of the order of a few meters, the interception of which requires large devices. The mechanical efficiency of the turbine extraction system is further limited by the flow momentum considerations. Some applications and their implementation are looked at, specifically with reference to the difficulties of implementation in the region, and other factors like economic efficiency (rate of returns in place of mechanical efficiency. Individual wave energy harvesters are thus bound to suffer from inefficiencies and it may be beneficial to use wave farm configurations from the point of view of the randomness of wave motion, the large wavelengths, and the added advantage of averaging fluctuations from large numbers of generators.

  20. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  1. Integrated solar capacitors for energy conversion and storage

    Institute of Scientific and Technical Information of China (English)

    Ruiyuan Liu; Yuqiang Liu; Haiyang Zou; Tao Song; Baoquan Sun

    2017-01-01

    Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

  2. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  3. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  4. A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2014-07-01

    Full Text Available Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on a specially designed sandwich structure with a thin thickness, which makes it readily compatible with a shoe. Besides, consideration is given to both high performance and excellent durability. The harvester provides an average output power of 1 mW during a walk at a frequency of roughly 1 Hz. Furthermore, a direct current (DC power supply is built through integrating the harvester with a power management circuit. The DC power supply is tested by driving a simulated wireless transmitter, which can be activated once every 2–3 steps with an active period lasting 5 ms and a mean power of 50 mW. This work demonstrates the feasibility of applying piezoelectric energy harvesters to power wearable sensors.

  5. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad

    2018-02-12

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power supply of green (renewable) and traditional micro-grid, such that traditional micro-grid is not exploited as long as the BSS can meet their power demands from harvested and stored green energy. Therefore, our goal is to minimize the networkwide energy consumption subject to users\\' certain quality of service and BSS\\' power consumption constraints. As a result of binary BS sleeping status and user-cell association variables, proposed is formulated as a binary linear programming (BLP) problem. A green communication algorithm based on binary particle swarm optimization is implemented to solve the problem with low complexity time.

  6. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen

    2009-04-29

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available. © 2009 American Chemical Society.

  7. Solar Energy Technologies Office Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-13

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  8. Masterplan Solar Energy; Masterplan Zonne-energie

    Energy Technology Data Exchange (ETDEWEB)

    Van Amerongen, G. [vAConsult, Rotterdam (Netherlands); Verkaik, P. [BDA Dak- en Gevelopleidingen, Gorinchem (Netherlands); Derksen, A. [ISSO, Rotterdam (Netherlands); Gramsbergen, E. [Gramsbergen Solar, Veldhoven (Netherlands); Cromwijk, J. [DWA installatie- en energieadvies, Bodegraven (Netherlands)

    2009-10-15

    The demand for solar energy installations is increasing. The quality of the offered products and services must therefore be safeguarded. This master plan addresses that need and contributes to a structural improvement of the quality of installed solar energy systems. [Dutch] De vraag naar zonne-energie installaties groeit. De kwaliteit van de aangeboden producten en diensten moet dan ook goed gewaarborgd blijven. Dit masterplan voorziet daarin en draagt bij aan een structurele verbetering van de kwaliteit van geinstalleerde zonne-energiesystemen.

  9. Wireless Energy Harvesting Using Signals from Multiple Fading Channels

    KAUST Repository

    Chen, Yunfei

    2017-08-01

    In this paper, we study the average, the probability density function and the cumulative distribution function of the harvested power. In the study, the signals are transmitted from multiple sources. The channels are assumed to be either Rician fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear and nonlinear models for the energy harvester at the receiver are examined. Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvester are more efficient, to avoid power outage. Further, the power transfer strategy can be optimized for fixed total power. Specifically, for Rayleigh fading, the optimal strategy is to put the total power at the source with the best channel condition and switch off all other sources, while for general Rician fading, the optimum magnitudes and phases of the transmitting waveforms depend on the channel parameters.

  10. Far-field RF energy transfer and harvesting

    NARCIS (Netherlands)

    Visser, H.J.; Vullers, R.; Briand, D.; Yeatman, E.; Roundy, S.

    2015-01-01

    This chapter deals with radio frequency (RF) energy transfer over a distance. After explaining the differences between nonradiative and radiative RF energy transfer, the chapter gives definitions for transfer and harvesting. Nonradiative RF energy transfer is mostly employed in inductive systems,

  11. Solar energy - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. [PA Energy A/S, Malling (Denmark)

    2007-05-15

    Solar energy in terms of thermal Solar Hot Water systems and electricity producing Photovoltaics contribute at present only to the global energy supply at a fraction of 1 %. However, the potential for solar energy is immense: the earth receives in 1 hour from the sun the equivalent of the present annual global energy supply. Solar energy is one of the emerging renewable energy technologies still not competitive, but exhibiting both technical and economic potential to be so inside 10-15 years. There is basically no necessary 'technology jumps' as prerequisites, but such a development will demand a favorable political climate. Growing political awareness, driven partly by environmental concerns partly by concerns about security of energy supply, of the need to promote solar energy and renewables, e.g. on global level spurred on by the recent UN/IPCC report and on an EU level by the EC commitment to reach 20 % renewables in the electricity supply by 2010 and 20 % renewables in the overall energy production by 2020, appears to ensure the necessary future political support for renewables, but not necessarily for solar energy technologies, in particular photovoltaics's, which is still not yet competitive to other renewables although exhibiting a tremendous potential. (au)

  12. The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,

    Science.gov (United States)

    and Tribal Governments | NREL The Solar Energy Trifecta: Solar + Storage + Net Metering The Solar Energy Trifecta: Solar + Storage + Net Metering February 12, 2018 by Benjamin Mow Massachusetts (DPU) seeking an advisory ruling on the eligibility of pairing solar-plus-storage systems with current

  13. Design of a bimorph piezoelectric energy harvester for railway monitoring

    International Nuclear Information System (INIS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2012-01-01

    Wireless sensor network is one of prospective methods for railway monitoring due to the long term operation and low maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree of freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s 2 base excitation compared to stand alone piezoelectric energy harvester without tip mass

  14. Decentralized Hypothesis Testing in Energy Harvesting Wireless Sensor Networks

    Science.gov (United States)

    Tarighati, Alla; Gross, James; Jalden, Joakim

    2017-09-01

    We consider the problem of decentralized hypothesis testing in a network of energy harvesting sensors, where sensors make noisy observations of a phenomenon and send quantized information about the phenomenon towards a fusion center. The fusion center makes a decision about the present hypothesis using the aggregate received data during a time interval. We explicitly consider a scenario under which the messages are sent through parallel access channels towards the fusion center. To avoid limited lifetime issues, we assume each sensor is capable of harvesting all the energy it needs for the communication from the environment. Each sensor has an energy buffer (battery) to save its harvested energy for use in other time intervals. Our key contribution is to formulate the problem of decentralized detection in a sensor network with energy harvesting devices. Our analysis is based on a queuing-theoretic model for the battery and we propose a sensor decision design method by considering long term energy management at the sensors. We show how the performance of the system changes for different battery capacities. We then numerically show how our findings can be used in the design of sensor networks with energy harvesting sensors.

  15. Design of a bimorph piezoelectric energy harvester for railway monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong [Univ. of Connecticut, Connecticut (United States)

    2012-12-15

    Wireless sensor network is one of prospective methods for railway monitoring due to the long term operation and low maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree of freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s{sup 2} base excitation compared to stand alone piezoelectric energy harvester without tip mass.

  16. Harvesting Energy from the Counterbalancing (Weaving Movement in Bicycle Riding

    Directory of Open Access Journals (Sweden)

    Shashank Priya

    2012-07-01

    Full Text Available Bicycles are known to be rich source of kinetic energy, some of which is available for harvesting during speedy and balanced maneuvers by the user. A conventional dynamo attached to the rim can generate a large amount of output power at an expense of extra energy input from the user. However, when applying energy conversion technology to human powered equipments, it is important to minimize the increase in extra muscular activity and to maximize the efficiency of human movements. This study proposes a novel energy harvesting methodology that utilizes lateral oscillation of bicycle frame (weaving caused by user weight shifting movements in order to increase the pedaling force in uphill riding or during quick speed-up. Based on the 3D motion analysis, we designed and implemented the prototype of an electro-dynamic energy harvester that can be mounted on the bicycle’s handlebar to collect energy from the side-to-side movement. The harvester was found to generate substantial electric output power of 6.6 mW from normal road riding. It was able to generate power even during uphill riding which has never been shown with other approaches. Moreover, harvesting of energy from weaving motion seems to increase the economy of cycling by helping efficient usage of human power.

  17. Harvesting energy from the counterbalancing (weaving) movement in bicycle riding.

    Science.gov (United States)

    Yang, Yoonseok; Yeo, Jeongjin; Priya, Shashank

    2012-01-01

    Bicycles are known to be rich source of kinetic energy, some of which is available for harvesting during speedy and balanced maneuvers by the user. A conventional dynamo attached to the rim can generate a large amount of output power at an expense of extra energy input from the user. However, when applying energy conversion technology to human powered equipments, it is important to minimize the increase in extra muscular activity and to maximize the efficiency of human movements. This study proposes a novel energy harvesting methodology that utilizes lateral oscillation of bicycle frame (weaving) caused by user weight shifting movements in order to increase the pedaling force in uphill riding or during quick speed-up. Based on the 3D motion analysis, we designed and implemented the prototype of an electro-dynamic energy harvester that can be mounted on the bicycle's handlebar to collect energy from the side-to-side movement. The harvester was found to generate substantial electric output power of 6.6 mW from normal road riding. It was able to generate power even during uphill riding which has never been shown with other approaches. Moreover, harvesting of energy from weaving motion seems to increase the economy of cycling by helping efficient usage of human power.

  18. Power Control Optimization of an Underwater Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Iñigo Aramendia

    2018-03-01

    Full Text Available Over the past few years, it has been established that vibration energy harvesters with intentionally designed components can be used for frequency bandwidth enhancement under excitation for sufficiently high vibration amplitudes. Pipelines are often necessary means of transporting important resources such as water, gas, and oil. A self-powered wireless sensor network could be a sustainable alternative for in-pipe monitoring applications. A new control algorithm has been developed and implemented into an underwater energy harvester. Firstly, a computational study of a piezoelectric energy harvester for underwater applications has been studied for using the kinetic energy of water flow at four different Reynolds numbers Re = 3000, 6000, 9000, and 12,000. The device consists of a piezoelectric beam assembled to an oscillating cylinder inside the water of pipes from 2 to 5 inches in diameter. Therefore, unsteady simulations have been performed to study the dynamic forces under different water speeds. Secondly, a new control law strategy based on the computational results has been developed to extract as much energy as possible from the energy harvester. The results show that the harvester can efficiently extract the power from the kinetic energy of the fluid. The maximum power output is 996.25 µW and corresponds to the case with Re = 12,000.

  19. High-efficiency integrated piezoelectric energy harvesting systems

    Science.gov (United States)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  20. Compact passively self-tuning energy harvesting for rotating applications

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2012-01-01

    This paper presents a compact, passive, self-tuning energy harvester for rotating applications. The harvester rotates in the vertical plane and is comprised of two beams: a relatively rigid piezoelectric generating beam and a narrow, flexible driving beam with a tip mass mounted at the end. The mass impacts the generating beam repeatedly under the influence of gravity to drive generation. Centrifugal force from the rotation modifies the resonant frequency of the flexible driving beam and the frequency response of the harvester. An analytical model that captures the harvester system's resonant frequency as a function of rotational speed is used to guide the detailed design. With an optimized design, the resonant frequency of the harvester substantially matches the frequency of the rotation over a wide frequency range from 4 to 16.2 Hz. A prototype of the passive self-tuning energy harvester using a lead zirconate titanate generating beam achieved a power density of 30.8 µW cm −3 and a more than 11 Hz bandwidth, which is much larger than the 0.8 Hz bandwidth calculated semi-empirically for a similar but untuned harvester. Passive tuning was also demonstrated using the more robust and reliable but less efficient polymer polyvinylidene fluoride for the generating beam

  1. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  2. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  3. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  4. A low frequency vibration energy harvester using magnetoelectric laminate composite

    International Nuclear Information System (INIS)

    Ju, Suna; Chae, Song Hee; Choi, Yunhee; Lee, Seungjun; Ji, Chang-Hyeon; Lee, Hyang Woon

    2013-01-01

    In this paper, we present a vibration energy harvester using magnetoelectric laminate composite and a springless spherical permanent magnet as a proof mass. The harvester utilizes a freely movable spherical permanent magnet to transform external vibration into a time varying magnetic field applied to the magnetoelectric transducer. The laminate composite consists of a Ni–Mn–Ga-based MSMA (magnetic shape memory alloy) element and a PZT (lead zirconate titanate) plate. A proof-of-concept harvester has been fabricated and characterized at various input accelerations and frequencies. A maximum open circuit voltage of 1.18 V has been obtained in response to a 3g vibration at 17 Hz with the fabricated device. Moreover, a maximum output voltage of 10.24 V and output power of 4.1 μW have been achieved on a 950 Ω load, when the fabricated energy harvester was mounted on a smartphone and shaken by hand. (paper)

  5. Architecture-independent power bound for vibration energy harvesters

    International Nuclear Information System (INIS)

    Halvorsen, E; Le, C P; Mitcheson, P D; Yeatman, E M

    2013-01-01

    The maximum output power of energy harvesters driven by harmonic vibrations is well known for a range of specific harvester architectures. An architecture-independent bound based on the mechanical input-power also exists and gives a strict limit on achievable power with one mechanical degree of freedom, but is a least upper bound only for lossless devices. We report a new theoretical bound on the output power of vibration energy harvesters that includes parasitic, linear mechanical damping while still being architecture independent. This bound greatly improves the previous bound at moderate force amplitudes and is compared to the performance of established harvester architectures which are shown to agree with it in limiting cases. The bound is a hard limit on achievable power with one mechanical degree of freedom and can not be circumvented by transducer or power-electronic-interface design

  6. Wireless energy transmission to supplement energy harvesters in sensor network applications

    Energy Technology Data Exchange (ETDEWEB)

    Farinholt, Kevin M [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  7. Protocol Monitoring Passive Solar Energy

    International Nuclear Information System (INIS)

    Van den Ham, E.R.; Bosselaar, L.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The contribution was 57 PJ in 1990 and also 57 PJ in 1995. The efficiency of passive solar energy systems increased from -31.5% to -28.1% in the period 1990-1995, mainly as a result of the use of extra insulating glazing. As a result of the reduction of energy consumption for heating in houses it is expected that the extra contribution of 2 PJ will not be realized in the year 2010. It is suggested that the method to determine the absolute contribution of passive solar energy to the energy demand of dwellings is to be included in the protocol monitoring renewable energy. For the method to be included in the energy statistics of Statistics Netherlands (CBS) it can be considered only to take into account the difference compared to 1990. 11 refs

  8. Priority to solar energy

    International Nuclear Information System (INIS)

    Berner, Joachim

    2011-01-01

    There are many different combinations of solar heating systems and heat pumps in the market; some of them differ considerably in terms of the design concept, control management and storage technology. One thing they all have in common is that solar heating comes first.

  9. A review of vibration-based MEMS piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Saadon, Salem; Sidek, Othman [Collaborative Microelectronic Design Excellence Center (CEDEC), School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2011-01-15

    The simplicity associated with the piezoelectric micro-generators makes it very attractive for MEMS applications, especially for remote systems. In this paper we reviewed the work carried out by researchers during the last three years. The improvements in experimental results obtained in the vibration-based MEMS piezoelectric energy harvesters show very good scope for MEMS piezoelectric harvesters in the field of power MEMS in the near future. (author)

  10. Energy harvesting: an integrated view of materials, devices and applications

    Science.gov (United States)

    Radousky, H. B.; Liang, H.

    2012-12-01

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  11. Energy Harvesting for Structural Health Monitoring Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  12. CMOS indoor light energy harvesting system for wireless sensing applications

    CERN Document Server

    Ferreira Carvalho, Carlos Manuel

    2016-01-01

    This book discusses in detail the CMOS implementation of energy harvesting.  The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed.  The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system.  The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.  ·         Discusses several energy sources which can be used to power energy harvesting systems and includes an overview of PV cell technologies  ·         Includes an introduction to voltage step-...

  13. Design optimization of PVDF-based piezoelectric energy harvesters

    Directory of Open Access Journals (Sweden)

    Jundong Song

    2017-09-01

    Full Text Available Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.

  14. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift...

  15. Energy Harvesting Combat Boot for Satellite Positioning

    Directory of Open Access Journals (Sweden)

    Haluk Akay

    2018-05-01

    Full Text Available Most portable electronic devices are power-limited by battery capacity, and recharging these batteries often interrupts the user’s experience with the device. The product presented in this paper provides an alternative to powering portables by converting regular human walking motion to electricity. The device harvests electric power using air bulbs, distributed in the sole of a shoe to drive a series of micro-turbines connected to small DC motors. The number and position of air bulbs is optimized to harvest the maximum airflow from each foot-strike. The system is designed to continuously drive the micro-turbines by utilizing both outflow and inflow from the air bulbs. A prototype combat boot was fitted on the right foot of a 75 kg test subject, and produced an average continuous power on the order of 10 s of mW over a 22 Ω load during walking at 3.0 mph. This combat boot provides enough electric power to a passive GPS tracker that periodically relays geographical coordinates to a smartphone via satellite without battery replacement.

  16. Limitation of solar energy and wind energy

    International Nuclear Information System (INIS)

    White, R. S.

    2008-01-01

    Wind turbines, solar energy collectors and photovoltaic cells have been popular sources of electricity since the oil crisis in the late seventies, and they are increasingly favored by many scientists and much of the public as methods for reducing global warming. The older wind farms in California are outdated. New wind turbines have not followed, primarily because of competition from lower-cost natural gas. The Times urges increased federal and state subsidies for the wind and solar industries. The primary reason that wind and solar energies have not made inroads in the past, and will never supply more than a few percentage points of the world's electrical energy, is their unpredictable variations in time and their constant need for back-ups. The only non-carbon-dioxide-emitting generator capable of backing up wind and solar energy and replacing coal and gas generators is nuclear fission. Nuclear power may be the practical solution to global warming, after all.

  17. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    Science.gov (United States)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  18. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  19. Harvesting Energy from Vibrations of the Underlying Structure

    DEFF Research Database (Denmark)

    Han, Bo; Vssilaras, S; Papadias, C.B.

    2013-01-01

    to the long-term structural health of a building or bridge, but at the same time they can be exploited as a power source to power the wireless sensors that are monitoring this structural health. This paper presents a new energy harvesting method based on a vibration driven electromagnetic harvester. By using......The use of wireless sensors for structural health monitoring offers several advantages such as small size, easy installation and minimal intervention on existing structures. However the most significant concern about such wireless sensors is the lifetime of the system, which depends heavily...... on the type of power supply. No matter how energy efficient the operation of a battery operated sensor is, the energy of the battery will be exhausted at some point. In order to achieve a virtually unlimited lifetime, the sensor node should be able to recharge its battery in an easy way. Energy harvesting...

  20. Human-motion energy harvester for autonomous body area sensors

    Science.gov (United States)

    Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.

    2017-03-01

    This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.

  1. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  2. Analytical simulation of the cantilever-type energy harvester

    Directory of Open Access Journals (Sweden)

    Jie Mei

    2016-01-01

    Full Text Available This article describes an analytical model of the cantilever-type energy harvester based on Euler–Bernoulli’s beam theory. Starting from the Hamiltonian form of total energy equation, the bending mode shapes and electromechanical dynamic equations are derived. By solving the constitutive electromechanical dynamic equation, the frequency transfer function of output voltage and power can be obtained. Through a case study of a unimorph piezoelectric energy harvester, this analytical modeling method has been validated by the finite element method.

  3. Design and development of a parametrically excited nonlinear energy harvester

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel

    2016-01-01

    Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.

  4. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  5. Analysis of synchronized charge extraction for piezoelectric energy harvesting

    International Nuclear Information System (INIS)

    Tang, Lihua; Yang, Yaowen

    2011-01-01

    In the past few years, various power conditioning circuits have been proposed to improve the efficiency of piezoelectric energy harvesting, among which the synchronized charge extraction (SCE) technique has been enthusiastically pursued. In the literature, the SCE technique is investigated based on the uncoupled or in-phase assumptions. The uncoupled assumption is only valid for weak electromechanical coupling and the in-phase assumption is not applicable for energy harvesting at off-resonance. In this paper, we derive an accurate analytical solution for the piezoelectric energy harvesting systems with the SCE technique. Based on this solution, we investigate the applicability of the SCE technique for different cases, i.e. the piezoelectric energy harvester (PEH) with various degrees of electromechanical coupling and the PEH excited at various frequencies. Circuit simulation is also conducted with an accurate circuit model derived for PEHs and the results validate the analytical outcomes. Both the accurate analytical solution and the circuit simulation show that the SCE technique cannot improve or even reduces the power output at resonance if the coupling of the PEH is not negligible. The SCE technique is found capable of significantly boosting the efficiency of energy harvesting only for the PEH vibrating at off-resonance frequencies or with weak coupling

  6. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    International Nuclear Information System (INIS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-01-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2∼1.0μW in the Human heart rate range on the skin contact area of 3.71cm 2 . Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves

  7. Energy-harvesting shock absorber with a mechanical motion rectifier

    International Nuclear Information System (INIS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-01-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges. (paper)

  8. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    Science.gov (United States)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  9. Magnetic flux concentration methods for magnetic energy harvesting module

    Directory of Open Access Journals (Sweden)

    Wakiwaka Hiroyuki

    2013-01-01

    Full Text Available This paper presents magnetic flux concentration methods for magnetic energy harvesting module. The purpose of this study is to harvest 1 mW energy with a Brooks coil 2 cm in diameter from environmental magnetic field at 60 Hz. Because the harvesting power is proportional to the square of the magnetic flux density, we consider the use of a magnetic flux concentration coil and a magnetic core. The magnetic flux concentration coil consists of an air­core Brooks coil and a resonant capacitor. When a uniform magnetic field crossed the coil, the magnetic flux distribution around the coil was changed. It is found that the magnetic field in an area is concentrated larger than 20 times compared with the uniform magnetic field. Compared with the air­core coil, our designed magnetic core makes the harvested energy ten­fold. According to ICNIRP2010 guideline, the acceptable level of magnetic field is 0.2 mT in the frequency range between 25 Hz and 400 Hz. Without the two magnetic flux concentration methods, the corresponding energy is limited to 1 µW. In contrast, our experimental results successfully demonstrate energy harvesting of 1 mW from a magnetic field of 0.03 mT at 60 Hz.

  10. Bistable energy harvesting enhancement with an auxiliary linear oscillator

    Science.gov (United States)

    Harne, R. L.; Thota, M.; Wang, K. W.

    2013-12-01

    Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.

  11. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish; Bakr, Osman; Ramasamy, Karthik; Malik, Mohammad A.

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance

  12. Security challenges for energy-harvesting wireless sensor networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Papini, Davide; Dragoni, Nicola

    2012-01-01

    With the recent introduction of Energy-Harvesting nodes, security is gaining more and more importance in sensor networks. By exploiting the ability of scavenging energy from the surrounding environment, the lifespan of a node has drastically increased. This is one of the reason why security needs...

  13. Towards airflow sensors with energy harvesting and wireless transmitting properties

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Sørensen, John Aasted; Lynggaard, Per

    2018-01-01

    to traditional anemometers, ultrasonic measurement or expensive LIDAR (Light Imaging, Detection and Ranging) systems. This paper presents the initial design considerations for a low-cost combined air speed and wind direction sensor, which harvests energy to drive it and to power the wireless transmission...... of system configurations and measurements. An energy-budget for this transmission is included....

  14. Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon

    Focusing on Wireless Sensor Networks (WSN) that are powered by energy harvesting, this dissertation focuses on energy-efficient communication links between senders and receivers that are alternating between active and sleeping states of operation. In particular, the focus lies on Medium Access...

  15. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever-ch...

  16. Optimal task scheduling policy in energy harvesting wireless sensor networks

    NARCIS (Netherlands)

    Rao, Vijay S.; Prasad, R. Venkatesha; Niemegeers, Ignas G M M

    2015-01-01

    Ambient energy harvesting for Wireless Sensor Networks (WSNs) is being pitched as a promising solution for long-lasting deployments in various WSN applications. However, the sensor nodes most often do not have enough energy to handle application, network and house-keeping tasks because amount of

  17. Harvesting and handling agricultural residues for energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, B.M.; Summer, H.R.

    1986-05-01

    Significant progress in understanding the needs for design of agricultural residue collection and handling systems has been made but additional research is required. Recommendations are made for research to (a) integrate residue collection and handling systems into general agricultural practices through the development of multi-use equipment and total harvest systems; (b) improve methods for routine evaluation of agricultural residue resources, possibly through remote sensing and image processing; (c) analyze biomass properties to obtain detailed data relevant to engineering design and analysis; (d) evaluate long-term environmental, social, and agronomic impacts of residue collection; (e) develop improved equipment with higher capacities to reduce residue collection and handling costs, with emphasis on optimal design of complete systems including collection, transportation, processing, storage, and utilization; and (f) produce standard forms of biomass fuels or products to enhance material handling and expand biomass markets through improved reliability and automatic control of biomass conversion and other utilization systems. 118 references.

  18. Ultra Low-Voltage Energy Harvesting

    Science.gov (United States)

    2013-09-01

    if in a solar battery charger the level of illumination were to drop due to cloud cover, the diode would prevent discharging of the battery when...the source voltage becomes lower than battery voltage. The drawback of a simple circuit like this is that once the source voltage is lower than the...longer charged when the battery voltage is above the OV setting. Figure 13. Block diagram of BQ25504 circuit . (From [10]) 18 THIS PAGE

  19. Solar energy. Inexhaustible, clean, profitable

    International Nuclear Information System (INIS)

    Colombo, S.

    2001-01-01

    The growth of US dollar together with the crisis of euro are producing a strong increase in the cost of traditional energy sources: oil and natural gas. Therefore, it is the ideal situation for boosting the alternative energy sources, above all the solar energy which is the most promising [it

  20. Solar energy storage and utilization

    Science.gov (United States)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  1. Energy harvesting from human motion: exploiting swing and shock excitations

    International Nuclear Information System (INIS)

    Ylli, K; Hoffmann, D; Willmann, A; Becker, P; Folkmer, B; Manoli, Y

    2015-01-01

    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm 3 a power density of 40 μW cm −3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm −3 for the total device volume of 48 cm 3 . Difficulties and potential improvements are discussed briefly. (paper)

  2. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  3. Multi-Source Energy Harvesting for Wireless Sensor Nodes.

    OpenAIRE

    Kang, Kai

    2012-01-01

    The past few years have seen an increasing interest in the development of wireless sensor networks. But the unsatisfactory or limited available energy source is one of the major bottlenecks which are limiting the wireless sensor technology from mass deployment. Ambient energy harvesting is the most promising solution towards autonomous sensor nodes by providing low cost, permanent, and maintenance-free energy source to wireless sensor nodes. In this paper, we first invested available energy s...

  4. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.

    Science.gov (United States)

    Luo, Cheng; Hofmann, Heath F

    2011-07-01

    In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.

  5. Energy Harvesting Using Screen Printed PZT on Silicon

    DEFF Research Database (Denmark)

    Lei, Anders

    and a multiplication factor equal to or less than 1. The available power is proportional to the force acting on the cantilever squared and the inverse of the viscous damping coefficient. The latest fabricated batch of harvesters produced in average 34.5 µW of RMS power over a resistive load of 50 k? with an RMS...... acceleration of 0.5g at 511 Hz. The best performing devices under similar conditions produced 44.9 µW at 543 Hz. Compared to other state of the art miniaturised vibration energy harvesters, the normalised power density for the harvesters fabricated in this work is 3.5 times higher than the next best harvester....

  6. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.

    2016-01-01

    . To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal

  7. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  8. Energy harvesting schemes for building interior environment monitoring

    Science.gov (United States)

    Zylka, Pawel; Pociecha, Dominik

    2016-11-01

    A vision to supply microelectronic devices without batteries making them perpetual or extending time of service in battery-oriented mobile supply schemes is the driving force of the research related to ambient energy harvesting. Energy harnessing aims thus at extracting energy from various ambient energy "pools", which generally are cost- or powerineffective to be scaled up for full-size, power-plant energy generation schemes supplying energy in electric form. These include - but are not limited to - waste heat, electromagnetic hum, vibrations, or human-generated power in addition to traditional renewable energy resources like water flow, tidal and wind energy or sun radiation which can also be exploited at the miniature scale by energy scavengers. However, in case of taking advantage of energy harvesting strategies to power up sensors monitoring environment inside buildings adaptable energy sources are restrained to only some which additionally are limited in spatial and temporal accessibility as well as available power. The paper explores experimentally an energy harvesting scheme exploiting human kinesis applicable in indoor environment for supplying a wireless indoor micro-system, monitoring ambient air properties (pressure, humidity and temperature).

  9. A low energy solar town

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Balocco, Carla

    1998-12-31

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m{sup 2}/year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs.

  10. A low energy solar town

    International Nuclear Information System (INIS)

    Svendsen, Svend; Balocco, Carla

    1998-01-01

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m 2 /year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs

  11. A batch process micromachined thermoelectric energy harvester: fabrication and characterization

    International Nuclear Information System (INIS)

    Su, J; Goedbloed, M; Van Andel, Y; De Nooijer, M C; Elfrink, R; Wang, Z; Vullers, R J M; Leonov, V

    2010-01-01

    Micromachined thermopiles are considered as a cost-effective solution for energy harvesters working at a small temperature difference and weak heat flows typical for, e.g., the human body. They can be used for powering autonomous wireless sensor nodes in a body area network. In this paper, a micromachined thermoelectric energy harvester with 6 µm high polycrystalline silicon germanium (poly-SiGe) thermocouples fabricated on a 6 inch wafer is presented. An open circuit voltage of 1.49 V and an output power of 0.4 µW can be generated with 3.5 K temperature difference in a model of a wearable micromachined energy harvester of the discussed design, which has a die size of 1.0 mm × 2.5 mm inside a watch-size generator

  12. Modelling and Investigation of a Hybrid Thermal Energy Harvester

    Directory of Open Access Journals (Sweden)

    Todorov Todor

    2018-01-01

    Full Text Available The presented paper deals with dynamical and experimental investigations of a hybrid energy harvester containing shape memory alloy (SMA wire and elastic cantilever with piezoelectric layer. The SMA wire periodically changes its temperature under the influence of a heated plate that approaches and moves away from the SMA wire. The change of SMA wire length causes rotation of the hot plate. The plate is heated by a heater with constant temperature. The repeated SMA wire extensions and contractions bend the piezoelectric cantilever which generates electric charges. The shape memory effect is presented as a temperature approximation of the Young’s modulus. A dynamical model of the energy harvester is created and some analytical investigations are presented. With the help of an experimental setup the acceleration, the force, the temperature, and the output voltage have been measured. The theoretical results are validated experimentally. Some conclusions are made about the best performance of the energy harvester.

  13. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    Science.gov (United States)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  14. Passively-switched energy harvester for increased operational range

    International Nuclear Information System (INIS)

    Liu, Tian; Livermore, Carol; Pierre, Ryan St

    2014-01-01

    This paper presents modeling and experimental validation of a new type of vibrational energy harvester that passively switches between two dynamical modes of operation to expand the range of driving frequencies and accelerations over which the harvester effectively extracts power. In both modes, a driving beam with a low resonant frequency couples into ambient vibrations and transfers their energy to a generating beam that has a higher resonant frequency. The generating beam converts the mechanical power into electrical power. In coupled-motion mode, the driving beam bounces off the generating beam. In plucked mode, the driving beam deflects the generating beam until the driving beam passes from above the generating beam to below it or vice versa. Analytical system models are implemented numerically in the time domain for driving frequencies of 3 Hz to 27 Hz and accelerations from 0.1 g to 2.6 g, and both system dynamics and output power are predicted. A corresponding switched-dynamics harvester is tested experimentally, and its voltage, power, and dynamics are recorded. In both models and experiments, coupled-motion harvesting is observed at lower accelerations, whereas plucked harvesting and/or mixed mode harvesting are observed at higher accelerations. As expected, plucked harvesting outputs greater power than coupled-motion harvesting in both simulations and experiments. The predicted (1.8 mW) and measured (1.56 mW) maximum average power levels are similar under measured conditions at 0.5 g. When the system switches to dynamics that are characteristic of higher frequencies, the difference between predicted and measured power levels is more pronounced due to non-ideal mechanical interaction between the beams’ tips. Despite the beams’ non-ideal interactions, switched-dynamics operation increases the harvester’s operating range. (paper)

  15. Northeast Solar Energy Market Coalition (NESEMC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, Karl R. [Pace Energy and Climate Center Pace University School of Law

    2018-03-31

    The Northeast Solar Energy Market Coalition (NESEMC) brought together solar energy business associations and other stakeholders in the Northeast to harmonize regional solar energy policy and advance the solar energy market. The Coalition was managed by the Pace Energy and Climate Center, a project of the Pace University Elisabeth Haub School of Law. The NESEMC was funded by the U.S. Department of Energy SunShot Initiative as a cooperative agreement through 2017 as part of Solar Market Pathways.

  16. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.

    Science.gov (United States)

    Lu, Shaohua; Boussaid, Farid

    2015-11-19

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  17. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Shaohua Lu

    2015-11-01

    Full Text Available This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  18. Nonlinear analysis and characteristics of inductive galloping energy harvesters

    Science.gov (United States)

    Dai, H. L.; Yang, Y. W.; Abdelkefi, A.; Wang, L.

    2018-06-01

    This paper presents an investigation on analysis and characteristics of aerodynamic electromagnetic energy harvesters. The source of aeroelastic oscillations results from galloping of a prismatic structure. A nonlinear distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the electric current induced in the coil. Firstly, we perform a linear analysis to study the impacts of the external electrical resistance, magnet placement, electromagnetic coupling coefficient, and internal resistance in the coil on the cut-in speed of instability of the coupled electroaeroelastic system. It is demonstrated that these parameters have significant impacts on cut-in speed of instability of the harvester system. Subsequently, a nonlinear analysis is implemented to explore the influences of these parameters on the output property of the energy harvester. The results show that there exists an optimal external electrical resistance which maximizes the output power of the harvester, and this optimal value varies with the magnet's placement, wind speed, electromagnetic coupling coefficient and internal resistance of the coil. It is also demonstrated that an increase in the distance between the clamped end and the magnet, an increase in the electromagnetic coupling coefficient, and/or a decrease in the internal resistance of the coil are accompanied by an increase in the level of the harvested power and a decrease in the tip displacement of the bluff body which is associated with a resistive-shunt damping effect in the harvester. The implemented studies give a constructive guidance to design and enhance the output performance of aerodynamic electromagnetic energy harvesters.

  19. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    Science.gov (United States)

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…

  20. Applications of energy harvesting for ultralow power technology

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  1. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance and having low toxicity. Developing methods for the combination of the elements to produce binary, ternary and quaternary compounds has dominated research in the field. This chapter will provide the most recent developments (from year 2012 onwards) for the synthesis and use of colloidal nanocrystal inks for solar cell applications. © The Royal Society of Chemistry 2014.

  2. Finite element modeling of electrically rectified piezoelectric energy harvesters

    International Nuclear Information System (INIS)

    Wu, P H; Shu, Y C

    2015-01-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique. (paper)

  3. Finite element modeling of electrically rectified piezoelectric energy harvesters

    Science.gov (United States)

    Wu, P. H.; Shu, Y. C.

    2015-09-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique.

  4. Modelling of a bridge-shaped nonlinear piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Gafforelli, G; Corigliano, A; Xu, R; Kim, S G

    2013-01-01

    Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters

  5. Wideband quin-stable energy harvesting via combined nonlinearity

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2017-04-01

    Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.

  6. Piezoelectric energy harvesting for powering low power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, M.; Palosaari, J.; Hannu, J.; Juuti, J.; Jantunen, H. (Univ. of Oulu, Dept. of Electrical and Information Engineering (Finland)). email: jajuu@ee.oulu.fi

    2009-07-01

    Although wireless data transmission techniques are commonly used in electronic devices, they still suffer from wires for the power supply or from batteries which require charging, replacement and other maintenance. The vision for the portable electronics and industrial measurement systems of the future is that they are intelligent and independent on their energy supply. The major obstacle in this path is the energy source which enables all other functions and 'smartness' of the systems as the computing power is also restricted by the available energy. The development of long-life energy harvesters would reduce the need for batteries and wires thus enabling cost-effective and environment friendlier solutions for various applications such as autonomous wireless sensor networks, powering of portable electronics and other maintenance-free systems. One of the most promising techniques is mechanical energy harvesting e.g. by piezoelectric components where deformations produced by different means is directly converted to electrical charge via direct piezoelectric effect. Subsequently the electrical energy can be regulated or stored for further use. The total mechanical energy in vibration of machines can be very large and usually only a fraction of it can be transformed to electrical energy. Recently, piezoelectric vibration based energy harvesters have been developed widely for different energy consumption and application areas. As an example for low energy device an piezoelectric energy harvester based on impulse type excitations has been developed for active RFID identification. Moreover, piezoharvester with externally leveraged mechanism for force amplification was reported to be able to generate mean power of 0.4 mW from backpack movement. Significantly higher power levels are expected from larger scale testing in Israel, where piezoelectric material is embedded under active walking street, road, airport or railroad. The energy is harvested from human or

  7. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  8. Communication strategies for two models of discrete energy harvesting

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Popovski, Petar

    2014-01-01

    Energy harvesting is becoming a viable option for powering small wireless devices. Energy for data transmission is supplied by the nature, such that when a transmission is about to take place in an arbitrary instant, the amount of available energy is a random quantity. The arrived energy is stored...... in a battery and transmissions are interrupted if the battery runs out of energy. We address communication in slot-based energy harvesting systems, where the transmitter communicates with ON-OFF signaling: in each slot it can either choose to transmit (ON) or stay silent (OFF). Two different models...... strategies and compare the slot- with the frame-based model in the case of an errorless transmission channel. Additionally, for the slot-based model and channel with errors, we provide a new proof of the capacity achieved by the save-and-transmit scheme....

  9. Harvesting alternate energies from our planet

    Science.gov (United States)

    Rath, Bhakta B.

    2009-04-01

    Recent price fluctuations have focused attention on the phenomenal increase of global energy consumption in recent years. We have almost reached a peak in global oil production. Total world consumption of oil will rise by nearly 60% between 1999 and 2020. In 1999 consumption was 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the United States, nearly 40% of energy usage is provided by petroleum, of which nearly a third is used in transportation. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. This article will review national and international perspectives on the exploration of alternate energies with a focus on energy derivable from the ocean.

  10. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  11. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  12. PHOTOELECTROCHEMICAL SOLAR ENERGY CONVERSION ...

    African Journals Online (AJOL)

    Preferred Customer

    on indium-doped tin oxide (ITO) used as a photoactive electrode; amorphous ... The polymer electrolyte was prepared by dissolving 309 mg of POMOE in 25 mL .... The VOC of Bulk heterojunction (BHJ) based solar cells is strongly correlated ...

  13. Environmental and solar energy techniques

    International Nuclear Information System (INIS)

    Zaidi, Z.I.

    2003-01-01

    Technologies for fossil fuel extraction, transportation, processing and their use have harmful impact on the environment which cause direct and indirect negative impact on human heath, animals, crops and structure etc. The end use of all the fossil fuels is combustion irrespective of the final purpose i.e. heating, electricity production and motive power for transportation. The main constituents of fossil fuels are carbon and hydrogen but some other ingredients, which are originally in the fuel e.g. sulfur or are added during refining e.g. lead, alcohol etc. Combustion of the fossil fuel produces various gases (CO/sub x/, SO/sub x/ NO/sub x/, CH,), soot, ash, droplets of tar and other organic compounds, which are all released into the atmosphere. High rate of population growth and industrialization in the developing countries are causing unsustainable use of forest resources and fossil fuels, hence, are serious hurdles in environmental improvement. The situation in Pakistan is even worse as it has very limited fossil fuels and 40% of its commercial energy requirement are to be imported every year. Renewable energy technologies on the other hand, can play a vital role in improving the environmental condition globally. Pakistan Council of Renewable Energy Technologies (PCRET) is working in the field of renewable energy technologies. The Council has developed solar modules and solar thermal devices including solar cookers, solar dryers, solar stills and solar water heaters. The paper describes these devices and contribution they can make towards the improvement of environment. (author)

  14. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  15. Analysis of AC Low-Voltage Energy Harvesting

    Science.gov (United States)

    2014-09-01

    We have seen such efforts in car manufacturing, such as the Prius, that returns energy to the battery through the use of its regenerative brake ... system . Power electronics is the critical technology that makes harvesting this unused energy possible. Piezoelectricity is a material property that...Demo Circuit 1459b quick start guide [user’s guide]. Milpitas, CA: Linear Technology, April 2010. [13] Piezo Systems , “Piezoelectric Energy

  16. Piezoelectric energy harvesting from flow-induced vibration

    International Nuclear Information System (INIS)

    Wang, D-A; Ko, H-H

    2010-01-01

    A new piezoelectric energy harvester for harnessing energy from flow-induced vibration is developed. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric film. A finite element model is developed in order to estimate the generated voltage of the piezoelectric laminate subjected to a distributed load. Prototypes of the energy harvester are fabricated and tested. Experimental results show that an open circuit output voltage of 2.2 V pp and an instantaneous output power of 0.2 µW are generated when the excitation pressure oscillates with an amplitude of 1.196 kPa and a frequency of about 26 Hz. The solution of the generated voltage based on the finite element model agrees well with the experiments. Based on the finite element model, the effects of the piezoelectric film dimensions, the fluid pressure applied to the harvester and types of piezoelectric layer on the output voltage of the harvester can be investigated.

  17. Innovative thermal energy harvesting for future autonomous applications

    Science.gov (United States)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  18. Innovative thermal energy harvesting for future autonomous applications

    International Nuclear Information System (INIS)

    Monfray, Stephane

    2013-01-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies and Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market

  19. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  20. Micro energy harvesting from ambient motion : modeling, simulation and design

    Energy Technology Data Exchange (ETDEWEB)

    Blystad, Lars-Cyril

    2012-07-01

    Vibration energy harvesting is the process of converting available ambient kinetic energy into useful electrical energy. It can be done on large scale with e.g. a wind-driven turbine. This thesis deals with small scale energy harvesters that are suitable for fabrication in Micro electromechanical Systems (MEMS) technologies. Such MEMS energy harvesters have the potential to supply power for micro power devices. Modeling, simulation and design of MEMS vibration energy harvesters are the foci of this thesis. Transduction mechanisms that are covered are electrostatic and piezoelectric. Electric equivalent circuits are obtained for the use in electromechanical simulations with the circuit simulator SPICE. The feasibility of simulating both narrow- and broadband vibrations, to model different external driving forces, in a standard circuit simulator is demonstrated. Comparisons of the har- vesters performance for different excitations are presented. A selection of passive and active power conditioning circuits is investigated and their performances compared. The active nonlinear switching conversion circuitry performs better than simple passive circuitry, especially when mechanical end stops are in effect. The active switching circuits give higher electromechanical damping, and thus can be driven at higher acceleration amplitudes before end stops are engaged. Mechanical end stops have to be present in all MEMS vibrational energy harvesters. Either due to space limitations, reliability issues, Simliberate introduction of nonlinearities or a combination of these. ulations in the thesis include mechanical end stops and thus include the corresponding nonlinearities introduced in the system. When the mechanical end stops are hit by the proof mass during high-amplitude vibrations, nonlinear effects such as saturation and jumps are present. The end stops increase the effective bandwidth at large acceleration amplitudes. End stops limit the output power for sinusoidal

  1. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  2. Array of piezoelectric energy harvesting by the equivalent impedance approach

    International Nuclear Information System (INIS)

    Lien, I C; Shu, Y C

    2012-01-01

    This article proposes to use the idea of equivalent impedance to investigate the electrical response of an array of piezoelectric oscillators endowed with distinct energy harvesting circuits. Three interface electronics systems are considered including standard AC/DC and parallel/series-SSHI (synchronized switch harvesting on inductor) circuits. Various forms of equivalent load impedance are analytically obtained for different interfaces. The steady-state response of an array system is then shown to be determined by the matrix formulation of generalized Ohm’s law whose impedance matrix is explicitly expressed in terms of the load impedance. A model problem is proposed for evaluating the ability of power harvesting under various conditions. It is shown first that harvested power is increased dramatically for the case of small deviation in the system parameters. On the other hand, if the deviation in mass is relatively large, the result is changed from the power-boosting mode to wideband mode. In particular, the parallel-SSHI array system exhibits much more significant bandwidth improvement than the other two cases. Surprisingly, the series-SSHI array system shows the worst electrical response. Such an observation is opposed to our previous finding that an SSHI technique avails against the standard technique in the case based on a single piezoelectric energy harvester and the explanation is under investigation. (fast track communication)

  3. Solar Energy Measurement Using Arduino

    OpenAIRE

    Jumaat Siti Amely; Othman Mohamad Hilmi

    2018-01-01

    This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR) sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was...

  4. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  5. Energy Harvesting with a Liquid-Metal Microfluidic Influence Machine

    Science.gov (United States)

    Conner, Christopher; de Visser, Tim; Loessberg, Joshua; Sherman, Sam; Smith, Andrew; Ma, Shuo; Napoli, Maria Teresa; Pennathur, Sumita; Weld, David

    2018-04-01

    We describe and demonstrate an alternative energy-harvesting technology based on a microfluidic realization of a Wimshurst influence machine. The prototype device converts the mechanical energy of a pressure-driven flow into electrical energy, using a multiphase system composed of droplets of liquid mercury surrounded by insulating oil. Electrostatic induction between adjacent metal droplets drives charge through external electrode paths, resulting in continuous charge amplification and collection. We demonstrate a power output of 4 nW from the initial prototype and present calculations suggesting that straightforward device optimization could increase the power output by more than 3 orders of magnitude. At that level, the power efficiency of this energy-harvesting mechanism, limited by viscous dissipation, could exceed 90%. The microfluidic context enables straightforward scaling and parallelization, as well as hydraulic matching to a variety of ambient mechanical energy sources, such as human locomotion.

  6. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  7. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    Science.gov (United States)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

  8. Harvesting vibrational energy due to intermodal systems via nano coated piezo electric devices.

    Science.gov (United States)

    2015-12-01

    Vibrational energy resulting from intermodal transport systems can be recovered through the use of energy harvesting system consisting of PZT piezo electric material as the primary energy harvesting component. The ability of traditional PZT piezo ele...

  9. Energy harvesting techniques for autonomous WSNs-RFID with a focus on RF energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ping

    2012-04-27

    Supply circuits that harvest energy from surrounding ambient or dedicated sources have drawn much interest recently for providing a possibility of energy-autonomy to the wireless sensing devices. The objective of this thesis is to optimize the power transfer efficiency of the RF/microwave energy transducers in WSN/RFID applications. For this purpose, analysis on the power utilization of the wireless devices at different working states has been done, which implies a space of improving the power transfer efficiency by employing a novel design concept in the RF/microwave energy transducers. In order to observe a deep insight of the charge-pump based energy transducer, an analytical derivation has been implemented based on a compact I/V model for MOSFET working in strong inversion and subthreshold regions. The derivation provides a mathematical direction for the impact of the power consumption of the wireless device on the input impedance of the charge-pump rectifier, which acts as a core element in the energy transducer. With expressing the input impedance of the rectifier into a shunt connection of a resistor and a capacitor, as the load current consumption reduces the shunt resistance increases dramatically while the shunt capacitance holds a relatively constant value. This work proposes a methodology of employing an adaptively adjusted matching network between the rectifier and the antenna in order to optimize the power transfer efficiency according to the instant power consumption of the wireless devices on different working states. For read-only wireless devices with no embedded batteries, like RFID transponders, a tiny storage capacitor of pico-farad which can be charged-up to a certain voltage in microseconds is usually employed as a DC supplier. During the communication between reader and transponder, the reader radiates RF power continuously to supply the transponder. Extra power supply is required to adjust the matching network electrically for optimal power

  10. Solar Energy - It's Growth, Development, and Use

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Resources with Additional Information Solar has played a major role in solar energy development through previous research and ongoing activities . As a result of research and development, the "cost of solar energy has been reduced 100-fold

  11. Ballistic Kelvin's water dropper for energy harvesting

    NARCIS (Netherlands)

    Xie, Yanbo; de Boer, Hans L.; Sprenkels, A.J.; van den Berg, Albert; Eijkel, Jan C.T.

    2014-01-01

    In this paper, we introduce a microfluidic self-excited energy conversion system inspired by Kelvin’s water dropper but driven by inertia instead of gravity. Two micro water jets are produced by forcing water through two micropores, breaking up into microdroplets which are inductively charged by

  12. Analysis of active piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Yiliang CUI

    2018-02-01

    Full Text Available Most of the existing piezoelectric traps are designed for a narrow frequency range of vibration, but the surrounding environment has a very wide frequency range, and the frequency may also be subject to change, causing the problem of difficult to achieve energy capture or capture inefficiency. In order to solve problem, a new T-type piezoelectric cantilever is proposed as a capture energy structure in the paper. To begin with the aspects of structural design and circuit design, the static analysis, modal analysis and resonance analysis of the structure are carried out and the natural frequency and excitation frequency of the device are analyzed. The design and calculation of the power consumption and the loss of the components of the circuit are analyzed by the simulation and verification of the active capture energy circuit, and the active and passive techniques are compared and analyzed, the simulation of the active capture circuit is verified by analyzing the power consumption of the circuit and the maximum power obtained by the active technology is 5 times of that of the passive technology. And then the voltage-controlled active boundary control method can be used for interface circuit design, taking the initiative to use each piezoelectric transduction cycle triggered by the electrical boundary conditions to effectively increase the input piezoelectric pump energy, and then increase output power. The way of utilizing the active trapping of piezoelectric materials is innovated, which has a positive effect on the development of piezoelectric traps.

  13. Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |

    Science.gov (United States)

    NREL Studies Webinars Solar Energy Evolution and Diffusion Studies Webinars These webinars . Department of Energy's Solar Energy Evolution and Diffusion Studies (SEEDS) program. SEEDS 2017-2019 Study Residential Solar July 20, 2017 Presenters: Kiran Lakkaraju, Sandia National Laboratories Yevgeniy Vorobeychik

  14. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza

    2016-11-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  15. Application of Metamaterials to RF Energy Harvesting and Infrared Photodetection

    Science.gov (United States)

    Fowler, Clayton M.

    Techniques for adapting metamaterials for the improvement of RF energy harvesting and infrared photodetection are demonstrated using experimental and computer simulation methods. Two methods for RF energy harvesting are experimentally demonstrated and supported by computer simulation. In the first method, a metamaterial perfect absorber (MPA) is made into a rectenna capable of harvesting RF energy and delivering power to a load by soldering Schottky diodes onto connected split ring resonator (SRR) structures composing the planar metasurface of the perfect absorber. The metamaterial rectenna is accompanied by a ground plane placed parallel to it, which forms a Fabry-Perot cavity between the metasurface and the ground plane. The Fabry-Perot cavity stores energy in the form of standing waves which is transferred to the SRR structures of the metasurface as AC currents that are rectified by the diodes to create DC power. This type of design enables highly efficient energy harvesting for low input power, creates a large antenna capture area, and uses elements with small electrical size, such that 100 uW of power (enough to operate simple devices) can be captured at ambient intensities 1 - 2 uW/cm2. Two designs using this method are presented, one that operates for linear polarizations at 0.9 GHz and a smaller polarization-independent design that operates around 1.5 GHz. In the second method, the energy stored in the standing waves of an MPA Fabry-Perot cavity is instead harvested by placing a separate energy harvesting antenna within the cavity. The cavity shapes and enhances the incident electric field, and then the separate energy harvesting antenna is designed to be inserted into the cavity so that its shape and/or radiation pattern matches the electric field lines within the cavity and maximally extracts the stored energy. This method allows for great customization of antenna design parameters, such as operating frequency, polarization dependence, and directionality

  16. Comparative analysis of solar pasteurization versus solar disinfection for the treatment of harvested rainwater.

    Science.gov (United States)

    Strauss, André; Dobrowsky, Penelope Heather; Ndlovu, Thando; Reyneke, Brandon; Khan, Wesaal

    2016-12-09

    Numerous pathogens and opportunistic pathogens have been detected in harvested rainwater. Developing countries, in particular, require time- and cost-effective treatment strategies to improve the quality of this water source. The primary aim of the current study was thus to compare solar pasteurization (SOPAS; 70 to 79 °C; 80 to 89 °C; and ≥90 °C) to solar disinfection (SODIS; 6 and 8 hrs) for their efficiency in reducing the level of microbial contamination in harvested rainwater. The chemical quality (anions and cations) of the SOPAS and SODIS treated and untreated rainwater samples were also monitored. While the anion concentrations in all the samples were within drinking water guidelines, the concentrations of lead (Pb) and nickel (Ni) exceeded the guidelines in all the SOPAS samples. Additionally, the iron (Fe) concentrations in both the SODIS 6 and 8 hr samples were above the drinking water guidelines. A >99% reduction in Escherichia coli and heterotrophic bacteria counts was then obtained in the SOPAS and SODIS samples. Ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR) analysis revealed a 94.70% reduction in viable Legionella copy numbers in the SOPAS samples, while SODIS after 6 and 8 hrs yielded a 50.60% and 75.22% decrease, respectively. Similarly, a 99.61% reduction in viable Pseudomonas copy numbers was observed after SOPAS treatment, while SODIS after 6 and 8 hrs yielded a 47.27% and 58.31% decrease, respectively. While both the SOPAS and SODIS systems reduced the indicator counts to below the detection limit, EMA-qPCR analysis indicated that SOPAS treatment yielded a 2- and 3-log reduction in viable Legionella and Pseudomonas copy numbers, respectively. Additionally, SODIS after 8 hrs yielded a 2-log and 1-log reduction in Legionella and Pseudomonas copy numbers, respectively and could be considered as an alternative, cost-effective treatment method for harvested rainwater.

  17. Thermal energy harvesters with piezoelectric or electrostatic transducer

    Science.gov (United States)

    Prokaryn, Piotr; Domański, Krzysztof; Marchewka, Michał; Tomaszewski, Daniel; Grabiec, Piotr; Puscasu, Onoriu; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    This paper describes the idea of the energy harvester which converts thermal gradient present in environment into electricity. Two kinds of such devices are proposed and their prototypes are shown and discussed. The main parts of harvesters are bimetallic spring, piezoelectric transducer or electrostatic transducer with electret. The applied piezomembrane was commercial available product but electrets was made by authors. In the paper a fabrication procedure of electrets formed by the corona discharge process is described. Devices were compared in terms of generated power, charging current, and the voltage across a storage capacitor.

  18. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  19. Solar Energy-An Everyday Occurrence

    Science.gov (United States)

    Keister, Carole; Cornell, Lu Beth

    1978-01-01

    Describes a solar energy research project sponsored by the Energy Research and Development Administration and conducted at Timonium School in Maryland. Elementary student involvement in solar energy studies resulting from the project is noted. (MDR)

  20. Energy Harvesting with Coupled Magnetorestrictive Resonators

    Science.gov (United States)

    2013-09-01

    matching, small hysteresis, and low coercivity2. Ceramic material like PZT tends to develop fatigue during its cycles whereas Galfenol does not have...Magnetostrictive Material PZT Pb [ZrxTi1-x] O3, 0<xə, Lead Zirconate Titanate RX Receiver SHM Structural Health Monitoring...zirconate titanate [ PZT ]) have lead in their fabrication process, which is an environmental risk. Another major issue with standard energy

  1. Simultaneous Vibration Suppression and Energy Harvesting

    Science.gov (United States)

    2013-08-15

    of the coupling coefficient in the feed back control law resulting from the PZT nonlinearity. A minimum energy control law was developed...these control laws we also discovered that the high voltages commanded by our control laws result in the piezoelectric coupling coefficient being...non constant. Thus we also had to implement an adaptive control law (exponential actually) to account for the change in coupling coefficient as the

  2. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    International Nuclear Information System (INIS)

    Pearson, M R; Eaton, M J; Pullin, R; Featherston, C A; Holford, K M

    2012-01-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  3. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    Science.gov (United States)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  4. Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy.

    Science.gov (United States)

    Yang, Peihua; Qu, Xiaopeng; Liu, Kang; Duan, Jiangjiang; Li, Jia; Chen, Qian; Xue, Guobin; Xie, Wenke; Xu, Zhimou; Zhou, Jun

    2018-03-07

    Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm -2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

  5. Harvesting electrostatic energy using super-hydrophobic surfaces

    Science.gov (United States)

    Pociecha, Dominik; Zylka, Pawel

    2016-11-01

    Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.

  6. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting

    International Nuclear Information System (INIS)

    Liu, W Q; Badel, A; Formosa, F; Wu, Y P; Agbossou, A

    2013-01-01

    Bistable vibration energy harvesters are attracting more and more interest because of their capability to scavenge energy over a large frequency band. The bistable effect is usually based on magnetic interaction or buckled beams. This paper presents a novel architecture based on amplified piezoelectric structures. This buckled spring–mass architecture allows the energy of the dynamic mass to be converted into electrical energy in the piezoelectric materials as efficiently as possible. Modeling and design are performed and a normalized expression of the harvester behavior is given. Chirp and band-limited noise excitations are used to evaluate the proposed harvester’s performances. Simulation and experimental results are in good agreement. A method of using a spectrum plot for investigating the interwell motion is presented. The effect of the electric load impedance matching strategy is also studied. Results and comparisons with the literature show that the proposed device combines a large bandwidth and a high power density. (paper)

  7. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  8. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  9. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  10. Do biomass harvesting guidelines influence herpetofauna following harvests of logging residues for renewable energy?.

    Science.gov (United States)

    Fritts, Sarah; Moorman, Christopher; Grodsky, Steven; Hazel, Dennis; Homyack, Jessica; Farrell, Chris; Castleberry, Steven

    2016-04-01

    Forests are a major supplier of renewable energy; however, gleaning logging residues for use as woody biomass feedstock could negatively alter habitat for species dependent on downed wood. Biomass Harvesting Guidelines (BHGs) recommend retaining a portion of woody biomass on the forest floor following harvest. Despite BHGs being developed to help ensure ecological sustainability, their contribution to biodiversity has not been evaluated experimentally at operational scales. We compared herpetofauanal evenness, diversity, and richness and abundance of Anaxyrus terrestris and Gastrophryne carolinensis among six treatments that varied in volume and spatial arrangement of woody biomass retained after clearcutting loblolly pine (Pinus taeda) plantations in North Carolina, USA (n = 4), 2011-2014 and Georgia (n = 4), USA 2011-2013. Treatments were: (1) biomass harvest with no BHGs, (2) 15% retention with biomass clustered, (3) 15% retention with biomass dispersed, (4) 30% retention with biomass clustered, (5) 30% retention with biomass dispersed, and (6) no biomass harvest. We captured individuals with drift fence arrays and compared evenness, diversity, and richness metrics among treatments with repeated-measure, linear mixed-effects models. We determined predictors of A. terrestris and G. carolinensis abundances using a priori candidate N-mixture models with woody biomass volume, vegetation structure, and groundcover composition as covariates. We had 206 captures of 25 reptile species and 8710 captures of 17 amphibian species during 53690 trap nights. Herpetofauna diversity, evenness, and richness were similar among treatments. A. terrestris abundance was negatively related to volume of retained woody biomass in treatment units in North Carolina in 2013. G. carolinensis abundance was positively related with volume of retained woody debris in treatment units in Georgia in 2012. Other relationships between A. terrestris and G. carolinensis abundances and habitat metrics

  11. Nonlinear analysis for dual-frequency concurrent energy harvesting

    Science.gov (United States)

    Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu

    2018-05-01

    The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.

  12. Energy harvesting for wireless sensors by using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Duerager, Christian [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland)

    2012-07-01

    Wireless sensor technology, which integrates transducers, measurement electronics and wireless communication, has become increasingly vital in structural health monitoring (SHM) applications. Compared to traditional wired systems, wireless solutions reduce the installation time and costs and are not subjected to breakage caused by harsh weather conditions or other extreme events. Because of the low installation costs, wireless sensor networks allow the deployment of a big number of wireless sensor nodes on the structures. Moreover, the nodes can be placed on particularly critical components of the structure difficult to reach by wires. In most of the cases the power supply are conventional batteries, which could be a problem because of their finite life span. Furthermore, in the case of wireless sensor nodes located on structures, it is often advantageous to embed them, which makes an access impossible. Therefore, if a method of obtaining the untapped energy surrounding these sensors was implemented, significant life could be added to the power supply. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. In this paper we first discuss the research that has been performed in the area of energy harvesting for wireless sensor technologies by using the ambient vibration energy. In many cases the energy produced by the ambient vibrations is far too small to directly power a wireless sensor node. Therefore, in a second step we discuss the development process for an electronic energy harvesting circuit optimized for piezoelectric transducers. In the last part of this paper an experiment with different piezoelectric transducers and their applicability for energy harvesting applications on vibrating structures will be discussed. (orig.)

  13. Piezoelectric and Semiconducting Ribbon for Flexible Energy Harvesting

    Science.gov (United States)

    2012-06-08

    ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Space and Naval Warfare Systems Command SPA WAR 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION...rubbers could yield breakthroughs in implantable or wearable energy harvesting systems . Being electromechanically coupled, piezoelectric crystals...ctuator d33 (pm/V) PZT PVDF Quartz Bone PZT > 80% Conversion Efficiency 3333 dk  VdE 2233 Energy 250 25 2.5

  14. Introductory guide to solar energy

    CSIR Research Space (South Africa)

    Cawood, WN

    1976-01-01

    Full Text Available amount of solar energy. It is one thing for environmentalists to advocate a dramatic change over to solar energy but quite another to implement this, as it would obviously be unthinkable to scrap all fossil fuel technology unless a global catastrophe... is one built in New Mexico to suit a climate which is considerably more extreme than that found on the highveld. (See illustration, which applies to the northern hemisphere.) Instead of simply filling the sub-floor level of this home with soil...

  15. 25th anniversary article: A soft future: from robots and sensor skin to energy harvesters.

    Science.gov (United States)

    Bauer, Siegfried; Bauer-Gogonea, Simona; Graz, Ingrid; Kaltenbrunner, Martin; Keplinger, Christoph; Schwödiauer, Reinhard

    2014-01-08

    Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self-cleaning and healing and on-skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves. © 2013 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A survey of some solar energy retrofits.

    Science.gov (United States)

    1981-01-01

    The report briefly describes a survey of some solar energy retrofits, such as solar heaters and Trombe walls, that can be easily adapted into existing buildings belonging to the Department. With their relatively high cost, commercial solar heaters ha...

  17. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    Science.gov (United States)

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.

  18. Broadband energy harvesting using acoustic black hole structural tailoring

    International Nuclear Information System (INIS)

    Zhao, Liuxian; Semperlotti, Fabio; Conlon, Stephen C

    2014-01-01

    This paper explores the concept of an acoustic black hole (ABH) as a main design framework for performing dynamic structural tailoring of mechanical systems for vibration energy harvesting applications. The ABH is an integral feature embedded in the host structure that allows for a smooth reduction of the phase velocity, theoretically approaching zero, while minimizing the reflected energy. This mechanism results in structural areas with high energy density that can be effectively exploited to develop enhanced vibration-based energy harvesting. Fully coupled electro-mechanical models of an ABH tapered structure with surface mounted piezo-transducers are developed to numerically simulate the response of the system to both steady state and transient excitations. The design performances are numerically evaluated using structural intensity data as well as the instantaneous voltage/power and energy output produced by the piezo-transducer network. Results show that the dynamically tailored structural design enables a drastic increase in the harvested energy as compared to traditional structures, both under steady state and transient excitation conditions. (papers)

  19. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  20. Solar Energy for Rural Egypt

    Science.gov (United States)

    Abdelsalam, Tarek I.; Darwish, Ziad; Hatem, Tarek M.

    Egypt is currently experiencing the symptoms of an energy crisis, such as electricity outage and high deficit, due to increasing rates of fossil fuels consumption. Conversely, Egypt has a high solar availability of more than 18.5 MJ daily. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and Sinai Peninsula, which both represent more than 96.5 % of the nation's total land area. Therefore, solar energy is one of the promising solutions for the energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning large-scaled solar power projects, not only in terms of space availability, but also of availability of high quality silicon (sand) required for manufacturing silicon wafers used in photovoltaic (PV) modules. Also, rural Egypt is considered market a gap for investors, due to low local competition, and numerous remote areas that are not connected to the national electricity grid. Nevertheless, there are some obstacles that hinder the progress of solar energy in Egypt; for instance, the lack of local manufacturing capabilities, security, and turbulent market in addition to other challenges. This paper exhibits an experience of the authors designing and installing decentralized PV solar systems, with a total rated power of about 11 kW, installed at two rural villages in at the suburbs of Fayoum city, in addition to a conceptual design of a utility scale, 2 MW, PV power plant to be installed in Kuraymat. The outcomes of this experience asserted that solar PV systems can be a more technically and economically feasible solution for the energy problem in rural villages.